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Abstract

Amdahl’s law implies that even small sequential bottlenecks
can seriously limit the scalability of multi-threaded programs.
To achieve scalability, developers must painstakingly identify
sequential bottlenecks in their program and eliminate these
bottlenecks by either changing synchronization strategies or
rearchitecting and rewriting any code with sequential bot-
tlenecks. This can require significant effort by the developer
to find and understand how to fix sequential bottlenecks.
To address the issue, we bring a new tool, information flow,
to the problem of understanding sequential bottlenecks. In-
formation flow can help developers understand whether a
bottleneck is fundamental to the computation, or merely an
artifact of the implementation.

First, our strategy tracks memory access conflicts to find
over-synchronized applications where redesigning the syn-
chronization strategy on the existing implementation can
improve performance. Then, information flow analysis finds
optimization opportunities where changing the existing im-
plementation can improve performance of applications that
have bottlenecks due to unnecessary memory access con-
flicts. We implemented this in FlowProf. We have evaluated
FlowProf on a set of multi-threaded Java applications where
the generated optimization insights achieve performance
gains of up to 58%.
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1 Introduction

Developing high-performance multi-core code is difficult—
just creating threads and adding locks to shared data struc-
tures often does not yield software that scales to more than
a handful of cores. Experts have developed a toolbox of ad-
vanced techniques ranging from fine-grained locking to us-
ing low-level atomic operations to advanced techniques like
combining trees that can help scale parallel code. The main-
stream multi-core developer is typically not an expert in
these techniques and thus is unlikely to even know when
the application of these techniques might benefit their code.

Synchronization constructs used by concurrent data struc-
tures can sequentialize parts of the computation. Thus, it
follows by Amdahl’s law that these data structures can
have large impacts on the performance of parallel computa-
tions [1, 13]. Intel now ships 56 core processors. On such a
processor Amdahl’s law implies that if an application con-
tains just 2% sequential code, it runs at less than half of the
speed of a fully parallel application on one of these proces-
sors.

Eliminating sequential bottlenecks is therefore an impor-
tant aspect of improving the performance of parallel soft-
ware. Often, the problem is that data structures use simple
coarse-grained locking strategies that can introduce unnec-
essary waits between independent data structure operations.
Removing these bottlenecks is a matter of redesigning the
synchronization in a data structure to eliminate superflu-
ous lock conflicts! by using finer-grained synchronization.
However, sometimes sequential bottlenecks are due to actual
conflicting memory accesses,” and just redesigning synchro-
nization strategies is insufficient to eliminate the bottleneck.

Sequential bottlenecks due to conflicting field accesses can
sometimes be eliminated by redesigning the data structure or
replacing it with an alternative data structure. For example, a
Java programmer might replace uses of java.util.Hashtable
in which every put or remove operation updates a count field
with java.util.concurrent.ConcurrentHashMap, which has
been redesigned to eliminate several sequential bottlenecks.

Lock conflict occurs when two or more threads try to acquire same lock.
2A conflicting access occurs when two threads access the same memory
location and at least one thread performs a write.
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In other cases, the memory access conflicts could be funda-
mental to the computation and cannot be eliminated. For
example, each addition to a hash chain that is used to main-
tain a secure log fundamentally depends on all previous
additions, and thus cannot be parallelized.

Thus, identifying and understanding sequential bottle-
necks is an important component of eliminating sequential
bottlenecks. Prior work used dynamic analysis to reason
about conflicting memory accesses to discover opportunities
to improve synchronization [39]. That work was applica-
ble to critical sections protected by statically assigned locks
and moreover, was limited to reasoning about changing syn-
chronization strategies and could not discover opportunities
to eliminate synchronization bottlenecks by removing un-
necessary memory access conflicts using redesigned data
structures.

1.1 Our Approach

We propose a new approach to automatically profiling con-
current code to help developers identify and understand
sequential bottlenecks. Our key insight is that under-
standing the flow of information through a concurrent
data structure can help developers understand the de-
pendencies between data structure operations. In par-
ticular, if there is a flow of information in which an input
value for operation A is used to compute the output value
of operation B, there has to be a chain of memory access
conflicts connecting operation A and B and therefore, there
should exist some synchronization mechanism between A
and B.% For the java.util.HashTable example, there is a flow
of information between put, get, or remove calls on the same
key. However, there is no flow of information between put,
get, or remove calls on different keys which suggests that
the conflicting memory accesses occurring for different keys
are not fundamentally required and can be eliminated by
changing the implementation.

This paper presents FlowProf, a profiler that uses dynamic
analysis to track flow of information between critical sections
to help developers optimize sequential bottlenecks. At each
critical section invocation, FlowProf creates a new unique
taint value and attaches this taint value to all of the input val-
ues* to the critical section. FlowProf maintains the mapping
between taint values and critical section invocations and thus
the taint values enable FlowProf to determine which critical
section invocations provided a given value (or the values
used to compute the given value). As the critical section com-
putes on program values, FlowProf propagates the attached
taint values along with the corresponding program value.
If the program performs a computation that takes program

3We note the exception that relaxed atomics could be used to avoid syn-
chronization in a few corner cases.

“4The input to a critical section is the live variables at the start of the critical
section.
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values originating from two different critical section invo-
cations (and thus have two different taint values) as input,
FlowProf attaches both taint values to the result value. When
a critical section invocation finishes, FlowProf examines the
set of taints for the output values® of the critical section
invocation to determine the set of prior critical section invo-
cations that contributed values that were used to compute
the output values. This information is useful because it pro-
vides an approximate lower bound® on the synchronization
that is needed as information flows between threads have
to be implemented using some conflicting memory accesses,
which must be protected by synchronization.

