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for such a matrix that exploits not only its data-sparsity resulting from the decay of
the kernel function but also the regularity of the geometry of the structures and the
quantities of interest distributed on them. Like the well-known multigrid method for large
sparse matrices arising from boundary-value problems, our method requires a smoother for

ﬁirvnogr;ﬁ removing high-frequency terms in solution errors, a strategy for coarsening a grid, and a
Kernel function pair of transfer operators for exchanging information between two grids. We develop new
Block Gauss-Seidel techniques for these processes that are tailored to a kernel function acting on discretized
Method of regularized Stokeslets interacting structures. They are matrix-free in the sense that there is no need to construct
Fluid-structure interaction the large dense matrix. Numerical experiments on a variety of bio-inspired microswimmers

immersed in a Stokes flow demonstrate the effectiveness and efficiency of the proposed
multigrid solver. In the case of free swimmers that must maintain force and torque balance,
additional sparse rows and columns need to be appended to the dense matrix above. We
develop a matrix-free fast solver for this bordered matrix as well, in which the multigrid
method is a key component.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Natural and artificial microswimmers are of considerable interest due to their multitude of biological implications and
potential biomedical applications. For example, flagellated bacterial carpets can be used as actuators to enhance fluid mixing
and pumping [1-3]. In humans, motile cilia exist on the respiratory epithelium and are critical to the mucus clearance in
the lung. Cilia in the fallopian tubes of female mammals assist the self propulsion of spermatozoa in the preovulatory phase
as well as the fertilization process [4]. It has been hypothesized that controlled microswimmers can perform targeted drug
delivery and microsurgery [5,6]. Numerical simulation of the dynamics of these microstructures serves as a powerful and
indispensable tool for understanding and eventually harnessing their motility.

In such a computation, the dynamic microswimmers are typically discretized by a Lagrangian grid that evolves with
time. The flow field around them can be described accurately by the incompressible Stokes equations. Solvers such as the
Method of Regularized Stokeslet (MRS) [7], the Boundary Integral Equation (BIE) formulation [8], and the Boundary Element
Method (BEM) [9] give rise to a linear system whose coefficient matrix is generated by an underlying kernel function and
characterizes the pair-wise hydrodynamic interactions between the grid points. Knowing the fluid velocities at these points,
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whether prescribed or experimentally observed, we can uncover the hydrodynamic forces that they must have exerted by
solving this linear system, which in turn allow us to evaluate the entire flow field. Measuring these forces in a lab is rather
challenging. In nature, microswimmers rarely exist in isolation; in fact, they often collaborate with one another to achieve
key functionalities. For example, Volvox, a freshwater green alga known as a model organism for studying multicellularity,
forms hollow, spherical colonies that roll and swim toward light to perform photosynthesis by coordinating the “rowing”
of numerous flagella on their surfaces [10]. Simulating these collective behaviors entails the use of a large number of grid
points and hence gives rise to a large-scale linear system. In addition to the scale of the problem, another major challenge is
that unlike a finite-element or finite-difference matrix corresponding to an Eulerian grid of the fluid domain, the coefficient
matrix of this system is dense, that is, it contains very few zero entries.

The “stroke of luck” that allows for the development of fast solution methods for the aforementioned linear system is the
decay of the kernel function. More specifically, the greater the distance between a pair of points immersed in a Stokes flow
is, the weaker the hydrodynamic interaction between them is, and the smaller the magnitude of the corresponding matrix
entries is. Consequently, by dividing the points into a “tree” of clusters based on their proximity, we obtain a hierarchical
partition of the coefficient matrix into smaller blocks, among which the ones corresponding to “well-separated” clusters
have accurate low-rank approximations and are hence data-sparse. Large dense matrices arising from a wide variety of ap-
plications possess similar decay properties, based on which many fast methods have been developed. Direct solvers [11-16]
generally seek a hierarchical, data-sparse factorization of the coefficient matrix by exploiting low-rank approximations of
its sub-matrices. Alternatively, various iterative methods such as generalized minimal residual method (GMRES), conjugate
gradient (CG) and biconjugate gradient stabilized method (BiCGSTAB) have also been applied, typically in conjunction with
a preconditioner, to solve linear systems with large dense coefficient matrices. For matrices generated by a kernel function,
many preconditioners that exploit their hierarchical, data-spares structures have been developed [17-20]. Other precondi-
tioners such as the structured incomplete factorization preconditioners [21,22], the multilevel Schwarz preconditioners [23],
and the sparse approximate inverse preconditioners [24,25] have also been devised for various applications.

In these methods, discretized interacting structures would be viewed simply as a point cloud; the membership of the
grid points in these structures prior to discretization would not be utilized, nor would the smoothness in quantities such
as velocity and force along each structure. In this paper, we develop a multigrid method for kernel functions acting on
discretized interacting structures that exploits the interconnections between the grid points representing the structures as
well as the decay of the kernel function. Our method is matrix-free in the sense that there is no need to explicitly construct
the large and dense coefficient matrix. Like the well-known multigrid algorithm [26-28], this method iteratively updates the
solution to the original linear system based on solutions to smaller linear systems corresponding to coarser discretization of
the structures. Its main “ingredients” also include grid coarsening, a smoother for removing the high-frequency components
of the error in an approximate solution, and a pair of transfer operators for exchanging information between a coarse grid
and a fine grid. Depending on whether a parametrization of the structures is available, we develop two versions of multigrid
that are analogous to the geometric multigrid for structured grids and algebraic multigrid [29-34] for unstructured grids.

However, despite the similarity in algorithmic structure between our method and the existing multigrid, there are a
number of key differences. Multigrid is traditionally and still predominantly applied to linear systems arising from spatial
discretization of Partial Differential Equations (PDEs), where the grids are Eulerian, and the coefficient matrices are sparse;
for example, see [35-38] where multigrid methods have been developed for linear systems resulting from spatial discretiza-
tion of the Navier-Stokes equations and the Stokes equations on structured Eulerian grids. In contrast, in a simulation of
interacting structures whose relationship is dictated by a kernel function, the grid is Lagrangian and unstructured, and the
coefficient matrix is dense. Because of these differences, commonly used methods, such as the point Gauss-Seidel smoother,
are either ineffective or inefficient. In particular, we note that while the high-frequency components in the error corre-
spond to large eigenvalues of a finite-difference or finite-element matrix arising from discretization of an elliptic PDE, this
is not necessarily the case for the dense matrix generated by a kernel function. For this reason, specialized smoothers have
been developed in [39-41] for large dense matrices arising from the BEM. However, these techniques are equation- and
boundary condition-dependent and do not generalize easily to a different scenario, such as the kernel function of inter-
est in this study. The methods in [40,41] also entail eigenvalue computations, which can be challenging for large dense
matrices. Taking advantage of the decay of the kernel function, we develop effective and efficient techniques for grid coars-
ening, smoothing solution errors, and transferring quantities between two grids. We emphasize that these techniques do
not require constructing the large dense coefficient matrix associated with the original fine grid.

The rest of the paper is organized as follows. In Section 2, we briefly review the MRS for solving fluid-structure interac-
tions and introduce the kernel function as well as the linear system of interest. Note that our method is applicable to other
kernel functions as long as they have similar decay properties. In Section 3, we give an outline of the original multigrid
algorithm, which is shared by our method. In Section 4, we propose efficient methods to perform grid coarsening, error
smoothing, and inter-grid transferring for kernel functions acting on discretized interacting structures. We consider both
the case where the structures are parameterized and the case where only discrete points on them are given, leading to
two veins of methods that resemble the geometric multigrid and the algebraic multigrid. These methods are then tested
in Section 6 on a variety of microswimmers. For free swimmers that undergo rigid translation and rotation, the linear sys-
tem considered above must be augmented to incorporate additional constraints. In Section 7, we describe how the proposed
multigrid method can be applied to solve these more challenging problems and present additional numerical results. Finally,
a summary of the paper and concluding remarks can be found in Section 8.
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2. Method of regularized Stokeslets
When viscous forces dominate and inertia is negligible, a fluid flow can be modeled by the incompressible Stokes equa-
tions
uViu— Ap = —f,
V.-u=0,

(1)

where u is the fluid velocity at X, p is the fluid pressure at X, w is the fluid viscosity, and f is the force acting on the fluid.
Let f=fpd(x — Xp) where § denotes the Dirac delta function and fy denotes the point force located at Xg. Then the fluid
velocity at x induced by fp can be calculated analytically. It is referred to as the Stokeslet and is singular at X = Xg. To allow
for calculating the fluid velocity at xg, the Method of Regularized Stokeslets (MRS) was developed in [7], where the Dirac
delta function is replaced by a radially symmetric smooth function ¢, called the blob function. It has the effect of spreading
the point force over a small ball centered at Xxo with radius € and approaches the Dirac delta function as € goes to 0. The
resulting analytic solution is no longer singular and is referred to as the regularized Stokeslet.

The MRS was originally developed for unbounded domains [7,42] and has been extended to a domain bounded by a solid
planar wall where the flow vanishes [43] using the method of images [44]. We consider both formulations in this paper.
Due to the linearity of Eq. (1), the fluid velocity u(x) at any point x in either domain induced by N regularized forces fj
located at x; can be written as

N
uX) =Y KX Xof. (2)
k=1
where, in three dimensions, K(x,y) is a 3 x 3 kernel function that determines the hydrodynamic interaction between x, y
and decays as the Euclidean distance r = || X — y||2 between the two points increases. The precise form of K depends on the
choice of the blob function ¢ and whether the domain is bounded. In this work, we always use

15¢*
- 8m(r2+€2)7/2
In addition, the N points x; are the Lagrangian grid points used to discretize interacting dynamic structures immersed in
the fluid.
If we concatenate all the u(xy) to form a long vector up and concatenate all the fi to form a long vector f, using Eq. (2),
we obtain a linear system

up = An fn (4)

where up,, fr e R3V, and A, e R3V3N consists of 3 x 3 blocks K (x;, X;) and is dense.

