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Simulating the dynamics of discretized interacting structures whose relationship is dictated 
by a kernel function gives rise to a large dense matrix. We propose a multigrid solver 
for such a matrix that exploits not only its data-sparsity resulting from the decay of 
the kernel function but also the regularity of the geometry of the structures and the 
quantities of interest distributed on them. Like the well-known multigrid method for large 
sparse matrices arising from boundary-value problems, our method requires a smoother for 
removing high-frequency terms in solution errors, a strategy for coarsening a grid, and a 
pair of transfer operators for exchanging information between two grids. We develop new 
techniques for these processes that are tailored to a kernel function acting on discretized 
interacting structures. They are matrix-free in the sense that there is no need to construct 
the large dense matrix. Numerical experiments on a variety of bio-inspired microswimmers 
immersed in a Stokes flow demonstrate the effectiveness and efficiency of the proposed 
multigrid solver. In the case of free swimmers that must maintain force and torque balance, 
additional sparse rows and columns need to be appended to the dense matrix above. We 
develop a matrix-free fast solver for this bordered matrix as well, in which the multigrid 
method is a key component.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Natural and artificial microswimmers are of considerable interest due to their multitude of biological implications and 
potential biomedical applications. For example, flagellated bacterial carpets can be used as actuators to enhance fluid mixing 
and pumping [1–3]. In humans, motile cilia exist on the respiratory epithelium and are critical to the mucus clearance in 
the lung. Cilia in the fallopian tubes of female mammals assist the self propulsion of spermatozoa in the preovulatory phase 
as well as the fertilization process [4]. It has been hypothesized that controlled microswimmers can perform targeted drug 
delivery and microsurgery [5,6]. Numerical simulation of the dynamics of these microstructures serves as a powerful and 
indispensable tool for understanding and eventually harnessing their motility.

In such a computation, the dynamic microswimmers are typically discretized by a Lagrangian grid that evolves with 
time. The flow field around them can be described accurately by the incompressible Stokes equations. Solvers such as the 
Method of Regularized Stokeslet (MRS) [7], the Boundary Integral Equation (BIE) formulation [8], and the Boundary Element 
Method (BEM) [9] give rise to a linear system whose coefficient matrix is generated by an underlying kernel function and 
characterizes the pair-wise hydrodynamic interactions between the grid points. Knowing the fluid velocities at these points, 
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whether prescribed or experimentally observed, we can uncover the hydrodynamic forces that they must have exerted by 
solving this linear system, which in turn allow us to evaluate the entire flow field. Measuring these forces in a lab is rather 
challenging. In nature, microswimmers rarely exist in isolation; in fact, they often collaborate with one another to achieve 
key functionalities. For example, Volvox, a freshwater green alga known as a model organism for studying multicellularity, 
forms hollow, spherical colonies that roll and swim toward light to perform photosynthesis by coordinating the “rowing” 
of numerous flagella on their surfaces [10]. Simulating these collective behaviors entails the use of a large number of grid 
points and hence gives rise to a large-scale linear system. In addition to the scale of the problem, another major challenge is 
that unlike a finite-element or finite-difference matrix corresponding to an Eulerian grid of the fluid domain, the coefficient 
matrix of this system is dense, that is, it contains very few zero entries.

The “stroke of luck” that allows for the development of fast solution methods for the aforementioned linear system is the 
decay of the kernel function. More specifically, the greater the distance between a pair of points immersed in a Stokes flow 
is, the weaker the hydrodynamic interaction between them is, and the smaller the magnitude of the corresponding matrix 
entries is. Consequently, by dividing the points into a “tree” of clusters based on their proximity, we obtain a hierarchical 
partition of the coefficient matrix into smaller blocks, among which the ones corresponding to “well-separated” clusters 
have accurate low-rank approximations and are hence data-sparse. Large dense matrices arising from a wide variety of ap-
plications possess similar decay properties, based on which many fast methods have been developed. Direct solvers [11–16]
generally seek a hierarchical, data-sparse factorization of the coefficient matrix by exploiting low-rank approximations of 
its sub-matrices. Alternatively, various iterative methods such as generalized minimal residual method (GMRES), conjugate 
gradient (CG) and biconjugate gradient stabilized method (BiCGSTAB) have also been applied, typically in conjunction with 
a preconditioner, to solve linear systems with large dense coefficient matrices. For matrices generated by a kernel function, 
many preconditioners that exploit their hierarchical, data-spares structures have been developed [17–20]. Other precondi-
tioners such as the structured incomplete factorization preconditioners [21,22], the multilevel Schwarz preconditioners [23], 
and the sparse approximate inverse preconditioners [24,25] have also been devised for various applications.

In these methods, discretized interacting structures would be viewed simply as a point cloud; the membership of the 
grid points in these structures prior to discretization would not be utilized, nor would the smoothness in quantities such 
as velocity and force along each structure. In this paper, we develop a multigrid method for kernel functions acting on 
discretized interacting structures that exploits the interconnections between the grid points representing the structures as 
well as the decay of the kernel function. Our method is matrix-free in the sense that there is no need to explicitly construct 
the large and dense coefficient matrix. Like the well-known multigrid algorithm [26–28], this method iteratively updates the 
solution to the original linear system based on solutions to smaller linear systems corresponding to coarser discretization of 
the structures. Its main “ingredients” also include grid coarsening, a smoother for removing the high-frequency components 
of the error in an approximate solution, and a pair of transfer operators for exchanging information between a coarse grid 
and a fine grid. Depending on whether a parametrization of the structures is available, we develop two versions of multigrid 
that are analogous to the geometric multigrid for structured grids and algebraic multigrid [29–34] for unstructured grids.

However, despite the similarity in algorithmic structure between our method and the existing multigrid, there are a 
number of key differences. Multigrid is traditionally and still predominantly applied to linear systems arising from spatial 
discretization of Partial Differential Equations (PDEs), where the grids are Eulerian, and the coefficient matrices are sparse; 
for example, see [35–38] where multigrid methods have been developed for linear systems resulting from spatial discretiza-
tion of the Navier-Stokes equations and the Stokes equations on structured Eulerian grids. In contrast, in a simulation of 
interacting structures whose relationship is dictated by a kernel function, the grid is Lagrangian and unstructured, and the 
coefficient matrix is dense. Because of these differences, commonly used methods, such as the point Gauss-Seidel smoother, 
are either ineffective or inefficient. In particular, we note that while the high-frequency components in the error corre-
spond to large eigenvalues of a finite-difference or finite-element matrix arising from discretization of an elliptic PDE, this 
is not necessarily the case for the dense matrix generated by a kernel function. For this reason, specialized smoothers have 
been developed in [39–41] for large dense matrices arising from the BEM. However, these techniques are equation- and 
boundary condition-dependent and do not generalize easily to a different scenario, such as the kernel function of inter-
est in this study. The methods in [40,41] also entail eigenvalue computations, which can be challenging for large dense 
matrices. Taking advantage of the decay of the kernel function, we develop effective and efficient techniques for grid coars-
ening, smoothing solution errors, and transferring quantities between two grids. We emphasize that these techniques do 
not require constructing the large dense coefficient matrix associated with the original fine grid.

The rest of the paper is organized as follows. In Section 2, we briefly review the MRS for solving fluid-structure interac-
tions and introduce the kernel function as well as the linear system of interest. Note that our method is applicable to other 
kernel functions as long as they have similar decay properties. In Section 3, we give an outline of the original multigrid 
algorithm, which is shared by our method. In Section 4, we propose efficient methods to perform grid coarsening, error 
smoothing, and inter-grid transferring for kernel functions acting on discretized interacting structures. We consider both 
the case where the structures are parameterized and the case where only discrete points on them are given, leading to 
two veins of methods that resemble the geometric multigrid and the algebraic multigrid. These methods are then tested 
in Section 6 on a variety of microswimmers. For free swimmers that undergo rigid translation and rotation, the linear sys-
tem considered above must be augmented to incorporate additional constraints. In Section 7, we describe how the proposed 
multigrid method can be applied to solve these more challenging problems and present additional numerical results. Finally, 
a summary of the paper and concluding remarks can be found in Section 8.
2
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2. Method of regularized Stokeslets

When viscous forces dominate and inertia is negligible, a fluid flow can be modeled by the incompressible Stokes equa-
tions

μ∇2u− �p = −f,

∇ · u = 0,
(1)

where u is the fluid velocity at x, p is the fluid pressure at x, μ is the fluid viscosity, and f is the force acting on the fluid. 
Let f = f0δ(x − x0) where δ denotes the Dirac delta function and f0 denotes the point force located at x0. Then the fluid 
velocity at x induced by f0 can be calculated analytically. It is referred to as the Stokeslet and is singular at x = x0. To allow 
for calculating the fluid velocity at x0, the Method of Regularized Stokeslets (MRS) was developed in [7], where the Dirac 
delta function is replaced by a radially symmetric smooth function φε called the blob function. It has the effect of spreading 
the point force over a small ball centered at x0 with radius ε and approaches the Dirac delta function as ε goes to 0. The 
resulting analytic solution is no longer singular and is referred to as the regularized Stokeslet.

The MRS was originally developed for unbounded domains [7,42] and has been extended to a domain bounded by a solid 
planar wall where the flow vanishes [43] using the method of images [44]. We consider both formulations in this paper. 
Due to the linearity of Eq. (1), the fluid velocity u(x) at any point x in either domain induced by N regularized forces fk
located at xk can be written as

u(x) =
N∑

k=1

K (x,xk)fk, (2)

where, in three dimensions, K (x, y) is a 3 × 3 kernel function that determines the hydrodynamic interaction between x, y
and decays as the Euclidean distance r = ‖x − y‖2 between the two points increases. The precise form of K depends on the 
choice of the blob function φε and whether the domain is bounded. In this work, we always use

φε = 15ε4

8π(r2 + ε2)7/2
. (3)

In addition, the N points xk are the Lagrangian grid points used to discretize interacting dynamic structures immersed in 
the fluid.

If we concatenate all the u(xk) to form a long vector uh and concatenate all the fk to form a long vector fh , using Eq. (2), 
we obtain a linear system

uh = Ah fh (4)

where uh, fh ∈ R3N , and Ah ∈ R3N×3N consists of 3 × 3 blocks K (xi, x j) and is dense.
In this work, we are interested in the case where N is large, uh is known, and fh is wanted. That is, we need to solve 

a linear system whose coefficient matrix is large and dense. A large N can result from fine discretization and/or a large 
number of structures. Once fh is found, we can again use Eq. (2) to evaluate the velocity at any point x in the fluid domain.

Remark 1. We use the subscript h to indicate that a quantity is associated with the original grid of the structures. In 
Section 4, we will discuss how to coarsen this grid and transfer quantities from one grid to another. The subscript H will 
be used for quantities on a coarser grid.

