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Abstract
Let 𝑀𝜅 be the three-dimensional space form of con-
stant curvature 𝜅 = 0, 1, −1, that is, Euclidean space
ℝ3, the sphere 𝑆3, or hyperbolic space 𝐻3. Let 𝑆 be a
smooth, closed, strictly convex surface in𝑀𝜅. We define
an outer billiard map 𝐵 on the four-dimensional space
𝜅 of oriented complete geodesics of 𝑀𝜅, for which the
billiard table is the subset of 𝜅 consisting of all ori-
ented geodesics not intersecting 𝑆. We show that 𝐵 is
a diffeomorphism when 𝑆 is quadratically convex. For
𝜅 = 1,−1, 𝜅 has a Kähler structure associated with
the Killing form of Iso(𝑀𝜅). We prove that 𝐵 is a sym-
plectomorphism with respect to its fundamental form
and that 𝐵 can be obtained as an analogue to the con-
struction of Tabachnikov of the outer billiard in ℝ2𝑛

defined in terms of the standard symplectic structure.
We show that 𝐵 does not preserve the fundamental sym-
plectic form on 𝜅 associated with the cross product on
𝑀𝜅, for 𝜅 = 0, 1, −1. We initiate the dynamical study of
this outer billiard in the hyperbolic case by introduc-
ing and discussing a notion of holonomy for periodic
points.
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1 INTRODUCTION

1.1 Motivation

The dual or outer billiardmap𝐵 is defined in the plane as a counterpart to the usual inner billiards.
Let 𝛾 ⊂ ℝ2 be a smooth, closed, strictly convex curve, and let 𝑝 be a point outside of 𝛾. There are
two tangent lines to 𝛾 through 𝑝; choose one of them consistently, say, the right one from the
viewpoint of 𝑝, and define 𝐵(𝑝) as the reflection of 𝑝 in the point of tangency (see Figure 1).
The study of the dual billiard was originally popularized by Moser [21, 22], who considered the

dual billiardmap as a crudemodel for planetarymotion and showed that orbits of themap cannot
escape to infinity. The outer billiard map has since been studied in a number of settings; see [7,
26, 27, 31] for surveys.
In [28], Tabachnikov generalized planar outer billiards to even-dimensional standard symplec-

tic space (ℝ2𝑛, 𝜔) as follows: given a smooth, closed hypersurface𝑀 in ℝ2𝑛 that is quadratically
convex (that is, the shape operator at any point of 𝑀 is definite), the restriction of 𝜔 to each
tangent space 𝑇𝑞𝑀 has a one-dimensional kernel, called the characteristic line. If 𝜈 is the outward-
pointing unit normal vector field on 𝑀 and ℝ2𝑛 is identified with ℂ𝑛, then {𝑞 − 𝑡𝑖𝜈(𝑞) ∣ 𝑡 ∈ ℝ}

is the characteristic line at 𝑞 ∈ 𝑀. Tabachnikov showed that the collection of (geodesic) rays
{𝑞 − 𝑡𝑖𝜈(𝑞) ∣ 𝑡 > 0}, indexed by 𝑞 ∈ 𝑀, foliate the exterior 𝑈 of 𝑀; in particular, for each 𝑝 ∈ 𝑈

there exists a unique such ray passing through 𝑝. This gives a smooth outer billiard map taking 𝑝
to its reflection in the corresponding tangency point:

𝐵 ∶ 𝑈 → 𝑈, 𝑞 − 𝑡𝑖𝜈(𝑞) ↦ 𝑞 + 𝑡𝑖𝜈(𝑞). (1)

Tabachnikov proved that the map is a symplectomorphism of the exterior of𝑀, and in [29], he
showed that the number of 3 -periodic trajectories of the outer billiard map in ℝ2𝑛 is not less than
2𝑛.