In this work, we are interested in the case where N is large, uy is known, and f} is wanted. That is, we need to solve
a linear system whose coefficient matrix is large and dense. A large N can result from fine discretization and/or a large
number of structures. Once f;, is found, we can again use Eq. (2) to evaluate the velocity at any point X in the fluid domain.

Pe (3)

Remark 1. We use the subscript h to indicate that a quantity is associated with the original grid of the structures. In
Section 4, we will discuss how to coarsen this grid and transfer quantities from one grid to another. The subscript H will
be used for quantities on a coarser grid.

3. Overview of the multigrid method

The multigrid method has been used to solve discretized PDEs arising from numerous applications. Roughly speaking,
it is an iterative method that, until convergence, applies a smoother to remove high-frequency oscillations in the error of
an approximate solution and then solves the smoothed problem on grids of coarser resolution. Given an initial guess f©,
the kth iteration of a two-grid V-cycle method for solving the linear system Apf, = uy arising from a discretized PDE is
outlined below, where f& denotes the kth iterate of fj,.

Step1. Apply the smoother to compute an approximate solution, f*~1), to Ay fy = up.

Step2. Compute the residual ry = uy — Ap f*~1 and its restriction, ry, to the coarse grid.

Step 3. Solve Ayey =ry where Ay is the restriction of Aj to the coarse ~grid. _

Step4. Compute the prolongation, e, of ey to the fine grid and correct f*k=1; flk — fk=1) L o,

The smoother typically consists of a small fixed number of iterations of a simple iterative solver, such as the Gauss-Seidel
or Jacobi method. Information exchange between the fine grid and coarse grid is achieved by a restriction operator R;’ and
a prolongation operator PZ, that is, ry = R,’;’rh in Step 2, ey = P’IZ,eH in Step 4, and

3
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Ap = RE AP, (5)

in Step 3. We can recursively coarsen the grid and apply the two-grid method until the linear system restricted to the
coarsest grid is sufficiently small. The resulting algorithm is a multigrid solver.

The multigrid method that we propose for the large dense matrix generated by a kernel function acting on discretized
interacting structures formally consists of the same steps as above. However, such a matrix poses new challenges: the grid is
Lagrangian and unstructured, constructing the matrix can be prohibitively expensive in terms of both runtime and memory
usage, and multiplying it to a vector is rather costly as well. Consequently, novel techniques need to be developed for
error smoothing, grid coarsening, and inter-grid communication that take advantage of the decay of the kernel function and
the resulting data-sparsity of the matrix. In Sections 4 and 5, we describe them in greater detail. Note that the proposed
multigrid method does not require constructing the large dense Ap, rendering it matrix-free.

4. The coarsening strategies

In the following three subsections, we describe how to coarsen a grid (Section 4.1), construct the transfer operators
between the fine and coarse grids (Section 4.2), and project the large, dense coefficient matrix onto the coarse grid (Sec-
tion 4.3). Our methods exploit the smoothness in the geometry of biological structures as well as quantities such as velocity
and force distributed along them, and the decay of the kernel function as the distance between the source and target points
increases.

A Lagrangian grid used to discretize biological structures is unstructured in the xyz space. Nonetheless, when they are
modeled by a parametric curve or surface and the Lagrangian grid results from a structured grid in the parameter space, our
method is similar to the geometric multigrid. When a parameterization is unavailable and the structures are represented by
discrete points, our method is similar to the algebraic multigrid. We consider both cases in each subsection below.

4.1. Coarsening the grid

4.1.1. Case I: a parameterization of the structures is known

Biological structures are often modeled as parametric curves or surfaces in three dimension. For example, a bacterial
flagellum can be represented by a helix. Although a curve or surface itself does not have any thickness, placing regularized
Stokeslets along it has the effect of adding thickness to it. When the parameterization is known, we can obtain a grid for
the structures by discretizing the parameter space, usually uniformly for simplicity.

For example, consider a structure modeled as a parametric curve

X(s): R — R3 withs e [0, L]

where s is the arclength. Let O, h, 2h, ---, (N—1)-h=L where h =L/(N — 1) constitute a uniform grid on [0, L]. The
corresponding Lagrangian grid points on the structure are

X(0), X(h), X(2h), ---, X((N—1)-h).

We can simply coarsen this grid by coarsening the grid of the parameter space. Assume that there are N = 2K + 1 points
in the fine grid resulting from the uniform grid with spacing h = L/2* of the parameter space. A coarser grid consisting
of N'=2K=P 4 1 points, where p is an integer satisfying 1 < p <k, can be obtained by increasing the grid spacing in the
parameter space to H = 2P - h. In this case, the two grids are “nested” since the coarse-grid points also belong to the fine
grid. In Fig. 1, we show the fine grid (Fig. 1b) and coarse grid (Fig. 1c) of a structure represented by a helical curve. The two
corresponding grids of the parameter space are also shown in Fig. 1a, where the black dots are the fine-grid points and the
red crosses are the coarse-grid points.
When the structure is modeled as a parametric surface

X(u,v): R? — R3 withu €[0,L,] and v € [0, Ly],

we can again coarsen a grid of the structure by coarsening the corresponding grid of the parameter space. In Fig. 1, we
show the fine grid (Fig. 1e) and coarse grid (Fig. 1f) of a structure represented by a torus. The two corresponding grids of
the parameter space are also shown in Fig. 1d, where the black dots are the fine-grid points and the red crosses are the
coarse-grid points.

4.1.2. Case II: no parameterization is available

In this case, the structures are represented by a collection of scattered points and not parameterized prior to discretiza-
tion. Our strategy is based on the Parallel Modified Independent Set (PMIS) algorithm [45,46], a commonly used approach
for coarsening an unstructured Eulerian grid in the algebraic multigrid method for discretized PDEs. It iteratively sorts a
given set of points (the fine-grid points) into two subsets: the so-called “C-points” and “F-points.” The former refers to the
coarse-grid points that we seek, and the latter refers to the rest of the fine-grid points. Both sets are initialized to be the
empty set. In each iteration of the PMIS algorithm, roughly speaking, the most “influential” unsorted fine-grid points are
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(a)

(d (e) ®

Fig. 1. Grid coarsening for two parameterized structures: a helix (a-c) and a torus (d-f). (a,d): Grid coarsening in the parameter spaces. Black dots: fine-grid
points. Red crosses: coarse-grid points. (b,e): The fine grids of the structures. (c,f): The coarse grids of the structures. (For interpretation of the colors in the
figure(s), the reader is referred to the web version of this article.)

first added to the set of C-points; and the unsorted fine-grid points “influenced” by the new C-points are then added to
the set of F-points. The algorithm terminates when all the fine-grid points that we start with have been sorted into one of
the two subsets. By construction, the coarse grid is always nested into the fine grid.

In the original PMIS algorithm, the sizes of the entries of the coefficient matrix A, determine how influential the fine-
grid points are. For a large dense A, we have to modify this algorithm so that it can be performed without explicitly
constructing Ap. Let {x,-}?’: , be the set of fine-grid points. Since the kernel function and thus the corresponding matrix
entries decay as the source and target points move further apart, we utilize the pairwise distance, djj = [|X; — X;l|> for
i, j=1, 2, ---, N, to quantify the influence that a point has on another point. The specifics in the case of a single
structure are as follows. We define an N x N auxiliary strength matrix S whose (i, j) entry is

1, ifi#janddij <1 min{dy: i#k
Sy = #Jj ij < g ml {dik : 1 #Kk} (6)

0, otherwise

where 0 < o < 1 is a constant. (In the original PMIS algorithm, the auxiliary strength matrix is calculated based on the
absolute values of the entries of Aj instead.) The ith point X; is considered to be influenced by the jth point X; if and
only if S;; = 1. Thus, the sum of the ith column of S gives the total number of points influenced by X;. The weight of x;
is defined to be this sum plus a random number in [0, 1] and measures how influential x; is. The coarseness of the coarse
grid found by the PMIS algorithm can be controlled by the value of «: the smaller « is, the larger the threshold on d;j is in
Eq. (6), the more points will be influenced by a C-point and added to the set of F-points, and the fewer points there will
be in the set of C-points. When there are multiple structures, instead of applying the PMIS algorithm to the fine grid as a
whole, we apply it to the fine grid restricted to each structure individually.

As an example, consider an ellipsoidal structure represented by 1016 points, as shown in Fig. 2. When o = 0.45 is
chosen in Eq. (6), it takes the modified PMIS algorithm four iterations to divide them into F-points and C-points, producing
a coarse grid consisting of 127 points. The results of all four iterations are displayed in Fig. 2a to Fig. 2d, where the blue
dots are the fine-grid points and the red asterisks are the C-points that have been found after each iteration. The C-points
shown in Fig. 2d constitute the coarse grid.

4.2. Constructing the transfer operators

Suppose the fine-grid points are X;, X, ---, Xy € R? and the coarse-grid points are X;, X2, ---, Xn € R? where
N <N. Let fe R3V be a vector that needs to be prolonged, which is formed by concatenating the following quantities
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Fig. 2. (Color online) Grid coarsening for an ellipsoidal structure using the modified PMIS algorithm. Blue dots: fine-grid points. Red asterisks: coarse-grid
points. (a-d): The results of Iterations 1 through 4.

associated with the coarse-grid points: f;, f, ---, far € R3. We seek a prolongation operator P € R3VN*3N such that
f= Pf is formed by concatenating f;, f», ---, fy € R3, the quantities associated with the fine-grid points. We again
consider the case where the structures are parameterized (Section 4.2.1) and the case where they are not (Section 4.2.2).
Although the details are quite different, we proceed as follows in both cases. For each fine-grid point x;, we first identify
the coarse-grid points that are adjacent to it. Let .# denote the set of indices such that j € .#; if and only if the coarse-grid
point X; is adjacent to x;. We then calculate f; as

f,' = Z Wij -i:j (7)

jedi

where wj; is a scalar. The resulting prolongation operator P can be partitioned into 3 x 3 blocks, and its (i, j) block is

wij- I3, ifje s
03, otherwise

py— (8)
where I3 denotes the 3 x 3 identity matrix and O3 denotes the 3 x 3 zero matrix.

