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1 | INTRODUCTION
1.1 | Motivation

The dual or outer billiard map B is defined in the plane as a counterpart to the usual inner billiards.
Let y C R? be a smooth, closed, strictly convex curve, and let p be a point outside of y. There are
two tangent lines to y through p; choose one of them consistently, say, the right one from the
viewpoint of p, and define B(p) as the reflection of p in the point of tangency (see Figure 1).

The study of the dual billiard was originally popularized by Moser [21, 22], who considered the
dual billiard map as a crude model for planetary motion and showed that orbits of the map cannot
escape to infinity. The outer billiard map has since been studied in a number of settings; see [7,
26, 27, 31] for surveys.

In [28], Tabachnikov generalized planar outer billiards to even-dimensional standard symplec-
tic space (R?", w) as follows: given a smooth, closed hypersurface M in R?" that is quadratically
convex (that is, the shape operator at any point of M is definite), the restriction of w to each
tangent space T;M has a one-dimensional kernel, called the characteristic line. If v is the outward-
pointing unit normal vector field on M and R?" is identified with C", then {q — tiv(q) | t € R}
is the characteristic line at ¢ € M. Tabachnikov showed that the collection of (geodesic) rays
{q —tiv(q) | t > 0}, indexed by q € M, foliate the exterior U of M; in particular, for each p € U
there exists a unique such ray passing through p. This gives a smooth outer billiard map taking p
to its reflection in the corresponding tangency point:

B:U->U, q-tiv(q)w~ q+tiv(g). (1)

Tabachnikov proved that the map is a symplectomorphism of the exterior of M, and in [29], he
showed that the number of 3 -periodic trajectories of the outer billiard map in R?" is not less than
2n.

1.2 | Spaces of geodesics of space forms

The goal of the present article is to define and study outer billiards in another setting: on the space
of oriented geodesics of the three-dimensional space form M, of constant curvature x = 0,1, —1,
that is, Euclidean space R3, the sphere S3, or hyperbolic space H>.

The space of oriented geodesics G, is a four-dimensional manifold whose elements are the ori-
ented trajectories of complete geodesics in M, . Elements of G, can also be described as equivalence
classes of unit speed geodesics, wherey ~ o if o (t) = y (¢ + t,) for some t, € R. When x = 0, —1,

B(p)

FIGURE 1 The outer billiard map in the plane.
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OUTER BILLIARDS IN THE SPACE OF ORIENTED GEODESICS 3 0f25

FIGURE 2 The geodesic ¢ is in the outer billiard correspondence with #” and #”'.

G, is the space of oriented lines in Euclidean or hyperbolic space, which is diffeomorphic to TS?,
and G, is the space of oriented great circles of S* (or equivalently, the Grassmannian of oriented
planes in R*), which is diffeomorphic to S? x S? (see [10] or [20]). Historically, the space of ori-
ented geodesics is at the core of symplectic geometry through its relationship with optics. This
space possesses a rich geometry (for instance, it admits two natural Kdhler structures), whose
study began with Hitchin [19] and continued with [1, 2, 8, 14, 23, 24]. It has been useful, for
instance, in the characterization of geodesic foliations [12, 13, 15-18, 25].

1.3 | The definition of the outer billiard map on G,

Let S be a smooth, closed, strictly convex surface in M, , that s, for each p € S, the complete totally
geodesic surface tangent to p intersects S only at p, near p. By smooth we understand of class C*.
We denote by M the three-dimensional space of geodesics that are tangent to S, which can be
naturally identified with TS, the unit tangent bundle of S (we were inspired by [9]).

We first consider the cases x = 0, —1. We define the billiard table

U = G, — {oriented geodesics intersecting S};

this is an open submanifold of G, with boundary equal to M.

We say that two distinct geodesics # and #’ in U are in the outer billiard correspondence if there
exists a complete totally geodesic surface P, tangent to S at a point p, containing # and #’, such
that #’ can be obtained by parallel translating # along the shortest geodesic from # to p, twice the
distance from # to p; see Figure 2.

Given # € U, there exist exactly two complete totally geodesic surfaces containing # and tan-
gent to S (the assertion is clear for x = 0 and for ¥ = —1, for instance, using the Klein ball model
of hyperbolic space, see Section 6). So, £ is in correspondence with exactly two other elements of
V. To define the outer billiard map, we use the orientation of # to choose the surface on the right,
say P, as follows.

Let p, be the point of tangency of the surface S with P, and let g, be the point on ¢ realizing
the distance d, to p, (see Figure 3, left).

Lety, be the geodesic ray joining g, with p,,withy,(0) = g, andy,(d,) = p,.Leta be a unit
speed geodesic such that # = [a] and define ¢, by « (t i) = q, (see Figure 3, right). Let W be the
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FIGURE 3 The outer billiard map on £, associated with S.

parallel vector field along & with W, (¢,) = yﬁ_r(O). Now choose the sign + so that {W Lw_ad }
is a positively oriented frame along «. The outer billiard map B : U" — U can now be
defined:

B(?) is the oriented line obtained by parallel translating £ along y, between 0 and 2d,, .

Moreover, B is a bijection.

Notice that in the hyperbolic case (in contrast with the Euclidean), parallel translating a line ¢
adistance d along unit speed geodesic rays y, and y, orthogonal to # depends on the initial points
71(0) and y,(0) in # = [«], even if y;(o) is the parallel transport of y;(O) along a.

Now we consider the case ¥ = 1. We will see that a similar definition of outer billiard map can
be given. For an oriented great circle ¢ not intersecting S, there exist exactly two great spheres
of S3 containing ¢ and tangent to S, but there may be more than one (actually, a circle worth of
them) shortest geodesics between c and the tangency point in S, so that g, or g_ are not well-
defined. That is the case when the distance from c to the tangency point in S is 77 /2. We call C the
set of these oriented great circles. We will describe this set later, in Subsection 2.1, in terms of the
Gaussmap of S, g = TS, using the canonical identification of oriented great circles with oriented
planes through the origin in R*. Although the outer billiard map B will be still well-defined on C
as the involution ¢ — —c (the same circle with opposite orientation), it is easier to exclude C from
the domain of definition. Thus, in the spherical case we define

U = {c € G, | c does not intersect S} — C. (2)

Proposition 1.1. Let S be a strictly convex closed surface in S3. The analogue of the outer billiard
map in the cases x = 0, —1 is well-defined on U" for x = 1 and is a bijection onto this set.

Forx =0,1,—1,wecall B : U" — U as above the outer billiard map on G, associated with S. We
will show that B is a diffeomorphism under the stronger condition that S is quadratically convex
(in particular, strictly convex).

Theorem 1.2. Let S be a smooth, closed, quadratically convex surface in the space form M,. The
outer billiard map B : U" — U associated with S is a diffeomorphism.

d ‘9 $TOT ‘0SLLEIYT

sy woxy

:SdY) SUONIPUOD) PUT SWA L A1 998 “[$707/80/LT] UO ATIqT QUITUQ Ao[1 A\ “KNSIOATUN UOIAUHG AQ 77671 SWIHTT 11°01/10p /w0 Ko Teiqrouy

fopm:

o5uadFT SUOWWI)) aAER1) A[qeandde o) AG PAUIAOS IE SA[ITE VO $a5N JO AN 40] ATEIqIT SUIUQ AJ[IAL O (SUOY



OUTER BILLIARDS IN THE SPACE OF ORIENTED GEODESICS | 50f25

The following proposition shows that strict convexity is not enough for the smoothness of the
billiard map. We present the example just for the sake of completeness, as it is essentially the
known corresponding fact for plane outer billiards.