Information flow analysis is powerful because it can differ-
entiate between conflicting accesses that arise due to internal
bookkeeping operations (such as count field updates) and
conflicting accesses that propagate values that are necessary
to implement the externally visible behavior of critical sec-
tions. While these bookkeeping operations can propagate
information flows between memory accesses inside of data
structure operations, they typically do not introduce an in-
formation flow between the input of one critical section and
the output of another critical section because (1) the flows do
not originate from an input value to a critical section and/or
(2) the flows do not escape as an output value from a critical
section.

Information flow analysis is not intended to replace anal-
yses based on memory access conflicts. Information flow
analysis can identify important optimization opportunities
that other conflict-based analysis will miss. However, some
optimization opportunities require changing the existing
implementation which can often require more effort than
changing only synchronization strategy on existing imple-
mentation. Therefore, FlowProf supports information-flow
analysis along with conflict-based analysis as conflict-based
analysis provides developers with optimization opportuni-
ties that require only optimizing synchronization strategy
on existing implementation while information-flow analysis
provides developers with additional opportunities by chang-
ing the existing implementation to improve performance
beyond what conflict-based analysis can provide.

1.2 Contributions

This paper makes the following contributions:

¢ Information-Flow Based Profiling: It introduces
the idea of using information-flow based profiling to
help developers understand the potential for eliminat-
ing sequential bottlenecks in multi-threaded applica-
tions.

5The output of a critical section is the live variables at the end of the critical
section.

The lower bound is approximate as the taint analysis used by FlowProf
would report that the value y depends on X in the example y=z-X+X.
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o Schedule Impact Analysis: This analysis uses profile
information to compute the runtime of the same exe-
cution under the weaker dependencies that arise from
either the field conflict analysis or the information
flow analysis. The schedule impact analysis enables
the developer to select the appropriate optimization
type to eliminate sequential bottlenecks.

e Evaluation: It evaluates FlowProf on several open
source multi-threaded benchmark applications. It eval-
uates both FlowProf’s overhead and effectiveness at
classifying sequential bottlenecks.

2 Example

The goal of FlowProf is to identify opportunities to improve
the performance of multi-threaded code. This requires identi-
fying code that both (1) significantly slows down the compu-
tation due to concurrency-related overheads and (2) can be
optimized to greatly reduce these overheads. FlowProf uses
information flow to help understand what concurrency con-
trol is fundamentally required by a computation and what
concurrency control is merely required by the computation’s
current implementation.

synchronized void push(int value){

1
2 node n = new node(value);
3 n.next = top;
4 top = n;
5}
6
7 synchronized int pop(){
8 node oldtop = top;
9 top = top.next;

10 return oldtop.value;

1 3}

Figure 1. Example Stack Implementation

To illustrate, consider the straightforward implementation
of a concurrent stack in Figure 1. Since there are conflicting
memory accesses in both of the push and pop operations,
to make the implementation thread safe the methods are
declared as synchronized so that the operations are protected
by an internal lock per Stack object. This lock-based stack
implementation scales poorly as it only allows one thread at
a time to update the stack.

An interesting observation is that a pop invocation only
receives a value that originates from a single push invoca-
tion and thus it is conceptually possible for a pop invoca-
tion to only synchronize with one push invocation. Indeed,
this observation has been leveraged to build highly scalable
lock-free stacks that use elimination arrays [17]. Thus, sur-
prisingly it turns out that the conflict in the example stack
implementation is not fundamental, but merely an artifact
of the standard implementation.
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Figure 2. Information Flow vs. Conflicts

2.1 Information Flow in the Example

The stack example shows that analyzing concurrent code in
terms of how values flow between critical sections can be a
useful tool. It is clear from reading descriptions of concurrent
algorithm designs [19] that algorithm designers sometimes
think in terms of how parallel algorithms propagate infor-
mation through data structures.

Information flow allows FlowProf to take a more global
perspective of the role of memory accesses in a computation
and not limit ourselves solely to local reasoning about the
specific loads and stores that the current data structure imple-
mentation performs. In information flow analysis, we label
each input to a critical section with a taint that is unique to
the critical section and then check the taints of the outputs
of critical sections. In Figure 1, the input and the output of a
critical section are the argument and the return value of the
synchronized methods respectively. The taints of the output
provides us an approximate lower bound on the values that
were necessary to compute the output and which critical
section invocation provided those values. Figure 2 shows an
example execution in which four threads access the stack.
The red edges show that each push or pop operation has a
conflicting memory access with the previous push or pop op-
eration. The green edges show that information flows from
a push to its paired pop that reads the pushed value. Since,
the value of the top pointer, which has memory access con-
flicts, originated internally from a new memory allocation
and did not originate as a value passed into the push method,
it remains untainted. Finally, by the means of taint prop-
agation the taint of the push operation would pass as the
taint of the returned value of the pop operation creating a
information flow from the push to its paired pop. Therefore,
the information flow through the output is not impacted by
access conflicts on the top field. Information flow provides
information that can guide developers to only synchronize
an operation with the operations that influenced its output.
Hence a pop operation only needs to synchronize with the
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push that provided its value. Thus, information flow iden-
tifies the opportunity to parallelize the stack computation
such that synchronized push-pop pairs can run in parallel.

3 Optimization Insights

FlowProf tracks both memory access conflicts and informa-
tion flow dependencies between critical sections to provide
insights into whether changing a synchronization strategy
suffices to improve performance or whether redesigning the
code is necessary. Depending on the structure of the conflict-
s/dependencies, two different patterns can be found from the
result of FlowProf’s analysis. Each pattern requires different
measures to overcome their bottlenecks.