We also need a restriction operator R € R3V>3N gych that given f € R3N defined on the fine grid, we can calculate its
counterpart on the coarse grid as f = Rf. Once P has been constructed, we can simply choose R = PT to be the restriction
operator. In the special case where the two grids are nested, we can also construct R as follows:

I3, if%; and x; coincide

Rij = .
03, otherwise

(9)

where R;; is the (i, j) block in R. Applying this operator to restrict f is equivalent to setting fi =f;, which does not entail
any additional computational cost.

Therefore, for the rest of this subsection, we focus on the construction of the prolongation operator P, specifically, the
choice of .%; and wj;j in Egs. (7) and (8).
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4.2.1. Case I: a parameterization of the structures is known
Assume for now that there is only one structure represented by a parametric curve X'(s) in 3D where s € [0, L]. Let the
fine-grid points be

X1 =X(0), xo=X(h), -, xy=X((N—1)-h) (10)
where (N — 1) -h =L and the coarse-grid points be
X1 =X(0), X=X (H), -+, Xy =X(WNV —1)-H) (11)

where (M — 1) - H=L. Since the biological structures are smooth, we assume that quantities such as velocity and force are
also smooth on them. For any integer 1 <i < N, let 7 (i) be the unique integer that satisfies the following: 1 < J(i) <N —1,

(JOH-1D-H=(@{-1)-h<J@O H (12)

if i <N, and J(i) =N —1 if i = N. Thus, we consider X7 and X 7(+1 to be the coarse-grid points that are adjacent to
X; (see Fig. 1a-c), that is,

Ji={J®),J0)+1}. (13)

Using the linear spline on the interval [(j(i) -1 -H,J3)- H] around (i — 1) - h in the parameter space, we can calculate
f; as

fi= Z wij -i"j (14)
jeSi
where
i)—1)-H—(G{—1)-h
wiyo=14 JO=DH-(=D-h
. H (15)
(i-1)-h—(J@—-1)-H
Wi 7(@)+1 = .

H
Egs. (7) and (8) follow immediately.

Remark 2. While the interpolation would be more accurate if a higher-order method such as the cubic spline is used,
the weights w;; would depend on not only the parameter s but also fi, f, ---, far. As a result, P would have to be
constructed case by case for each f that needs to be prolonged.

Next, we consider a single structure represented by a parametric surface X’ (u, v) in 3D where u € [0, L,] and v € [0, Ly].
Let N =N, - N, where N, and N, are integers greater than 1. Let h, = L,/(N, — 1) be the fine-grid spacing in the u
direction and h, =L, /(N, — 1) be the fine-grid spacing in the v direction. Similarly, let N'= N/, - A, where NV, < N, and
Ny < N,. Let Hy =L, /(Ny — 1) be the coarse-grid spacing in the u direction and H, = L,/(N, — 1) be the coarse-grid
spacing in the v direction. In addition, let the fine-grid points be numbered such that

Xm+(n—1)-Ny =X((m_1)'huv(n—1)'hv) (16)

for 1 <m <N, and 1 <n < N,; and similarly, let the coarse-grid points be numbered such that

Xp+@-D-Ny = X((P =1 - Hu, (9= 1) - Hy) (17)

for 1 <p<AMN, and 1 <q <N,. For any integer 1 <m < Ny, let P(m) be the unique integer that satisfies the following:
1<P(m) SNu -1,

(P(m)—1)-Hy =(m—1)-hy <P(m)-Hy (18)

if m < Ny, and P(m) =N, — 1 if m = N,,. For any integer 1 <n < Ny, let Q(n) be the unique integer that satisfies the
following: 1 < Q) <N, —1,

(Qm—1)-Hy<@m—-1)-hy <Qn)-H,. (19)

ifn<N,,and Q(n) =N, —1if n=N,. Thus, for 1 <m <N, and 1 <n < N,, we consider

XP(m)+(Qm)—1)-Ny» XPm)+(Qm)—1)-Ny+1+ XPm)+Qm)-Ny» aNd Xp )4 Qm)-Ny+1

7
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to be the coarse-grid points adjacent to x; where i =m + (n — 1) - Ny, (see Fig. 1d-f), that is,
Ji={Pm)+(Qn) — 1) - Ny, Pm) +(Qm) — 1) - Ny +1, P(m) + Q) - Ny, P(m) + Q) - Ny, +1}.  (20)
Using the bilinear interpolation on the neighborhood

[(Pam) — 1) - Hy, P(m) - Hy] x [ (Q) — 1) - Hy, Q) - Hy ]

around ((m —1)-hy,(n—1) ~hv) in the parameter space, we can again calculate f; as (14) where

+(P(m)_l)'Hu_(m_l)'hu>.<1+(Q(n)_l)'Hv_(n_l)'hv>,

Wi, Pm)+(Qm)—1)-Ny = <1

Hy Hy
(m—1)-hy — (P@m)—1)-Hy (Qm)—1)-Hy—(n—1)-hy
Wi P(m)+(Qm)—1)-Ny+1 = q 1+ 0 ,
u v 21
(Pm)—1)-Hy—(m—1)-hy\ (n—1)-hy —(Qn) —1)-Hy 1
Wi pm+Qm-N, = | 1+ H, : H, )

m—-1)-hy —(P(m)—1)-Hy (—-1)-hy —(Qm)—1)-Hy
Hy, Hy '
Egs. (7) and (8) follow as in the case of a parametric curve.

So far we have considered the case of a single structure modeled as a parametric curve or surface prior to discretization.
We now give a brief description of the prolongation operator P when there are ns > 1 structures. Assume that for 1 <k <n;,
the kth structure represented by X is discretized by Nj points in the fine grid and AN points in the coarse grid, where
Ny and N satisfy the following: N} < N, ZZ;] N, = N, and ZZ;l/\fk = N. Also assume that the points on the kth
structure are numbered by Zé‘;} N;i+1 to Z{-;l N; in the fine grid and Zf;llj\/} +1 to Zf-‘=1 N; in the coarse grid. Then
the prolongation operator P has the following block-diagonal structure:

P4
)

Wi P(m)+Qm)-Ny+1 =

Py

S

where Py € R3Ne3Me s the prolongation operator in the case where X is the only structure present.

4.2.2. Case II: no parameterization is available
In Section 4.2.1, it is relatively straightforward to determine whether a coarse-grid point X; is adjacent to a fine-grid point
X;: j €% if and only if X; and x; belong to the same structure and correspond to adjacent grid points in the parameter
space. It is less clear how .# should be determined when the structures are not parameterized. Assume that there is a
single structure represented by {x;};_; in the fine grid and {f(,-}{\:[] in the coarse grid. We consider the m coarse-grid points
closest to x; to be adjacent to it where m is a small fixed integer between 1 and N, that is,
S = {j : Xj is one of the m coarse-grid points closest to x,-} . (23)

In Section 4.2.1, we use linear interpolation to calculate f; from {fj} e Here, we interpolate the coarse-grid quantities
je s

using Radial Basis Functions (RBFs) instead. For any vector v € R3, let v’ denote the ¢th component of v where ¢ =1, 2,
or 3. Let .%; = {j1, j2, ---, jm} where 1 < j; < j» <--- < jm <N. (The dependence of ji, ja, ---, jm on i is omitted
to simplify the notation.) Following the method of [47], for 1 <i <N and £ =1, 2, 3, we introduce the following function
from R3 to R:

m . 2 3
i) =Y hig- €7<8 ) + ) ik Pe(X) (24)

q=1 k=0

where § is a shape parameter,

1, ifk=0
X)=1, 25
Pr(X) xk, otherwise (25)
and {Awq}?:], {awk}ﬁzo are scalars to be determined. The ¢£th component of f; is then calculated as ff = gij¢ (Xj). To find

m .
{)‘iﬁq}q:1 and {aje};_,. we impose
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A

gie (k) =£, (26)

forgq=1, 2, ---, m, that is, gj;(X) is exact at all the coarse-grid points adjacent to X;. Since there are m + 4 unknowns
and only m equations, the following four constraints are also added:

> hieq i (Xj;) =0 (27)

T T F; w17
for k= 0, 1, 2, 3. Let )Lf’ = [)»,'[1 Mg - )Ligm] S Rm, af = [a,'m aje1 Ajo¢ 111'53] € R4, and f,-‘Z I:fﬁl f[ s fem] e R™ We
therefore need to solve the linear system

[1% g;][,] [gj] (28)

N N 2
8|xj'_xj“ H) , the (r, k) entry of IT; e R™4 is

forevery 1 <i <N and £ =1, 2, 3, where the (r,q) entry of ®; ¢ R™™ js e_(
pi—1 (Xj,), O4 is the 4 x 4 zero matrix, and Oy is the 4 x 1 zero vector.
It remains to be shown that

fi=>" wy- f (29)
jeSi
where wj; is a scalar that does not depend on £. By Eq. (28),

af = T,'ff and )Lf = \Il,-ff (30)

-1
where Y; = (Hfd)i’lni) N7 @' e R™™ and W; = ;' — & 'I1;7; € R™™. (Note that ®;, I1; and hence Y;, ¥; do not
depend on ¢.) Since ff = giv(X;), by Egs. (24) and (30), Eq. (29) holds with

Wij, —Zlmqr e (|

where g is the (q, 1) entry of W; and vy, is the (k,r) entry of Y;. Egs. (7) and (8) follow immediately.
In the case of multiple structures, the prolongation operator P again has the block-diagonal structure shown in Eq. (22)
if the grid points are numbered appropriately (see the description in the paragraph immediately preceding Eq. (22)).

2 4
xi—%j, H) +Zvikr'pk—1 i), (31)

k=1

4.3. Approximating the Galerkin projection

Assume that the fine-grid points {x;}¥ i_1, coarse-grid points {x,}lNr and a prolongation operator P’,ZI e R3V3BN | 3 re-
striction operator R} € R3V*3N petween them are known. Recall from Section 2 that the coefficient matrix Aj on the fine
grid is 3N x 3N and can be partitioned into 3 x 3 blocks, where the (i, j) block is K (x;,X;). We denote K (x;,X;) by Kj; and
K (ﬁj,ﬁj) by ﬁ;j. (Note that the former is defined between a pair of fine-grid points whereas the latter is defined between
a pair of coarse-grid points.) Recall from Section 4.2 that both PZ and R,’j can be partitioned into 3 x 3 blocks as well. We
continue to denote their (i, j) blocks by P;; and R;j, respectively.

