
552  •  2024 IEEE International Solid-State Circuits Conference

ISSCC 2024 / SESSION 33 / INTELLIGENT NEURAL INTERFACES AND SENSING SYSTEMS / 33.6

33.6  A Millimetric Batteryless Biosensing and Stimulating Implant  
         with Magnetoelectric Power Transfer and 0.9pJ/b PWM  
         Backscatter 
 

Zhanghao Yu*, Huan-Cheng Liao*, Fatima Alrashdan, Ziyuan Wen, Yiwei Zou,  
Joshua Woods, Wei Wang, Jacob T. Robinson, Kaiyuan Yang 
 

Rice University, Houston, TX 
*Equally Credited Authors (ECAs) 
 

Bioelectronic implants transform clinical therapies by offering unprecedented tools for 
precise sensing and intervention inside the human body. Wireless, battery-free, and 
miniaturized (mm-scale) bio-implants are highly desirable to enhance safety, simplify 
surgery, minimize behavioral disruptions, and boost long-term stability over conventional 
bulky implants [1-3]. Developing such devices faces two crucial challenges: safe and 
reliable wireless power transfer (WPT) and efficient bidirectional telemetry. 
Magnetoelectric (ME) WPT, which converts low-frequency magnetic fields to electrical 
energy via acoustic coupling (Fig. 33.6.1, top), is an emerging WPT modality specialized 
for mm-sized implants. It offers strong penetration through various mediums without 
absorption or reflection issues, leading to superior WPT efficiency, power level under 
safety limits, and misalignment tolerance, all of which have been demonstrated in large 
animal models [1]. However, uplink telemetry in ME-powered implants, essential for real-
time sensing and closed-loop physiological control, remains challenging. Integrating a 
second antenna, such as an inductive coil, is a straightforward solution to add uplink to 
ME implants [4], but it increases the implant size and complicates integration. Sharing 
a single transducer for power and data is highly desirable for device miniaturization, as 
demonstrated in inductive coupling and ultrasound [2]. Two recent studies [5,6] have 
explored the converse ME effects to realize ME uplink (Fig. 33.6.1, middle). The feasibility 
of directly driving an ME transducer with AC voltages for uplink is reported in [5], but 
due to the kΩ-impedance of ME transducers, this method consumes significant power 
for a batteryless implant. On the other hand, [6] demonstrates low-power ME backscatter 
using load shift keying (LSK) based on an observation that changing the passive load to 
an ME transducer during its ringdown modulates its vibration frequency. The high-Q ME 
transducer vibrates for more than 30 cycles after turning off the excitation magnetic field. 
Despite the exciting progress, LSK ME backscatter has limited SNR and data rate, due 
to the ME transducer’s high Q. Specifically, SNR is limited by a direct trade-off between 
frequency shift and signal strength, while the data rate is limited by the relatively long 
excitation and ringdown periods. 
 

Towards a faster and more reliable uplink for ME implants, this paper presents PWM ME 
backscatter enabled by switched-capacitor energy extraction (SCEE), which quickly 
dissipates energy in an ME transducer and reduces the amplitude of the backscattered 
signal (Fig. 33.6.1, bottom). Compared to the FSK method [5], time-domain PWM 
backscatter offers higher SNR and encodes multiple bits in a single ringdown phase. 
Based on this principle, we built a prototype system including a 6.7mm3 ME implant and 
a custom portable transceiver (TRX) for wireless recording and stimulation. The implant 
SoC integrates power management, bidirectional data transmission, bio-stimulation, 
temperature sensing, and LFP/EGM/ECG recording (Fig. 33.6.2, top). Our system 
features: (1) wireless power, downlink, and PWM backscatter uplink using a single 
5×2×0.2mm3 ME transducer within the implant; (2) SCEE reducing the backscattered 
signal amplitude by >50% within 2 ME cycles for high-SNR PWM; (3) PWM ME 
backscatter achieving 17.73kb/s data rate and 0.9pJ/b efficiency at 331kHz carrier; (4) 
reliable wireless operation at up to 5cm distance, with <8.5×10-5 BER using lightweight 
multi-layer-perceptron (MLP) demodulation. 
 

To achieve fast amplitude reduction on the backscattered signal, we draw inspiration 
from the Synchronized-Switch-Harvesting-on-Capacitors design for energy harvesting 
[7] to develop the SCEE technique for quick energy dissipation (Fig. 33.6.2, bottom). 
SCEE uses a sequentially activated switched-capacitor array to extract energy from the 
piezoelectric-layer capacitor Cp at the peak points of the sinusoidal ME signal when CP 
holds the peak energy. Compared to the switched-inductor alternative, the switched-
capacitor approach does not require reverse current sensing, is less sensitive to switch 
on-resistance, and allows on-chip integration, making it more suitable for our 
miniaturized ME implant.  Besides the SCEE, the TX module comprises a peak detector 
(PD) and a baseband and timing controller. An accurate, low-power PD is essential for 
achieving the expected bandwidth and efficiency of the PWM ME backscatter. Different 
from conventional PDs for energy harvesters, the PD for ME backscatter works with a 
ringdown waveform decaying over time, operates at a much higher frequency (331kHz 
in our design versus <1KHz in energy harvesters), and suffers from varying input 
amplitudes caused by the uncertain wireless channel. The conventional active-diode PD 
necessitates high input voltage, track & hold PD requires a wide-bandwidth amplifier, 
and voltage-to-current conversion PD demands a series capacitor and constant current 
reference which can be sensitive to parasitic and input variation. Here, we developed a 
specialized high-performance low-power PD by combining zero-crossing detection and 
phase shifting, exploiting the fact that detecting zero points is easier and more accurate, 
and peak points are always 90° and 270° away from the zero points in a sine wave.  
 