Proposition 1.3. Let S be a closed strictly convex surface in R? that is invariant by the reflection with
respect to the plane y = 0 and contains the graph of the function ¢ : (—=2,2) X (—1,1) — R defined
by ¢ (x,y) = f (x) + y?, where f is a smooth function satisfying f (0) = f' (0) = f”" (0) = 0. Then
the associated outer billiard map B on G is not smooth.

1.4 | Kaihler structures and the analogue of Tabachnikov’s
construction

The space of oriented geodesics G, has one or two canonical Kéhler structures (for xk =0 or k¥ =
1, —1, respectively), so the natural question arises, whether Tabachnikov’s construction (1) of the
outer billiard map for R?"* can be mimicked.

To deal with this issue, next we briefly introduce Kihler structures on G,, postponing formal
definitions until Section 2.

Given ¢ € G,, the 7 /2-rotation in M, that fixes # induces a map on G, whose differential at
¢ is a linear operator J, on T,G, that squares to —id. It may be visualized by its action on four
geodesic variations of #. The geodesic £ may be translated in the two directions orthogonal to #
or rotated in two planes containing ¢, and the operator .7, sends translations to translations and
rotations to rotations; see Figure 4. The collection of these linear transformations .7, is a complex
structure [J on G,.

For ¥ = 0,1, —1, the manifold G, has a pseudo-Riemannian metric g, induced by the cross
product on M, and (g, J ) is a Kdhler structure on G, . For ¥ = 1, —1, there is an additional Kidhler
structure (gg, J) on G, where g is induced by the Killing form on Iso(M,,). In the Euclidean case,
the Killing form g degenerates. For the formal definitions of 7, gx and g, we use the language
of Jacobi fields; see Section 2.

Having presented the K#hler structures on G,, we can give a positive answer to the question
in the beginning of the subsection for x = 1, —1, using the K&hler structure (gg, J). In this for-
mulation, we see that B is a direct analogue of the outer billiard map on (R?*", w) described in
Subsection 1.1.

«f

7 7
Je Te

FIGURE 4 The linear transformation .J, maps the green variation of geodesics to the red variation of
geodesics.
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Suppose that S is a smooth, closed, strictly convex surface in M, , and let V" and M be as above.
For £ € M let v(¢) be the outward-pointing unit normal vector to M at ¢ (outward-pointing
means pointing to U"). Given § € T, M, let T'; denote the geodesic in (G,, g¢) with initial velocity
§. Each geodesic ¢ = T ;,,,)(t) traces out a totally geodesic surface in M, that is tangent to S. We
will show that the collection of geodesic rays {T 7, (t) | t < 0} indexed by # € M foliates the
exterior V" of M. In particular, for each geodesic £’ € U, there exists a unique such ray passing
through #’. This induces an outer billiard map B’ : U — U taking £’ to its “reflection” in the
tangent geodesic £

B/(rjv(f)(_t)) =T 7y (®)

for ¢t > 0. In Section 4, after proving that B’ is well-defined, we will show that the outer billiard
maps B and B’ coincide.

Theorem 1.4. For x = 1,—1, let S be a smooth, closed, quadratically convex surface in M,, and
consider G, endowed with the Kihler structure (gi, J). The map B’ : U — U coincides with the
outer billiard map B on U associated with S.

The following proposition reveals that the Kdhler structure ( 9 T ) is not appropriate in our
setting, as it does not give rise to a billiard map as in Tabachnikov’s construction.

Proposition 1.5. For x = 0,1, —1, consider on G, the Kdhler structure ( 9r T ) Let S be as in the
preceding theorem and let £ € M. Then the metric g, degenerates on T , M, and for each vector N
normal to T , M, the image of the geodesic in G, with initial velocity J (N) is disjoint from U'.

1.5 | The symplectic properties of the outer billiard map
The outer billiard map interacts with the symplectic structures on G, as follows.

Theorem 1.6. Let B be the outer billiard map associated with a smooth, closed, quadratically convex
surface in M,.

(a) Forx =1,—1, Bis a symplectomorphism with respect to the fundamental symplectic form wg of

(gka gK’ J)
(b) Forx =0,1,—1, B does not preserve the fundamental symplectic form w,, of (G, g5, J)-

Additional context for Theorem 1.6 is given in Proposition 5.1, which establishes a relationship
with plane hyperbolic outer billiards (see [30]) and supports the fact that wg (in contrast with w, )
is the natural symplectic form in our context.

In the Euclidean case, the outer billiard map B preserves parallelism, yielding an S?-worth
of planar outer billiards as in Figure 1. That is, given a fixed direction v in the two-sphere, the
orthogonal projection of S onto any plane P orthogonal to v determines a smooth closed convex
curve y in P (the shadow of S with respect to v). These shadows vary smoothly with respect to v,
and the outer billiard map B, restricted to lines with direction v, is equivalent to the planar outer
billiard in P with respect to y. In particular, each such restriction is area-preserving.
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OUTER BILLIARDS IN THE SPACE OF ORIENTED GEODESICS | 7 of 25

Recall that for ¥ = 0 the Killing form ¢y degenerates and so it does not induce a symplectic
form on G,. However, we have a weaker structure, a Poisson bivector field P, also compatible
with J, which we define in Subsection 2.3. The proof of the next proposition is immediate from
the preceding paragraph.

Proposition 1.7. The outer billiard map associated with a smooth, closed, quadratically convex
surface in R3 preserves both the canonical Poisson structure P on G, and its symplectic leaves, which
are the submanifolds of parallel lines. In particular, the restriction to each such submanifold is
a symplectomorphism.

1.6 | Dynamical properties of the outer billiard B

To begin the study of dynamical properties of the outer billiard map B, we first observe that in the
Euclidean case parallelism has consequences for periodic orbits of the outer billiard map B asso-
ciated with the surface S. Given v € S?, consider the planar outer billiard system in any plane P
orthogonal to v, played outside the shadow of S with respect to v. For this planar system, there exist
at least two distinct n-periodic trajectories with rotation number r, for every n > 3 and positive
r < [(n — 1)/2] coprime with n (see [31, Theorem 6.2]). Each such periodic orbit lifts to a periodic
orbit of the outer billiard map B associated with S. In particular, for each direction v € S2, there
exist n-periodic orbits consisting of geodesics with direction v.

The hyperbolic case is more interesting than the Euclidean one, because unlike in R3, the lines
¢, B(¢), B> (¢),... in H? are (in general) not parallel, in the sense that they are not orthogonal
to a fixed totally geodesic surface. Indeed, if a line # in H? is parallel transported along a line £’
orthogonal to Z, then £’ is the unique line preserved by the one-parameter group of transvections
along ¢’ (that is, isometries of H? translating #’ whose differentials realize the parallel transport
along it). This nonparallel phenomenon is illustrated more explicitly in the following proposition.

Proposition 1.8. Given 6 € (0, 7/2), there exist a quadratically convex closed surface S in H* and
an oriented line ¢ not intersecting S such that ¢ and B3(¢) intersect at a point forming the angle 6.

Similarly, one can show the existence of a surface S and ¢ such that B3(#) is different from #
and asymptotic to it.

We next introduce a notion of holonomy for periodic orbits of the outer billiard map in hyper-
bolic space. Let £ = (¢ys ..., €,,_1) be an n-periodic orbit of B; in particular, we assume the #; are
distinct. For 0 < k < n let d; be the signed distance between the points g, (¢}) and q_(¢}), which
were defined in Subsection 1.3, that is, if £, = [y, ] with y,(0) = q_, then y,(d}) = q,. Then the
holonomy of the periodic orbit £ is the number d = Y1 d,.

The definition also makes sense in Euclidean space, but every periodic orbit has zero holonomy.
We exhibit a periodic orbit in hyperbolic space with nonzero holonomy.