3. Overview of the multigrid method

The multigrid method has been used to solve discretized PDEs arising from numerous applications. Roughly speaking, 
it is an iterative method that, until convergence, applies a smoother to remove high-frequency oscillations in the error of 
an approximate solution and then solves the smoothed problem on grids of coarser resolution. Given an initial guess f 〈0〉 , 
the kth iteration of a two-grid V-cycle method for solving the linear system Ah fh = uh arising from a discretized PDE is 
outlined below, where f 〈k〉 denotes the kth iterate of fh .

Step 1. Apply the smoother to compute an approximate solution, f̃ 〈k−1〉 , to Ah fh = uh .
Step 2. Compute the residual rh = uh − Ah f̃ 〈k−1〉 and its restriction, rH , to the coarse grid.
Step 3. Solve AHeH = rH where AH is the restriction of Ah to the coarse grid.
Step 4. Compute the prolongation, eh , of eH to the fine grid and correct f̃ 〈k−1〉: f 〈k〉 = f̃ 〈k−1〉 + eh .

The smoother typically consists of a small fixed number of iterations of a simple iterative solver, such as the Gauss-Seidel 
or Jacobi method. Information exchange between the fine grid and coarse grid is achieved by a restriction operator RH

h and 
a prolongation operator Ph , that is, rH = RHrh in Step 2, eh = Ph eH in Step 4, and
H h H

3
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AH = RH
h Ah P

h
H (5)

in Step 3. We can recursively coarsen the grid and apply the two-grid method until the linear system restricted to the 
coarsest grid is sufficiently small. The resulting algorithm is a multigrid solver.

The multigrid method that we propose for the large dense matrix generated by a kernel function acting on discretized 
interacting structures formally consists of the same steps as above. However, such a matrix poses new challenges: the grid is 
Lagrangian and unstructured, constructing the matrix can be prohibitively expensive in terms of both runtime and memory 
usage, and multiplying it to a vector is rather costly as well. Consequently, novel techniques need to be developed for 
error smoothing, grid coarsening, and inter-grid communication that take advantage of the decay of the kernel function and 
the resulting data-sparsity of the matrix. In Sections 4 and 5, we describe them in greater detail. Note that the proposed 
multigrid method does not require constructing the large dense Ah , rendering it matrix-free.

4. The coarsening strategies

In the following three subsections, we describe how to coarsen a grid (Section 4.1), construct the transfer operators 
between the fine and coarse grids (Section 4.2), and project the large, dense coefficient matrix onto the coarse grid (Sec-
tion 4.3). Our methods exploit the smoothness in the geometry of biological structures as well as quantities such as velocity 
and force distributed along them, and the decay of the kernel function as the distance between the source and target points 
increases.

A Lagrangian grid used to discretize biological structures is unstructured in the xyz space. Nonetheless, when they are 
modeled by a parametric curve or surface and the Lagrangian grid results from a structured grid in the parameter space, our 
method is similar to the geometric multigrid. When a parameterization is unavailable and the structures are represented by 
discrete points, our method is similar to the algebraic multigrid. We consider both cases in each subsection below.

4.1. Coarsening the grid

4.1.1. Case I: a parameterization of the structures is known
Biological structures are often modeled as parametric curves or surfaces in three dimension. For example, a bacterial 

flagellum can be represented by a helix. Although a curve or surface itself does not have any thickness, placing regularized 
Stokeslets along it has the effect of adding thickness to it. When the parameterization is known, we can obtain a grid for 
the structures by discretizing the parameter space, usually uniformly for simplicity.

For example, consider a structure modeled as a parametric curve

X (s) : R1 −→ R3 with s ∈ [0, L]
where s is the arclength. Let 0, h, 2h, · · · , (N − 1) · h = L where h = L/(N − 1) constitute a uniform grid on [0, L]. The 
corresponding Lagrangian grid points on the structure are

X (0), X (h), X (2h), · · · , X
(
(N − 1) · h).

We can simply coarsen this grid by coarsening the grid of the parameter space. Assume that there are N = 2k + 1 points 
in the fine grid resulting from the uniform grid with spacing h = L/2k of the parameter space. A coarser grid consisting 
of N = 2k−p + 1 points, where p is an integer satisfying 1 ≤ p < k, can be obtained by increasing the grid spacing in the 
parameter space to H = 2p · h. In this case, the two grids are “nested” since the coarse-grid points also belong to the fine 
grid. In Fig. 1, we show the fine grid (Fig. 1b) and coarse grid (Fig. 1c) of a structure represented by a helical curve. The two 
corresponding grids of the parameter space are also shown in Fig. 1a, where the black dots are the fine-grid points and the 
red crosses are the coarse-grid points.

When the structure is modeled as a parametric surface

X (u, v) : R2 −→ R3 with u ∈ [0, Lu] and v ∈ [0, Lv ] ,

we can again coarsen a grid of the structure by coarsening the corresponding grid of the parameter space. In Fig. 1, we 
show the fine grid (Fig. 1e) and coarse grid (Fig. 1f) of a structure represented by a torus. The two corresponding grids of 
the parameter space are also shown in Fig. 1d, where the black dots are the fine-grid points and the red crosses are the 
coarse-grid points.

4.1.2. Case II: no parameterization is available
In this case, the structures are represented by a collection of scattered points and not parameterized prior to discretiza-

tion. Our strategy is based on the Parallel Modified Independent Set (PMIS) algorithm [45,46], a commonly used approach 
for coarsening an unstructured Eulerian grid in the algebraic multigrid method for discretized PDEs. It iteratively sorts a 
given set of points (the fine-grid points) into two subsets: the so-called “C-points” and “F -points.” The former refers to the 
coarse-grid points that we seek, and the latter refers to the rest of the fine-grid points. Both sets are initialized to be the 
empty set. In each iteration of the PMIS algorithm, roughly speaking, the most “influential” unsorted fine-grid points are 
4
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Fig. 1. Grid coarsening for two parameterized structures: a helix (a-c) and a torus (d-f). (a,d): Grid coarsening in the parameter spaces. Black dots: fine-grid 
points. Red crosses: coarse-grid points. (b,e): The fine grids of the structures. (c,f): The coarse grids of the structures. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

first added to the set of C-points; and the unsorted fine-grid points “influenced” by the new C-points are then added to 
the set of F -points. The algorithm terminates when all the fine-grid points that we start with have been sorted into one of 
the two subsets. By construction, the coarse grid is always nested into the fine grid.

In the original PMIS algorithm, the sizes of the entries of the coefficient matrix Ah determine how influential the fine-
grid points are. For a large dense Ah , we have to modify this algorithm so that it can be performed without explicitly 
constructing Ah . Let {xi}Ni=1 be the set of fine-grid points. Since the kernel function and thus the corresponding matrix 
entries decay as the source and target points move further apart, we utilize the pairwise distance, dij = ‖xi − x j‖2 for 
i, j = 1, 2, · · · , N , to quantify the influence that a point has on another point. The specifics in the case of a single 
structure are as follows. We define an N × N auxiliary strength matrix S whose (i, j) entry is

Sij =
{
1, if i 
= j and dij <

1
α ·min

k
{dik : i 
= k}

0, otherwise
(6)

where 0 < α < 1 is a constant. (In the original PMIS algorithm, the auxiliary strength matrix is calculated based on the 
absolute values of the entries of Ah instead.) The ith point xi is considered to be influenced by the jth point x j if and 
only if Sij = 1. Thus, the sum of the ith column of S gives the total number of points influenced by xi . The weight of xi
is defined to be this sum plus a random number in [0, 1] and measures how influential xi is. The coarseness of the coarse 
grid found by the PMIS algorithm can be controlled by the value of α: the smaller α is, the larger the threshold on dij is in 
Eq. (6), the more points will be influenced by a C-point and added to the set of F -points, and the fewer points there will 
be in the set of C-points. When there are multiple structures, instead of applying the PMIS algorithm to the fine grid as a 
whole, we apply it to the fine grid restricted to each structure individually.

As an example, consider an ellipsoidal structure represented by 1016 points, as shown in Fig. 2. When α = 0.45 is 
chosen in Eq. (6), it takes the modified PMIS algorithm four iterations to divide them into F -points and C-points, producing 
a coarse grid consisting of 127 points. The results of all four iterations are displayed in Fig. 2a to Fig. 2d, where the blue 
dots are the fine-grid points and the red asterisks are the C-points that have been found after each iteration. The C-points 
shown in Fig. 2d constitute the coarse grid.

4.2. Constructing the transfer operators

Suppose the fine-grid points are x1, x2, · · · , xN ∈ R3 and the coarse-grid points are x̂1, x̂2, · · · , x̂N ∈ R3 where 
N < N . Let f̂ ∈ R3N be a vector that needs to be prolonged, which is formed by concatenating the following quantities 
5
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Fig. 2. (Color online) Grid coarsening for an ellipsoidal structure using the modified PMIS algorithm. Blue dots: fine-grid points. Red asterisks: coarse-grid 
points. (a-d): The results of Iterations 1 through 4.

associated with the coarse-grid points: f̂1, f̂2, · · · , f̂N ∈ R3. We seek a prolongation operator P ∈ R3N×3N such that 
f = P f̂ is formed by concatenating f1, f2, · · · , fN ∈ R3, the quantities associated with the fine-grid points. We again 
consider the case where the structures are parameterized (Section 4.2.1) and the case where they are not (Section 4.2.2). 
Although the details are quite different, we proceed as follows in both cases. For each fine-grid point xi , we first identify 
the coarse-grid points that are adjacent to it. Let Ii denote the set of indices such that j ∈ Ii if and only if the coarse-grid 
point x̂ j is adjacent to xi . We then calculate fi as

fi =
∑
j∈Ii

wij · f̂ j (7)

where wij is a scalar. The resulting prolongation operator P can be partitioned into 3 × 3 blocks, and its (i, j) block is

Pij =
{
wij · I3, if j ∈ Ii

O 3, otherwise
(8)

where I3 denotes the 3 × 3 identity matrix and O 3 denotes the 3 × 3 zero matrix.
We also need a restriction operator R ∈ R3N×3N such that given f ∈ R3N defined on the fine grid, we can calculate its 

counterpart on the coarse grid as f̂ = R f . Once P has been constructed, we can simply choose R = P T to be the restriction 
operator. In the special case where the two grids are nested, we can also construct R as follows:

Rij =
{
I3, if x̂i and x j coincide

O 3, otherwise
(9)

where Rij is the (i, j) block in R . Applying this operator to restrict f is equivalent to setting f̂i = f j , which does not entail 
any additional computational cost.