Figure 33.6.3 details the Peak Detector, which works in two modes: calibration and data 
transmission. At the beginning of each uplink session, the digital phase shifter (DPS) 
within PD is calibrated to the ME cycle time TME by operating DPS as a TDC. After 
calibration, TX enters data transmission mode, and PD starts to produce peak-aligned 
pulse trains (ENSCEE) for controlling the SCEE. Here, PD adds TME/4 and 3TME/4 delays to 
the output pulse of the zero-crossing detector (ZCD) to locate positive (PPP) and negative 
(PNP) peaks. To minimize energy, PD is only activated for 4 ME cycles by the baseband 
controller, which tracks the number of ringdowns and ME clock over the entire uplink 
session. Within these 4 cycles, ZCD is activated only in the first cycle while DPS creates 
8 ENSCEE pulses based on its calibrated delay line, lowering the total average power to 
15nW.  For accurate detection, ZCD uses a comparator with an intentionally added offset 
current, which minimizes detection delay by intentionally adding an offset without 
significantly increasing the biasing current. However, using a fixed sinking current I1 
leads to overcompensation at later ME ringdown cycles with smaller amplitudes. Our 
solution is adding a sourcing current I2 increasing with cycles to I1, yielding a significantly 
reduced and more consistent ZCD delay. I2 is biased by an ME envelope extractor that is 
also necessary for downlink. The DPS comprises a differential 4-stage folded delay chain 
with a 15ns step (i.e., 0.5% of TME), a cycle counter, sampling DFFs, and a digital pulse 
generator. The pulse generator is co-designed with the 4-stage delay chain to 
approximate TME/4 and TME/2 delays at minimum power and area overheads. The 
approximation error is at most 3/4 of the single-stage delay and does not affect SCEE 
performance.  
 

We developed fully integrated prototypes of the ME implants with a 180nm CMOS SoC 
and a portable external TRX. The SoC includes a recording AFE and supports continuous 
data streaming. To achieve a higher input dynamic range, we employed a low-gain  
AC-coupled LNA and a third-order noise-shaping SAR ADC [8] with 1kHz bandwidth and 
an oversampling ratio of 8. ADC output is decimated by a 3-stage cascaded-integrator-
comb filter and a delta modulator (to reduce data rate), resulting in a final 8b 2kSa/s data 
stream (Fig. 33.6.4, top).  
 

We evaluated the function of the entire system ex vivo using a 2cm-thick porcine tissue. 
Figure 33.6.4 shows the implant being magnetoelectrically powered and programmed 
with time-domain modulated downlink data to perform different tasks including 
stimulation and uplink telemetry. The zoom-in views show that SCEE extracts the ME 
transducer’s energy at different time points during the ringdown based on PWM data. 
The prototype demonstrates energy extraction from the ME transducer near the optimal 
peak points, causing an immediate biasing flip. The 4-cycle energy extraction quickly 
dissipates the energy in the ME transducer, resulting in a >1V decrease in the 
transducer’s output voltage. The first peak detection pulse shows an error of 18ns (i.e., 
0.6% of TME), demonstrating sufficient accuracy of the PD. 
 

The backscattered signal is demodulated by a custom ME backscatter RX including an 
AFE and an MCU (Fig. 33.6.5). The signal after RX AFE shows distinguishable pulse 
widths during ringdown, modulated by the 3b uplink data (Fig. 33.6.5, bottom left). Each 
3b data packet takes a 24-ME-cycle excitation phase, succeeded by a 32-ME-cycle 
ringdown phase, resulting in a data rate of 17.73kb/s with a 331kHz carrier. Owing to 
fast amplitude reductions at accurate time intervals, the received signal achieves an SNR 
>10.9dB at up to 5cm distance. We designed and measured two data decoding 
algorithms, straightforward time-domain drop detection, and a tiny 4-layer neural 
network (MLP) with quantized 5b integer weights. The latter offers higher accuracy at 
greater distances with higher but acceptable computing power, yielding a BER of  
8.5×10-5 at 5cm (Fig. 33.6.5, bottom right).  
 

Finally, we evaluated the implant’s wireless recording by feeding pre-recorded local field 
potentials (LFP) from rats to the device. The wirelessly received signal via PWM ME 
backscatter closely matches the ground truth (Fig. 33.6.6, top). Additionally, we in vitro 
validated an encapsulated untethered implant in phosphate-buffered saline (PBS), where 
power, data, and LFP signals are wirelessly transmitted through PBS. Figure 33.6.6 
includes a comparison table with state-of-the-art wireless bio-implants with bidirectional 
communication. The SoC’s power breakdown and die micrograph are in Fig. 33.6.7. 
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Figure 33.6.1: Conceptual diagram of a magnetoelectric (ME) implant using a single 
ME transducer for power and bidirectional data transfers; principles of PWM ME 
backscatter to enhance bandwidth and SNR over prior works.

Figure 33.6.2: System diagram and a picture of the 6.7mm3 implant; illustrations of 
the PWM ME backscatter module and the key techniques SCEE and PD.
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Figure 33.6.4: Schematic of the implant’s recording frontend; ex vivo testing setup 
and measured implant operation waveform, with zoom-in views of the ME energy 
extraction process.
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Figure 33.6.6: Measurement of the system’s wireless neural recording over the air 
and in vitro, and comparison with state-of-the-art mm-scale wireless implants with 
bidirectional telemetry.
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Figure 33.6.7: Implant SoC’s chip micrograph and power breakdown.
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