We could calculate a 3N x 3N coarse-grid representation Ay of A, as R,’l" ApP" referred to as the Galerkin projection
of Aj onto the coarse grid. Due to the block structures of Ay, R,’;’, and P’;,, Ap can also be partitioned in to 3 x 3 blocks,
the (i, j) block of which is

N N
Gij=) Ry (Z KlnPnj>- (32)
I=1 n=1

However, calculating Ay naively entails matrix-vector products involving Ap, which in turn entails interactions between
each pair of fine-grid points. We develop an efficient approach to approximate G;; that takes advantage of the sparsity of
R,’j and P’;, as well as the data-sparsity of Ap.

Since the strength of Kj, decays as the distance between x; and X, increases, for accurate and computationally efficient
approximation of G;j, we propose

Gij = ZRN D KinPrj+ Y KinPrj |, (33)

neAM n¢AN|



W. Liu and M.W. Rostami Journal of Computational Physics 494 (2023) 112506

where 4] denotes the set of indices of all the fine-grid points “close” to x|, I?ln ~ K, and the calculation of Rm involves
coarse-grid interactions only. We explain the choice of K}, and .4{ below.

If X, is not close to X, that is, if n ¢ .4{, the contribution of Kj, to Gj; is less important. It is thus not necessary to
calculate Kj, exactly. We can use linear or RBF interpolation to approximate Ky, as in Section 4.2:

I?ln = Z Wnq - K (xl,%) (34)
q€In

where ., is the set of indices of all the coarse-grid points adjacent to x, (see Egs. (13), (20), and (23)), and wyq is a
scalar (see Egs. (15), (21), and (31)). Using the I~(,n defined in Eq. (34), we can avoid the interactions among fine-grid
points; however, we still need to calculate the interactions between fine-grid points and coarse-grid points. To eliminate
the involvement of the fine-grid points in Tfm entirely, we use linear or RBF interpolation again to approximate K (xl, ﬁq) in
Eq. (34), that is,

I?ln = Z Whng - Z wy - K ()A(r’f‘q) = Z Whngq - Z Wir - qu . (35)

qeIy red qen res

Combining Egs. (33) and (35), we have

N
aij = ZRN Z Kin Pnj + Z Z Wpg - Z wy - ﬁrq Ppjt - (36)

=1 neA ng¢AN | qe s red

We note that thanks to the sparsity of P’,', and R{;’ (see Egs. (8) and (9)), the number of terms that need to be summed to
calculate G;; is not as many as Eq. (36) suggests. To see this, for each coarse-grid point X;, we first introduce a new set of
indices &’ defined as follows:

Ej={m: je In}. (37)

Then by Eq. (8) and R} = (P’;,)T, we can rewrite Eq. (36) as

Gi=D Wi~} >, Woj-Kn+t D waj-| D wag | D wirKrg : (38)

le&; ne&iNM ne&\AM q€In re.%

In the special case where the coarse grid is nested into the fine grid and R;j is defined by Eq. (9) instead, if xp, is the
fine-grid point that coincides with X;, then Eq. (36) simply becomes

6ij = Z Wnj - Kmn + Z Whj - Z Wng Z Wr - T(\rq : (39)

ne&iNA ne&\ M qeIy redm

In the rest of this paper, we use Ay to denote the approximate Galerkin projection of A, onto the coarse grid, that is, the
(i, j) block of Ay is 5,-j defined in Eq. (38) or Eq. (39) instead of the exact G;; defined in Eq. (32).

We still need to specify what the set of indices .4/ is in Eqs. (38) and (39). We wish to identify the fine-grid points close
to x; without calculating the pair-wise distances between fine-grid points. The main idea is the following: if x; is adjacent
to X;, X, is adjacent to X;, and X; is close to X;, then x; is considered close to Xj.

We first consider the case where the structures are parameterized prior to discretization. We consider X; to be close to
X; if the parameter values that they correspond to are close to one another. In the case of parametric curves, let s; denote
the grid point in the parameter space that X; corresponds to. We define .4/ as

M= U [ne&: |sj—si| <y andX; is on the same structure as X; } (40)
i€

where y > 0 is a constant. In the case of parametric surfaces, let (u;, v;) be the grid point in the parameter space that X;
corresponds to. Similarly, we define .4{ as

M= fnes: Juj—ul<n,
i€.g

vi— v,-| < y»2, and X; is on the same structure as fq} (41)

where y1, Yy, are constants. Identifying the fine-grid points close to Xx; using Eq. (40) or Eq. (41) only entails calculating the
pair-wise distances between the coarse-grid points in the parameter space.

10
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In the case of no parameterization, we simply define .41 as

A= J{neé&: |%—%i|, < y. and&; is on the same structure as X; } . (42)
ies

where y is a constant. Finding it entails calculating the pair-wise distances between the coarse-grid points on the structures.

Remark 3. Since the coarsening of the grid (Section 4.1), construction of the transfer operators (Section 4.2), and approx-
imation of the Galerkin projection (Section 4.3) can all be performed structure by structure, these processes are easily
parallelizable.

5. A block Gauss-Seidel smoother

The classic point Gauss-Seidel method has long been the smoother of choice in the multigrid methods for solving dis-
cretized elliptic PDEs on an Eulerian grid. In such a problem, the coefficient matrix is sparse, which allows for efficient
implementation of the Gauss-Seidel iteration. Furthermore, since the eigenvectors of the coefficient matrix associated with
large eigenvalues are highly oscillatory, a small number of Gauss-Seidel iterations suffice to effectively remove the high-
frequency terms in the solution error.

The coefficient matrix of interest here is large, dense, and generated by a kernel function acting on discretized interacting
structures. As a result, the point Gauss-Seidel iterations can be computationally expensive. Moreover, it is not necessarily the
case that large eigenvalues of this matrix correspond to highly oscillatory eigenvectors. We observe that a block Gauss-Seidel
method can serve as an effective smoother for this type of matrices, where the blocks are determined by a proximity-based
partition of the Lagrangian grid points. This is fundamentally due to the decay of the kernel function as the distance between
two points grows. We describe the block Gauss-Seidel smoother in Section 5.1 and discuss its efficient implementation in
Section 5.2.

5.1. Description of the algorithm
The point Gauss-Seidel method is based on the decomposition of an n x n matrix A as A=D + L+ U, where D, L, and U

are diagonal, lower-triangular, and upper-triangular, respectively. Given an initial guess (%, the kth iteration of this method
updates the solution to Af =u by

fO =0 4 D)7 (u - At (43)

where f) denotes the kth iterate. Since D is diagonal and L is lower-triangular, we can update f) entry by entry as

i—1 n
K 1 Kk k—1
fiH:; wi— Y a0 = 3 ey (44)
" j=1 j=it+1
fori=1, 2, ---, n, where fi(k> is the ith entry of f*, u; is the ith entry of u, and ajj is the (i, j) entry of A. For

a positive definite A, the convergence of the Gauss-Seidel method is guaranteed by the Ostrowski-Reich theorem [48,49].
More generally, if the spectral radius of the iteration matrix

G=I—(L+D)"A=1—-(A-U)"A, (45)

associated with Eq. (43), denoted by p(G), is less than 1, then the Gauss-Seidel method converges as well [50,51].
Given a block partition of A, we can extend the point Gauss-Seidel iteration to a block version. Let

A11 0] 0 A - Agp
Ao Ay O 0 - Ay

D= . ., L= . . , U= . s (46)
App Apr Apy -+ O 0]

where A;; denotes the (i, j) block of A and Aj;; is square. Like in the point Gauss-Seidel method, we can update f k) segment
by segment as

i—1 p

(k) -1 (k) (k—1)

FP=a7" w=)Y AfY = ) A (47)
j=1 Jj=i+1

11
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fori=1, 2, ---, p, where f,(’<> and u; denote the ith segments of f! and u, respectively. (The number of entries in

1
fl.<k> and u; equals the number of columns in Aj;.) As for the point Gauss-Seidel method, the block Gauss-Seidel method
converges if p(G) < 1, where G is defined in Eq. (45) and D, L, and U are defined in Eq. (46).

In this paper, A is 3N x 3N and generated by a kernel function K(x,y): R3 x R? — R3*3, such as the one associated
with the MRS (see Section 2), acting on every pair from N Lagrangian grid points {x,}, 1 By partitioning the grid points into

p groups, where the ith group consists of the N; points numbered by {Z’j 11Nj +k} il we obtain the following partition

of A into p x p blocks: for i, j=1, 2, ---, p, the (i, j) block, Ajj, is 3N; x 3N and represents the interactions between the
ith and jth groups of points; in particular, the ith block on the diagonal, Aj;, represents the interactions among the points
in the ith group. For the block Gauss-Seidel method to be effective, we wish p(G) to be small, implying that D should be
dominant in A. Since D represents the self-interactions of the p groups of points and ||K(X,y)| increases if X is closer to
y, it is desirable that the points within each group are close to one another. For example, we can order the grid points
in such a way that the ones belonging to the ith structure are numbered consecutively from Z'_ Nj+1to o =1 Nj for
i=1, 2, ---, p.If the grid points are not ordered based on proximity, we need to re-order them ﬁrst and then apply the
block Gauss-Seidel method to PT AP instead, where P is an n x n permutation matrix. The difference between the resulting
block Gauss-Seidel iteration and Eq. (47) is only technical. Therefore, we continue to use Eq. (47) for simplicity.

We observe from numerical experiments that as long as the grid points are grouped appropriately, a small number of
the block Gauss-Seidel iterations (47) serve as an effective smoother for the proposed multigrid method.

