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Wireless, batteryless, and miniaturized implants promise transformative therapies for 
various neurological, psychiatric, and cardiac disorders. Beyond conventional battery-
powered bulky implants with leads, miniaturized implants promise drastically reduced 
infection risk and surgical complexity, and improved patient acceptance and precision. 
Despite significant efforts on wireless power transfer (WPT) for implants, most 
demonstrations are not sufficiently reliable to sustain practical usage, when misalignment 
between the external hub and the implant persists due to motions, respiration, and heart 
beating, as well as the restricted device orientation during implantation (e.g. in spinal 
cords or vessels). The power transfer efficiency (PTE) of WPT degrade drastically under 
misalignment, rendering the system unstable and unusable (Fig. 17.1.1). Transmitting 
higher power is a simple way to power a misaligned implant but is restricted by safety 
limits, heating, and battery lifetime of the external device. It can be improved by 
introducing closed-loop regulation that adjusts the driver’s power based on the implant’s 
feedback [1,2]. However, this approach is only effective for smaller misalignment without 
addressing the fundamental efficiency drop. Recently proposed magnetoelectric (ME) 
WPT improves misalignment tolerance over existing inductive and ultrasound methods 
due to magnetic flux concentration effects [3]. Additionally, ME WPT at acoustic 
resonance (100s of kHz), is not subject to tissue absorption, reflection, and/or scattering 
issues met by RF, ultrasound, and optical WPT methods, allowing a miniaturized implant 
to receive high power at large depths reliably and safely [4]. However, ME WPT still 
cannot tolerate large rotations and lateral offset. On the other hand, multi-coil inductive 
WPT has made significant progress towards omnidirectional charging [5]. But existing 
multi-coil WPT are designed for high power applications (W to kW), with large TX/RX 
coils and high coupling coefficients (k>10%). Adopting these methods in miniature 
implants is nontrivial because the critical coupling sensing at the TX side cannot work 
with the tiny mutual inductance of mm-scale coils. Moreover, mutual inductance (M) 
among the TX coils degrades overall PTE. A 3D coil array cancels M effectively [6], but 
its spherical structure is bulky and incompatible with a wearable device for powering 
implants.  
 
To tackle these challenges, this paper presents an Active Echo (AE) technique to achieve 
closed-loop omnidirectional WPT using a ME transducer weakly coupled to a multi-coil 
TX array (the equivalent coupling coefficient k <2% is estimated from TX-to-ME voltage 
transfer ratio). The key idea is to actively send a short echo signal from the implant, 
which allows the external hub to locate the implant and adjust power allocation within 
the multi-coil WPT array for magnetic field steering. By aligning the AE coil and ME 
transducer in the implant (physically perpendicular), we find that the ratio of coupling 
coefficients between AE and each coil in the external hub automatically equals the optimal 
current ratio of the multi-coil array for WPT, eliminating the need to explicitly obtain the 
implant’s coordinate and calculate the multi-coil power allocation (Fig. 17.1.1). Moreover, 
the propagation of EM waves can be neglected in the quasi-static magnetic field 
assumption, so the multi-coil control only requires two polarities for the phase to 
approach the optimal point, simplifying the AE sensing and multi-coil control. To realize 
AE effectively and efficiently, we designed custom AE TX and RX chips in 180nm CMOS. 
We further demonstrate a complete system including a 14.2mm3 ME powered and 
controlled bio-stimulation implant, a compact external hub including the custom AE RX, 
an M-canceled multi-coil array for both power transfer and AE sensing, and off-the-shelf 
GaN coil drivers and controller.  
 
Figure 17.1.2 shows the block diagram of the external hub and the implant, and the 
implant’s operation flow. When AE is activated, the implant turns on the pulse TX to drive 
a small LC tank for several cycles. Meanwhile, the external hub switches to AE sensing 
from WPT mode, and the echo signal is captured and processed to produce PWM control 
of the multi-coil in WPT. The mutual inductance (M) between the TX coils adds current-
dependent imaginary parts to the impendence, degrading the power efficiency (Fig. 17.1.2 
bottom right). In typical inductive coupling, slightly shifting the operating frequency 
compensates for the loss. However, the acoustically resonant ME transducer suffers 
greater energy loss when not operating at the exact resonant frequency. We observe that 
there should exist an optimal relative position for stacked coils, where the magnetic flux 
in the overlapping and non-overlapping regions cancels. HFSS simulation of a three-coil 
array confirms that stacked coils achieve a smaller M than parallel placement and avoid 
WPT dead zones at the boundary of coils. More importantly, decoupled coils allow 
simpler independent control of the coils.   
 