Therefore, for the rest of this subsection, we focus on the construction of the prolongation operator P , specifically, the 
choice of Ii and wij in Eqs. (7) and (8).
6
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4.2.1. Case I: a parameterization of the structures is known
Assume for now that there is only one structure represented by a parametric curve X (s) in 3D where s ∈ [0, L]. Let the 

fine-grid points be

x1 = X (0), x2 = X (h), · · · , xN = X
(
(N − 1) · h) (10)

where (N − 1) · h = L and the coarse-grid points be

x̂1 = X (0), x̂2 = X (H), · · · , x̂N = X
(
(N − 1) · H) (11)

where (N − 1) · H = L. Since the biological structures are smooth, we assume that quantities such as velocity and force are 
also smooth on them. For any integer 1 ≤ i ≤ N , let J (i) be the unique integer that satisfies the following: 1 ≤ J (i) ≤N −1,

(J (i) − 1) · H ≤ (i − 1) · h < J (i) · H (12)

if i < N , and J (i) = N − 1 if i = N . Thus, we consider x̂J (i) and x̂J (i)+1 to be the coarse-grid points that are adjacent to 
xi (see Fig. 1a-c), that is,

Ii = {J (i),J (i) + 1} . (13)

Using the linear spline on the interval 
[
(J (i) − 1) · H, J (i) · H] around (i − 1) · h in the parameter space, we can calculate 

fi as

fi =
∑
j∈Ii

wij · f̂ j (14)

where

wi,J (i) = 1+ (J (i) − 1) · H − (i − 1) · h
H

,

wi,J (i)+1 = (i − 1) · h − (J (i) − 1) · H
H

.

(15)

Eqs. (7) and (8) follow immediately.

Remark 2. While the interpolation would be more accurate if a higher-order method such as the cubic spline is used, 
the weights wij would depend on not only the parameter s but also f̂1, f̂2, · · · , f̂N . As a result, P would have to be 
constructed case by case for each f̂ that needs to be prolonged.

Next, we consider a single structure represented by a parametric surface X (u, v) in 3D where u ∈ [0, Lu] and v ∈ [0, Lv ]. 
Let N = Nu · Nv where Nu and Nv are integers greater than 1. Let hu = Lu/(Nu − 1) be the fine-grid spacing in the u
direction and hv = Lv/(Nv − 1) be the fine-grid spacing in the v direction. Similarly, let N = Nu ·Nv where Nu < Nu and 
Nv < Nv . Let Hu = Lu/(Nu − 1) be the coarse-grid spacing in the u direction and Hv = Lv/(Nv − 1) be the coarse-grid 
spacing in the v direction. In addition, let the fine-grid points be numbered such that

xm+(n−1)·Nu = X
(
(m − 1) · hu, (n − 1) · hv

)
(16)

for 1 ≤m ≤ Nu and 1 ≤ n ≤ Nv ; and similarly, let the coarse-grid points be numbered such that

x̂p+(q−1)·Nu =X
(
(p − 1) · Hu, (q − 1) · Hv

)
(17)

for 1 ≤ p ≤ Nu and 1 ≤ q ≤ Nv . For any integer 1 ≤ m ≤ Nu , let P(m) be the unique integer that satisfies the following: 
1 ≤P(m) ≤Nu − 1,

(P(m) − 1) · Hu ≤ (m − 1) · hu < P(m) · Hu (18)

if m < Nu , and P(m) = Nu − 1 if m = Nu . For any integer 1 ≤ n ≤ Nv , let Q(n) be the unique integer that satisfies the 
following: 1 ≤Q(n) ≤ Nv − 1,

(Q(n) − 1) · Hv ≤ (n − 1) · hv < Q(n) · Hv . (19)

if n < Nv , and Q(n) =Nv − 1 if n = Nv . Thus, for 1 ≤m ≤ Nu and 1 ≤ n ≤ Nv , we consider

x̂P(m)+(Q(n)−1)·Nu , x̂P(m)+(Q(n)−1)·Nu+1, x̂P(m)+Q(n)·Nu , and x̂P(m)+Q(n)·Nu+1
7
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to be the coarse-grid points adjacent to xi where i =m + (n − 1) · Nu (see Fig. 1d-f), that is,

Ii = {P(m) + (Q(n) − 1) ·Nu, P(m) + (Q(n) − 1) ·Nu + 1, P(m) +Q(n) ·Nu, P(m) +Q(n) ·Nu + 1} . (20)

Using the bilinear interpolation on the neighborhood[
(P(m) − 1) · Hu,P(m) · Hu

]× [ (Q(n) − 1) · Hv ,Q(n) · Hv
]

around 
(
(m − 1) · hu, (n − 1) · hv

)
in the parameter space, we can again calculate fi as (14) where

wi,P(m)+(Q(n)−1)·Nu =
(
1+ (P(m) − 1) · Hu − (m − 1) · hu

Hu

)
·
(
1 + (Q(n) − 1) · Hv − (n − 1) · hv

Hv

)
,

wi,P(m)+(Q(n)−1)·Nu+1 = (m − 1) · hu − (P(m) − 1) · Hu

Hu
·
(
1+ (Q(n) − 1) · Hv − (n − 1) · hv

Hv

)
,

wi,P(m)+Q(n)·Nu =
(
1+ (P(m) − 1) · Hu − (m − 1) · hu

Hu

)
· (n − 1) · hv − (Q(n) − 1) · Hv

Hv
,

wi,P(m)+Q(n)·Nu+1 = (m − 1) · hu − (P(m) − 1) · Hu

Hu
· (n − 1) · hv − (Q(n) − 1) · Hv

Hv
.

(21)

Eqs. (7) and (8) follow as in the case of a parametric curve.
So far we have considered the case of a single structure modeled as a parametric curve or surface prior to discretization. 

We now give a brief description of the prolongation operator P when there are ns > 1 structures. Assume that for 1 ≤ k ≤ ns , 
the kth structure represented by X k is discretized by Nk points in the fine grid and Nk points in the coarse grid, where 
Nk and Nk satisfy the following: Nk < Nk , 

∑ns
k=1 Nk = N , and 

∑ns
k=1Nk = N . Also assume that the points on the kth 

structure are numbered by 
∑k−1

i=1 Ni + 1 to 
∑k

i=1 Ni in the fine grid and 
∑k−1

i=1 Ni + 1 to 
∑k

i=1Ni in the coarse grid. Then 
the prolongation operator P has the following block-diagonal structure:

P =

⎡⎢⎢⎢⎣
P1

P2
. . .

Pns

⎤⎥⎥⎥⎦ (22)

where Pk ∈R3Nk×3Nk is the prolongation operator in the case where X k is the only structure present.

4.2.2. Case II: no parameterization is available
In Section 4.2.1, it is relatively straightforward to determine whether a coarse-grid point x̂ j is adjacent to a fine-grid point 

xi : j ∈ Ii if and only if x̂ j and xi belong to the same structure and correspond to adjacent grid points in the parameter 
space. It is less clear how Ii should be determined when the structures are not parameterized. Assume that there is a 
single structure represented by {xi}Ni=1 in the fine grid and 

{
x̂i
}N
i=1 in the coarse grid. We consider the m coarse-grid points 

closest to xi to be adjacent to it where m is a small fixed integer between 1 and N , that is,

Ii =
{
j : x̂ j is one of them coarse-grid points closest to xi

}
. (23)

In Section 4.2.1, we use linear interpolation to calculate fi from 
{
f̂ j
}
j∈Ii

. Here, we interpolate the coarse-grid quantities 

using Radial Basis Functions (RBFs) instead. For any vector v ∈ R3, let v� denote the �th component of v where � = 1, 2, 
or 3. Let Ii = { j1, j2, · · · , jm} where 1 ≤ j1 < j2 < · · · < jm ≤ N . (The dependence of j1, j2, · · · , jm on i is omitted 
to simplify the notation.) Following the method of [47], for 1 ≤ i ≤ N and � = 1, 2, 3, we introduce the following function 
from R3 to R:

gi�(x) =
m∑

q=1

λi�q · e−
(
δ

∥∥∥x−x̂ jq

∥∥∥)2 +
3∑

k=0

ai�k · pk(x) (24)

where δ is a shape parameter,

pk(x) =
{
1, if k = 0

xk, otherwise
, (25)

and 
{
λi�q
}m
q=1, {ai�k}3k=0 are scalars to be determined. The �th component of fi is then calculated as f�i = gi� (xi). To find {

λi�q
}m and {ai�k}3 , we impose
q=1 k=0

8
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gi�
(
x̂ jq

)= f̂�jq (26)

for q = 1, 2, · · · , m, that is, gi�(x) is exact at all the coarse-grid points adjacent to xi . Since there are m + 4 unknowns 
and only m equations, the following four constraints are also added:

m∑
q=1

λi�q · pk
(
x̂ jq

)= 0 (27)

for k = 0, 1, 2, 3. Let λ�
i = [λi�1 λi�2 · · · λi�m]T ∈Rm , a�

i = [ai�0 ai�1 ai2� ai�3]
T ∈ R4, and f̂ �

i =
[
f̂�j1 f̂�j2 · · · f̂�jm

]T ∈Rm . We 
therefore need to solve the linear system[


i �i

�T
i O 4

][
λ�
i

a�
i

]
=
[
f̂ �
i

04

]
(28)

for every 1 ≤ i ≤ N and � = 1, 2, 3, where the (r, q) entry of 
i ∈ Rm×m is e−
(
δ

∥∥∥x̂ jr −x̂ jq

∥∥∥)2
, the (r, k) entry of �i ∈Rm×4 is 

pk−1
(
x̂ jr

)
, O 4 is the 4 × 4 zero matrix, and 04 is the 4 × 1 zero vector.

It remains to be shown that

f�i =
∑
j∈Ii

wij · f̂�j, (29)

where wij is a scalar that does not depend on �. By Eq. (28),

a�
i = ϒi f̂

�
i and λ�

i = 
i f̂
�
i (30)

where ϒi =
(
�T

i 
−1
i �i

)−1
�T

i 
−1
i ∈ R4×m and 
i = 
−1

i − 
−1
i �iϒi ∈ Rm×m . (Note that 
i , �i and hence ϒi , 
i do not 

depend on �.) Since f�i = gi�(xi), by Eqs. (24) and (30), Eq. (29) holds with

wijr =
m∑

q=1

ψiqr · e−
(
δ

∥∥∥xi−x̂ jq

∥∥∥)2 +
4∑

k=1

υikr · pk−1 (xi) , (31)

where ψiqr is the (q, r) entry of 
i and υikr is the (k, r) entry of ϒi . Eqs. (7) and (8) follow immediately.
In the case of multiple structures, the prolongation operator P again has the block-diagonal structure shown in Eq. (22)

if the grid points are numbered appropriately (see the description in the paragraph immediately preceding Eq. (22)).