5.2. Implementation details

For a large dense matrix A, the block Gauss-Seidel iteration given in Eq. (47) introduces the following two challenges:
solving a linear system whose coefficient matrix is A;; (a block on the diagonal of A) and matrix-vector multiplication
involving A;; (an off-diagonal block in A). Both types of sub-matrices are similar to A in structure. In this subsection, we
discuss how to perform these calculations efficiently.

For effective smoothing, we find that partitioning A into large blocks is sometimes necessary, making Aj;; too large for a
direct solver. In this case, we apply the proposed multigrid method to invert A;; as well. Compared to the “outer” multigrid
iteration applied to Af = u, since Aj; is considerably small than A, fewer levels of coarsening are needed in the “inner”
multigrid iteration applied to Eq. (47); in addition, we observe that there is no need to carry out the inner multigrid
iteration as accurately.

The block-vector multiplication involving Aj; in Eq. (47) can also be approximated on a coarser grid as follows. We
replace Ajj by

PiAijR; (48)

where Kij represents the interactions between the ith and jth groups of coarse-grid points calculated using the original
kernel function K, R; = P]T is the restriction operator for the jth group of points, and P; is the prolongation operator for

the ith group of points (see Eq. (22)). Note that P;, R; are sparse and Z,-j is dense but smaller than A;;. We refer to this
technique as the inexact block-vector multiplication. Numerical experiments show that a rather coarse grid can be used in
(48) to substantially reduce the computational cost of Eq. (47) without degrading the effectiveness of the smoother.

Remark 4. We propose to use a block Gauss-Seidel smoother instead of a block Jacobi smoother because numerical ex-
periments show that the former requires far fewer iterations when applied to the MRS matrices of interest in this study.
However, since the block Gauss-Seidel smoother entails inverting the block lower-triangular matrix L + D whereas only the
block-diagonal matrix D needs to be inverted in the block Jacobi method, the former is more difficult to parallelize. Several
parallel Gauss-Seidel algorithms have been developed in [52-54] that may be adapted to the block Gauss-Seidel algorithm
proposed here. In [52], several parallelization strategies for dense Gauss-Seidel methods based on GPU and multi-threaded
CPU implementations were discussed. In [53], a distributed memory parallel Gauss-Seidel algorithm was proposed by us-
ing a row-block partition and a torus-wrapping technique. In [54], a parallel Jacobi-embedded Gauss-Seidel method was
developed by rewriting a Gauss-Seidel iteration into a highly parallelizable Jacobi-like iteration.

6. Numerical experiments

We demonstrate the effectiveness of the proposed multigrid algorithm on large-scale linear systems with dense coef-
ficient matrices arising from the simulation of interacting structures immersed in a Stokesian fluid. The performance of
this method is also compared with the preconditioned Generalized Minimal RESidual method (GMRES). We defer numerical
experiments on free swimmers that undergo rigid translation and rotation to Section 7, where additional constraints need
to be imposed besides Eq. (4) to maintain force and torque balance.

The preconditioner used to accelerate GMRES is block-diagonal. It is obtained by dividing the grid points into clusters and
allowing within-cluster interactions only. The clusters are determined by the proximity of the points or their membership in
the structures. More precisely, in the first method, we evenly divide the computational domain into 8” boxes where p > 1

12
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is an integer and consider all the points in a box as a cluster, as in [19]. In the second method, all the points belonging
to the same structure are considered to be one cluster. For every example in this section and Section 7, we explore both
methods and select the one that leads to the most efficient preconditioned GMRES.

Since the swimmers considered in this section are modeled as parametric curves, in the multigrid method, we use the
method described in Section 4.1.1 to coarsen the grid and the method described in Section 4.2.1 to construct the transfer
operators. The methods in Sections 4.1.1 and 4.2.1 for swimmers represented by discrete points are considered in Section 7.1.

The smoother employed in the multigrid method is a single block Gauss-Seidel iteration proposed in Section 5, where the
block-vector multiplication involving the off-diagonal blocks in Eq. (47) is performed inexactly as described in Section 5.2.

Recall that the multigrid method applied to the fine-grid problem Eq. (4) gives rise to the following two types of sub-
sidiary linear systems of smaller sizes:

o linear systems whose coefficient matrix is Ay, the representation of Ay on a coarser grid
e linear systems whose coefficient matrix is A;;, a block on the diagonal of Ay or Ay after it has been partitioned properly
in the block Gauss-Seidel smoother.

Note that Ay and A;; are dense as well. In our numerical experiments, if they are sufficiently small, a direct method will
be used; otherwise, an iterative method such as the multigrid method or the preconditioned GMRES will again be applied.
The initial guess, f(?, to fj, in the multigrid method is obtained by prolonging the solution obtained on a coarser grid,
that is, f% = Pl (A;1 (R,’;’uh)) where Ay is the coarse-grid representation of Ap. (The runtime of the multigrid method
reported in this section includes the time spent on computing the initial guess.) It is simply taken to be the zero vector in
the preconditioned GMRES.
In all the numerical experiments in this section, we use the relative residual at the kth iteration defined as

oy _ un — Anf®,

(49)
llunll2

to measure the accuracy of a solver, where f) is the kth iterate of f, computed by the solver.
All the numerical experiments are performed in MATLAB R2018b on a virtual machine equipped with an Intel Xeon CPU
2.30 GHz.

6.1. Bacterial carpets

There have been many studies on the flow around a bacterial carpet, which consists of a large group of flagellated
bacteria attached to a surface [55,56,2]. Such a construction can be utilized to perform fluid mixing and transport at a small
scale [57,2]. Here, we model the bacterial flagella as identical rotating helices as in [57], where the rotational velocities
along the helices are prescribed and the forces along them need to be solved. Once the forces have been calculated, the
flow around the carpet can be calculated using Eq. (2).

We consider an uniform array of rotating helices that emanate from an infinite, planar, solid, and stationary wall at
z=0. At time t = 0, the centerline Xo(s) = (x(s), y(s), z(s))T of an upright helix based at the origin and contained in the
semi-infinite domain {(x, y,2)" : z> 0} is parameterized as follows:

x(s) = o tanh(ts) cos(2ws/A + @), (50)
y(s) = o tanh(ts) sin(27ws/A + ¢), (51)
z(s) =s, (52)

where 0 <s <L, A is the helical pitch, T is a tapering parameter, ¢ is the phase angle, and « is the radius of the helix. At
time t, the position of any point on the helix based at B is prescribed as

X(s,t) =R(®)Xo(s) +B, (53)
where R(t) is a time-dependent rotation matrix given by

cos(wt) —sin(wt) 0
R(t) = | sin(wt) cos(wt) O (54)
0 0 1

and w is the rotational speed. The values of L, o, A, T, ¢, and w are given in Table 1. The value of the regularization
parameter € in the MRS is chosen to be 0.01. We position the base points of the carpet of helices to form a uniform grid of
spacing 3« in the x and y directions on the plane z=1.01¢, which lies slightly above the wall.

In the fine grid, there are 161 grid points per helix resulting from the uniform grid of s on [0, L] whose spacing is
h = L/160. The velocities at the grid points can be obtained by differentiating Eq. (53) with respect to time t. The forces
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Table 1
Parameter values used in the case of a bac-
terial carpet.

Parameter Value
height (L) 2.2
helical radius (o) 0.085
tapering parameter (7) 1000
helical pitch (1) 2o
angular speed () -2

Fig. 3. The 5 x 5 bacterial carpet at t =0.

that they exert to the surrounding fluid to induce said velocities can be recovered by solving Eq. (4). To incorporate the
wall, the method of images for regularized Stokeslets [43] is used to enforce a no-slip (u = 0) boundary condition. In
this formulation, an image source consisting of a regularized Stokeslet, doublet, dipole, and rotlet is mirrored across the
boundary.

6.1.1. Asmall carpet

We first consider a 5 x 5 carpet at t = 0 (see Fig. 3) to demonstrate the effectiveness of the approximate Galerkin
projection proposed in Section 4.3 and the block Gauss-Seidel smoother proposed in Section 5. We apply a two-grid method
to solve Eq. (4), where there are 21 points per helix in the coarse grid resulting from the uniform grid of s with spacing
H = 8h. The coefficient matrices A, and Ay corresponding to the two grids are 12075 x 12075 and 1575 x 1575, respectively.

We calculate the initial guess as @ = Pl (A;] (Rﬁuh)>. To perform the inexact block-vector multiplication within the

smoother, we discretize the helices using an even coarser grid that corresponds to the uniform grid of s with spacing 4H.

In the block Gauss-Seidel smoother, the matrix Ay is partitioned into 25 x 25 = 625 blocks of size 483 x 483, where the
(i, j)th block represents the interactions between the ith and jth helices. To demonstrate the damping of high-frequency
oscillations in solution errors by the smoother, we compare the pre- and post-smoothing solution errors in the first iterate
of the two-grid method. The portions of both errors corresponding to the first helix (that is, the first 483 elements of both
error vectors), with their x, y, and z components separated, are displayed in the three subplots of Fig. 4(a). They show
that one iteration of the proposed block Gauss-Seidel method is quite effective at damping the error. We also examine the
effect of the inexact block-vector multiplication within the smoother. More specifically, we calculate the first iterate in two
ways that only differ in whether the block-vector multiplication in the smoother is exact or inexact. The portions of their
errors corresponding to the last (25th) helix (that is, the last 483 elements of both error vectors), with their x, y, and z
components separated, are displayed in the three subplots of Fig. 4(b). They show that calculating the block-vector products
inexactly within the smoother has little effect on its effectiveness.

Next, we examine the effect of the approximate Galerkin projection by calculating f‘® in two ways that only differ in
whether Ay is constructed by the exact or inexact Galerkin projection. The portions of the two initial guesses corresponding
to the first helix (that is, the first 483 elements in the two vectors), with their x, y, and z components separated, are
displayed in the three subplots of Fig. 4(c). They indicate that the approximate Galerkin projection can produce a sufficiently
good coarse-grid matrix.