Proposition 1.9. There exist a quadratically convex closed surface S in H* and an oriented line ¢
not intersecting S which is a periodic point of the associated outer billiard map and whose holonomy
is not zero.

We comment on the choice of the word holonomy in this context. For x <0, let @w : P =
T'M, — G, be the tautological line bundle, that is @ (v) = [y, ]. It is an (R, +)-principal bundle.
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80f25 | GODOY ET AL.

The right action p : P X R — P is given by p(u, t) = v, (t). The line bundle P;, = o (V) > U
has two distinguished sections: o ([y]) = y/(0) if y(0) = q... The holonomy makes sense only for
periodic points and it is not associated with a particular connection, but rather with a combina-
tion of the Levi-Civita connection on M, and the flat connections induced by o, along the shortest
segments joining ¢} with £} ;.

Although these results only provide the first steps toward understanding the dynamical prop-
erties of the outer billiard map B in hyperbolic space, they also hint at the complexity and richness
of the billiard system. Most of the natural dynamical questions for the hyperbolic outer billiard
map, for example, regarding the existence of periodic orbits, remain open.

2 | PRELIMINARIES
2.1 | The outer billiard map in the spherical case

We have presented in Subsection 1.3 the outer billiard map associated with S for x = 0,1, —1. The
construction is clear for ¥ = 0, —1. Now we return to the spherical case. Before proving Proposi-
tion 1.1, we comment on the set C that we cut out of the billiard table; see (2). We define the map
¥ : S — C as follows: Given p € S, let 3 (p) be the oriented great circle obtained by intersecting
S3 with the subspace T,S C R* (we identify T,R* with R* in the usual way), endowed with the
orientation induced by that of T ,S. Equivalently, and without using the immersion of the sphere
in R*, for any positively oriented orthonormal basis {u, v} of T S, P (p) = [C p] , where

Cp(s) = Expp(g(coss u +sins v)) & cossu+sinsv.

With this notation, C is the image of 1. Notice that if ¢ is an oriented circle in C, then —c is also in
C.

Proof of Proposition 1.1. We verify that the same procedure as for the Euclidean and hyperbolic
spaces applies here. By [6], S is contained in a hemisphere, say, the northern hemisphere Si.

Let IT denote the central projection from Sfr to the tangent plane R? at the north pole (the so-
called Beltrami map). It preserves strict convexity, as half great spheres in Sfr are mapped to affine
2-planes and the order of contact is maintained by diffeomorphisms.

Consider a great circle ¢ € G; — {oriented great circles intersecting S}. If ¢ is not contained in
the equator S* = 3S7, then I1(c) is an oriented affine line # in R*. Now, as shown in Subsection 1.3
for x = 0, there exist exactly two affine planes P, containing # and tangent to I1(S), and IT"*(P,)
are the desired great spheres containing ¢ and tangent to S at points p, . Notice that B(c) € U,
that is, B(c) is disjoint from S, as this holds for the lines in R* corresponding to ¢ and B(c).

Now suppose that c is contained entirely in the equator S2. As S is a positive distance from the
equator S2, any sufficiently small perturbation of the latter does not intersect S. In particular, we
may perturb the equator to a great sphere that does not contain the circle c and argue as in the
above paragraph.

Let d be the distance from p, to c. If d < 7 /2, there exists a unique point q, € c realizing the
distance, and the outer billiard map is well-defined. If d = 7 /2, then ¢ belongs to C, and so it is
not in V. The construction continues as in the Euclidean and hyperbolic cases. O

d ‘9 $TOT ‘0SLLEIYT

sy woxy

:SdY) SUONIPUOD) PUT SWA L A1 998 “[$707/80/LT] UO ATIqT QUITUQ Ao[1 A\ “KNSIOATUN UOIAUHG AQ 77671 SWIHTT 11°01/10p /w0 Ko Teiqrouy

fopm:

o5uadFT SUOWWI)) aAER1) A[qeandde o) AG PAUIAOS IE SA[ITE VO $a5N JO AN 40] ATEIqIT SUIUQ AJ[IAL O (SUOY



OUTER BILLIARDS IN THE SPACE OF ORIENTED GEODESICS | 9 of 25

‘We observe that if g is any point of ¢ € C, then the parallel transport of c along the geodesic
joining g with p, between 0 and 7 is a rotation by 7. So the image of c is the same great circle
with the opposite orientation (it would hold B(c) = —c, had we not excluded C from the billiard
table).

2.2 | The Jacobi fields of the three-dimensional space forms

Here we provide a brief review of Jacobi fields, which arise naturally when studying variations
of geodesics, and thus play a central role in the proofs of the main theorems. A more thorough
treatment can be found in any standard Riemannian geometry text, for example, [5].

Let M be a complete Riemannian manifold and let y be a unit speed geodesic of M. A Jacobi
field J along y is by definition a vector field along y arising via a variation of geodesics as follows:
Letd >0and ¢ : RX(—8,5) —» M be a smooth map such that r —» ¢(r, s) is a geodesic for each
s € (=6, 8) and such that ¢(r,0) = y(r) for all r. Then

Jr) = 5| $(r.s).

Let (M,, {, ),.) denote the three-dimensional complete simply connected manifold of constant
sectional curvature k. The curvature tensor of M, is given by

Rk(x1 Y)Z = K((Z7x>7<y - (Z7y>1cx)’ (3)

and the Jacobi fields along a geodesic y and orthogonal to y” are exactly the vector fields J along
y satisfying (J,y’) =0and

2
=+ =0, (4)
where % is the covariant derivative associated with the Levi Civita connection of M, . Following
a common abuse of notation, given a smooth vector field J along a curve y, we write J' = % if

there is no danger of confusion.

A Jacobi field J along y is determined by the values J(0) and J'(0) in the following way. Suppose
that a Jacobi field J along y satisfies J(0) = u + ay’(0) and J'(0) = v + by’(0) where a,b € R and
u,v € y'+. Let U and V be the parallel vector fields along y with U(0) = u and V(0) = v. Then

J(r) = ¢ (NU@T) + 5,V () + (a + rb)y' (1), )

where

c,(r) =cosr, co(r)=1, c_;(r)=coshr,

s,(r) =sinr, sy(r)=r, s_;(r)=sinhr.

Note that s/, = ¢, and ¢, = —xs, .. Equation (5) will allow us to perform most computations without
having to resort to coordinates of M, or a particular model of it.

Next we see that the tangent vectors to the space G, at an oriented geodesic [y ] may be identified
with Jacobi fields along y. Let y be a complete unit speed geodesic of M, and let 33, be the space
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of all Jacobi fields along y that are orthogonal to y’. There is a canonical isomorphism
. d
Ty . Sy - T[y]g;{a Ty(J) = a 0[y5]7 (6)
where y, is any variation of y by unit speed geodesics associated with J. Moreover, if J is the
Jacobi field associated with a variation ¢ : R X (=8,8) — M, of y by unit speed geodesics (J is

not necessarily orthogonal to y’), then

d
Ty(JN) = @

NEX] @

where JN(r) = J(r) — (J(r), 7' (r)),¥' (r) (see [19, section 2] or [24]).

We offer one simple but useful application of the isomorphism T, . Let S be a smooth, closed,
strictly convex surface in M,, and let M C G, be the collection of oriented geodesics that are
tangent to S.