4.3. Approximating the Galerkin projection

Assume that the fine-grid points {xi}Ni=1, coarse-grid points 
{
x̂i
}N
i=1, and a prolongation operator Ph

H ∈ R3N×3N , a re-
striction operator RH

h ∈ R3N×3N between them are known. Recall from Section 2 that the coefficient matrix Ah on the fine 
grid is 3N ×3N and can be partitioned into 3 ×3 blocks, where the (i, j) block is K

(
xi,x j

)
. We denote K

(
xi,x j

)
by Kij and 

K
(
x̂i, x̂ j

)
by K̂ i j . (Note that the former is defined between a pair of fine-grid points whereas the latter is defined between 

a pair of coarse-grid points.) Recall from Section 4.2 that both Ph
H and RH

h can be partitioned into 3 × 3 blocks as well. We 
continue to denote their (i, j) blocks by Pij and Rij , respectively.

We could calculate a 3N × 3N coarse-grid representation AH of Ah as RH
h Ah P

h
H , referred to as the Galerkin projection 

of Ah onto the coarse grid. Due to the block structures of Ah , RH
h , and Ph

H , AH can also be partitioned in to 3 × 3 blocks, 
the (i, j) block of which is

Gij =
N∑

l=1

Ril

(
N∑

n=1

Kln Pnj

)
. (32)

However, calculating AH naïvely entails matrix-vector products involving Ah , which in turn entails interactions between 
each pair of fine-grid points. We develop an efficient approach to approximate Gij that takes advantage of the sparsity of 
RH
h and Ph

H as well as the data-sparsity of Ah .
Since the strength of Kln decays as the distance between xl and xn increases, for accurate and computationally efficient 

approximation of Gij , we propose

G̃ i j =
N∑

l=1

Ril

⎛⎝∑
n∈N

Kln Pnj +
∑
n/∈N

K̃ln Pnj

⎞⎠ , (33)
l l

9
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where Nl denotes the set of indices of all the fine-grid points “close” to xl , K̃ln ≈ Kln , and the calculation of K̃ln involves 
coarse-grid interactions only. We explain the choice of K̃ln and Nl below.

If xn is not close to xl , that is, if n /∈ Nl , the contribution of Kln to Gij is less important. It is thus not necessary to 
calculate Kln exactly. We can use linear or RBF interpolation to approximate Kln as in Section 4.2:

K̃ln =
∑
q∈In

wnq · K (xl, x̂q) (34)

where In is the set of indices of all the coarse-grid points adjacent to xn (see Eqs. (13), (20), and (23)), and wnq is a 
scalar (see Eqs. (15), (21), and (31)). Using the K̃ln defined in Eq. (34), we can avoid the interactions among fine-grid 
points; however, we still need to calculate the interactions between fine-grid points and coarse-grid points. To eliminate 
the involvement of the fine-grid points in K̃ln entirely, we use linear or RBF interpolation again to approximate K

(
xl, x̂q

)
in 

Eq. (34), that is,

K̃ln =
∑
q∈In

wnq ·
⎛⎝∑

r∈Il

wlr · K (x̂r, x̂q)
⎞⎠=

∑
q∈In

wnq ·
⎛⎝∑

r∈Il

wlr · K̂rq

⎞⎠ . (35)

Combining Eqs. (33) and (35), we have

G̃ i j =
N∑

l=1

Ril

⎧⎨⎩∑
n∈Nl

Kln Pnj +
∑
n/∈Nl

⎡⎣∑
q∈In

wnq ·
⎛⎝∑

r∈Il

wlr · K̂rq

⎞⎠⎤⎦ Pnj

⎫⎬⎭ . (36)

We note that thanks to the sparsity of Ph
H and RH

h (see Eqs. (8) and (9)), the number of terms that need to be summed to 
calculate G̃ i j is not as many as Eq. (36) suggests. To see this, for each coarse-grid point x̂ j , we first introduce a new set of 
indices E j defined as follows:

E j = {m : j ∈ Im} . (37)

Then by Eq. (8) and RH
h = (Ph

H

)T
, we can rewrite Eq. (36) as

G̃ i j =
∑
l∈Ei

wli ·
⎧⎨⎩ ∑

n∈E j∩Nl

wnj · Kln +
∑

n∈E j\Nl

wnj ·
⎡⎣∑

q∈In

wnq ·
⎛⎝∑

r∈Il

wlr · K̂rq

⎞⎠⎤⎦⎫⎬⎭ . (38)

In the special case where the coarse grid is nested into the fine grid and Rij is defined by Eq. (9) instead, if xm is the 
fine-grid point that coincides with x̂i , then Eq. (36) simply becomes

G̃ i j =
∑

n∈E j∩Nl

wnj · Kmn +
∑

n∈E j\Nl

wnj ·
⎡⎣∑

q∈In

wnq ·
⎛⎝∑

r∈Im

wmr · K̂rq

⎞⎠⎤⎦ . (39)

In the rest of this paper, we use AH to denote the approximate Galerkin projection of Ah onto the coarse grid, that is, the 
(i, j) block of AH is G̃ i j defined in Eq. (38) or Eq. (39) instead of the exact Gij defined in Eq. (32).

We still need to specify what the set of indices Nl is in Eqs. (38) and (39). We wish to identify the fine-grid points close 
to xl without calculating the pair-wise distances between fine-grid points. The main idea is the following: if xl is adjacent 
to x̂i , xn is adjacent to x̂ j , and x̂i is close to x̂ j , then xl is considered close to xn .

We first consider the case where the structures are parameterized prior to discretization. We consider x̂i to be close to 
x̂ j if the parameter values that they correspond to are close to one another. In the case of parametric curves, let si denote 
the grid point in the parameter space that x̂i corresponds to. We define Nl as

Nl =
⋃
i∈Il

{
n ∈ E j :

∣∣s j − si
∣∣≤ γ and x̂ j is on the same structure as x̂i

}
(40)

where γ > 0 is a constant. In the case of parametric surfaces, let (ui , vi) be the grid point in the parameter space that x̂i
corresponds to. Similarly, we define Nl as

Nl =
⋃
i∈Il

{
n ∈ E j :

∣∣u j − ui
∣∣≤ γ1,

∣∣v j − vi
∣∣≤ γ2, and x̂ j is on the same structure as x̂i

}
(41)

where γ1, γ2 are constants. Identifying the fine-grid points close to xl using Eq. (40) or Eq. (41) only entails calculating the 
pair-wise distances between the coarse-grid points in the parameter space.
10
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In the case of no parameterization, we simply define Nl as

Nl =
⋃
i∈Il

{
n ∈ E j :

∥∥x̂ j − x̂i
∥∥
2 ≤ γ , and x̂ j is on the same structure as x̂i

}
. (42)

where γ is a constant. Finding it entails calculating the pair-wise distances between the coarse-grid points on the structures.

Remark 3. Since the coarsening of the grid (Section 4.1), construction of the transfer operators (Section 4.2), and approx-
imation of the Galerkin projection (Section 4.3) can all be performed structure by structure, these processes are easily 
parallelizable.

5. A block Gauss-Seidel smoother

The classic point Gauss-Seidel method has long been the smoother of choice in the multigrid methods for solving dis-
cretized elliptic PDEs on an Eulerian grid. In such a problem, the coefficient matrix is sparse, which allows for efficient 
implementation of the Gauss-Seidel iteration. Furthermore, since the eigenvectors of the coefficient matrix associated with 
large eigenvalues are highly oscillatory, a small number of Gauss-Seidel iterations suffice to effectively remove the high-
frequency terms in the solution error.

The coefficient matrix of interest here is large, dense, and generated by a kernel function acting on discretized interacting 
structures. As a result, the point Gauss-Seidel iterations can be computationally expensive. Moreover, it is not necessarily the 
case that large eigenvalues of this matrix correspond to highly oscillatory eigenvectors. We observe that a block Gauss-Seidel 
method can serve as an effective smoother for this type of matrices, where the blocks are determined by a proximity-based 
partition of the Lagrangian grid points. This is fundamentally due to the decay of the kernel function as the distance between 
two points grows. We describe the block Gauss-Seidel smoother in Section 5.1 and discuss its efficient implementation in 
Section 5.2.

5.1. Description of the algorithm

The point Gauss-Seidel method is based on the decomposition of an n ×n matrix A as A = D + L +U , where D , L, and U
are diagonal, lower-triangular, and upper-triangular, respectively. Given an initial guess f 〈0〉 , the kth iteration of this method 
updates the solution to A f = u by

f 〈k〉 = f 〈k−1〉 + (L + D)−1
(
u − A f 〈k−1〉) (43)

where f 〈k〉 denotes the kth iterate. Since D is diagonal and L is lower-triangular, we can update f 〈k〉 entry by entry as

f 〈k〉
i = 1

aii

⎛⎝ui −
i−1∑
j=1

aij f
〈k〉
j −

n∑
j=i+1

aij f
〈k−1〉
j

⎞⎠ (44)

for i = 1, 2, · · · , n, where f 〈k〉
i is the ith entry of f 〈k〉 , ui is the ith entry of u, and aij is the (i, j) entry of A. For 

a positive definite A, the convergence of the Gauss-Seidel method is guaranteed by the Ostrowski-Reich theorem [48,49]. 
More generally, if the spectral radius of the iteration matrix

G = I − (L + D)−1A = I − (A − U )−1A, (45)

associated with Eq. (43), denoted by ρ(G), is less than 1, then the Gauss-Seidel method converges as well [50,51].
Given a block partition of A, we can extend the point Gauss-Seidel iteration to a block version. Let

D =

⎡⎢⎢⎢⎣
A11

A22
. . .

App

⎤⎥⎥⎥⎦ , L =

⎡⎢⎢⎢⎣
O
A21 O
...

...
. . .

Ap1 Ap2 · · · O

⎤⎥⎥⎥⎦ , U =

⎡⎢⎢⎢⎣
O A12 · · · A1p

O · · · A2p
. . .

...