1.2 Spaces of geodesics of space forms

The goal of the present article is to define and study outer billiards in another setting: on the space
of oriented geodesics of the three-dimensional space form𝑀𝜅 of constant curvature 𝜅 = 0, 1, −1,
that is, Euclidean space ℝ3, the sphere 𝑆3, or hyperbolic space 𝐻3.
The space of oriented geodesics 𝜅 is a four-dimensional manifold whose elements are the ori-

ented trajectories of complete geodesics in𝑀𝜅. Elements of𝜅 can also be described as equivalence
classes of unit speed geodesics, where 𝛾 ∼ 𝜎 if 𝜎 (𝑡) = 𝛾 (𝑡 + 𝑡𝑜) for some 𝑡𝑜 ∈ ℝ. When 𝜅 = 0,−1,

F IGURE 1 The outer billiard map in the plane.
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F IGURE 2 The geodesic 𝓁 is in the outer billiard correspondence with 𝓁′ and 𝓁′′.

𝜅 is the space of oriented lines in Euclidean or hyperbolic space, which is diffeomorphic to 𝑇𝑆2,
and 1 is the space of oriented great circles of 𝑆3 (or equivalently, the Grassmannian of oriented
planes in ℝ4), which is diffeomorphic to 𝑆2 × 𝑆2 (see [10] or [20]). Historically, the space of ori-
ented geodesics is at the core of symplectic geometry through its relationship with optics. This
space possesses a rich geometry (for instance, it admits two natural Kähler structures), whose
study began with Hitchin [19] and continued with [1, 2, 8, 14, 23, 24]. It has been useful, for
instance, in the characterization of geodesic foliations [12, 13, 15–18, 25].

1.3 The definition of the outer billiard map on 𝜿

Let 𝑆 be a smooth, closed, strictly convex surface in𝑀𝜅, that is, for each𝑝 ∈ 𝑆, the complete totally
geodesic surface tangent to 𝑝 intersects 𝑆 only at 𝑝, near 𝑝. By smooth we understand of class ∞.
We denote by  the three-dimensional space of geodesics that are tangent to 𝑆, which can be
naturally identified with 𝑇1𝑆, the unit tangent bundle of 𝑆 (we were inspired by [9]).
We first consider the cases 𝜅 = 0,−1. We define the billiard table

 = 𝜅 − {oriented geodesics intersecting 𝑆};

this is an open submanifold of 𝜅 with boundary equal to.
We say that two distinct geodesics 𝓁 and 𝓁′ in are in the outer billiard correspondence if there

exists a complete totally geodesic surface 𝑃, tangent to 𝑆 at a point 𝑝, containing 𝓁 and 𝓁′, such
that 𝓁′ can be obtained by parallel translating 𝓁 along the shortest geodesic from 𝓁 to 𝑝, twice the
distance from 𝓁 to 𝑝; see Figure 2.
Given 𝓁 ∈  , there exist exactly two complete totally geodesic surfaces containing 𝓁 and tan-

gent to 𝑆 (the assertion is clear for 𝜅 = 0 and for 𝜅 = −1, for instance, using the Klein ball model
of hyperbolic space, see Section 6). So, 𝓁 is in correspondence with exactly two other elements of
 . To define the outer billiard map, we use the orientation of 𝓁 to choose the surface on the right,
say 𝑃+, as follows.
Let 𝑝± be the point of tangency of the surface 𝑆 with 𝑃± and let 𝑞± be the point on 𝓁 realizing

the distance 𝑑± to 𝑝± (see Figure 3, left).
Let 𝛾± be the geodesic ray joining 𝑞± with 𝑝±, with 𝛾±(0) = 𝑞± and 𝛾±(𝑑±) = 𝑝±. Let 𝛼 be a unit

speed geodesic such that 𝓁 = [𝛼] and define 𝑡± by 𝛼
(
𝑡±
)
= 𝑞± (see Figure 3, right). Let𝑊± be the
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F IGURE 3 The outer billiard map on 𝜅 associated with 𝑆.

parallel vector field along 𝛼 with𝑊±(𝑡±) = 𝛾′±(0). Now choose the sign + so that
{
𝑊+,𝑊−, 𝛼

′
}

is a positively oriented frame along 𝛼. The outer billiard map 𝐵 ∶  →  can now be
defined:

𝐵(𝓁) is the oriented line obtained by parallel translating 𝓁 along 𝛾+ between 0 and 2𝑑+.