Finally, in Fig. 4(d), we plot the decay of the relative residual n* defined in Eq. (49) as the iteration count k increases
in the semi-log scale. The circle at k = 1,2,3,4 represents 7 after the kth complete two-grid iteration. (The circle at
k =0 represents the relative residual n‘® associated with the initial guess f(?.) The triangle at k + § for k=0,1,2,3
represents the relative residual after smoothing (Step 1 in Section 3) but before coarse-grid correction (Step 4 in Section 3).
Inexact block-vector multiplication is used in the smoother, and approximate Galerkin projection is applied to construct the
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Fig. 4. (Color online) Performance of the multigrid method applied to the 5 x 5 bacterial carpet. (a) Solution errors in the first helix before and after
smoothing (blue vs. red) in the first iteration. (b) Solution errors in the last helix after smoothing via exact and inexact block-vector multiplication (blue
vs. red) in the first iteration. (c) Initial guesses calculated using exact and inexact Galerkin projection (blue vs. red). (d) Decay of the relative residual 7%

(blue circle) as the iteration count k increases in the two-grid method. The relative residual 7]”‘*2} of each intermediate iterate (red triangle) obtained after
smoothing and before coarse-grid correction is also shown.

coarse-grid matrix. Fig. 4(d) demonstrates the effectiveness of both steps and how alternating between them leads to the
convergence of the two-grid method.

6.1.2. Large carpets

We now apply the proposed multigrid method to solve for the hydrodynamic forces generated by 10 x 10, 20 x 20, and
25 x 25 carpets of uniformly placed identical helices at time t = 0. Its performance is compared with the performance of
the preconditioned GMRES method, where the preconditioner is block-diagonal and has been used to precondition MRS
matrices in [19]. The sizes of the fine-grid matrices, Ap, are 48300 x 48300, 193200 x 193200, and 301875 x 301875 in
the three cases, respectively. We do not construct these matrices explicitly in either the multigrid method or the GMRES
method.

We employ a three-grid method where the two coarse grids result from the uniform grids of s with spacings H = 8h (21
points per helix) and 2H (11 points per helix), respectively. When performing the inexact block-vector multiplication within
the block Gauss-Seidel smoother, we discretize the helices using an even coarser grid corresponding to the uniform grid of
s with spacing 4H (6 points per helix). We use f© =Pl (Az’f, (Rﬁ”uh)) as the initial guess of the three-grid method.
Additional implementation details of the multigrid method can be found in Section A.1.

We perform the following two sets of experiments. In the first set, we consider the 10 x 10 and 20 x 20 carpets,
calculate the matrix-vector products involving A, exactly, and set the stopping criterion to be n < 107>, In addition, the
matrix-vector products involving Ay, the middle-grid coefficient matrix, are approximated by the Kernel Independent Fast
Multipole Method (KIFMM) [58,59]. Table 2 shows the runtime, iteration count, and relative residual of the final iterate for
each solver in each case. We observe that in both examples, the runtime of the multigrid method is significantly shorter
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Table 2

Comparison of the multigrid method, the preconditioned GMRES method, and the GMRES
method without a preconditioner in the case of a 10 x 10 bacterial carpet and the case of a
20 x 20 bacterial carpet.

Solver Size of carpet Runtime (s) # of iter. Final rel. error
Multigrid 10 x 10 380.28 5 4.83.107°6
Preconditioned GMRES 10 x 10 842.51 24 6.66-10~°
GMRES 10 x 10 1117.37 34 7.18.10°6
Multigrid 20 x 20 3424.54 5 6.64-107°
Preconditioned GMRES 20 x 20 12797.73 32 5.83.10°6
GMRES 20 x 20 17951.89 45 9.49.10°%
10° ‘ T 10" T
g —& Multigrid —& Multigrid
—£—Preconditioned GMRES —A—Preconditioned GMRES
——GMRES ——GMRES
102 102 3
= :'e/r
10 10 3
108 . . . . . . 10 . . . .
0 5 10 15 20 25 30 35 0 10 20 30 40 50
Iteration k Tteration k
(a) ()

Fig. 5. (Color online) Decay of 7]"" as k increases for the multigrid method (blue squares), the preconditioned GMRES method (red triangles), and the
GMRES method without a preconditioner (black crosses) in the case of a 10 x 10 bacterial carpet (a) and the case of a 20 x 20 carpet (b).

Table 3
Comparison of the multigrid method and the preconditioned GMRES method in the case of a
20 x 20 bacterial carpet and the case of a 25 x 25 bacterial carpet.

Solver Size of carpet Runtime (s) # of iter. Final rel. error
Multigrid 20 x 20 1332.26 2 4.80-107%
preconditioned GMRES 20 x 20 3401.42 19 9.37-107%
Multigrid 25 x 25 1997.50 2 5.26-1074
preconditioned GMRES 25 x 25 4722.00 21 8.16-107*

than the runtime of the preconditioned GMRES method; furthermore, the former scales much better as the size of the
carpet grows. The decay of n') as k increases is also illustrated in Fig. 5 for both solvers. (Results of the GMRES method
without a preconditioner are also included in Table 2 and Fig. 5 for reference.)

In the second set of experiments, we consider the 20 x 20 and 25 x 25 carpets, approximate the matrix-vector products
involving A, by the KIFMM instead,' and relax the stopping criterion to 7% < 10~3 accordingly. As in the previous set of
experiments, the matrix-vector products involving Ay are approximated by the KIFMM. Table 3 shows the runtime, iteration
count, and relative residual of the final iterate for each solver in each case. As observed in the previous set of experiments,
the multigrid method converges much more rapidly in terms of both runtime and iteration count. Interestingly, applying
the KIFMM to A, makes the multigrid method and the preconditioned GMRES method scale similarly well. This is mainly
because the preconditioned GMRES method entails about ten times as many matrix-vector products involving Ap, which
makes the accelerating effect of the KIFMM more pronounced.

6.2. A carpet of lung cilia
The motility of cilia is crucial for fluid transport and clearance of foreign particles in many organisms. Many studies

have used the MRS to simulate the flow around a carpet of rhythmically beating cilia [60-62,19]. As in [19], we consider a

T We observe that the accuracy of the matrix-vector products involving Ay affects the accuracy of the multigrid method significantly more than the
matrix-vector products involving Ay. While both are approximated by the KIFMM in this set of experiments, we vary the parameters of the KIFMM such
that the former are calculated more accurately.
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Table 4
Parameter values in the case of a 25 x 25 cilia
carpet.
Parameter Value
length (L) 6
angular beat frequency (o) 307
regularization parameter (€) 0.05
4 F T T T T T |
3r ]
N o} ]
1 . -
-4 -2 0 2 4 6 8
X
Fig. 6. A row of the 25 x 25 cilia carpet at t =0.
Table 5

Comparison of the multigrid method and the preconditioned GMRES method
in the case of a 25 x 25 cilia carpet.

Solver Runtime (s) # of Iter. Final rel. error
Multigrid 5518.38 2 7.7.1074
preconditioned GMRES 22650.94 49 9.95.10~4

large carpet of identical cilia tethered to an infinite, planar, solid, and stationary wall at z=0 and contained in the semi-
infinite domain {(x, v, 2T z> 0}. Each cilium beats in the plane y = y, where yj, is the y-coordinate of its base point
B = (xp, ¥p,0) and is modeled by a spatiotemporal curve X (s, t) = (x(s,t), yp, (s, t))T derived in [63] based on the beat
pattern of rabbit tracheal cilia experimentally observed in [64], that is,

No
[;g 3 } = %ao(s) + ;an(s) cos(not) + by (s) sin(not) + [)g’ } , (55)

where t is time, s € [0, L] is the arclength along the cilium, o is its angular beat frequency, and a;(s), b,(s) are vectors
of polynomials of s. Note that although each cilium is planar, the cilia carpet is 3D as it consists of twenty-five rows and
columns of cilia whose base points form a 25 x 25 uniform grid with spacing 0.3 in the x direction and y direction on the
wall. The values of L, o, and the regularization parameter € used in the MRS can be found in Table 4.

Similar to the case of a bacterial carpet, each cilium is discretized by a number of grid points, and the velocities at these
points can be found by differentiating Eq. (55) with respect to time t. By solving Eq. (4), we can find the forces that the
grid points must exert to the surrounding fluid to induce said velocities. The wall is again incorporated using the method
of images. In the fine grid, we use 130 points per cilium, resulting from the uniform grid of s with spacing h = L/129.
Accordingly, the size of A is 241875 x 241875.

We consider the cilia carpet at t =0, a row of which is shown in Fig. 6. We employ a three-grid method where the two
coarse grids result from the uniform grids of s with spacings H = 4h (33 points per cilium) and 2H (17 points per cilium),
respectively. When performing the inexact block-vector multiplication within the block Gauss-Seidel smoother, we discretize
the helices using an even coarser grid corresponding to the uniform grid of s with spacing 4H (5 points per cilium). We use

fO =ph (A;1 (R,’fuh)) as the initial guess of the three-grid method. Additional implementation details of the multigrid

method can be found in Section A.2.

We again compare the performance of the three-grid method and the preconditioned GMRES method at solving for the
hydrodynamic forces. As in the second set of experiments on bacterial carpets in Section 6.1.2, the matrix-vector products
involving A, and Ay are approximated using the KIFMM, and the stopping criterion is n < 1073, Table 5 shows the
runtime, iteration count, and relative residual of the final iterate for each solver. Compared to the preconditioned GMRES
method, the multigrid method requires 95% fewer iterations and 75% less runtime.

2 since the base point of each cilium does not move and exert no force to the fluid, only 128 points per helix are taken into account in Eq. (4). Including
it would make Ajp singular.
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7. Application to free swimmers

In this section, we discuss the application of the proposed multigrid algorithm to simulate free swimmers that undergo
rigid translation and rotation. We must impose additional constraints in these simulations, which lead to a larger and more
challenging linear system. Solving it iteratively entails solving auxiliary linear systems whose coefficient matrix is generated
by a kernel function acting on discretized interacting structures, as the one considered in previous sections.

Assume that there are n free swimmers and the ith one is represented by N; grid points. Then for the ith swimmer, we
need to impose the following two constraints:

A

Ni
dfi=0 and > (xi-x{)xf =0, (56)
k=1

k=1

where f;; is the hydrodynamic force exerted by the kth grid point located at xL, and xé is the center of the swimmer.