Lemma 2.1. The isomorphism T, identifies {K €3, | K(0) TS } with the tangent space
Ty, M.
]

Proof. 1t suffices to show that T, M c T,({K € §, | K(0) € TS }), as both spaces have
dimension 3. Let X € T|,,;M and let ¢ be a smooth curve on M (defined on an interval I con-
taining 0) such that ¢(0) = [y] and ¢/(0) = X. For each s € I, let [y,] € M such that y,(0) € S and
[ys] = c(s). By (7), X = T, (J), where J is given by

d

1) = &| 7.
Nowy’(0) € T, )S,and ass — y(0) isasmooth curve on S,J(0) = % o 75(0) € T ()S. Therefore,
JN(0) = J(0) = (J(0),7'(0)),,7' (0) € TS, as desired. O

2.3 | Kihler structures on the spaces of oriented geodesics

In Subsection 1.2, we introduced the two canonical Kéhler structures (gg, J) and (gx, J ) on the
space of oriented geodesics G, ., for ¥ = 1, —1, and also the Kéhler structure ( 9, T ) and the Poisson
bivector field P on G,. Next we present the precise definitions in terms of the isomorphism (6).
We also include the expressions of the associated fundamental forms (see [1, 8, 11, 14, 23, 24]).

Given ¢ = [y] € G,, the linear complex structure J, on §, = T,G,, which was described
geometrically in Subsection 1.2, is defined by

J,()=y' xJ, for T€F,=T,G, (8)
and the square norms of the metrics g, and g are given by

oD = xI,T), and g, J) =12 +xlJ|2
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Notice that by (4) the right-hand sides are constant functions, so the left-hand sides are well-
defined. By polarization, we have

29, (I,))=IxJ +IxI',y"y, forx=-1,0,1; 9)
g (L) =T, +x(I', "), forx=+l. (10)

The second one is the push down onto G, of the left-invariant pseudo-Riemannian metric on the
Lie group Isoy(M,.) given at the identity by a multiple of the Killing form. It is Riemannian for
x = 1 and split for x = —1. [24, Proposition 4] provides a geometric interpretation for the metrics
gy and gg in the case ¥ = —1, with characterizations of space-like, time-like and null curves in
G_, in both cases.

The associated fundamental forms are given by

W (I,1) = g (T, D) = (I D), = (LI, (1)
wp(I,T) = ge(TD),T) = A XT +xl" X', 7). (12)

We comment that p*w, is a constant multiple of Q, where p : T'M, — G, v — [y,] is the
canonical submersion and Q is the restriction to T*M,, of the canonical symplectic form on TM,,
(identified with the cotangent bundle T*M, through the Riemannian metric).

The bilinear form gy degenerates for x = 0, but we have the canonical Poisson structure on G,
well-defined at each # by

PE&)=JANTJ\),

where J is any parallel Jacobi field along #, orthogonal to it, with ||J|| = 1. Although no such sec-
tion? — J, € TG, exists globally (otherwise, it would induce a unit vector field on the 2-sphere),
P is easily seen to be well-defined and smooth; the Schouten bracket [P, P] vanishes, as the dis-
tribution on G, induced by P is integrable. In fact, the symplectic leaves are the submanifolds of
parallel lines.

3 | THE SMOOTHNESS OF THE OUTER BILLIARD MAP

Here we establish notation and prove various technical lemmas, working toward the proof of
Theorem 1.2. Let S be a closed smooth surface in M,,. Let n be the inward-pointing unit normal
vector field on S. The complex structure i on S is defined by iz = n(p) X zforz € T ,S.

Given w € T'M,,, we denote by y,, the unique geodesic in M, with initial velocity w. For x =
0,—1,let T = o0, and for x = 1, let T = 7 /2. Define

F: MX(-T,T)=T'Sx (-T,T) = G,, F(u,t) = [y,,],

where u, is the parallel transport on M, of u along y;, between 0 and ¢; see Figure 5. Let F and
F_ denote the restrictions of F to T'S X (0, T) and T'S x (=T, 0), respectively.
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Ut

|

Yiu (t)
FIGURE 5 The parallel transport of u along y;, between 0 and ¢.

By the construction in Subsection 1.3, the outer billiard map B : U" — U is equal to the
composition

B=F_ ogo(F_)™", (13)

where g : T'S X (=T,0) = T'S x (0, T) is defined by g(u, t) = (u, —t). Clearly, F is a smooth func-
tion and g is a diffeomorphism, and so the proof of Theorem 1.2 reduces to showing that F, are
diffeomorphisms. As they are bijections, we must show that

(dF) s Ty T'S X TR = Tpg, G, = 3y,

is nonsingular forallu € T'S and 0 # |t| < T. To verify this, we will compute the differential with
respect to certain canonical bases that we introduce next.

Given an oriented geodesic £ € M, there are three perturbations of # that stay in M: one that
skates along S in the direction of #, one that parallel transports # along S in the direction orthog-
onal to 7, and one that rotates #, maintaining the point of tangency. These three perturbations
may be thought of as generating the tangent space T, M. We formalize this intuitive idea below,
via the natural identification of M with T'S.

In what follows, we fixu € T ;S and ¢t # 0 and denote v = iu.

Given a unit tangent vector z € T'S, we call o, the geodesic of S with initial velocity z. Let
7 : TS — S be the canonical projection and let £, : T, TS — TS be the connection operator,
which is well-defined as follows: Given £ € T,/ TS, let U : (—8,8) — TS be a smooth curve with
U (0) = u and initial velocity &. Then K, (§) = % (0), where % is the covariant derivative along
the foot-point curve oU.

Lemma3.1. Form =1,2,3,letw,, : R — TS be the curve defined by
w(s) = a;(s), w,(s) = ‘rg”s(u), ws(s) = cossu +sins v, (14)

where ‘L'g’s denotes the parallel transport on S along o between 0 and s. Then {w{(O), w;(O), wg(O)}

is a basis of T, T'S.
Proof. We claim that under the linear isomorphism

@y T,IS 5> T,SXT,S, 9,8 = (dm,£ K,8)
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OUTER BILLIARDS IN THE SPACE OF ORIENTED GEODESICS | 13 of 25

(see, for instance, [3]), w{(O), wé(O), wg(O) are mapped, respectively, to the linearly independent
vectors (u, 0), (v, 0) and (0, v). We compute

dr, (w](0) = %

S

Fwi(s) = | 0,5 = u,

and, by definition of KC,,,

D

K, Wi(0) = 7| wi(s) = T

S

0a;(s) =0.
Hence, gou(wg(o)) = (u,0). The other cases are similar. O

We consider the basis B, = {W, W,, W;, W,}of T, T'S x T,R, with

d

W,, =W, (0),0), form=1,23 and W,= (0, =,

): (15)

where w,, are the curves defined in (14). Now, the image of W, by (dF),, ) is a tangent vector to

G, at F (u,t), and so by (6), it corresponds to a Jacobi field along Yu, in 3;/ , which we call J,,,. We
ug

state this in the following proposition, whose proof is straightforward from the definitions.

Proposition 3.2. Form = 1,...,4 we have
(dF)(u,t)(Wm) = Tyut ()

where J,,, is the normal component of the Jacobi field arising from the geodesic variations of y,, given
by
(S! I") = y(wm(s))t (l")

form =1,2,3 and (s,r) — Yug,s (r) form = 4.
We need J,,, explicitly. We consider the parameterized surface
fm 1 R* =M, f(rs)= Yiw,,s)()-
In particular, f,,(r,0) = y,(r). We write
0, = mwow,, = f,,(0,-),

soo, = 0,,0, = 0,,and o; = p. Now we can describe the initial conditions of J,, in terms of some
vector fields along f,,.

Proposition 3.3. For m = 1,2, 3, we have
D
Tn©) = K = Kp(Ott)2e, and  1,0) = 2| Z,,(t,9),
where K, is the Jacobi vector field along y,, associated with the geodesic variation f,,, that is,

Kp(r) = | Sm(r5),
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and Z,,, is the vector field along the surface f,, obtained by parallel transporting w,,(s) on M, along
the geodesic y;,, (s) from O tor, that is,

Yiwp, (s)

Z,(r,s) = Po,r w,, ().