Pattern 1: Over-synchronisation. Programs where a
significant portion of the total waiting for synchronisation
happens between critical sections with no associated mem-
ory access conflicts are over-synchronized. In such programs
memory access conflicts rarely happen among overlapping’
critical sections that compete for the same locks and thus
eliminating unnecessary lock conflicts can improve perfor-
mance. Depending on the state of the existing program im-
plementation, over-synchronization can be addressed in the
following ways:

1. Finer-grained locking: Implementations that use
a coarse-grained locking strategy can benefit from
replacing a lock with multiple locks each protecting a
subset of the state.

2. Reader-writer lock: For read heavy access pat-
terns with rare writes, developers can replace a reg-
ular lock with a reader-writer lock to reduce over-
synchronization.

3. Lock elision: Sometimes a superfluous lock can be
removed to eliminate over-synchronization.

Pattern 2: Non-fundamental access conflicts. When
a significant portion of the total waiting for synchroni-
sation happens between critical sections in which there
are memory access conflicts but no corresponding infor-
mation flow, we say that such bottlenecks are due to non-
fundamental memory access conflicts. In such programs
information flows rarely among overlapping critical sec-
tions that have conflicting memory accesses. The lack of
information flow indicates that the memory access con-
flicts are not fundamentally required for the actual com-
putation and thus can be eliminated in a different implemen-
tation. Redesigning code or changing the implemen-
tation can improve performance in this case. This process
might, for example, replace a use of java.util.Hashtable
with java.util.concurrent.ConcurrentHashMap.

Some applications show neither of the above two patterns.
In that case synchronisation waiting is between overlap-
ping critical sections that mediate information flow between

"Two critical sections overlap if their execution time intervals (from the
start of waiting for locks up to release of locks) overlap.
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Figure 3. Architecture of FlowProf

threads. In such cases lock conflicts are mostly also asso-
ciated with memory access conflicts and information flow
dependencies. Such a case indicates that the operation’s se-
mantics restrain further performance improvement.

We present a schedule impact analysis in Section 6.1 that
provides programmers with an estimate of the synchroni-
sation waiting time that takes place because of unneces-
sary lock conflicts and waiting time that takes place because
of unnecessary memory access conflicts. The result of the
schedule impact analysis can be matched with the above two
patterns to suggest corresponding optimizations to eliminate
bottlenecks.

4 FlowProf Overview

Figure 3 presents an overview of FlowProf. FlowProf’s profil-
ing can incur significant space and time overheads, and thus
FlowProf targets its profiling at the class granularity towards
code with significant contention. The uninstrumented pro-
gram bytecode is fed to FlowProf’s Lock profiler for an initial
run that finds classes with significant lock contention. Flow-
Prof’s lock profiler identifies synchronization bottlenecks
by monitoring the time spent waiting to acquire contended
locks using Java Virtual Machine Tool Interface (JVMTI).
The output of the lock profiler is a list of classes along with
their total waiting time for synchronization.

The FlowProf compiler is implemented as a SOOT [25]
compiler pass and instruments the bytecode of the appli-
cation to be profiled. FlowProf’s instrumentation supports
running instrumented code only inside critical sections of
contended class. The FlowProf runtime is fed with output
of lock profiler which in turn enables profiling for the con-
tended class. The FlowProf runtime efficiently records the
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int x=5; fresh
taint
synchronized(.

Y ()1} Live vairables: x
int f=2;

Map map=getShanedMap();

i map.get(x);

res= new Result();

= r*f;

----------------------- > Live variables:r, res
indirect

flow

Print(r);
y= res.val;

Figure 4. Information Flow Analysis

execution of synchronized regions, records shared memory
accesses, and tracks information flows.

Finally, FlowProf presents the extracted information with
a conflict graph. FlowProf also performs schedule impact
analysis to help developers understand the potential oppor-
tunity to eliminate bottlenecks.

5 Information-Flow Analysis

The goal of FlowProf’s analysis is to determine what informa-
tion is necessary to compute the outputs of a critical section.
FlowProf uses information flow analysis to track this flow of
information — FlowProf’s approach requires that it can dis-
tinguish between inputs of different critical sections. Thus,
FlowProf implements an information flow analysis that can
track the flow of multiple distinct types of taints.

Figure 4 shows how FlowProf uses information flow analy-
sis to monitor the flow of information in and out of a critical
section, enabling FlowProf to track information flow between
critical sections. FlowProf labels information flowing into a
critical section with a freshly generated taint by tainting all
variables that are live at the start of the critical section. In
the example of Figure 4 only x gets fresh taint since it was
live at the beginning of the critical section. Information can
flow out of a critical section through either direct or indirect
flows. Direct flows occur when a variable that is live out
of a critical section is tainted. Indirect flows occur when a
tainted field or array element is read outside of the critical
section. FlowProf identifies variables that are live at the end
of the CS, and records their set of taint types as direct flows.
Tracking indirect flows out of the critical section through
the heap is more challenging—FlowProf detects such flows
when a tainted field is read from outside of the critical sec-
tion. In Figure 4, variable x and reference res is live at the
end so their taint sets are recorded to determine direct flows.
However, reference res itself would not be tainted in this
example but its pointed object’s field val would be tainted.
The taint of val would create indirect flow when it is read
outside of the critical section.
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5.1 Taint Sets & Shadow State