Moreover, 𝐵 is a bijection.
Notice that in the hyperbolic case (in contrast with the Euclidean), parallel translating a line 𝓁

a distance 𝑑 along unit speed geodesic rays 𝛾1 and 𝛾2 orthogonal to 𝓁 depends on the initial points
𝛾1(0) and 𝛾2(0) in 𝓁 = [𝛼], even if 𝛾′2(0) is the parallel transport of 𝛾

′
1
(0) along 𝛼.

Now we consider the case 𝜅 = 1. We will see that a similar definition of outer billiard map can
be given. For an oriented great circle 𝑐 not intersecting 𝑆, there exist exactly two great spheres
of 𝑆3 containing 𝑐 and tangent to 𝑆, but there may be more than one (actually, a circle worth of
them) shortest geodesics between 𝑐 and the tangency point in 𝑆, so that 𝑞+ or 𝑞− are not well-
defined. That is the case when the distance from 𝑐 to the tangency point in 𝑆 is 𝜋∕2. We call  the
set of these oriented great circles. We will describe this set later, in Subsection 2.1, in terms of the
Gaussmap of 𝑆, 𝑞 ↦ 𝑇𝑞𝑆, using the canonical identification of oriented great circles with oriented
planes through the origin in ℝ4. Although the outer billiard map 𝐵 will be still well-defined on 

as the involution 𝑐 ↦ −𝑐 (the same circle with opposite orientation), it is easier to exclude  from
the domain of definition. Thus, in the spherical case we define

 = {𝑐 ∈ 1 ∣ 𝑐 does not intersect 𝑆} − . (2)

Proposition 1.1. Let 𝑆 be a strictly convex closed surface in 𝑆3. The analogue of the outer billiard
map in the cases 𝜅 = 0,−1 is well-defined on for 𝜅 = 1 and is a bijection onto this set.

For 𝜅 = 0, 1, −1, we call 𝐵 ∶  →  as above the outer billiardmap on 𝜅 associated with 𝑆. We
will show that 𝐵 is a diffeomorphism under the stronger condition that 𝑆 is quadratically convex
(in particular, strictly convex).

Theorem 1.2. Let 𝑆 be a smooth, closed, quadratically convex surface in the space form 𝑀𝜅. The
outer billiard map 𝐵 ∶  →  associated with 𝑆 is a diffeomorphism.
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OUTER BILLIARDS IN THE SPACE OF ORIENTED GEODESICS 5 of 25

The following proposition shows that strict convexity is not enough for the smoothness of the
billiard map. We present the example just for the sake of completeness, as it is essentially the
known corresponding fact for plane outer billiards.

Proposition 1.3. Let 𝑆 be a closed strictly convex surface inℝ3 that is invariant by the reflection with
respect to the plane 𝑦 = 0 and contains the graph of the function 𝜑 ∶ (−2, 2) × (−1, 1) → ℝ defined
by 𝜑 (𝑥, 𝑦) = 𝑓 (𝑥) + 𝑦2, where 𝑓 is a smooth function satisfying 𝑓 (0) = 𝑓′ (0) = 𝑓′′ (0) = 0. Then
the associated outer billiard map 𝐵 on 0 is not smooth.

1.4 Kähler structures and the analogue of Tabachnikov’s
construction

The space of oriented geodesics 𝜅 has one or two canonical Kähler structures (for 𝜅 = 0 or 𝜅 =
1,−1, respectively), so the natural question arises, whether Tabachnikov’s construction (1) of the
outer billiard map for ℝ2𝑛 can be mimicked.
To deal with this issue, next we briefly introduce Kähler structures on 𝜅, postponing formal

definitions until Section 2.
Given 𝓁 ∈ 𝜅, the 𝜋∕2-rotation in 𝑀𝜅 that fixes 𝓁 induces a map on 𝜅 whose differential at