Also,
J;0)=v, and T (0)=0,

where v, is the parallel transport on M, of v between 0 and t along y,,.

Proof. LetJ,, (r) = Y(w,, (s, - BY (D, T (r) = (T (r)N. We compute

da

ds|o
d

Tn(0) = ‘ym%@»x0> ’nwm@ﬂﬂ nguxus)::Km<o.

Then J,, (0) is as stated. Also, J] (0) =J/ (0), as the geodesics in the variation have unit speed.
Now,

d

J’()_ 6r

K@= 2| 2| )= 2| @n) = 2| 2009

a
63

The validity of the remaining assertions, involving J,, follows from similar (simpler)
arguments. ]

We require explicit formulae for K,,, and % |0 Z,,(t,s), which are vector fields along y,,. In the

next three lemmas we compute their coordinates with respect to the basis {u,, v,,n,} of T, . \M,,
where u,, v, and n, are obtained by parallel transporting u, v, and n(p) along y,,, between 0 and r.
Given p € S, the shape operator A, : T,,S — T ,S is defined by

Ap(x) =—-V,n, (16)

where V denotes the Levi-Civita connection of M, . In what follows we assume that A, is positive
definite at each p € S (that is, S is quadratically convex).
We consider the matrix of A, with respect to the orthonormal basis {u, v} and call b;; its entries,

. b b .
that is, [AP]{u,U} = <bz bZ)’Wlth by, = by.

Lemma 3.4. For m = 1,2, 3, the Jacobi vector field K,, along v, is given by

Ky (r) = ¢ (ru, + by 5,.(r)n,,
K,(r) = v, + bys(r)n,, a7
Ky(r) = =5, (.

Proof. We compute the initial values of K,,, and K/, and use (5). We write down the details for
m = 1. The other cases are similar. We compute

Ki(0) = | /10.5)= E| o1(s) = u
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OUTER BILLIARDS IN THE SPACE OF ORIENTED GEODESICS 15 of 25

and

K|(0) = 2 (rno)=2

f1@r,8) = —s iw,(s).

oar

We compute the coordinates of K{ (0) with respect to the orthonormal basis {u, v, n(p)} of T, M,.
To obtain (K{ 0), n( p))K, we observe that (iw, (s), n(c,(s))), = 0 for all s. Hence,

(2] jwi©n@) =(in 2| n@6)) =—©.Vun), = (0.4,w), = b

In the same way, (K}(0),u) = 0= (K/(0),v) . Therefore, K}(0) = by;n(p). Notice that K,,, is
not necessarily orthogonal to /. [

For the sake of simplicity of notation, we denote by Y,,, (r) = D m(r 5).
Lemma 3.5. For m = 1,2, 3, the vector field Y, along y,, is given by
Y:(r) = xs(r)v, + byyn,, Yy(r) =bpn,  Y3(r) =c (N,

Before proving the lemma, we introduce the vector field N,, along the surface f,, obtained by
parallel transporting n(c,,(s)) on M, along the geodesic y;,, (5 from 0 to r, that is,

N, (r,s) = Py " n(0,,(s)).
Lemma 3.6. Let¢,, (r) = <%‘0Nm(r, s), ur>K. Then{, = —by1, ¢, = —byy, and {3 = 0.
Proof. We compute
$ = 5( 2|,

(218

= (R (v, K (r)n,, Up), = K<<nr’ Ur>me(r) — (1, K, (1)), Uy ur>,< =

- (0D
Nm(}", S)’ ur>K - <dr ds|o

(r,s) + R, (af’"(r 0), 2, o)) (r,O),ur>K

N, (r,s), ur>K

oarN

by (3). Hence, ¢, is constant, equal to

(@ = (2|

Now, the assertions follow from the definition of ,, and the values of the entries of the matrix

[AP]{u,U}' I:‘

N,,(0,5), u0> <Vg;n(0)n,u>7{ = —(Ap(o;n(o)),u>K.

Proof of Lemma 3.5. Observe that (Z,,,Z,,).., {Z,,,N,,), and (Z,,, ‘g—r’")x are constant functions
of the second variable s. Hence, we can compute the components Y,,(r) with respect to the basis
{u,,v,,n}of T, )M, as follows:

)t} = ( | Znr..2,(r,0)) =0
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Also,

Y 00), = (2

_ D d
- <ur’dr ds

- _ D
OZm(ra S)a Ur>K - <Zm(r7 0)’ ds

/
Oyiwm(s) (V)>K

By Lemma 3.4, we have
ks, (r), ifm=1,
—(ur,K;n(r)>K =30, ifm =2,

¢ (r), ifm=3.

In the same way,

V) = (2] Znr 9N, 0)) = ~(2,.0) 2| Nu(ri9)) = =6,
with ¢, as in Lemma 3.6. O
With the computational lemmas above, we can present the proof of Theorem 1.2.
Proof of Theorem 1.2. To complete the proof of Theorem 1.2, it remains to show that
(dF) : T T'S X TR = T Gy = ),
is nonsingular for all u € T'S and 0 # |t| < T. To verify this, we compute the matrix of (dF D)

with respect to the bases B, (given in (15)) of T, T'S X T,R and &, = {E!,...,E}} of F, , where
ut
E! are the Jacobi fields along Yu, Whose initial conditions are

E{(0)=0, E{0)=n, E\(0)=0, EL\0)=u,

(18)
(EY(© =n, (EYO=0, (EY©O=uv, (EY(0)=0.
By Proposition 3.3 and Lemmas 3.4 and 3.5, we have
by s,.(t)n,, m=1, ks, (v, + byyn, m=1,
v, + b,,s.(n, m=2, b, n,, m=2,
]m(O) — t 22 K( ) t and J;n(o) — 1274
, m =3, c, (Do, m =3,
Us, m=4, 0, m=4.
Hence, calling C, the matrix of (dF), ) with respect to the bases B, and &;, we obtain that
byys,.(£)  Dbyys, (¢ 0 o0
— 21 K( ) 22 K( ) ) (19)
xS, (£) 0 () 0
0 1 0 1
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OUTER BILLIARDS IN THE SPACE OF ORIENTED GEODESICS | 17 of 25

Therefore, det C, = c,(t)s, ()b, where b = det (A,,). As, by hypothesis, 0 # |¢| < T and [A, ]y,
is definite, we have that C, is nonsingular. O

Proof of Proposition 1.3. By the reflection invariance, B preserves the oriented lines orthogonal to
the plane P = {(x,y, z) | y = 0} and induces in the obvious manner the outer billiard map B on P
determined by the closed strictly convex curve y with image S n P, which includes the graph of
f. Accordingly, we identify P and the set of oriented lines orthogonal to it with R

Given a small s > 0, we next compute B (—1,s). Let #; be the straight line passing through
(—1,s) tangent to y at (x,, f (x;)), with —1 < x; < 0. Then ¢ can be parameterized by t — [ (¢) =
(g, f () +t (1, f (xs)) and there exists a unique £ such that [ (¢t,) = (=1, s). We have

Xo=0, x,+t,=-1 and f(x,)+tf'(x,)=s. (20)
Hence,

E‘(_1’5) = ls(_[s) = (xs - [s’f(xs) - tsf/(xs)) = (sz + 1’2f(xs) - S)-

Suppose that B is smooth, then so are s — x, and s > t,. We compute the right derivative at s = 0
of both sides of the last equation in (20) and obtain

0= f(0)x) + tof'(0) + tof " (O)xy =1,

a contradiction. O

4 | THE KAHLER FORMULATION OF THE OUTER BILLIARD MAP

To prove Theorem 1.4, we need the presentation of G, as a symmetric homogeneous space. The
details of the following description can be found, for instance, in [11]. For x = +1, we consider the
standard presentation of M, as a submanifold of R*: If {e,, e;, e,, e5} is the canonical basis of R*,
then M, is the connected component of e, of the set

{(t,x,y,2) eR* | xt* + X* + y* + 2° = x}.