A value in a data structure may have been computed from
the inputs of several different dynamically executed criti-
cal sections (CS). Thus, we must shadow each value in the
computation with a set of taints. Since each CS execution
gets a unique new taint, the total number of taints can be
large. In our experiments, the number can be as large as
several hundred thousand. State of the art techniques [8, 12]
for handling multiple taints assign a bit vector of size equal
to the total number of taints for each taint set where each
bit indicates whether the particular taint is present in the
set. Though such an approach is easy to implement and
fast for merge operations, it is only feasible if the number
of taints is at most in the range of hundreds. Since, in our
case the number is way higher we have implemented taint
tracking differently. We represent taint as an integer and a
taint set with an array of integers. Consequently, we have
implemented a number of optimizations in our approach to
make our implementation of taint tracking efficient.
FlowProf represents each taint by a positive integer that
indexes into a taint vector, which stores metadata associated
with the corresponding critical section. FlowProf shadows
each local variable, instance or static field with memory
space to hold an integer that specifies the particular taint
set. Shadow memory for arrays are integer arrays which are
allocated on demand. Taint sets with two or more taints are
represented as integer indices into a taint set vector. Each
taint set record in the taint set vector contains the integers for
the individual taints all stored in increasing order to support
fast merge operations. We implement an optimization for
singleton taint sets—singleton taint sets are represented as
negative integers where the singleton taint set’s integer is
the negation of the integer for its single taint. The empty
taint set is represented using the integer 0. Figure 5 presents
FlowProf’s implementation of taint sets & shadow state.
The most common operation in FlowProf’s information
flow analysis is merging taint sets. Naively merging taint
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sets incurs overhead—it requires looking up two taint sets in
the taint set vector, merging the underlying sets, and then
looking up the merged taint set in the taint set to index map.
FlowProf optimizes the merge operation using a fixed-size
union cache hashtable that caches the result of merging two
taint set indexes.

Array Shadows: FlowProf’s runtime maintains a map
from array objects to their shadow array objects. Each
shadow array has the same length as the original array, and
its elements store the integer of the taint set of the corre-
sponding element in the original array. To speed up the
process of looking up array shadows, FlowProf caches the
most recently used mappings in a thread local cache.

Java represents multi-dimensional arrays as a tree of
single-dimensional array objects. For a multi-dimensional
array, FlowProf maintains a shadow array for each of its com-
ponent one-dimensional arrays. Shadow arrays are created
on demand to save space and time—arrays that are never
written to inside of a critical section will not have shadow
arrays. The absence of a shadow array implies that the taint
sets for the array’s elements are all empty.

5.2 Taint Propagation

We next briefly describe how FlowProf propagates taint for
each operation that can appear in the intermediate represen-
tation of a method’s control flow graph. Table 1 presents the
taint propagation rules for samples of different operations.
The notation 7 [x] represents the taint set for x, where x can
be a local variable, array element, instance field, or static
field.

In general for assignments, the right hand side (RHS) will
propagate its taints to the left hand side (LHS). If the RHS is
a binary operation, then FlowProf computes the taint set of
the LHS as the union of taint sets of the two operands. If it is
unary or cast operation, then FlowProf just propagates the
RHS taint set to the LHS. If it is an instanceof expression,
then FlowProf propagates the taint set of the operand to the
LHS. If it is a new or new array expression, then FlowProf
assigns the LHS to the empty taint set.

Field and Array Accesses: Reads from static fields prop-
agate the taint set of the static field’s shadow to the LHS.
Writes to static fields store the taint set of the RHS to the
static field’s shadow.

To efficiently taint the inputs of critical sections, FlowProf
only taints the variables that are live into the critical sec-
tion and read by the critical section. Thus, we need reads
from instance fields to further propagate the taint set for the
reference. Therefore, FlowProf computes the taint set of a
read from an instance field as the union of the taint set of
the object reference and the taint set from the field’s shadow.
Writes to instance fields only propagate the taint set of RHS
to the destination field’s shadow. Similarly, we make reading
an array element propagate the union of the taint sets of the
array reference and the array element. When writing to an
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Table 1. Taint propagation rules for various operations

Object ob = new Object() [new expression]

7 [obl = {}

c=asb [binary operation]

T [c] = T[a] UT[b]

d = (Dje [cast expression]

71d] = 7]c]

c=b [unary expression]

T [c] = 7°[b]

int ar[] = new int[5] .
new Array expression

Tar] = () [ y exp ]

bool b = ¢ instanceof D [instanceof expression]

7[b] = T [c]

x=Aa .

7Ix] = 7[A4] [Static field read]

Aa=x . .

TlA4] = Tx] [Static field write]

X = ob.a .

7[x] = T[ob] U T[ob.a] [instance field read]

ob.a =x . .

T Joba] = 7x] [instance field write]

x = arf[i]

T [x] = 7 [ar] U T [ar[i]] [array read]

ar[i] = x .

T farlil] = 7[x] [array write]

array element, we propagate only the taint set of RHS to the
destination field’s shadow.

5.3 Instrumentation Strategy

FlowProf starts tracking information flow when the exe-
cution enters the outermost critical section and then stops
tracking information flow when the execution exits that
critical section. To facilitate executing uninstrumented code
outside of the critical section FlowProf has two versions of
every method. The first version is not instrumented and is
called when FlowProf is not tracking information flow. The
second version is instrumented to track information flow
and is called from contexts in which FlowProf is tracking
information flow.

FlowProf also facilitates executing instrumented code for
contended classes only. Therefore, it inserts a check before
the start of every critical section in the uninstrumented ver-
sion of the method to determine whether the correspond-
ing class has profiling turned on. In that case the execution
switches to the instrumented code.

5.4 Execution Traces

For each critical section executed with instrumentation Flow-
Prof records the lock it acquires, all the shared memory ac-
cesses and information flows into the critical section from
other critical sections. FlowProf also records timestamps to
measure the execution time of the critical section and waiting
time to acquire the lock.