𝓁 is a linear operator 𝓁 on 𝑇𝓁𝜅 that squares to −id. It may be visualized by its action on four
geodesic variations of 𝓁. The geodesic 𝓁 may be translated in the two directions orthogonal to 𝓁
or rotated in two planes containing 𝓁, and the operator 𝓁 sends translations to translations and
rotations to rotations; see Figure 4. The collection of these linear transformations 𝓁 is a complex
structure  on 𝜅.
For 𝜅 = 0, 1, −1, the manifold 𝜅 has a pseudo-Riemannian metric g× induced by the cross

product on𝑀𝜅, and (g×, ) is a Kähler structure on 𝜅. For 𝜅 = 1,−1, there is an additional Kähler
structure (g𝐾, ) on𝜅, where g𝐾 is induced by theKilling form on Iso(𝑀𝜅). In the Euclidean case,
the Killing form g𝐾 degenerates. For the formal definitions of  , g𝐾 and g× we use the language
of Jacobi fields; see Section 2.
Having presented the Kähler structures on 𝜅, we can give a positive answer to the question

in the beginning of the subsection for 𝜅 = 1,−1, using the Kähler structure (g𝐾, ). In this for-
mulation, we see that 𝐵 is a direct analogue of the outer billiard map on (ℝ2𝑛, 𝜔) described in
Subsection 1.1.

F IGURE 4 The linear transformation 𝓁 maps the green variation of geodesics to the red variation of
geodesics.
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6 of 25 GODOY et al.

Suppose that 𝑆 is a smooth, closed, strictly convex surface in𝑀𝜅, and let and be as above.
For 𝓁 ∈  let 𝜈(𝓁) be the outward-pointing unit normal vector to  at 𝓁 (outward-pointing
means pointing to ). Given 𝜉 ∈ 𝑇𝓁, let Γ𝜉 denote the geodesic in (𝜅, g𝐾)with initial velocity
𝜉. Each geodesic 𝑡 ↦ Γ 𝜈(𝓁)(𝑡) traces out a totally geodesic surface in𝑀𝜅 that is tangent to 𝑆. We
will show that the collection of geodesic rays

{
Γ 𝜈(𝓁)(𝑡) ∣ 𝑡 < 0

}
indexed by 𝓁 ∈  foliates the

exterior  of. In particular, for each geodesic 𝓁′ ∈  , there exists a unique such ray passing
through 𝓁′. This induces an outer billiard map 𝐵′ ∶  →  taking 𝓁′ to its “reflection” in the
tangent geodesic 𝓁:

𝐵′(Γ 𝜈(𝓁)(−𝑡)) = Γ 𝜈(𝓁)(𝑡)

for 𝑡 > 0. In Section 4, after proving that 𝐵′ is well-defined, we will show that the outer billiard
maps 𝐵 and 𝐵′ coincide.

Theorem 1.4. For 𝜅 = 1,−1, let 𝑆 be a smooth, closed, quadratically convex surface in 𝑀𝜅, and
consider 𝜅 endowed with the Kähler structure (g𝐾, ). The map 𝐵′ ∶  →  coincides with the
outer billiard map 𝐵 on associated with 𝑆.

The following proposition reveals that the Kähler structure
(
g×,

)
is not appropriate in our

setting, as it does not give rise to a billiard map as in Tabachnikov’s construction.

Proposition 1.5. For 𝜅 = 0, 1, −1, consider on 𝜅 the Kähler structure
(
g×,

)
. Let 𝑆 be as in the

preceding theorem and let 𝓁 ∈ . Then the metric g× degenerates on 𝑇𝓁, and for each vector 𝑁
normal to 𝑇𝓁, the image of the geodesic in 𝜅 with initial velocity  (𝑁) is disjoint from .

1.5 The symplectic properties of the outer billiard map

The outer billiard map interacts with the symplectic structures on 𝜅 as follows.

Theorem1.6. Let𝐵 be the outer billiardmap associatedwith a smooth, closed, quadratically convex
surface in𝑀𝜅.