O

⎤⎥⎥⎥⎦ , (46)

where Aij denotes the (i, j) block of A and Aii is square. Like in the point Gauss-Seidel method, we can update f 〈k〉 segment 
by segment as

f 〈k〉
i = A−1

ii

⎛⎝ui −
i−1∑
j=1

Aij f
〈k〉
j −

p∑
j=i+1

Aij f
〈k−1〉
j

⎞⎠ (47)
11
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for i = 1, 2, · · · , p, where f 〈k〉
i and ui denote the ith segments of f 〈k〉 and u, respectively. (The number of entries in 

f 〈k〉
i and ui equals the number of columns in Aij .) As for the point Gauss-Seidel method, the block Gauss-Seidel method 

converges if ρ(G) < 1, where G is defined in Eq. (45) and D , L, and U are defined in Eq. (46).
In this paper, A is 3N × 3N and generated by a kernel function K (x, y) : R3 ×R3 −→ R3×3, such as the one associated 

with the MRS (see Section 2), acting on every pair from N Lagrangian grid points {xi}Ni=1. By partitioning the grid points into 

p groups, where the ith group consists of the Ni points numbered by 
{∑i−1

j=1 N j + k
}Ni

k=1
, we obtain the following partition 

of A into p × p blocks: for i, j = 1, 2, · · · , p, the (i, j) block, Aij , is 3Ni ×3N j and represents the interactions between the 
ith and jth groups of points; in particular, the ith block on the diagonal, Aii , represents the interactions among the points 
in the ith group. For the block Gauss-Seidel method to be effective, we wish ρ(G) to be small, implying that D should be 
dominant in A. Since D represents the self-interactions of the p groups of points and ‖K (x, y)‖ increases if x is closer to 
y, it is desirable that the points within each group are close to one another. For example, we can order the grid points 
in such a way that the ones belonging to the ith structure are numbered consecutively from 

∑i−1
j=1 N j + 1 to 

∑i
j=1 N j for 

i = 1, 2, · · · , p. If the grid points are not ordered based on proximity, we need to re-order them first and then apply the 
block Gauss-Seidel method to P T AP instead, where P is an n ×n permutation matrix. The difference between the resulting 
block Gauss-Seidel iteration and Eq. (47) is only technical. Therefore, we continue to use Eq. (47) for simplicity.

We observe from numerical experiments that as long as the grid points are grouped appropriately, a small number of 
the block Gauss-Seidel iterations (47) serve as an effective smoother for the proposed multigrid method.

5.2. Implementation details

For a large dense matrix A, the block Gauss-Seidel iteration given in Eq. (47) introduces the following two challenges: 
solving a linear system whose coefficient matrix is Aii (a block on the diagonal of A) and matrix-vector multiplication 
involving Aij (an off-diagonal block in A). Both types of sub-matrices are similar to A in structure. In this subsection, we 
discuss how to perform these calculations efficiently.

For effective smoothing, we find that partitioning A into large blocks is sometimes necessary, making Aii too large for a 
direct solver. In this case, we apply the proposed multigrid method to invert Aii as well. Compared to the “outer” multigrid 
iteration applied to A f = u, since Aii is considerably small than A, fewer levels of coarsening are needed in the “inner” 
multigrid iteration applied to Eq. (47); in addition, we observe that there is no need to carry out the inner multigrid 
iteration as accurately.

The block-vector multiplication involving Aij in Eq. (47) can also be approximated on a coarser grid as follows. We 
replace Aij by

Pi Âi j R j (48)

where Âi j represents the interactions between the ith and jth groups of coarse-grid points calculated using the original 
kernel function K , R j = P T

j is the restriction operator for the jth group of points, and Pi is the prolongation operator for 
the ith group of points (see Eq. (22)). Note that Pi , R j are sparse and Âi j is dense but smaller than Aij . We refer to this 
technique as the inexact block-vector multiplication. Numerical experiments show that a rather coarse grid can be used in 
(48) to substantially reduce the computational cost of Eq. (47) without degrading the effectiveness of the smoother.

Remark 4. We propose to use a block Gauss-Seidel smoother instead of a block Jacobi smoother because numerical ex-
periments show that the former requires far fewer iterations when applied to the MRS matrices of interest in this study. 
However, since the block Gauss-Seidel smoother entails inverting the block lower-triangular matrix L + D whereas only the 
block-diagonal matrix D needs to be inverted in the block Jacobi method, the former is more difficult to parallelize. Several 
parallel Gauss-Seidel algorithms have been developed in [52–54] that may be adapted to the block Gauss-Seidel algorithm 
proposed here. In [52], several parallelization strategies for dense Gauss-Seidel methods based on GPU and multi-threaded 
CPU implementations were discussed. In [53], a distributed memory parallel Gauss–Seidel algorithm was proposed by us-
ing a row-block partition and a torus-wrapping technique. In [54], a parallel Jacobi-embedded Gauss-Seidel method was 
developed by rewriting a Gauss-Seidel iteration into a highly parallelizable Jacobi-like iteration.

6. Numerical experiments

We demonstrate the effectiveness of the proposed multigrid algorithm on large-scale linear systems with dense coef-
ficient matrices arising from the simulation of interacting structures immersed in a Stokesian fluid. The performance of 
this method is also compared with the preconditioned Generalized Minimal RESidual method (GMRES). We defer numerical 
experiments on free swimmers that undergo rigid translation and rotation to Section 7, where additional constraints need 
to be imposed besides Eq. (4) to maintain force and torque balance.

The preconditioner used to accelerate GMRES is block-diagonal. It is obtained by dividing the grid points into clusters and 
allowing within-cluster interactions only. The clusters are determined by the proximity of the points or their membership in 
the structures. More precisely, in the first method, we evenly divide the computational domain into 8ρ boxes where ρ ≥ 1
12
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is an integer and consider all the points in a box as a cluster, as in [19]. In the second method, all the points belonging 
to the same structure are considered to be one cluster. For every example in this section and Section 7, we explore both 
methods and select the one that leads to the most efficient preconditioned GMRES.

Since the swimmers considered in this section are modeled as parametric curves, in the multigrid method, we use the 
method described in Section 4.1.1 to coarsen the grid and the method described in Section 4.2.1 to construct the transfer 
operators. The methods in Sections 4.1.1 and 4.2.1 for swimmers represented by discrete points are considered in Section 7.1.

The smoother employed in the multigrid method is a single block Gauss-Seidel iteration proposed in Section 5, where the 
block-vector multiplication involving the off-diagonal blocks in Eq. (47) is performed inexactly as described in Section 5.2.

Recall that the multigrid method applied to the fine-grid problem Eq. (4) gives rise to the following two types of sub-
sidiary linear systems of smaller sizes:

• linear systems whose coefficient matrix is AH , the representation of Ah on a coarser grid
• linear systems whose coefficient matrix is Aii , a block on the diagonal of Ah or AH after it has been partitioned properly 

in the block Gauss-Seidel smoother.

Note that AH and Aii are dense as well. In our numerical experiments, if they are sufficiently small, a direct method will 
be used; otherwise, an iterative method such as the multigrid method or the preconditioned GMRES will again be applied.

The initial guess, f 〈0〉 , to fh in the multigrid method is obtained by prolonging the solution obtained on a coarser grid, 
that is, f 〈0〉 = Ph

H

(
A−1
H

(
RH
h uh

))
where AH is the coarse-grid representation of Ah . (The runtime of the multigrid method 

reported in this section includes the time spent on computing the initial guess.) It is simply taken to be the zero vector in 
the preconditioned GMRES.

In all the numerical experiments in this section, we use the relative residual at the kth iteration defined as

η〈k〉 = ‖uh − Ah f 〈k〉‖2
‖uh‖2 . (49)

to measure the accuracy of a solver, where f 〈k〉 is the kth iterate of fh computed by the solver.
All the numerical experiments are performed in MATLAB R2018b on a virtual machine equipped with an Intel Xeon CPU 

2.30 GHz.

6.1. Bacterial carpets

There have been many studies on the flow around a bacterial carpet, which consists of a large group of flagellated 
bacteria attached to a surface [55,56,2]. Such a construction can be utilized to perform fluid mixing and transport at a small 
scale [57,2]. Here, we model the bacterial flagella as identical rotating helices as in [57], where the rotational velocities 
along the helices are prescribed and the forces along them need to be solved. Once the forces have been calculated, the 
flow around the carpet can be calculated using Eq. (2).

We consider an uniform array of rotating helices that emanate from an infinite, planar, solid, and stationary wall at 
z = 0. At time t = 0, the centerline X 0(s) = (x(s), y(s), z(s))T of an upright helix based at the origin and contained in the 
semi-infinite domain 

{
(x, y, z)T : z ≥ 0

}
is parameterized as follows:

x(s) = α tanh(τ s) cos(2π s/λ + φ), (50)

y(s) = α tanh(τ s) sin(2π s/λ + φ), (51)

z(s) = s, (52)

where 0 ≤ s ≤ L, λ is the helical pitch, τ is a tapering parameter, φ is the phase angle, and α is the radius of the helix. At 
time t , the position of any point on the helix based at B is prescribed as

X (s, t) = R(t)X 0(s) + B, (53)

where R(t) is a time-dependent rotation matrix given by

R(t) =
⎡⎣cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1

⎤⎦ (54)

and ω is the rotational speed. The values of L, α, λ, τ , φ, and ω are given in Table 1. The value of the regularization 
parameter ε in the MRS is chosen to be 0.01. We position the base points of the carpet of helices to form a uniform grid of 
spacing 3α in the x and y directions on the plane z = 1.01ε , which lies slightly above the wall.

In the fine grid, there are 161 grid points per helix resulting from the uniform grid of s on [0, L] whose spacing is 
h = L/160. The velocities at the grid points can be obtained by differentiating Eq. (53) with respect to time t . The forces 
13
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Table 1
Parameter values used in the case of a bac-
terial carpet.
Parameter Value

height (L) 2.2
helical radius (α) 0.085
tapering parameter (τ ) 1000
helical pitch (λ) 2πα
angular speed (ω) −2π

Fig. 3. The 5× 5 bacterial carpet at t = 0.

that they exert to the surrounding fluid to induce said velocities can be recovered by solving Eq. (4). To incorporate the 
wall, the method of images for regularized Stokeslets [43] is used to enforce a no-slip (u = 0) boundary condition. In 
this formulation, an image source consisting of a regularized Stokeslet, doublet, dipole, and rotlet is mirrored across the 
boundary.

6.1.1. A small carpet
We first consider a 5 × 5 carpet at t = 0 (see Fig. 3) to demonstrate the effectiveness of the approximate Galerkin 

projection proposed in Section 4.3 and the block Gauss-Seidel smoother proposed in Section 5. We apply a two-grid method 
to solve Eq. (4), where there are 21 points per helix in the coarse grid resulting from the uniform grid of s with spacing 
H = 8h. The coefficient matrices Ah and AH corresponding to the two grids are 12075 ×12075 and 1575 ×1575, respectively. 
We calculate the initial guess as f 〈0〉 = Ph

H

(
A−1
H

(
RH
h uh

))
. To perform the inexact block-vector multiplication within the 

smoother, we discretize the helices using an even coarser grid that corresponds to the uniform grid of s with spacing 4H .
In the block Gauss-Seidel smoother, the matrix Ah is partitioned into 25 × 25 = 625 blocks of size 483 × 483, where the 

(i, j)th block represents the interactions between the ith and jth helices. To demonstrate the damping of high-frequency 
oscillations in solution errors by the smoother, we compare the pre- and post-smoothing solution errors in the first iterate 
of the two-grid method. The portions of both errors corresponding to the first helix (that is, the first 483 elements of both 
error vectors), with their x, y, and z components separated, are displayed in the three subplots of Fig. 4(a). They show 
that one iteration of the proposed block Gauss-Seidel method is quite effective at damping the error. We also examine the 
effect of the inexact block-vector multiplication within the smoother. More specifically, we calculate the first iterate in two 
ways that only differ in whether the block-vector multiplication in the smoother is exact or inexact. The portions of their 
errors corresponding to the last (25th) helix (that is, the last 483 elements of both error vectors), with their x, y, and z
components separated, are displayed in the three subplots of Fig. 4(b). They show that calculating the block-vector products 
inexactly within the smoother has little effect on its effectiveness.