5.5 Sampling

Recording a trace for every critical section in a long running
execution can require too much space. FlowProf uses a sam-
pling strategy to limit the size of the trace that it must record.
Randomly selecting individual critical sections is problematic
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as FlowProf will likely miss dependencies between overlap-
ping data structure operations. Such dependencies are the
most important as they determine whether the operations
can run in parallel. Instead FlowProf’s sampling strategy
selects windows in time. During these windows, the entire
trace is recorded and outside of these windows FlowProf
does not record a trace. This sampling strategy is useful be-
cause it can determine how much additional parallelism can
be achieved in randomly selected windows of the execution.
FlowProf’s skipping strategy monitors memory usage to
adaptively adjust the duration of the window during which
profiling is disabled.

FlowProf disables profiling by continuing to run instru-
mented code, but assigns the critical section to the special
taint 0. This disables recording time stamps and field and
array accesses.

5.6 Indirect Taint Flows

FlowProf tracks direct information flows out of a critical
section by taking the union of the taints of all live variables
out of a critical section. But tainted values can also be passed
out through object or class fields and array elements where
the reference to the object or array is itself not tainted. To
address the issue, we must instrument field and array element
accesses outside of instrumented critical sections to check
if the value is tainted. If a tainted value is read FlowProf
records the time and taint.

Thus, FlowProf must also add minor instrumentation to
code outside of instrumented critical sections to track infor-
mation flows that escape a critical section via fields or array
elements. FlowProf instruments all field or array reads to
check if the field or element has a taint.

6 Analyzing Profile Data

From the execution trace FlowProf generates a static conflict
graph that presents lock conflicts, memory access conflicts
and information flows between executed critical sections
along with their frequencies. Though the conflict graph helps
to find problematic critical sections and provides a prelim-
inary understanding of the bottleneck, FlowProf bases its
analysis on schedule impact analysis.

6.1 Schedule Impact Analysis

Schedule impact analysis helps the developer understand
how much different types of unnecessary conflicts con-
tributes to the bottleneck. The schedule impact analysis al-
lows the developer to explore what if scenarios. It simulates
the recorded execution and estimates the waiting time in the
bottleneck for an optimized implementation that does not re-
quire waiting for the dependencies that the developer plans
to optimize away. Specifically, the developer can require the
schedule impact analysis to report the time taken for the fol-
lowing scenarios: (1) the existing implementation in which

143

CC ’24, March 2-3, 2024, Edinburgh, United Kingdom

we wait for all existing lock conflicts, (2) an optimized im-
plementation that removes unnecessary lock conflicts such
that we only have to wait when there are memory access
conflicts, and (3) an optimized implementation that removes
unnecessary memory access conflicts such that we only have
to wait when there are information flow dependencies.

The schedule impact analysis takes as input one of the
three conflict/dependency relations between critical section
instances. The conflict/dependency relation maps a critical
section to all of the prior critical section invocations on
which it conflicts/depends, e.g., in the case of lock conflicts
the critical sections that acquire the same lock. The analysis
replays the recorded execution trace. At each lock acquire
event, it computes a new time the event would have started if
it only had to wait for the lock releases of the critical sections
from the conflict/dependency relation that executed earlier
in the original execution.

The schedule impact analysis enables the developer to
match the structure of conflicts and information flow depen-
dencies of a bottleneck to the patterns described in Section 3.
A significant reduction in the percentage of total waiting
time in the simulation that waits for only memory access
conflicts stipulates a match to pattern 1. Similarly from mem-
ory access conflict simulation a significant reduction in the
percentage of total waiting time in the simulation that waits
for only information flow dependencies stipulates a match
to pattern 2.

7 Evaluation

We evaluated FlowProf with the goal to understand how
effectively it helps with understanding bottlenecks in appli-
cations and its efficiency for analyzing programs. We ran
our experiments on an 3.6 GHz Intel(R) Core(TM) i9-10850K
CPU with 10 physical cores, 2 hardware threads per core,
and 128 GB of memory.

7.1 Benchmarks

We have searched open source Java projects and assembled
a collection of benchmark applications to test FlowProf. We
used the following criteria to include applications to our
benchmark suite:

1. We selected benchmarks that have significant lock
contention. In our case, we only considered those ap-
plications that spend at least 10% of their total thread
execution time waiting on synchronization.

2. We eliminated benchmarks that were not compatible
with the SOOT[25] compiler framework. The baseline
SOOT compiler does not successfully generate work-
ing bytecode for programs that utilize some of the
more advanced Java language features.

. We only selected benchmarks that primarily use syn-
chronized methods or synchronized blocks for concur-
rency control.
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To find applications with significant lock contention we used
FlowProf’s lock profiler on other open source benchmark
suites, projects from 50K-C repository [27] and on open
source projects from GitHub. Most projects that have avail-
able test cases with sample inputs do not show significant
lock contention. Next, the projects showing significant con-
tention got filtered by the other 2 criteria. We found 3 com-
patible benchmarks, H2, Tradesoap, and Tradebeans, from
the DaCapo benchmark suite [5]. Since all these 3 bench-
marks show contentions in the same critical sections of the
H2 database that all of them use, their analysis is summarized
as H2 benchmark listed in our suite. We also tested FlowProf
on the Renaissance suite [32] but only found one benchmark
showing significant lock contention. Other benchmarks were
collected from 50K-C project repository [27] and GitHub. The
following applications are in our benchmark collection:

e BigMap: BigMap is a project from the 50K-C reposi-
tory. It is a big, fast, persistent map based on memory
mapped files.

H2: H2 is a benchmark from the DaCapo suite. H2 is
an SQL relational in-memory database engine written
in Java.

e UberZip: UberZip [28] is a fast multi-threaded
command-line application to extract zip files.
DB-shootout: DB-shootout is a benchmark from the
Renaissance suite. It executes a shootout test on an
in-memory MVStore database.

o Finmath: The Finmath library [7] provides implemen-
tations of algorithms related to mathematical finance.
ConsistentHash: ConsistentHash is a project from
the 50K-C repository.