(a) For 𝜅 = 1,−1, 𝐵 is a symplectomorphism with respect to the fundamental symplectic form 𝜔𝐾 of
(𝜅, g𝐾, ).

(b) For 𝜅 = 0, 1, −1, 𝐵 does not preserve the fundamental symplectic form 𝜔× of (𝜅, g×, ).

Additional context for Theorem 1.6 is given in Proposition 5.1, which establishes a relationship
with plane hyperbolic outer billiards (see [30]) and supports the fact that 𝜔𝐾 (in contrast with 𝜔×)
is the natural symplectic form in our context.
In the Euclidean case, the outer billiard map 𝐵 preserves parallelism, yielding an 𝑆2-worth

of planar outer billiards as in Figure 1. That is, given a fixed direction 𝑣 in the two-sphere, the
orthogonal projection of 𝑆 onto any plane 𝑃 orthogonal to 𝑣 determines a smooth closed convex
curve 𝛾 in 𝑃 (the shadow of 𝑆 with respect to 𝑣). These shadows vary smoothly with respect to 𝑣,
and the outer billiard map 𝐵, restricted to lines with direction 𝑣, is equivalent to the planar outer
billiard in 𝑃 with respect to 𝛾. In particular, each such restriction is area-preserving.
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OUTER BILLIARDS IN THE SPACE OF ORIENTED GEODESICS 7 of 25

Recall that for 𝜅 = 0 the Killing form g𝐾 degenerates and so it does not induce a symplectic
form on 0. However, we have a weaker structure, a Poisson bivector field  , also compatible
with  , which we define in Subsection 2.3. The proof of the next proposition is immediate from
the preceding paragraph.

Proposition 1.7. The outer billiard map associated with a smooth, closed, quadratically convex
surface inℝ3 preserves both the canonical Poisson structure  on 0 and its symplectic leaves, which
are the submanifolds of parallel lines. In particular, the restriction to each such submanifold is
a symplectomorphism.

1.6 Dynamical properties of the outer billiard 𝑩

To begin the study of dynamical properties of the outer billiard map 𝐵, we first observe that in the
Euclidean case parallelism has consequences for periodic orbits of the outer billiard map 𝐵 asso-
ciated with the surface 𝑆. Given 𝑣 ∈ 𝑆2, consider the planar outer billiard system in any plane 𝑃
orthogonal to 𝑣, played outside the shadowof 𝑆with respect to 𝑣. For this planar system, there exist
at least two distinct 𝑛-periodic trajectories with rotation number 𝑟, for every 𝑛 ⩾ 3 and positive
𝑟 ⩽ [(𝑛 − 1)∕2] coprime with 𝑛 (see [31, Theorem 6.2]). Each such periodic orbit lifts to a periodic
orbit of the outer billiard map 𝐵 associated with 𝑆. In particular, for each direction 𝑣 ∈ 𝑆2, there
exist 𝑛-periodic orbits consisting of geodesics with direction 𝑣.
The hyperbolic case is more interesting than the Euclidean one, because unlike in ℝ3, the lines

𝓁, 𝐵(𝓁), 𝐵2 (𝓁) , … in 𝐻3 are (in general) not parallel, in the sense that they are not orthogonal
to a fixed totally geodesic surface. Indeed, if a line 𝓁 in 𝐻3 is parallel transported along a line 𝓁′
orthogonal to 𝓁, then 𝓁′ is the unique line preserved by the one-parameter group of transvections
along 𝓁′ (that is, isometries of 𝐻3 translating 𝓁′ whose differentials realize the parallel transport
along it). This nonparallel phenomenon is illustratedmore explicitly in the following proposition.

Proposition 1.8. Given 𝜃 ∈ (0, 𝜋∕2), there exist a quadratically convex closed surface 𝑆 in𝐻3 and
an oriented line 𝓁 not intersecting 𝑆 such that 𝓁 and 𝐵3(𝓁) intersect at a point forming the angle 𝜃.