Next, we examine the effect of the approximate Galerkin projection by calculating f 〈0〉 in two ways that only differ in 
whether AH is constructed by the exact or inexact Galerkin projection. The portions of the two initial guesses corresponding 
to the first helix (that is, the first 483 elements in the two vectors), with their x, y, and z components separated, are 
displayed in the three subplots of Fig. 4(c). They indicate that the approximate Galerkin projection can produce a sufficiently 
good coarse-grid matrix.

Finally, in Fig. 4(d), we plot the decay of the relative residual η〈k〉 defined in Eq. (49) as the iteration count k increases 
in the semi-log scale. The circle at k = 1, 2, 3, 4 represents η〈k〉 after the kth complete two-grid iteration. (The circle at 
k = 0 represents the relative residual η〈0〉 associated with the initial guess f 〈0〉 .) The triangle at k + 1

2 for k = 0, 1, 2, 3
represents the relative residual after smoothing (Step 1 in Section 3) but before coarse-grid correction (Step 4 in Section 3). 
Inexact block-vector multiplication is used in the smoother, and approximate Galerkin projection is applied to construct the 
14
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Fig. 4. (Color online) Performance of the multigrid method applied to the 5 × 5 bacterial carpet. (a) Solution errors in the first helix before and after 
smoothing (blue vs. red) in the first iteration. (b) Solution errors in the last helix after smoothing via exact and inexact block-vector multiplication (blue 
vs. red) in the first iteration. (c) Initial guesses calculated using exact and inexact Galerkin projection (blue vs. red). (d) Decay of the relative residual η〈k〉

(blue circle) as the iteration count k increases in the two-grid method. The relative residual η〈k+ 1
2 〉 of each intermediate iterate (red triangle) obtained after 

smoothing and before coarse-grid correction is also shown.

coarse-grid matrix. Fig. 4(d) demonstrates the effectiveness of both steps and how alternating between them leads to the 
convergence of the two-grid method.

6.1.2. Large carpets
We now apply the proposed multigrid method to solve for the hydrodynamic forces generated by 10 × 10, 20 × 20, and 

25 × 25 carpets of uniformly placed identical helices at time t = 0. Its performance is compared with the performance of 
the preconditioned GMRES method, where the preconditioner is block-diagonal and has been used to precondition MRS 
matrices in [19]. The sizes of the fine-grid matrices, Ah , are 48300 × 48300, 193200 × 193200, and 301875 × 301875 in 
the three cases, respectively. We do not construct these matrices explicitly in either the multigrid method or the GMRES
method.

We employ a three-grid method where the two coarse grids result from the uniform grids of s with spacings H = 8h (21
points per helix) and 2H (11 points per helix), respectively. When performing the inexact block-vector multiplication within 
the block Gauss-Seidel smoother, we discretize the helices using an even coarser grid corresponding to the uniform grid of 
s with spacing 4H (6 points per helix). We use f 〈0〉 = Ph

2H

(
A−1
2H

(
R2H
h uh

))
as the initial guess of the three-grid method. 

Additional implementation details of the multigrid method can be found in Section A.1.
We perform the following two sets of experiments. In the first set, we consider the 10 × 10 and 20 × 20 carpets, 

calculate the matrix-vector products involving Ah exactly, and set the stopping criterion to be η〈k〉 < 10−5. In addition, the 
matrix-vector products involving AH , the middle-grid coefficient matrix, are approximated by the Kernel Independent Fast 
Multipole Method (KIFMM) [58,59]. Table 2 shows the runtime, iteration count, and relative residual of the final iterate for 
each solver in each case. We observe that in both examples, the runtime of the multigrid method is significantly shorter 
15



W. Liu and M.W. Rostami Journal of Computational Physics 494 (2023) 112506
Table 2
Comparison of the multigrid method, the preconditioned GMRES method, and the GMRES
method without a preconditioner in the case of a 10 × 10 bacterial carpet and the case of a 
20 × 20 bacterial carpet.
Solver Size of carpet Runtime (s) # of iter. Final rel. error

Multigrid 10× 10 380.28 5 4.83 · 10−6

Preconditioned GMRES 10× 10 842.51 24 6.66 · 10−6

GMRES 10× 10 1117.37 34 7.18 · 10−6

Multigrid 20× 20 3424.54 5 6.64 · 10−6

Preconditioned GMRES 20× 20 12797.73 32 5.83 · 10−6

GMRES 20× 20 17951.89 45 9.49 · 10−6

Fig. 5. (Color online) Decay of η〈k〉 as k increases for the multigrid method (blue squares), the preconditioned GMRES method (red triangles), and the 
GMRES method without a preconditioner (black crosses) in the case of a 10 × 10 bacterial carpet (a) and the case of a 20 × 20 carpet (b).

Table 3
Comparison of the multigrid method and the preconditioned GMRES method in the case of a 
20 × 20 bacterial carpet and the case of a 25 × 25 bacterial carpet.
Solver Size of carpet Runtime (s) # of iter. Final rel. error

Multigrid 20× 20 1332.26 2 4.80 · 10−4

preconditioned GMRES 20× 20 3401.42 19 9.37 · 10−4

Multigrid 25× 25 1997.50 2 5.26 · 10−4

preconditioned GMRES 25× 25 4722.00 21 8.16 · 10−4

than the runtime of the preconditioned GMRES method; furthermore, the former scales much better as the size of the 
carpet grows. The decay of η〈k〉 as k increases is also illustrated in Fig. 5 for both solvers. (Results of the GMRES method 
without a preconditioner are also included in Table 2 and Fig. 5 for reference.)

In the second set of experiments, we consider the 20 × 20 and 25 × 25 carpets, approximate the matrix-vector products 
involving Ah by the KIFMM instead,1 and relax the stopping criterion to η〈k〉 < 10−3 accordingly. As in the previous set of 
experiments, the matrix-vector products involving AH are approximated by the KIFMM. Table 3 shows the runtime, iteration 
count, and relative residual of the final iterate for each solver in each case. As observed in the previous set of experiments, 
the multigrid method converges much more rapidly in terms of both runtime and iteration count. Interestingly, applying 
the KIFMM to Ah makes the multigrid method and the preconditioned GMRES method scale similarly well. This is mainly 
because the preconditioned GMRES method entails about ten times as many matrix-vector products involving Ah , which 
makes the accelerating effect of the KIFMM more pronounced.

6.2. A carpet of lung cilia

The motility of cilia is crucial for fluid transport and clearance of foreign particles in many organisms. Many studies 
have used the MRS to simulate the flow around a carpet of rhythmically beating cilia [60–62,19]. As in [19], we consider a 

1 We observe that the accuracy of the matrix-vector products involving Ah affects the accuracy of the multigrid method significantly more than the 
matrix-vector products involving AH . While both are approximated by the KIFMM in this set of experiments, we vary the parameters of the KIFMM such 
that the former are calculated more accurately.
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Table 4
Parameter values in the case of a 25 × 25 cilia 
carpet.

Parameter Value

length (L) 6
angular beat frequency (σ ) 30π
regularization parameter (ε) 0.05

Fig. 6. A row of the 25× 25 cilia carpet at t = 0.

Table 5
Comparison of the multigrid method and the preconditioned GMRES method 
in the case of a 25 × 25 cilia carpet.
Solver Runtime (s) # of Iter. Final rel. error

Multigrid 5518.38 2 7.7·10−4

preconditioned GMRES 22650.94 49 9.95·10−4

large carpet of identical cilia tethered to an infinite, planar, solid, and stationary wall at z = 0 and contained in the semi-
infinite domain 

{
(x, y, z)T : z ≥ 0

}
. Each cilium beats in the plane y = yb where yb is the y-coordinate of its base point 

B = (xb, yb, 0) and is modeled by a spatiotemporal curve X (s, t) = (x(s, t), yb, z(s, t))
T derived in [63] based on the beat 

pattern of rabbit tracheal cilia experimentally observed in [64], that is,[
x(s, t)
z(s, t)

]
= 1

2
a0(s) +

N0∑
n=1

an(s) cos(nσ t) + bn(s) sin(nσ t) +
[
xb
0

]
, (55)

where t is time, s ∈ [0, L] is the arclength along the cilium, σ is its angular beat frequency, and an(s), bn(s) are vectors 
of polynomials of s. Note that although each cilium is planar, the cilia carpet is 3D as it consists of twenty-five rows and 
columns of cilia whose base points form a 25 × 25 uniform grid with spacing 0.3 in the x direction and y direction on the 
wall. The values of L, σ , and the regularization parameter ε used in the MRS can be found in Table 4.

Similar to the case of a bacterial carpet, each cilium is discretized by a number of grid points, and the velocities at these 
points can be found by differentiating Eq. (55) with respect to time t . By solving Eq. (4), we can find the forces that the 
grid points must exert to the surrounding fluid to induce said velocities. The wall is again incorporated using the method 
of images. In the fine grid, we use 130 points per cilium, resulting from the uniform grid of s with spacing h = L/129. 
Accordingly, the size of Ah is 241875 × 241875.2

We consider the cilia carpet at t = 0, a row of which is shown in Fig. 6. We employ a three-grid method where the two 
coarse grids result from the uniform grids of s with spacings H = 4h (33 points per cilium) and 2H (17 points per cilium), 
respectively. When performing the inexact block-vector multiplication within the block Gauss-Seidel smoother, we discretize 
the helices using an even coarser grid corresponding to the uniform grid of s with spacing 4H (5 points per cilium). We use 
f 〈0〉 = Ph

H

(
A−1
H

(
RH
h uh

))
as the initial guess of the three-grid method. Additional implementation details of the multigrid 

method can be found in Section A.2.
We again compare the performance of the three-grid method and the preconditioned GMRES method at solving for the 

hydrodynamic forces. As in the second set of experiments on bacterial carpets in Section 6.1.2, the matrix-vector products 
involving Ah and AH are approximated using the KIFMM, and the stopping criterion is η〈k〉 < 10−3. Table 5 shows the 
runtime, iteration count, and relative residual of the final iterate for each solver. Compared to the preconditioned GMRES 
method, the multigrid method requires 95% fewer iterations and 75% less runtime.