7.2 Analysis Results

We have run FlowProf on all the benchmarks analyzing the
most contended classes reported by FlowProf’s lock pro-
filer. Table 2 summarizes the results of the schedule impact
analysis for the benchmarks. As discussed in Section 6.1
schedule impact analysis reports waiting time for each of
the 3 simulation considering either all lock conflicts, only
memory access conflicts or only information flows. In Ta-
ble 2 the total waiting time for simulation of lock conflicts
is reported in absolute value computed by schedule impact
analysis. For simulation of memory access conflicts and in-
formation flow the ratio of wait time with respect to waiting
time of lock conflict is reported. As discussed in Section 3,
pattern 1 occurs when there is a significant reduction in the
percentage of waiting time in memory access conflict simu-
lation. Pattern 2 occurs when the percentage of waiting time
reduces significantly in information flow simulation from
that of memory access conflict simulation.

In some applications, eliminating one bottleneck can re-
veal another new bottleneck. In such a case, we did another
analysis cycle to understand the newly revealed bottleneck.
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Table 2. Comparison of wait times for simulations of differ-
ent conflicts in schedule impact analysis and their matched
pattern. Lock simulation wait time is in the unit of 10° CPU
cycles.

Lock Wait time ratio Matched pattern
Benchmark | simula- | with lock simu-
tion lation
wait Memory | Informa-| 1: Over- | 2: Nonfunda-
time access tion synchro- | mental access
flow nization | conflicts
BigMap 51,407 99% 2% - v
H2 129,025 | 100% 23% - v
UberZip 17,415 0% 0% v -
DB- 444,800 | 100% 0% - v
shootout
Finmath 13,469 | 0% 0% v -
Finmath(v2) | 34,422 | 0% 0% v -
Consistent- | 1,550,119| 24% 0% v v
Hash

This occurred in Finmath and we denoted the version af-
ter 1st bottleneck was eliminated as Finmath(v2). Table 3
shows that the performance gain from these optimizations
ranges from 6% to 58%. To measure the performance gain
we executed the benchmarks 10 times and used long runs
when available to mitigate the effects of noise and other
application startup overheads.

The optimization opportunities we found for H2 and DB-
shootout have already been implemented in their later re-
leases. We have reported the optimization opportunities in all
other benchmarks to their respective developers. The devel-
opers of Finmath showed interest and merged a pull request
to their repository with the optimization. The developer of
UberZip expressed interest to incorporate the optimization
if it is developed further in future. We did not hear back from
the developers of BigMap and ConsistentHash.

We next briefly describe the results of our analysis, their
optimization insights, and the optimizations we implemented
for each of the benchmarks.

BigMap: The reported contention is in the
bigmap.page.MappedPageFactoryImpl class where it uses
a java.util.HashMap guarded by a lock to store values.
FlowProf’s schedule impact analysis as depicted in Table 2
shows similar wait times for the simulation of lock and
memory access conflicts, indicating that there would
not be any performance improvement by only changing
the synchronization strategy. The high memory access
conflicts relative to the lock conflict indicate that the current
synchronization strategy is indeed necessary to protect
conflicting memory accesses. But the analysis shows a
significant 97% drop in wait time from the simulation of
memory access conflicts to the simulation of information
flow dependences. This is an example of pattern 2 and indi-
cates that a different implementation of the synchronized
region can improve the performance. We implemented
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the optimization insight by replacing java.util.HashMap
with java.util.concurrent.ConcurrentHashMap, which is a
thread safe and a scalable redesign of HashMap where multi-
ple threads can perform operations simultaneously. With
this change the benchmark achieved a 55% performance
improvement.

Table 3. Summary of optimizations implemented in the
benchmarks according to the optimization insights and cor-
responding performance gains.

Optimization| Implemented Performance
Benchmark . R
Pattern Optimization gain
1 2
BigMap v Used scalable concur- | 55%
rent data-structure
H2 v Scalable redesign of | 22%
the DB
UberZip v Fine-grained locking | 6%
DB-shootout v Scalable redesign of | 7%
the MVStore
Finmath v Fine-grained locking | 17% 40%
Finmath (v2) v Reader-writer lock 20%
ConsistentHash| v/ Fine-grained locking | 58%

H2: The schedule impact analysis produced the same wait-
ing time for lock and memory access conflicts, but showed
a more than 70% reduction of waiting time for information
flow dependences. The reduction of wait time for informa-
tion flow dependencies suggests that changing the imple-
mentation of the database can improve performance. After
examining the source code we found that H2 uses a single
lock for the entire database. Each access causes H2 to modify
a few common fields and as a result there is memory access
conflict whenever it has lock conflict. Thus, it is necessary
to redesign the database to allow different threads to access
the database simultaneously. We have found there is a later
version of the H2 database than the one used in DaCapo, and
this version implements this optimization. We used that ver-
sion to measure the performance benefit of the optimization
insight.

UberZip: The initial run of the lock profiler indicates
that the sequential bottleneck in this benchmark is in the
ZipFile.ZipFileInputStream class from the java.util.zip
package. The schedule impact analysis reports 100% reduc-
tion of waiting time for memory access conflicts relative to
lock conflicts. This suggests that the current implementation
is over-synchronized and eliminating over-synchronization
is sufficient to parallelize the implementation. Java’s ZipFile
implementation uses a single lock for all ZipFileInputStream
objects while reading different zip file entries from different
input streams. To eliminate over-synchronization, we imple-
mented fine-grained locking strategy where we assigned sep-
arate locks for separate ZipFileInputStream objects which
essentially eliminates the contention.
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DB-shootout: The contention happens in the in-memory
MVStore database when all threads try to insert data into
the MVStore. The results in Table 2 shows similar wait times
for the simulation of lock and memory access conflicts and
almost no waiting for the information flow simulation. That
means current synchronization scheme is necessary for cur-
rent implementation and a different implementation can
eliminate the bottleneck. We checked the source code to
find that the insert operation is guarded with a lock and
thus all concurrent operations are serialized. The lock is nec-
essary since it modifies common fields in every operation.
A redesign of the MVStore is necessary to allow multiple
threads to insert simultaneously. We have found that a later
version of the MVStore implements the optimization and we
replaced that version in the Renaissance suite to achieve the
reported performance gain.