Let G, be the identity component of the isometry group of M,, that is, G; = SO, and G_; =
O, (1, 3). The group G, acts smoothly and transitively on G, as follows: g - [y] = [goy]. Let y, be
the geodesic in M, with y,(0) = ¢, and initial velocity e; € T, M, and let H, be the stabilizer
group of [y,] in G,. Then there exists a diffeomorphism ¢ : G, /H, — G,, given by ¢(¢H,) =
g- [J/o]~

The Killing form of Lie (G, ) provides G, with a bi-invariant metric and thus there exists a
unique pseudo-Riemannian metric gg on G, /H, such that the canonical projection 7 : G, —
G,./H, is a pseudo-Riemannian submersion. The diffeomorphism ¢ turns out to be an isometry
onto G, endowed with a constant multiple of the metric g defined in (10).

Besides, it is well-known that (G,./H,, jx) is a pseudo-Riemannian symmetric space. In par-
ticular, if Lie (G,) = Lie (H,) @ p, is the Cartan decomposition determined by [y,], then for any
Z € p, the curve t — exp (tZ) H,, is a geodesic of G, /H,.
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Proof of Theorem 1.4. To see that B=B’, as M & TS, we only need to show that for u € TII)S,

the curve I'(t) =: [yu[] is the geodesic in (G,, gr) with initial velocity Jv(u), where v(u) is the
outward-pointing normal vector of M at [y, ]. First we verify that I'(0) = Jv(u) and afterward
that I is a geodesic of G,..

The initial velocity of I corresponds, via the isomorphism T,, of (6), with the Jacobi field along
¥, given by

() = 3| 70, )

A straightforward computation shows that J is determined by the conditions J(0) = iuand J/(0) =
0.

On the other hand, letI € Syu be the Jacobi field given by the initial conditions I(0) = —n(p)
and I'(0) = 0. We claim that after the identification with Tiy 16 1 corresponds to the unit
outward-pointing normal vector field v on M. Indeed,

g (I,D) = (LI, + (I, ), = (=1)°|n(p)]; = 1,
and forK € Tpy M, K(0) e T, (0)S by Lemma 2.1, and so

gk, K) = —(n(p),K(0)), = 0.

Also, v(u) points to U” because n is the inward-pointing unit normal vector field of S.

Now, by the definition of the complex structure J in (8), the identity Ty, J(Vb,u D= I'’(0) trans-
lates into J = y], x I, which holds because J(0) = iu = n(p) X u = y,(0) X I(0) and J'(0) = 0 =
I'(0).

Next we show that I is a geodesic. By homogeneity, we may suppose that p = ¢, the inward-
pointing unit normal vector of S at e, ise; and u = e;. Hence, iu = e, andu, = ¢; € T, ;) M, where
y(@) = ¢, (e + s, (De,.

Let Z be the linear transformation of R* defined by Z(e,) = e,, Z(e,) = —ke, and Z(e;) =
Z(es) = 0. It is easy to verify that Z € Lie(G,) and exp(tZ) [y, ] = [yut] for all t. Now, one can

see in the preliminaries of [11] (page 752) that Z € p,, and so I' is a geodesic by the properties of
symmetric spaces presented above. O

Proof of Proposition 1.5. Suppose that £ = [y, ] with y,, (0) = p € S. The Jacobi field I along y,,
with I (0) = 0 and I’ (0) = iu spans the normal space to T,.M and is null (see (9)). By Lemma 2.1,
I is also tangent to M at £ (this shows, in particular, that g, degenerates on T, M). Now,

(JI)0)=0 and (JI)'(0)=n,
(where n is the inward-pointing unit normal vector field of S, as before). Again by Lemma 2.1,
JIeT, M.

The geodesicT'in G, with ' (0) = # and I (0) = JI consists of oriented geodesics in M,, rotating
around p in the totally geodesic surface orthogonal to S containing the image of y,,, that is,

NOE [J/cosl u+sint np]
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(this can be verified with computations similar to those we made at the end of the proof of the
theorem above). Hence, for each ¢, the oriented geodesic I' (¢) intersects S and so, the image of T
is disjoint from V. As any normal N is multiple of I, the proof concludes. O

5 | THE SYMPLECTIC PROPERTIES OF THE OUTER BILLIARD MAP

Proof of Theorem 1.6(a). As in (13), we write
B = F+ogoF:1.

Given £ € U', suppose that £ = F_(u, —t) for some 0 < t < T. We compute the matrix of (dB),
with respect to the canonical bases £_; and &, of §, and 3§, asin (18), respectively, obtaining
u_g ug

-1
[(dB)f]é;,,st = [(dF)(uJ)]Bt,gt [dg(u,—t)]ls_tﬁt<[(dF)(u,—t)]B_t,g_t)

(21)
_CIO(C)_l_Roz
o rR)"Y “\bD R/

1
where C, is as in (19), I is the (2 X 2)-identity matrix, R = <0 01> and

5 [ Sx(D)xbsyy  xbyy
D= E —b _ by ’
21 5:(0)

— 2 2
(dB),(E;') =E! + Esk(t)xbzzEg - Emef,

with b = det (Ap). Thus,

_ 2 2b
(dB),(E;") = ~E} + jxby, Bl — 3 2L E,,
(dB),(E;')=E; and  (dB),(E;') =-E,.

Recall from (12) the definition of the symplectic form wy. Straightforward computations yield
that

<Elf(0) xE;(O),uz>K = <(Ei‘)'(0) x <E§.>,(O), ut> =0

forall1 i< j < 3, except for

<E;(O) XEZ(O),U[%{ = <(Ei)/(0) X (E;)’(O), u[>x =-1.

[0 »p
[wK]S[_<_p 02>

Hence,
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with p = <g (1)> . We observe that [w] e, = [wk] ¢,- Hence, calling H the matrix in (21), we have
to check that

HT[CUK]S,H = [wK]S_l

The left-hand side equals

—DTpR+RpD p
—p 0,

and

0 -b
—D"pR +RoD = Z(1 -2 ),
a by 0

which is the zero matrix because ¥ = +1, as desired. O

Proof of Theorem 1.6(b). Following the computations in the proof of part (a), we have

b= (o %)

where j = 1 <_01 (1)> and [w, | £, = [0y ] ¢, Further computations yield

2

i —®jD)’
H'[w,],. H = < _ _ ) (22)
‘ RjD J

. -b —by1 /s, (t) . .

RiD = 1 21 11/ 9% d he h h
Now, Rj - <S;< (t)xby, xb., and by, /s, (t) # 0 because by the hypothesis S is
quadratically convex. Therefore, RjD # 0, and the expression (22) is not equal to [cux] e - O

—t

We conclude this section with the following proposition, which relates Theorem 1.6 with plane
hyperbolic outer billiards [30] and supports the fact that wy (in contrast with w, ) is the natural
symplectic form in our context.

Proposition 5.1. Let H? be a totally geodesic hyperbolic plane in hyperbolic space.

(a) Let v be a unit normal vector field on H* and let f : H> - G_,, f(p) = [Vy(p))- Then f*wy is
the area form on H?.