Figure 17.1.3 presents the TX and RX circuits for Active Echo (AE). Based on the 
harmonic suppression principle [7], we designed the PA to produce a 3-level waveform, 
which results in a cleaner sine wave in the LC tank with lower high-order harmonics and 

less driving power. To suppress even-order harmonics, the inputs to the H-bridge PA 
must be non-overlapping with the same duty cycle and 180° phase shift. A self-biased 
fully differential VCO stage is designed to meet the requirements [8]. A programmable 
duty cycle adjustment block before PA shapes the signal. On the RX side, prior work on 
closed-loop ME WPT regulation [2] uses a separate pick-up coil for feedback from the 
implant, which works at a far-away frequency for lower interference. This approach is 
not suitable for our system because AE requires the pick-up coils to be perfectly aligned 
with the power coils and integrating them will complicate M cancellation and assembly 
of the multi-coil array. Here, since the TX driver’s supply voltage is comparable to that 
of AE RX, we share the same coils for WPT and AE sensing in time division. With trade-
offs among AE coil size, output power on the implant, self-resonant frequency of TX coil, 
and interference with the ~340kHz ME frequency, we designated AE to 1.35MHz. While 
WPT must be halted during AE sensing, the narrow AE window has negligible impact on 
the overall power transfer and operation of the implant. To capture the weak AE signal, 
we designed an inverter-based LNA with high gain and noise efficiency, followed by PGA 
and BPF. A peak detector and a single-slope ADC then extract the amplitude. Peak voltage 
sampling and comparator autozeroing are done simultaneously on a single cap. To 
extract the polarity (phase) of the signals, we first choose the strongest channel as the 
reference because in many scenarios one or two RX channels may not receive signals 
with sufficient SNR. Then we use digital logic to judge the polarity of received signals in 
other channels. Here, the channel with the fastest ADC conversion time is also the 
strongest one because of the reverse ramp signal. As a result, the polarity judgment only 
takes a few AE cycles.   
 
We fabricated the two chips in 180nm CMOS and integrated them into a complete 
wireless system including a 3-coil TX array (Fig. 17.1.2). The 3-level PA produces 
symmetrical 3-level waveforms (Fig. 17.1.4 top left), achieving 30dB suppression of 3rd 
harmonic with 2.2dB fundamental tone reduction, and up to 27% power savings, over a 
baseline 2-level PA. The measured mutual inductance between two coils matches the 
simulation well, allowing us to find an optimal position with minimized coupling. The 
performance of the RX AFE and 7b ADC are measured (Fig. 17.1.4 middle), yielding an 
end-to-end rms noise of ~3 LSBs. This is sufficient for our 40-level PWM control of WPT 
drivers. The full system operation is shown in Fig. 17.1.4 (bottom), where the implant 
cycles through wireless charging, downlink programming, and four tasks (here task 1 is 
AE, task 3 is stimulation, and tasks 2 and 4 are skipped). The waveforms show biphasic 
stimulation at 100Hz and 50Hz, and the process of an AE task, including initialization, 
16-cycle echo, and ringing down after stop.  
 
We evaluated the closed-loop WPT performance of the complete system in-vitro through 
porcine tissue (Fig. 17.1.5). When the coupling coefficient of one channel is much smaller 
than another (the empirical threshold is 8), this channel will be turned off because PWM 
control has limited precision in these cases and the static power of a channel is more 
significant. We manually swept coil current configurations for Case 2 and 4, proving that 
AE obtains close-to-ideal current configurations with <2% PTE loss from the absolute 
optimum. In Case 4, when the implant is above TX3 and rotated by 30°, our system 
shows 66% higher PTE than using TX3 coil only. Fig. 17.1.6 presents PTE under angular 
and lateral misalignments, comparing our AE adaptive control, three coils with identical 
power and phase, and a single coil at the origin. AE consistently outperforms the others, 
especially under large misalignments. At 90° rotation from the perfect alignment, AE 
offers 6.8x higher PTE than the single-coil baseline, proving its omnidirectional WPT 
capability. Considering the voltage compliance of the logic-rule implant chip, we keep 
the total TX power under 0.5W, which is well below the driver power allowed by IEEE 
Std (i.e., 17.6W at 340kHz [2]). At 90° rotation, the implant still receives 4.45mW, 
sufficient for its operation. A comparison table with prior miniature biomedical implants 
is in Fig. 17.1.6. Die micrographs and summaries of the two chips are in Fig. 17.1.7.  
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Figure 17.1.1: The misalignment challenge in wireless power transfer to mm-scale 
implants. Principles of the Active Echo-enabled omnidirectional magnetoelectric 
(ME) power transfer and a picture of the prototyping implant.

Figure 17.1.2: Diagrams of the system comprised of a mm-scale implant and a 
compact external hub; operation flow of the implant and Active Echo process; and 
mutual inductance cancellation in TX coil array.
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Figure 17.1.3: Circuit diagrams and operation waveforms of the 3-level low-power 
pulse TX and multi-channel Active Echo RX.

Figure 17.1.4: Measurement of 3-/2-level PA, TX coil array, and RX chain; and system 
operation waveforms when the implant is 90° rotated.
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Figure 17.1.5: Measured 3-channel RX outputs (coupling coefficients, phases, and 
TX coil array configuration) at various positions; the in-vitro setup; and comparison 
of AE solved configurations and manual sweeps.

Figure 17.1.6: Measured PTE over angular and lateral misalignment; power 
breakdown of one RX channel; and a comparison table with state-of-the-art WPT 
technologies for biomedical implants.
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Figure 17.1.7: Chip micrographs of the implant’s SoC and the RX chip, the 
stimulator’s specifications, and a summary of RX performance.
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