Finmath: The initial bottleneck is in the
curve.Curvelnterpolation class. When we ran our analysis
on this class, the schedule impact analysis reported no
waiting time for memory access conflicts. So it suggests that
the current synchronization scheme is over-synchronized
and optimizing the synchronization scheme can improve
performance. The class used a single lock for all cloned
objects of that class while working on separate sets of data.
According to the optimization insight we assigned separate
lock for each cloned objects which eliminates the bottleneck
on that class.

Eliminating the first bottleneck revealed a new bot-
tleneck on the java.util.Vector instance used in the
calibration.Solver class. In our analysis of this version,
Finmath(v2) also shows no wait time for memory access con-
flict simulation indicating that the bottleneck suffers from
over-synchronization. The java.util.Vector class uses a sin-
gle lock to synchronize all its operation. From the conflict
graph we learned that the contention observed in the bench-
mark is in get() and size() operations for Vector. Since
both operations only reads data from vector, we eliminate
the over-synchronization by using a reader-write lock.

ConsistentHash: The benchmark shows a 76% simula-
tion wait time reduction for the memory access conflict anal-
ysis relative to the lock conflict analysis and the rest of wait
time is eliminated in information flow simulation. This indi-
cates a strong match for pattern 1 where eliminating over-
synchronization can reduce most of current bottleneck. The
benchmark used a coarse lock to maintain counts of several
of nodes in a map. To eliminate over-synchronization we
used a fine-grained locking strategy where we assigned a
separate lock for each node where threads increasing same
node’s count acquire the same lock but threads working on
different node acquire different locks. This solution achieves
a 58% performance improvement. As shown in Table 2 there
is another 24% reduction in wait time in information flow
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simulation which indicates that changing the current imple-
mentation can ideally show further improvement. To realize
this optimization the counting on the same node needs to
be parallelized as that is where the conflicting accesses are
happening. This could potentially be parallelized by using a
scalable shared counting implementation [18].

7.3 Efficiency

Table 4 reports the mean execution time over 5 runs for
each benchmark. The benchmarks show a slowdown for
instrumented runs between 2X to 31x. This compares well
with the reported overheads of other dynamic performance
profiling tools. SyncProf [39] reports a slowdown of 60x
to 100X, JITProf [15] reported a 18x slowdown, and Tod-
dler [31] reported a 15.9x slowdown. While most profilers
improve efficiency by using sampling, FlowProf does not
achieve the full benefit from sampling as it always runs the
instrumented critical sections to propagate existing taints.
FlowProf’s primary performance optimization is that it only
runs instrumented code for the critical sections that have
shown significant contention.

Table 4. Different efficiency metrics for FlowProf observed
on the benchmarks indicating standard deviation of mea-
surements with +.

Benchmark Original Slow | Memory | Analysis Lock pro-
runtime down | overhead | time (s) filer over-
(s) head
BigMap 1.32 £0.12 | 4.34X | 2.32X 0.78 £0.09 | 7.12%
H2 6.40 + 0.01 | 18.53% | 20.70 X 28.63 = 7.85 | -0.16%
UberZip 143 £0.08 | 2.36X | 1.48 X 0.14 £ 0.01 |-1.96%
DB-shootout 9.39 +0.37 | 30.91x | 22.21 X 6.25 +1.23 | -1.36%
Finmath 0.37 £0.02 | 5.94x | 495X 12.16 = 1.77 | -0.54%
Finmath(v2) 0.36 £ 0.03 | 6.47X | 4.67 X 0.34 £ 0.03 6.11%
ConsistentHash 4.17 + 0.06 | 13.67x | 13.05 X 2.02+0.33 | 21.44%

As discussed in Section 5.5, FlowProf ’s memory overhead
depends on sampling rate which is controlled in such a way
that it does not exhaust available memory. Therefore, if it
is run with more available memory it would have higher
sampling rate resulting in higher memory overhead with
higher precision. We ran our experiments on a machine with
128 GB of memory and the memory overhead observed in
our experiments ranges from 1.5X to 22X. Running the ex-
periments with higher/lower memory than this is supposed
to impact the memory overhead accordingly.

The analysis time listed in Table 4 includes both static
conflict graph generation time and schedule impact analysis
time. The analysis time ranges from less than a second up to
around half a minute. The JVMTI lock profiler which is run
initially to find lock contention in benchmarks reports run-
time overhead from -2% to 21%. The overhead is sometimes
negative since the calls to the Java agent sometimes reduces
contention on locks and/or the lock profiler sometimes influ-
ences the thread scheduling in a way that positively impacts
the execution time.
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7.4 Comparison with Existing Profiler

To the best of our knowledge, using information flow to
profile concurrent application is novel and no previous pro-
filer utilizes this approach. As a result no other existing
profiler can find optimization opportunities in benchmarks
that match pattern 2 in Table 2. In these cases the bottleneck
is due to actual conflicting memory accesses and the existing
synchronization is necessary to protect the memory accesses
from data races. Other than that we only found one profiler,
SyncProf [39], that suggests optimization insights for syn-
chronization bottlenecks. SyncProf tracks memory accesses
to suggest optimizations. Since SyncProf’s implementation
is not publicly available we could not test it on our bench-
marks. However, SyncProf’s approach to find optimization
opportunities requires the application to use a static locking
strategy where the same lock is assigned to protect a critical
section in all of its executions. SyncProf cannot handle cases
where a critical section acquires different locks depending
on data it is going to access. This is serious limitation as this
is the most common case in Java programs—for example, ev-
ery non-static synchronized method acquires different locks
depending on the receiver object it is invoked upon. The lim-
itation of SyncProf stems from its approach where it tries to
generate an optimization pattern using a static synchroniza-
tion graph. FlowProf’s schedule impact analysis preserves
all dynamic conflict information and hence overcomes this
limitation. Table 5 summarizes whether the technique of
SyncProf could be used to discover the optimization oppor-
tunity in the respective benchmark.