(b) Let S be a smooth, closed, quadratically convex surface in H? that is invariant by the reflection
with respect to H?. Then the outer billiard map on G_, associated with S preserves the oriented
lines orthogonal to H? and induces in the obvious manner the outer billiard map on H? deter-
mined by the closed strictly convex curve with image S N H. This plane outer billiard preserves
the area form on H>.
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Proof. For part (a), let p € H? and let {z,, z,} be a positively oriented (with respect to the orien-
tation on H? determined by v) orthonormal basis of T,H 2. For i = 1,2, let J; be the Jacobi field
along y,,) satisfying J;(0) = z; and J L’ (0) = 0. Using (12) and that H? is totally geodesic we have
that

(ffor),y(21,2)) = wx(df (1), df ,(2,)) = w1, T5) = 1.

Part (b) is an immediate consequence of part (a) and Theorem 1.6. O

6 | DYNAMICS OF THE OUTER BILLIARD MAPON G_,

Before proving Proposition 1.8, we comment on the Klein model of hyperbolic space, that is, the
open ball H centered at the origin with radius 1, where the trajectories of geodesics are the inter-
sections of Euclidean straight lines with the ball. The intersections of H with Euclidean planes
are totally geodesic hyperbolic planes.

We recall the following well-known constructions on H (see, for instance, [4, chapter 6]). For
an oriented line # in H we call #* and ¢~ its forward and backward ideal end points in the two
sphere 0H.

Let £, and ¢, be two coplanar oriented lines in H such that the corresponding extensions to
Euclidean straight lines intersect in the complement of the closure of . In particular, £, and ¢,
do not intersect and are not asymptotic and hence there exists the shortest segment joining them
with respect to the hyperbolic metric; we call it (¢}, £5).

The hyperbolic midpoint of s(#;, #,) is the intersection of the Euclidean segments joining #;
with 77 and 7| with £, or joining #; with #; and ¢ with ¢, depending on the orientation of
the lines.

Suppose that #; and ¢, lie in the plane P, let D = P N H, and let C be the boundary of D. We
describe the construction of the segment s(#, ¢,) in the case when one of the lines, say 7}, is a
diameter in D. Let p be the intersection of the tangent lines to C through the ideal end points f;
and #5 . Then s(¢;,7,) is the segment that joins #; and £, and is contained in the straight line
through p perpendicular to #; (the point p is called the pole of #, in the plane P).

We recall the formula for the hyperbolic distance between a point in H and the midpoint of any
chord containing it: Let X, Y be two distinct points in S? = H and let C be the midpoint of the
segment joining X and Y, thatis, C = %(X +7Y). Then, forany t € (0,1),

d(C, C+t %) = arctanht, (23)

where d is the hyperbolic distance in H (it is not difficult to deduce the expression from the second
displayed formula of [4, Proposition 6.2]).

As quadratic contact is invariant by diffeomorphisms, a quadratically convex surface of R* con-
tained in H is also quadratically convex with the hyperbolic metric. By abuse of notation, we
describe an oriented geodesic # in H by the straight Euclidean line p + Ru containing #, with
P € H and u a unit vector giving the orientation.

Proof of Proposition 1.8. We use the Klein model of hyperbolic space. Let £ = Re; and £y =
R(sin 6 e, + cos 6 e;). We construct a surface S contained in the region x > 0,y > 0 of H whose
associated outer billiard map B satisfies B*(¢) = #,. We fixa real number r in the interval (sin 6, 1).
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FIGURE 6 Elements for the construction of S.

Let 7, =re; + Re; and £, = re, + Res, and let p = (x,,0,0) and q = (0, y,, z;) be the hyperbolic
midpoints between ¢ and ¢, and between ¢ and ¢,, respectively, (see Figure 6).

There exists a smooth, closed, quadratically convex surface S contained in H and tangent to
the vertical planes y = 0,y + x = r and x = 0, at the points p, (r/2,r/2,0) and g, respectively. In
fact, consider a quadratically convex compact surface S’ tangent to those planes at the points p,
(r/2,r/2,0) and (0, y,, 0), respectively, such that the absolute value of the height function z|¢ is
bounded by ¢ for some ¢ > 0. Let T be the unique affine transformation of R? fixing the vertical
plane through p and (r/2,r/2,0) and sending (0, y,,0)to g. Then S =T (S’ ) satisfies the desired
conditions (in particular, it preserves the vertical planes and the quadratical contact), provided
that ¢ is small enough. By the properties of S, we have that B(¢) = ¢,, B*(¢) = ¢, and B*(¢) =
Co. O

Proof of Proposition 1.9. As in the proof of Proposition 1.8, we use the Klein model H for hyper-
bolic space. We write R*> = C X R. Given 0 < a < % <r,<1landh, = 4/1—r2, we consider the
straight lines

Yo(t) = (£,0), 710 = + (1 - ai),0),
72(8) = (5 + (1 —ai), hy), y5(6) = (&, hy).

For k = 0,1, 2,3, let #) be the corresponding oriented geodesic in H and set £, = ¢,,. Notice
that 7, and ¢, are coplanar for any k = 0,1, 2, 3. We call P, the hyperbolic plane containing ¢,
and ¢}, ;. As0 < 2a < 1, thelines ¢} and £, are disjoint and not asymptotic, and so the shortest
segment o} joining them is well-defined.

‘We will show the existence of a smooth, closed, quadratically convex surface S in H not inter-
secting 7, such that the associated billiard map B satisfies B¥(¢,) = ¢ for k =0, ...,4 and its
holonomy at £, is not trivial.

We make computations for general values of r and h = V1 —r2, with 0 < a < % <r<1,in
order to deal simultaneously with £, and #, on the one hand (case r = 1) and #, and ¢ on the
other (case r = r,), as the former lie in a disc of radius 1 at height 0 and the latter in a disc of radius
r, at height h,.

The end points of #; and ¢, are given by

fi = (Zs(l)’ O) and f; = (Zs(ro)’ hO)a
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FIGURE 7 Elements for the construction of S.

for € = +1, where z.(r) = % +t.(r) (1 — ai), with t_(r) < t,.(r) being the solutions of the equa-

2
tion 2 + <% - at> =r2. As ¢, and ¢, are parallel, the end points of o, are the respective

midpoints, whose (common) component in C is
2, = 3(2,(0) +2_(D) = 3 (2.(r)) + 2_(r,)) = m(a +i).

Hence, q.(¢;) = (z,,0) and q_(¢,) = (2,, h,). Similarly, q_(¢,,) = (0,0) and g, (¢3) = (0, h,).
Let p; = (w(1),0) and p, = (w(r,), h,) be the poles of the line #, in the plane C X {0} and of

the line 7, in the plane C X {h,}, respectively. That is, w(r) is the intersection of the lines tangent

to the circle of radius r in C at the points z_(r) and z (r), in the horizontal plane at height h, for

h =0, h, (see Figure 7). Using the construction of the shortest segment joining two oriented lines,

the segment o, is contained in the line perpendicular to #; passing through (w (r,) , h,), that s, the

line (Rew (r,) + Ri, h,). Putting r = 1, we get that o, is contained in the line (Re w (1) + Ri, 0).
We have that w(r) = z(r) + s,(r)iz,.(r), where s, is the solution of the equation

z, (r) + iz, (r) = z_(r) — siz_(r).

A straightforward computation yields Re w(r) = 2ar?.
Now, computing the intersections of the remaining o) with the lines #;, we obtain the rest of

the g,.(¢;):
q4.(£o) = (Rew(1),0) = 2(a,0), q_(¢)) = 2<a + z(i - a2>,0>
q. (&) = (Z(aro + i(% - a2r§>>,ho>, q_(¢3) = (Rew(r,), h,) = (2ar, h,).