The constraints in Eq. (56) imply that the swimmer undergoes rigid translation and rotation. Consequently, if the velocities
{v;'c}ll:];l are prescribed to the grid points {x;c}::”:l latior : A ind a
for the entire swimmer; that is, the total velocity at X, can be written as uj, = v;< + U + @' x (x;( — x’c) Let N = Z?:] N; be
the total number of grid points. Taking into account the six constraints in Eq. (56) for every i and formulating u;A< using the
MRS again, we obtain the following (3N + 6n) x (3N + 6n) linear system

they will induce a translational velocity U’ and a rotational velocity Q!

An By |[fu] _[ va (57)
By Oen || un Osn |’
—_———— — ——
Ch &h Wh

where Aj € R3V*3N s the coefficient matrix in Eq. (4), B, € R®*3N is sparse, O, is the 6n x 6n zero matrix, f; € R3N
is formed by concatenating the forces exerted by the N grid points as in Eq. (4), v, € R3VN is formed by concatenating the
velocities imposed at the grid points, Og, is the 6n x 1 zero vector, and u, € R®" is formed by concatenating all n pairs
of U' and . Solving Eq. (57) gives us the hydrodynamic forces exerted by all the grid points, which can in turn be used
in the MRS to calculate the fluid velocity at any point; in addition, it gives us the translational and rotational velocities
of each swimmer induced by the prescribed motion. Linear systems whose coefficient matrices are large, sparse and have
a similar block structure as Cj arise from mixed finite element discretization of the Stokes and Navier-Stokes equations.
Iterative methods for such a problem, also known as the saddle point problem, have been studied extensively [65]. They
often entail solving auxiliary linear systems whose coefficient matrix is Ay, the (1, 1) block of C,. We emphasize again that
unlike a finite-element or finite-difference matrix, A, is dense in this study.
For example, a generalized least square formulation of Eq. (57) has been given in [66], where uy, is written as

up = min
3E]Rﬁrx

Vp — B;{Z,H i (58)
Ah
Once uy is found by solving the minimization problem (58), f, can be calculated as
fo= Ay (Vi — Bfup). (59)

Eq. (58) can be solved using LSQR(A;l), a generalized LSQR method [67] developed in [65]. This algorithm entails solving
linear systems whose coefficient matrix is Ap, to which the proposed multigrid method can be applied. Alternatively, we
can also solve the saddle point problem Eq. (57) using the preconditioned GMRES method. A frequently used preconditioner,
which is based on the block LU factorization of the coefficient matrix Cp, is a block upper triangular matrix in the form of

A T
p— | Bl (60)
0 Sy
where Ay and Sy are preconditioners for A and Sp = —BhA;]Bg respectively. Since
Al _A-1BTS-1
p-1—|" h. ho|, 61
M 1)

applying P~ entails solving auxiliary linear systems whose coefficient matrices are Ay or Sy. This type of preconditioner
has been adapted to simulate free swimmers in previous work [19], where A, was chosen to be the block-diagonal precon-
ditioner considered in Section 6, and

~ -1
Sh=—(BuB]) (BaAnBY)  (BaB), (62)
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Fig. 7. (Color online) Illustration of the ellipsoidal swimmers and convergence of the solvers applied to Eq. (57) in this case. (a) Projection of the 6 x 6
array of ellipsoids onto the xz plane and streamlines drawn based on the x- and z-directional fluid velocities around them at t = 0. (b) Decay of 7 as k
increases for GMRES(MG, LSC) (blue squares), GMRES(BD, LSC) (red triangles), and the GMRES method without a preconditioner (black crosses).

the so called Least-Squares Commutator (LSC) preconditioner [68]. Encouraged by the numerical results in Section 6, we
examine the performance of P when Ay is chosen such that the action of A is a few iterations of the proposed multigrid
method.

In the two subsections that follow, we apply the GMRES method preconditioned by the block upper triangular P given
in Eq. (60) to solve Eq. (57) arising from two types of free swimmers. The LSC preconditioner (62) is again used in the (2, 2)
block of P. For the (1,1) block of P, we consider both the block-diagonal preconditioner and the one whose inverse is
one iteration of the multigrid method. As in Section 6, one block Gauss-Seidel iteration proposed in Section 5 serves as the
smoother for the multigrid method. Let the two preconditioned GMRES methods for Eq. (57) be denoted by GMRES(BD, LSC)
and GMRES(MG, LSC), respectively, which only differ in the (1, 1) block. We calculate the initial guess of GMRES(MG, LSC)

by prolonging the approximate solution to a coarse-grid representation of Eq. (60) obtained by one LSQR(A;,1) iteration,

where Ay is the coarse-grid representation of Ay. (The runtime of GMRES(MG, LSC) reported in this section includes the
time spent on computing the initial guess.) The initial guess of GMRES(BD, LSC) is the zero vector. Neither solver requires
the construction of Ap.

In all the numerical experiments in this section, we use the relative error at the kth iteration defined as

ky _ lwp — Chg ||2

(63)
lwpll2

to measure the accuracy of a solver for Eq. (57), where g is the kth iterate to g produced by the solver. We also set the
stopping criterion of all solvers to be n% <1073,

7.1. Free ellipsoidal swimmers

Vesicles are membranes that play a vital role in the metabolism and transport of cellular products. Models of capsules
and vesicles immersed in a viscous flow have been used to study the biomembrane mechanics of red blood cell, artificial
capsules in drug delivery, and the dynamics of liquid droplets [69,70]. In this subsection, we model them as free ellipsoids
undergoing rigid translation and rotation. A shearing velocity is imposed on their surfaces. The forces that they exert to the
surrounding fluid as well as the translational and rotational velocities induced by the prescribed motion can be found by
solving the augmented linear system (57).

We consider a 6 x 6 array of identical ellipsoids whose centers form a uniform grid with spacing 4 on the xz plane at time
t = 0. Each ellipsoid has semi-axes of length 1, 1.5, and 2 and is represented by 1016 points in the fine grid, resulting from
stretching and rotating a unit sphere that has been discretized by a cubed-sphere grid [71]. Therefore, n =36, N; = 1016,
and N = 36576 in this case. The regularization parameter € used in the MRS is 0.0556, which is roughly 0.05 times the
average grid spacing on the ellipsoids. The size of the coefficient matrix Cp, in (57) is 109944 x 109944, whose (1, 1) block,
Ap, is 109728 x 109728. In addition, we impose the shearing velocity (0.2z,0,0)7 at any grid point (x, y, z)T, causing each
ellipsoid to translate and rotate as a whole. In Fig. 7(a), the projection of the array of ellipsoids onto the xz plane as well as
the streamlines drawn based on the x- and z-directional fluid velocities at time t = 0 are shown.

In GMRES(MG, LSC), the action of A where Ay is the (1,1) block in the preconditioner P defined in Eq. (60), is
one iteration of a two-grid method. To construct the coarse grid, we use the method described in Section 4.1.2 for the
case of no parameterization and choose o = 0.33 in Eq. (6), which leads to 2376 grid points (66 points per ellipsoid).
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Table 6
Comparison of GMRES(MG, LSC), GMRES(BD, LSC), and the GMRES
method without a preconditioner in the case of ellipsoidal swimmers.

Solver Runtime (s) # of iter. Final rel. error
GMRES(MG, LSC) 1234.96 5 9.51-107%
GMRES(BD, LSC) 2285.61 47 9.56-10°
GMRES 3664.18 124 9.07-107%

Accordingly, the method described in Section 4.2.1 for the case of no parameterization is used to construct the transfer
operators. Within the block Gauss-Seidel smoother, we use the same coarse grid when performing the inexact block-vector
multiplication. Additional implementation details of the multigrid method can be found in Section A.3. Moreover, the initial
guess of GMRES(MG, LSC) is obtained by prolonging the approximate solution found by applying one LSQR iteration to the
coarse-grid representation of Eq. (57). The matrix-vector products involving A are approximated by the KIFMM in both
GMRES(MG, LSC) and GMRES(BD, LSC).?

In Table 6, we report the runtime, iteration count, and relative error of the final iterate of each solver. Compared to
GMRES(BD, LSC), GMERS(MG, LSC) requires about 90% fewer iterations and 45% less runtime. We also display the decay of
n') as the iteration count k increases for each solver in Fig. 8(b). (Results of the GMRES method without a preconditioner
are also included in Table 6 for reference.)

7.2. Free toroidal swimmers

The motility of doughnut-shaped swimmers in a viscous fluid has been considered in various studies [72-74] as it can
provide important insights into the self-propulsion of some microorganisms, including the flagellated unicellular microbe
Idionectes vortex. We consider the linear system Eq. (57) arising from a large array of free, identical toroidal swimmers.

Following [74], at time t = 0, we parameterize the surface of a torus centered at (xc, y¢, z¢)T with tube radius r and
minimum distance d to the center as

x(u,v)=(d+rcosv)cosu + x.
y(u,v)=(d+rcosv)sinu + y (64)
z(u,v) =rsinv + z.,

where u, v €[0,2m). We choose d =1 and r = 0.25 in Eq. (64) so that the aspect ratio of each torus is d/r = 4. The
array consists of 16 tori whose centers form a 4 x 4 rectangular grid in the xz plane with spacing 3.75 in the x direction
and spacing 1.25 in the z direction. In the fine grid, the surface of each torus is discretized by 4096 points resulting from
a 128 x 32 rectangular grid in the parameter space [0, 27) x [0, 27r), whose spacing is Au = 27 /128 in the u direction
and Av =2m /32 in the v direction. The regularization parameter used in the MRS is € =0.35-h, where h =d - Au =
r- Av ~0.05 is roughly the average grid spacing on the toroidal surfaces.* In this case, n = 16, N; = 4096, N = 65536, Cj,
is 196704 x 196704, and Aj, is 196608 x 196608. As in [74], a velocity that is tangent to the surface and of size 100 is
imposed at every grid point, causing each torus to translate and rotate as a whole. In Fig. 8, we show the projection of the
array of tori onto the xz plane as well as the streamlines drawn based on the x- and z-directional fluid velocities around
them at time t =0. -

In GMRES(MG, LSC), the action of Ah_] is one iteration of a three-grid method. The mid-level grid consists of 4096 points
(256 points per torus), resulting from a 32 x 8 grid of the parameter space. In the coarsest grid, there are 1024 points in total
(64 points per torus), which correspond to a 16 x 4 grid of the parameter space. The average grid spacings on the toroidal
surfaces are thus about H = 4h and 2H for the two grids, respectively. Within the block Gauss-Seidel smoother, we use
an even coarser grid with spacing 4H when performing the inexact block-vector multiplication. Additional implementation
details of the multigrid method can be found in Section A.4. Moreover, the initial guess of GMRES(MG, LSC) is calculated
by prolonging the approximate solution obtained by applying one LSQR iteration to the representation of Eq. (57) on the
coarsest grid. As in Section 7.1, the matrix-vector products involving A, are approximated by the KIFMM, whose accuracy
varies depending on whether Ah_1 or Sh_1 is being applied, in both GMRES(MG, LSC) and GMRES(BD, LSC).