Table 5. SyncProf’s suitability in finding optimization op-
portunities in the benchmarks.

Benchmark Suitable with | Reason
SyncProf?

BigMap No Requires tracking information flow
H2 No Requires tracking information flow
UberZip No Requires handling dynamic locking
DB-shootout No Requires tracking information flow
Finmath No Requires handling dynamic locking
ConsistentHash| No Requires handling dynamic locking

7.5 Limitations

One limitation of this work is that it does not directly account
for instrumentation distortion. FlowProf runs instrumented
code inside critical sections of the most contended class and
other parts are mostly uninstrumented. Therefore, the wait-
ing time computed in schedule impact analysis would be
higher because of the instrumentation overhead. However,
the optimization insight does not depend on the absolute
values of waiting times. The waiting times of simulation for
three different types of conflicts are compared with each
other to gain insights on optimization. Thus, the overall
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impact of instrumentation is compensated in the final opti-
mization insight the analysis produces. Another limitation
is that this work tracks information flow through explicit
taint propagation and does not track implicit flow where
information flows through control dependency. Though it
is possible to engineer cases where it is insufficient to only
track explicit flow, we did not come across any such cases in
the real world applications where FlowProf misses informa-
tion flow because it does not handle implicit flow. In any case,
existing approaches [8, 22] for handling implicit flow can be
combined with FlowProf to make it more robust which we
consider outside the scope of this paper.

Apart from that, the schedule impact analysis can be too
conservative and can easily underestimate the potential ben-
efits of optimizations. Schedule impact analysis computes
execution time for an execution that respects the same de-
pendency structure as the original execution. For example, if
there is a queue of jobs, it will require that threads put jobs
into the queue in the same order and that each thread waits
to remove the same jobs as in the original execution. But in
reality the optimized version that uses the queue of jobs can
potentially run faster when threads add and remove jobs in
different orders. However, FlowProf does not have enough
information to simulate these alternate orders.

8 Related Work

Much work has been done on identifying parallelism bottle-
necks. Some work has looked at parallelization bottlenecks
in task parallel frameworks [33, 38]. Call graph profiling
was introduced by gprof [16]. Sampling has been used to
efficiently measure lock contention in multi-threaded pro-
grams [34]. Measurement overhead from performance profil-
ing can distort results, but techniques have been developed
to compensate for this distortion [26]. Techniques have been
developed to support efficient flow and context sensitive
profiling with hardware performance counters [2].

SyncProf'is a profiling tool for concurrent programs [39]. It
measures the time spent waiting to acquire a critical section
or lock and monitors dependencies between critical sections.
It then analyzes the critical section dependence graph to
find opportunities to improve locking strategies, e.g., fine-
grained locking or reader-writer locks. A major limitation
of SyncProf is that it only handles static locking strategies
where a critical section always acquires the same locks and
does not consider data dependent locking strategies (such
as associating a lock with each hash table) where a critical
section acquires different locks depending on the data it
accesses.

Kismet [21] and Kremlin [14] use critical path analy-
sis [20] to estimate the parallelization potential of serial
programs. These tools target helping developers parallelize
serial programs while FlowProf targets optimizing already
parallel programs. Data dependence profiling has been used
to help parallelize sequential code [23]. These approaches
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use conflicting memory accesses to determine dependencies
while FlowProf uses information flow analysis to determine
which dependencies are fundamental to the computation.
These approaches could potentially benefit from FlowProf—
information flow analysis could potentially enable these tools
to find more opportunities to parallelize code.

Causal profiling can simulate the performance benefits
of optimizations to help developers identify the best opti-
mization opportunities [9]. Causal profiling can measure the
performance benefits of optimizing code blocks, but cannot
measure the performance benefits of reducing contention by
redesigning synchronization or data structure implementa-
tions.

HPCToolkit [36] supports profiling lock contention. This
work explores ways of attributing the overhead of waiting on
a lock—blaming the thread that waits on the lock or blaming
the thread that holds the lock. This work does not exam-
ine whether the existing synchronization approach can be
improved, but simply outputs how much execution time
each code block is blamed for. Critical path analysis can
determine which locks are important for performance [6].
Wait-for graphs can be used to reason about the potential
performance impacts of reducing waiting time [40]. The Free-
Lunch profiler [10] measures the percentage of execution
time spent waiting on locks. There has been work on light-
weight call path tracing for HPC applications [35]. Tools
built on Pin can identify lock contention and loops that can
be parallelized [4]. Bottlegraphs help developers visualize
performance in multi-threaded programs [11].

Much work has been done on taint analysis [8]. It has been
widely used to analyze security properties [3, 24, 30, 37].
Selective propagation of taint along control flow edges also
known as implicit flow has been implemented in the context
of security [22].

9 Conclusion

This paper presents a new profiling approach that leverage
information flow to reason about whether sequential bottle-
necks in multi-threaded programs are fundamental to the
computation or merely artifacts of the implementations. We
implemented this approach in FlowProf. We evaluated Flow-
Prof on a set of multi-threaded benchmarks with sequential
bottlenecks.
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