As in Proposition 1.8, for each a > 0 there exists a quadratically convex surface S, in H tangent
to the plane P, at the midpoint of o} for any k = 0, ..., 3. The associated billiard map B, satisfies
(B,)* (¢,) = ¢, and its holonomy at #, turns out to be

H(@) =Y, (~D d(g.(£,),q_(£).
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Particularizingr, = h, =1/ V2, using (23) we obtain that
H(a) = arctanh(2a) — a1rctanh<a\/4a2 + 3) + arctamh(a\/Za2 + 1) — arctanh(a).

We compute H(0) = 0 and H’(0) # 0. Therefore, for sufficiently small a > 0, the holonomy of
B, at ¢, does not vanish. O

ACKNOWLEDGMENTS

This work was supported by Consejo Nacional de Investigaciones Cientificas y Técnicas and
Secretaria de Ciencia y Técnica de la Universidad Nacional de Cérdoba. We are very grateful to
the referee for the careful reading of the paper and the detailed suggestions. The second author
thanks the hospitality of CIEM-FAMAF during his visit.

JOURNAL INFORMATION

The Journal of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

ORCID
Marcos Salvai ® https://orcid.org/0000-0001-9900-7752

REFERENCES

1. D.V. Alekseevsky, B. Guilfoyle, and W. Klingenberg, On the geometry of spaces of oriented geodesics, Ann. Glob.
Anal. Geom. 40 (2011), 389-409.
2. H. Anciaux, Spaces of geodesics of pseudo-Riemannian space forms and normal congruences of hypersurfaces,
Trans. Amer. Math. Soc. 366 (2014), 2699-2718.
3. A. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihre Grenzgebiete, vol.
93, Springer, Berlin-New York, 1978.
4. M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen
Wissenschaften, vol. 319, Springer, Berlin—-New York, 1999.
5. M. do Carmo, Riemannian geometry, Springer, Berlin, 1992.
6. M. P. do Carmo and F. W. Warner, Rigidity and convexity of hypersurfaces in spheres, J. Diff. Geom. 4 (1970),
133-144.
7. F.Dogru and S. Tabachnikov, Dual billiards, Math. Intelligencer 27 (2005), 18-25.
8. N. Georgiou and B. Guilfoyle, On the space of oriented geodesics of hyperbolic 3-space, Rocky Mountain J. Math.
40 (2010), 1183-1219.
9. N. Georgiou and B. Guilfoyle, Hopf hypersurfaces in spaces of oriented geodesics, J. Geom. 108 (2017), 1129-1135.
10. H. Gluck and F. Warner, Great circle fibrations of the three-sphere, Duke Math. J. 50 (1983), 107-132.
11. Y. Godoy and M. Salvai, The magnetic flow on the manifold of oriented geodesics of a three-dimensional space
form, Osaka J. Math. 50 (2013), 749-763.
12. Y. Godoy and M. Salvai, Global geodesic foliations of the hyperbolic space, Math. Z. 281 (2015), 43-54.
13. Y. Godoy and M. Salvai, Calibrated geodesic foliations of hyperbolic space, Proc. Amer. Math. Soc. 144 (2016),
359-367.
14. B. Guilfoyle and W. Klingenberg, An indefinite Kihler metric on the space of oriented lines, J. Lond. Math. Soc.
72 (2005), 497-509.
15. M. Harrison, Skew flat fibrations, Math. Z. 282 (2016), 203-221.
16. M. Harrison, Contact structures induced by skew fibrations of R?, Bull. Lond. Math. Soc. 51 (2019), 887-899.

d ‘9 $TOT ‘0SLLEIYT

sy woxy

:SdY) SUONIPUOD) PuT SuA L 21 995 “[$Z07/80/LT] U0 ATeIqT SUITUO Aof1A\ “KNISIOATUN UOIRUN AQ ZZ6Z 1 SWITT 170 1/10p/w0d AopiavA

fopm:

o5uadFT SUOWWI)) aAER1) A[qeandde o) AG PAUIAOS IE SA[ITE VO $a5N JO AN 40] ATEIqIT SUIUQ AJ[IAL O (SUOY


https://orcid.org/0000-0001-9900-7752
https://orcid.org/0000-0001-9900-7752

OUTER BILLIARDS IN THE SPACE OF ORIENTED GEODESICS 25 of 25

17.
18.
19.
20.
21.

22.
23.

24.

25.
26.
27.
28.
29.

30.
31.

M. Harrison, Fibrations of R? by oriented lines, Algebr. Geom. Topol. 21 (2021), 2899-2928.

M. Harrison, Skew and sphere fibrations, Trans. Amer. Math. Soc. 376 (2023), 7107-7137.

N. J. Hitchin, Monopoles and geodesics, Commun. Math. Phys. 83 (1982), 579-602.

F. Morgan, The exterior algebra AFR" and area minimization, Linear Algebra Appl. 66 (1985), 1-28.

J. Moser, Stable and random motions in dynamical systems. With special emphasis on celestial mechanics.
Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J. Annals of Mathematics Studies,
No. 77. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1973.

J. Moser, Is the solar system stable?, Math. Intelligencer 1 (1978), 65-71.

M. Salvai, On the geometry of the space of oriented lines of Euclidean space, Manuscripta Math. 118 (2005),
181-189.

M. Salvai, On the geometry of the space of oriented lines of the hyperbolic space, Glasgow Math. J. 49 (2007),
357-366.

M. Salvai, Global fibrations of R* by oriented lines, Bull. Lond. Math. Soc. 41 (2009), 155-163.

S. Tabachnikov, Outer billiards, Russian Math. Surveys 48 (1993), 81-109.

S. Tabachnikov, Billiards, Panoramas et Synthéses, vol. 1, Société Mathématique de France, 1995.

S. Tabachnikov, On the dual billiard problem, Adv. Math. 115 (1995), 221-249.

S. Tabachnikov, On three-periodic trajectories of multi-dimensional dual billiards, Algebr. Geom. Topol. 3
(2003), 993-1004.

S. Tabachnikov, Dual billiards in the hyperbolic plane, Nonlinearity 15 (2002), 1051-1072.

S. Tabachnikov, Geometry and billiards, Student Mathematical Library, vol. 30, Amer. Math. Soc., Providence
RI, 2005.

d ‘9 $TOT ‘0SLLEIYT

sy woxy

:SdY) SUONIPUOD) PuT SuA L 21 995 “[$Z07/80/LT] U0 ATeIqT SUITUO Aof1A\ “KNISIOATUN UOIRUN AQ ZZ6Z 1 SWITT 170 1/10p/w0d AopiavA

Kot

o5uadFT SUOWWI)) aAER1) A[qeandde o) AG PAUIAOS IE SA[ITE VO $a5N JO AN 40] ATEIqIT SUIUQ AJ[IAL O (SUOY



	Outer billiards in the spaces of oriented geodesics of the three-dimensional space forms
	Abstract
	1 | INTRODUCTION
	1.1 | Motivation
	1.2 | Spaces of geodesics of space forms
	1.3 | The definition of the outer billiard map on 
	1.4 | Kähler structures and the analogue of Tabachnikov’s construction
	1.5 | The symplectic properties of the outer billiard map
	1.6 | Dynamical properties of the outer billiard 

	2 | PRELIMINARIES
	2.1 | The outer billiard map in the spherical case
	2.2 | The Jacobi fields of the three-dimensional space forms
	2.3 | Kähler structures on the spaces of oriented geodesics

	3 | THE SMOOTHNESS OF THE OUTER BILLIARD MAP
	4 | THE KÄHLER FORMULATION OF THE OUTER BILLIARD MAP
	5 | THE SYMPLECTIC PROPERTIES OF THE OUTER BILLIARD MAP
	6 | DYNAMICS OF THE OUTER BILLIARD MAP ON 
	ACKNOWLEDGMENTS
	JOURNAL INFORMATION
	ORCID
	REFERENCES