2 Since the base point of each cilium does not move and exert no force to the fluid, only 128 points per helix are taken into account in Eq. (4). Including 
it would make Ah singular.
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7. Application to free swimmers

In this section, we discuss the application of the proposed multigrid algorithm to simulate free swimmers that undergo 
rigid translation and rotation. We must impose additional constraints in these simulations, which lead to a larger and more 
challenging linear system. Solving it iteratively entails solving auxiliary linear systems whose coefficient matrix is generated 
by a kernel function acting on discretized interacting structures, as the one considered in previous sections.

Assume that there are n free swimmers and the ith one is represented by Ni grid points. Then for the ith swimmer, we 
need to impose the following two constraints:

Ni∑
k=1

fik = 0 and
Ni∑
k=1

(
xik − xic

)
× fik = 0, (56)

where fik is the hydrodynamic force exerted by the kth grid point located at xik , and xic is the center of the swimmer. 
The constraints in Eq. (56) imply that the swimmer undergoes rigid translation and rotation. Consequently, if the velocities {
vik
}Ni

k=1 are prescribed to the grid points 
{
xik
}Ni

k=1, they will induce a translational velocity Ui and a rotational velocity �i

for the entire swimmer; that is, the total velocity at xik can be written as ui
k = vik +Ui + �i × (xik − xic

)
. Let N =∑n

i=1 Ni be 
the total number of grid points. Taking into account the six constraints in Eq. (56) for every i and formulating ui

k using the 
MRS again, we obtain the following (3N + 6n) × (3N + 6n) linear system[

Ah BT
h

Bh O 6n

]
︸ ︷︷ ︸

Ch

[
fh
uh

]
︸ ︷︷ ︸

gh

=
[
vh
06n

]
︸ ︷︷ ︸

wh

, (57)

where Ah ∈ R3N×3N is the coefficient matrix in Eq. (4), Bh ∈ R6n×3N is sparse, O 6n is the 6n × 6n zero matrix, fh ∈ R3N

is formed by concatenating the forces exerted by the N grid points as in Eq. (4), vh ∈ R3N is formed by concatenating the 
velocities imposed at the grid points, 06n is the 6n × 1 zero vector, and uh ∈ R6n is formed by concatenating all n pairs 
of Ui and �i . Solving Eq. (57) gives us the hydrodynamic forces exerted by all the grid points, which can in turn be used 
in the MRS to calculate the fluid velocity at any point; in addition, it gives us the translational and rotational velocities 
of each swimmer induced by the prescribed motion. Linear systems whose coefficient matrices are large, sparse and have 
a similar block structure as Ch arise from mixed finite element discretization of the Stokes and Navier-Stokes equations. 
Iterative methods for such a problem, also known as the saddle point problem, have been studied extensively [65]. They 
often entail solving auxiliary linear systems whose coefficient matrix is Ah , the (1, 1) block of Ch . We emphasize again that 
unlike a finite-element or finite-difference matrix, Ah is dense in this study.

For example, a generalized least square formulation of Eq. (57) has been given in [66], where uh is written as

uh = min
z∈R6n

∥∥∥vh − BT
h z

∥∥∥
A−1
h

. (58)

Once uh is found by solving the minimization problem (58), fh can be calculated as

fh = A−1
h (vh − BT

h uh). (59)

Eq. (58) can be solved using LSQR
(
A−1
h

)
, a generalized LSQR method [67] developed in [65]. This algorithm entails solving 

linear systems whose coefficient matrix is Ah , to which the proposed multigrid method can be applied. Alternatively, we 
can also solve the saddle point problem Eq. (57) using the preconditioned GMRES method. A frequently used preconditioner, 
which is based on the block LU factorization of the coefficient matrix Ch , is a block upper triangular matrix in the form of

P =
[
Ãh BT

h
O S̃h

]
, (60)

where Ãh and S̃h are preconditioners for Ah and Sh = −Bh A
−1
h BT

h respectively. Since

P−1 =
[
Ã−1
h − Ã−1

h BT
h S̃

−1
h

O S̃−1
h

]
, (61)

applying P−1 entails solving auxiliary linear systems whose coefficient matrices are Ãh or S̃h . This type of preconditioner 
has been adapted to simulate free swimmers in previous work [19], where Ãh was chosen to be the block-diagonal precon-
ditioner considered in Section 6, and

S̃h = −(BhB
T
h )
(
Bh AhB

T
h

)−1
(BhB

T
h ), (62)
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Fig. 7. (Color online) Illustration of the ellipsoidal swimmers and convergence of the solvers applied to Eq. (57) in this case. (a) Projection of the 6 × 6
array of ellipsoids onto the xz plane and streamlines drawn based on the x- and z-directional fluid velocities around them at t = 0. (b) Decay of η〈k〉 as k
increases for GMRES(MG, LSC) (blue squares), GMRES(BD, LSC) (red triangles), and the GMRES method without a preconditioner (black crosses).

the so called Least-Squares Commutator (LSC) preconditioner [68]. Encouraged by the numerical results in Section 6, we 
examine the performance of P when Ãh is chosen such that the action of Ã−1

h is a few iterations of the proposed multigrid 
method.

In the two subsections that follow, we apply the GMRES method preconditioned by the block upper triangular P given 
in Eq. (60) to solve Eq. (57) arising from two types of free swimmers. The LSC preconditioner (62) is again used in the (2, 2)
block of P . For the (1, 1) block of P , we consider both the block-diagonal preconditioner and the one whose inverse is 
one iteration of the multigrid method. As in Section 6, one block Gauss-Seidel iteration proposed in Section 5 serves as the 
smoother for the multigrid method. Let the two preconditioned GMRES methods for Eq. (57) be denoted by GMRES(BD, LSC)
and GMRES(MG, LSC), respectively, which only differ in the (1, 1) block. We calculate the initial guess of GMRES(MG, LSC)

by prolonging the approximate solution to a coarse-grid representation of Eq. (60) obtained by one LSQR
(
A−1
H

)
iteration, 

where AH is the coarse-grid representation of Ah . (The runtime of GMRES(MG, LSC) reported in this section includes the 
time spent on computing the initial guess.) The initial guess of GMRES(BD, LSC) is the zero vector. Neither solver requires 
the construction of Ah .

In all the numerical experiments in this section, we use the relative error at the kth iteration defined as

η〈k〉 = ‖wh − Chg〈k〉‖2
‖wh‖2 . (63)

to measure the accuracy of a solver for Eq. (57), where g〈k〉 is the kth iterate to gh produced by the solver. We also set the 
stopping criterion of all solvers to be η〈k〉 < 10−5.

7.1. Free ellipsoidal swimmers

Vesicles are membranes that play a vital role in the metabolism and transport of cellular products. Models of capsules 
and vesicles immersed in a viscous flow have been used to study the biomembrane mechanics of red blood cell, artificial 
capsules in drug delivery, and the dynamics of liquid droplets [69,70]. In this subsection, we model them as free ellipsoids 
undergoing rigid translation and rotation. A shearing velocity is imposed on their surfaces. The forces that they exert to the 
surrounding fluid as well as the translational and rotational velocities induced by the prescribed motion can be found by 
solving the augmented linear system (57).

We consider a 6 ×6 array of identical ellipsoids whose centers form a uniform grid with spacing 4 on the xz plane at time 
t = 0. Each ellipsoid has semi-axes of length 1, 1.5, and 2 and is represented by 1016 points in the fine grid, resulting from 
stretching and rotating a unit sphere that has been discretized by a cubed-sphere grid [71]. Therefore, n = 36, Ni = 1016, 
and N = 36576 in this case. The regularization parameter ε used in the MRS is 0.0556, which is roughly 0.05 times the 
average grid spacing on the ellipsoids. The size of the coefficient matrix Ch in (57) is 109944 × 109944, whose (1, 1) block, 
Ah , is 109728 × 109728. In addition, we impose the shearing velocity (0.2z, 0, 0)T at any grid point (x, y, z)T , causing each 
ellipsoid to translate and rotate as a whole. In Fig. 7(a), the projection of the array of ellipsoids onto the xz plane as well as 
the streamlines drawn based on the x- and z-directional fluid velocities at time t = 0 are shown.

In GMRES(MG, LSC), the action of Ã−1
h , where Ãh is the (1, 1) block in the preconditioner P defined in Eq. (60), is 

one iteration of a two-grid method. To construct the coarse grid, we use the method described in Section 4.1.2 for the 
case of no parameterization and choose α = 0.33 in Eq. (6), which leads to 2376 grid points (66 points per ellipsoid). 
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Table 6
Comparison of GMRES(MG, LSC), GMRES(BD, LSC), and the GMRES
method without a preconditioner in the case of ellipsoidal swimmers.

Solver Runtime (s) # of iter. Final rel. error

GMRES(MG, LSC) 1234.96 5 9.51 · 10−6

GMRES(BD, LSC) 2285.61 47 9.56 · 10−6

GMRES 3664.18 124 9.07 · 10−6

Accordingly, the method described in Section 4.2.1 for the case of no parameterization is used to construct the transfer 
operators. Within the block Gauss-Seidel smoother, we use the same coarse grid when performing the inexact block-vector 
multiplication. Additional implementation details of the multigrid method can be found in Section A.3. Moreover, the initial 
guess of GMRES(MG, LSC) is obtained by prolonging the approximate solution found by applying one LSQR iteration to the 
coarse-grid representation of Eq. (57). The matrix-vector products involving Ah are approximated by the KIFMM in both 
GMRES(MG, LSC) and GMRES(BD, LSC).3

In Table 6, we report the runtime, iteration count, and relative error of the final iterate of each solver. Compared to 
GMRES(BD, LSC), GMERS(MG, LSC) requires about 90% fewer iterations and 45% less runtime. We also display the decay of 
η〈k〉 as the iteration count k increases for each solver in Fig. 8(b). (Results of the GMRES method without a preconditioner 
are also included in Table 6 for reference.)

7.2. Free toroidal swimmers

The motility of doughnut-shaped swimmers in a viscous fluid has been considered in various studies [72–74] as it can 
provide important insights into the self-propulsion of some microorganisms, including the flagellated unicellular microbe 
Idionectes vortex. We consider the linear system Eq. (57) arising from a large array of free, identical toroidal swimmers.

Following [74], at time t = 0, we parameterize the surface of a torus centered at (xc, yc, zc)T with tube radius r and 
minimum distance d to the center as

x(u, v) = (d + r cos v) cosu + xc

y(u, v) = (d + r cos v) sinu + yc

z(u, v) = r sin v + zc,

(64)

where u, v ∈ [0, 2π). We choose d = 1 and r = 0.25 in Eq. (64) so that the aspect ratio of each torus is d/r = 4. The 
array consists of 16 tori whose centers form a 4 × 4 rectangular grid in the xz plane with spacing 3.75 in the x direction 
and spacing 1.25 in the z direction. In the fine grid, the surface of each torus is discretized by 4096 points resulting from 
a 128 × 32 rectangular grid in the parameter space [0, 2π) × [0, 2π), whose spacing is �u = 2π/128 in the u direction 
and �v = 2π/32 in the v direction. The regularization parameter used in the MRS is ε = 0.35 · h, where h = d · �u =
r · �v ≈ 0.05 is roughly the average grid spacing on the toroidal surfaces.4 In this case, n = 16, Ni = 4096, N = 65536, Ch
is 196704 × 196704, and Ah is 196608 × 196608. As in [74], a velocity that is tangent to the surface and of size 100 is 
imposed at every grid point, causing each torus to translate and rotate as a whole. In Fig. 8, we show the projection of the 
array of tori onto the xz plane as well as the streamlines drawn based on the x- and z-directional fluid velocities around 
them at time t = 0.