In Table 7, we report the runtime, iteration count, and relative error of the final iterate of each method. Similar to what
has been observed in the case of ellipsoidal swimmers, GMERS(MG, LSC) requires about 88% fewer iterations and 43% less
runtime compared to GMRES(BD, LSC).

3 We observe that the matrix-vector products arising from the application of E,Tl' where Sy, is the LSC preconditioner defined in Eq. (62) and the (2,2)
block in P, do not need to be approximated accurately. Therefore, we vary the parameters of the KIFMM to calculate them more crudely but also more
efficiently than we calculate the matrix-vector products arising from the application of Kh’l.

4 Rectangular grid boxes in the parameter space result in curved rectangular grid boxes on the toroidal surfaces (see Fig. 1(d,e,f) for example), whose
edge lengths vary between min{(d —r) - Au, r- Av} and max{(d +r) - Au, r- Av}. Since d- Au=r- Av in the fine grid, h is the average of the two.
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Fig. 8. Projection of the 4 x 4 array of toroidal swimmers onto the xz plane and streamlines drawn based on the x- and y-directional fluid velocities around
them at t =0.

Table 7
Comparison of GMRES(MG, LSC) and GMRES(BD, LSC) in the case of
toroidal swimmers.

Solver Runtime (s) # of iter. Final rel. error
GMRES(MG, LSC) 3258.72 6 6.58-1076
GMRES(BD, LSC) 5750.71 50 9.02-10°%

8. Conclusion

The multigrid method has enjoyed a tremendous amount of success at solving discretized boundary-value problems,
where the grids are Eulerian and the matrices are large and sparse. It iteratively updates the solution by removing the
high-frequency terms in its error and correcting it on a coarser grid. In this study, we consider a vastly different type
of problems: the interactions between structures whose relationship is determined by a kernel function that decays with
distance. The structures are discretized by a Lagrangian grid. The matrix is generated by evaluating the kernel function
between every pair of grid points; therefore, it is large, dense and quite challenging to work with. Nonetheless, the decay
of the kernel function results in the data-sparsity of the matrix, which opens up opportunities to develop efficient solvers.
One contribution of our paper is extending the multigrid method to this new scenario. More specifically, we develop new
techniques for error smoothing, grid coarsening, and inter-grid communication that are more suitable for kernel functions on
interacting structures. They fall into two veins depending on whether the structures are parameterized or simply represented
by discrete points, which resemble the geometric multigrid and algebraic multigrid. This solver is unique in that it takes
advantage of not only the data-sparsity of the matrix but also the smoothness in the geometry of the structures and
quantities of interest distributed on them. Moreover, it does not require constructing the large dense matrix and is thus
memory-efficient.

Another contribution of this paper is demonstrating the applicability of the proposed multigrid solver to the simulation
of a fluid around dynamic microswimmers. The fluid is modeled by the MRS, a Lagrangian method that utilizes the funda-
mental solution to the incompressible Stokes equations. The kernel function associated with it and hence the strength of
the hydrodynamic interaction between two points decays roughly as fast as the reciprocal of the distance between them.
The dense matrix that characterizes the interactions between the discretized swimmers maps the forces exerted by the grid
points to their velocities. Consequently, for prescribed or experimentally observed velocities, we can apply the multigrid
method to uncover the underlying forces, which can in turn be used in the MRS to evaluate the entire flow. We consider
large groups of microswimmers in the shapes of a variety of biological structures including bacteria, cilia, vesicles and ob-
serve that the multigrid solver outperforms a preconditioned GMRES method previously applied to the MRS matrices. In
addition, we consider the special case where these structures need to maintain force and torque balance while swimming.
It gives rise to an even larger matrix formed by augmenting the aforementioned dense matrix with additional sparse rows
and columns. We show that the performance of its solver can be improved significantly if we apply the multigrid method
to key auxiliary problems.
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Appendix A. Further implementation details on the multigrid method

In this section, we provide more details of the multigrid method applied to each of the four large-scale problems con-
sidered in this study: bacterial carpet (Section 6.1.2), cilia carpet (Section 6.2), free ellipsoidal swimmers (Section 7.1), and
free toroidal swimmers (Section 7.2).

In all four problems, only one block Gauss-Seidel iteration is applied as the smoother.

A.1. Bacterial carpet

Recall that in Section 6.1.2, we consider a 10 x 10 carpet, a 20 x 20 carpet, and a 25 x 25 carpet and apply a three-grid
method to Eq. (4) arising from each carpet. The three grid spacings, in the parameter domain, are h ~0.014, H =8h =0.11,
and 2H = 0.22, respectively. Accordingly, the coefficient matrices on the three grids are denoted by A, Ay, and Ay. When
calculating Ay and A,y using the approximate Galerkin projection, we choose y to be H and 2H in Eq. (40), respectively.

We employ two smoothers: one for Ay, and the other for Ay. For all three carpets, in the first smoother, we partition
Ay, into blocks of size 483 x 483, each of which represents the interactions between two helices. In the second smoother,
we partition Ay into blocks of sizes 630 x 630, 1260 x 1260, and 315 x 315 for the 10 x 10, 20 x 20, and 25 x 25 carpets,
respectively, each of which represents the interactions between two groups of ten, twenty, and five helices.

A.2. Cilia carpet

Recall that in Section 6.2, we apply a three-grid method to Eq. (4) arising from a 25 x 25 cilia carpet. The three grid
spacings, in the parameter domain, are h ~ 0.047, H = 4h ~ 0.188, and 2H = 0.375, respectively. Accordingly, the coefficient
matrices on the three grids are again denoted by Ap, Ay, and Asy. When calculating Ay and A,y using the approximate
Galerkin projection, we choose y to be H and 2H in Eq. (40), respectively.

We need three smoothers in this case: one for Ay, one for each block Aj; on the diagonal of Aj, and one for Ay. In the
first smoother, we partition Ay into blocks of size 9600 x 9600, each of which represents the interactions between two rows
of cilia. This large block size makes the smoother quite effective; however, it also makes inverting A;; in Eq. (47) difficult.
Therefore, we apply a two-grid method (fine-grid spacing: h, coarse-grid spacing: H) to Aj; and another two-grid method
(fine-grid spacing: H, coarse-grid spacing: 2H) to Ay. In the smoother of the former, we partition A;; into blocks of size
384 x 384, each of which represents the interactions between two cilia; and in the smoother of the latter, we partition Ay
into blocks of size 480 x 480, each of which represents the interactions between two groups of five cilia.

A.3. Ellipsoidal swimmers

Recall that in Section 7.1, we apply a two-grid method to invert the (1, 1) block of the preconditioner (60) for Eq. (57)
arising from a 6 x 6 array of ellipsoidal swimmers. Unlike in the other three examples, the coarse grid is obtained by the
modified PMIS algorithm described in Section 4.1.2. To calculate the transfer operators, we choose m =6 in Eq. (23), and
8 =0.02 in Eq. (24). The fine-grid and coarse-grid matrices are denoted by A, and Ay, respectively. When calculating Ay
using the approximate Galerkin projection, we choose y to be about 1.091 in Eq. (42).
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We employ two smoothers: one for Ap, and the other for Aj;. In the first smoother, we partition Aj into blocks of size
3048 x 3048, each of which represents the interactions between two ellipsoids. We apply a two-grid method (fine-grid
spacing: h, coarse-grid spacing: H) to A;;; and in its smoother, we first partition the ith group of fine-grid points into six
clusters using the k-means algorithm, and then partition A;; into blocks representing the interactions between two clusters
of points.

A.4. Toroidal swimmers

Recall that in Section 7.2, we apply a three-grid method to invert the (1, 1) block of the preconditioner (60) for Eq. (57)
arising from a 6 x 6 array of toroidal swimmers. The average grid spacings over the tori are about h, H = 4h, and 2H for
the three grids, respectively. Accordingly, the coefficient matrices on the three grids are again denoted by Ap, Ay, and Aay.
When calculating Ay and Ay using the approximate Galerkin projection, we choose )7 to be the coarse-grid spacing in
the u direction and y, to be the coarse-grid spacing in the v direction; that is, y; &~ 0.196, ¥, ~ 0.785 in the case of Ay,
and 1 ~ 0.393, ¥, ~ 1.571 in the case of Ayy.

As in the case of cilia carpet, we employ three smoothers: one for Ap, one for A;;, and one for Ay. In the first smoother,
we partition Ap into blocks of size 12288 x 12288, each of which represents the interactions between two tori. We apply
a two-grid method (fine-grid spacing: h, coarse-grid spacing: H) to Aj; and another two-grid method (fine-grid spacing:
H, coarse-grid spacing: 2H) to Ay. In the smoother of the former, we partition A;; into blocks of size 768 x 768, each of
which represents the interactions between two groups of 256 points; and in the smoother of the latter, we partition Ay
into blocks of size 768 x 768, each of which represents the interactions between two tori.
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