In GMRES(MG, LSC), the action of Ã−1
h is one iteration of a three-grid method. The mid-level grid consists of 4096 points 

(256 points per torus), resulting from a 32 ×8 grid of the parameter space. In the coarsest grid, there are 1024 points in total 
(64 points per torus), which correspond to a 16 × 4 grid of the parameter space. The average grid spacings on the toroidal 
surfaces are thus about H = 4h and 2H for the two grids, respectively. Within the block Gauss-Seidel smoother, we use 
an even coarser grid with spacing 4H when performing the inexact block-vector multiplication. Additional implementation 
details of the multigrid method can be found in Section A.4. Moreover, the initial guess of GMRES(MG, LSC) is calculated 
by prolonging the approximate solution obtained by applying one LSQR iteration to the representation of Eq. (57) on the 
coarsest grid. As in Section 7.1, the matrix-vector products involving Ah are approximated by the KIFMM, whose accuracy 
varies depending on whether Ã−1

h or S̃−1
h is being applied, in both GMRES(MG, LSC) and GMRES(BD, LSC).

In Table 7, we report the runtime, iteration count, and relative error of the final iterate of each method. Similar to what 
has been observed in the case of ellipsoidal swimmers, GMERS(MG, LSC) requires about 88% fewer iterations and 43% less 
runtime compared to GMRES(BD, LSC).

3 We observe that the matrix-vector products arising from the application of ̃S−1
h , where S̃h is the LSC preconditioner defined in Eq. (62) and the (2, 2)

block in P , do not need to be approximated accurately. Therefore, we vary the parameters of the KIFMM to calculate them more crudely but also more 
efficiently than we calculate the matrix-vector products arising from the application of ̃A−1

h .
4 Rectangular grid boxes in the parameter space result in curved rectangular grid boxes on the toroidal surfaces (see Fig. 1(d,e,f) for example), whose 

edge lengths vary between min {(d − r) · �u, r · �v} and max {(d + r) · �u, r · �v}. Since d · �u = r · �v in the fine grid, h is the average of the two.
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Fig. 8. Projection of the 4 ×4 array of toroidal swimmers onto the xz plane and streamlines drawn based on the x- and y-directional fluid velocities around 
them at t = 0.

Table 7
Comparison of GMRES(MG, LSC) and GMRES(BD, LSC) in the case of 
toroidal swimmers.

Solver Runtime (s) # of iter. Final rel. error

GMRES(MG, LSC) 3258.72 6 6.58 · 10−6

GMRES(BD, LSC) 5750.71 50 9.02 · 10−6

8. Conclusion

The multigrid method has enjoyed a tremendous amount of success at solving discretized boundary-value problems, 
where the grids are Eulerian and the matrices are large and sparse. It iteratively updates the solution by removing the 
high-frequency terms in its error and correcting it on a coarser grid. In this study, we consider a vastly different type 
of problems: the interactions between structures whose relationship is determined by a kernel function that decays with 
distance. The structures are discretized by a Lagrangian grid. The matrix is generated by evaluating the kernel function 
between every pair of grid points; therefore, it is large, dense and quite challenging to work with. Nonetheless, the decay 
of the kernel function results in the data-sparsity of the matrix, which opens up opportunities to develop efficient solvers. 
One contribution of our paper is extending the multigrid method to this new scenario. More specifically, we develop new 
techniques for error smoothing, grid coarsening, and inter-grid communication that are more suitable for kernel functions on 
interacting structures. They fall into two veins depending on whether the structures are parameterized or simply represented 
by discrete points, which resemble the geometric multigrid and algebraic multigrid. This solver is unique in that it takes 
advantage of not only the data-sparsity of the matrix but also the smoothness in the geometry of the structures and 
quantities of interest distributed on them. Moreover, it does not require constructing the large dense matrix and is thus 
memory-efficient.

Another contribution of this paper is demonstrating the applicability of the proposed multigrid solver to the simulation 
of a fluid around dynamic microswimmers. The fluid is modeled by the MRS, a Lagrangian method that utilizes the funda-
mental solution to the incompressible Stokes equations. The kernel function associated with it and hence the strength of 
the hydrodynamic interaction between two points decays roughly as fast as the reciprocal of the distance between them. 
The dense matrix that characterizes the interactions between the discretized swimmers maps the forces exerted by the grid 
points to their velocities. Consequently, for prescribed or experimentally observed velocities, we can apply the multigrid 
method to uncover the underlying forces, which can in turn be used in the MRS to evaluate the entire flow. We consider 
large groups of microswimmers in the shapes of a variety of biological structures including bacteria, cilia, vesicles and ob-
serve that the multigrid solver outperforms a preconditioned GMRES method previously applied to the MRS matrices. In 
addition, we consider the special case where these structures need to maintain force and torque balance while swimming. 
It gives rise to an even larger matrix formed by augmenting the aforementioned dense matrix with additional sparse rows 
and columns. We show that the performance of its solver can be improved significantly if we apply the multigrid method 
to key auxiliary problems.
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Appendix A. Further implementation details on the multigrid method

In this section, we provide more details of the multigrid method applied to each of the four large-scale problems con-
sidered in this study: bacterial carpet (Section 6.1.2), cilia carpet (Section 6.2), free ellipsoidal swimmers (Section 7.1), and 
free toroidal swimmers (Section 7.2).

In all four problems, only one block Gauss-Seidel iteration is applied as the smoother.

A.1. Bacterial carpet

Recall that in Section 6.1.2, we consider a 10 × 10 carpet, a 20 × 20 carpet, and a 25 × 25 carpet and apply a three-grid 
method to Eq. (4) arising from each carpet. The three grid spacings, in the parameter domain, are h ≈ 0.014, H = 8h = 0.11, 
and 2H = 0.22, respectively. Accordingly, the coefficient matrices on the three grids are denoted by Ah , AH , and A2H . When 
calculating AH and A2H using the approximate Galerkin projection, we choose γ to be H and 2H in Eq. (40), respectively.

We employ two smoothers: one for Ah , and the other for AH . For all three carpets, in the first smoother, we partition 
Ah into blocks of size 483 × 483, each of which represents the interactions between two helices. In the second smoother, 
we partition AH into blocks of sizes 630 × 630, 1260 × 1260, and 315 × 315 for the 10 × 10, 20 × 20, and 25 × 25 carpets, 
respectively, each of which represents the interactions between two groups of ten, twenty, and five helices.

A.2. Cilia carpet

Recall that in Section 6.2, we apply a three-grid method to Eq. (4) arising from a 25 × 25 cilia carpet. The three grid 
spacings, in the parameter domain, are h ≈ 0.047, H = 4h ≈ 0.188, and 2H = 0.375, respectively. Accordingly, the coefficient 
matrices on the three grids are again denoted by Ah , AH , and A2H . When calculating AH and A2H using the approximate 
Galerkin projection, we choose γ to be H and 2H in Eq. (40), respectively.

We need three smoothers in this case: one for Ah , one for each block Aii on the diagonal of Ah , and one for AH . In the 
first smoother, we partition Ah into blocks of size 9600 ×9600, each of which represents the interactions between two rows 
of cilia. This large block size makes the smoother quite effective; however, it also makes inverting Aii in Eq. (47) difficult. 
Therefore, we apply a two-grid method (fine-grid spacing: h, coarse-grid spacing: H) to Aii and another two-grid method 
(fine-grid spacing: H , coarse-grid spacing: 2H) to AH . In the smoother of the former, we partition Aii into blocks of size 
384 × 384, each of which represents the interactions between two cilia; and in the smoother of the latter, we partition AH

into blocks of size 480 × 480, each of which represents the interactions between two groups of five cilia.

A.3. Ellipsoidal swimmers

Recall that in Section 7.1, we apply a two-grid method to invert the (1, 1) block of the preconditioner (60) for Eq. (57)
arising from a 6 × 6 array of ellipsoidal swimmers. Unlike in the other three examples, the coarse grid is obtained by the 
modified PMIS algorithm described in Section 4.1.2. To calculate the transfer operators, we choose m = 6 in Eq. (23), and 
δ = 0.02 in Eq. (24). The fine-grid and coarse-grid matrices are denoted by Ah and AH , respectively. When calculating AH

using the approximate Galerkin projection, we choose γ to be about 1.091 in Eq. (42).
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We employ two smoothers: one for Ah , and the other for Aii . In the first smoother, we partition Ah into blocks of size 
3048 × 3048, each of which represents the interactions between two ellipsoids. We apply a two-grid method (fine-grid 
spacing: h, coarse-grid spacing: H) to Aii ; and in its smoother, we first partition the ith group of fine-grid points into six 
clusters using the k-means algorithm, and then partition Aii into blocks representing the interactions between two clusters 
of points.

A.4. Toroidal swimmers

Recall that in Section 7.2, we apply a three-grid method to invert the (1, 1) block of the preconditioner (60) for Eq. (57)
arising from a 6 × 6 array of toroidal swimmers. The average grid spacings over the tori are about h, H = 4h, and 2H for 
the three grids, respectively. Accordingly, the coefficient matrices on the three grids are again denoted by Ah , AH , and A2H . 
When calculating AH and A2H using the approximate Galerkin projection, we choose γ1 to be the coarse-grid spacing in 
the u direction and γ2 to be the coarse-grid spacing in the v direction; that is, γ1 ≈ 0.196, γ2 ≈ 0.785 in the case of AH , 
and γ1 ≈ 0.393, γ2 ≈ 1.571 in the case of A2H .

As in the case of cilia carpet, we employ three smoothers: one for Ah , one for Aii , and one for AH . In the first smoother, 
we partition Ah into blocks of size 12288 × 12288, each of which represents the interactions between two tori. We apply 
a two-grid method (fine-grid spacing: h, coarse-grid spacing: H) to Aii and another two-grid method (fine-grid spacing: 
H , coarse-grid spacing: 2H) to AH . In the smoother of the former, we partition Aii into blocks of size 768 × 768, each of 
which represents the interactions between two groups of 256 points; and in the smoother of the latter, we partition AH

into blocks of size 768 × 768, each of which represents the interactions between two tori.
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