Similarly, one can show the existence of a surface 𝑆 and 𝓁 such that 𝐵3(𝓁) is different from 𝓁
and asymptotic to it.
We next introduce a notion of holonomy for periodic orbits of the outer billiard map in hyper-

bolic space. Let 𝓁 = (𝓁0, … ,𝓁𝑛−1) be an 𝑛-periodic orbit of 𝐵; in particular, we assume the 𝓁𝑖 are
distinct. For 0 ⩽ 𝑘 < 𝑛 let 𝑑𝑘 be the signed distance between the points 𝑞+(𝓁𝑘) and 𝑞−(𝓁𝑘), which
were defined in Subsection 1.3, that is, if 𝓁𝑘 = [𝛾𝑘] with 𝛾𝑘(0) = 𝑞−, then 𝛾𝑘(𝑑𝑘) = 𝑞+. Then the
holonomy of the periodic orbit 𝓁 is the number 𝑑 =

∑𝑛−1
𝑘=0 𝑑𝑘.

The definition alsomakes sense in Euclidean space, but every periodic orbit has zero holonomy.
We exhibit a periodic orbit in hyperbolic space with nonzero holonomy.

Proposition 1.9. There exist a quadratically convex closed surface 𝑆 in 𝐻3 and an oriented line 𝓁
not intersecting 𝑆 which is a periodic point of the associated outer billiard map and whose holonomy
is not zero.

We comment on the choice of the word holonomy in this context. For 𝜅 ⩽ 0, let 𝜛 ∶ 𝑃 =

𝑇1𝑀𝜅 → 𝜅 be the tautological line bundle, that is 𝜛(𝑣) = [𝛾𝑣]. It is an (ℝ,+)-principal bundle.
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8 of 25 GODOY et al.

The right action 𝜌 ∶ 𝑃 × ℝ → 𝑃 is given by 𝜌(𝑢, 𝑡) = 𝛾′𝑢(𝑡). The line bundle 𝑃 = 𝜛−1( ) → 

has two distinguished sections: 𝜎±([𝛾]) = 𝛾′(0) if 𝛾(0) = 𝑞±. The holonomy makes sense only for
periodic points and it is not associated with a particular connection, but rather with a combina-
tion of the Levi-Civita connection on𝑀𝜅 and the flat connections induced by𝜎± along the shortest
segments joining 𝓁𝑘 with 𝓁𝑘+1.
Although these results only provide the first steps toward understanding the dynamical prop-

erties of the outer billiardmap 𝐵 in hyperbolic space, they also hint at the complexity and richness
of the billiard system. Most of the natural dynamical questions for the hyperbolic outer billiard
map, for example, regarding the existence of periodic orbits, remain open.

2 PRELIMINARIES

2.1 The outer billiard map in the spherical case

We have presented in Subsection 1.3 the outer billiard map associated with 𝑆 for 𝜅 = 0, 1, −1. The
construction is clear for 𝜅 = 0,−1. Now we return to the spherical case. Before proving Proposi-
tion 1.1, we comment on the set  that we cut out of the billiard table; see (2). We define the map
𝜓 ∶ 𝑆 →  as follows: Given 𝑝 ∈ 𝑆, let 𝜓 (𝑝) be the oriented great circle obtained by intersecting
𝑆3 with the subspace 𝑇𝑝𝑆 ⊂ ℝ4 (we identify 𝑇𝑝ℝ4 with ℝ4 in the usual way), endowed with the
orientation induced by that of 𝑇𝑝𝑆. Equivalently, and without using the immersion of the sphere
in ℝ4, for any positively oriented orthonormal basis {𝑢, 𝑣} of 𝑇𝑝𝑆, 𝜓 (𝑝) =

[
𝐶𝑝

]
, where

𝐶𝑝(𝑠) = Exp𝑝
(
𝜋

2
(cos 𝑠 𝑢 + sin 𝑠 𝑣)

)
≅ cos 𝑠 𝑢 + sin 𝑠 𝑣.

With this notation,  is the image of 𝜓. Notice that if 𝑐 is an oriented circle in , then−𝑐 is also in
.

Proof of Proposition 1.1. We verify that the same procedure as for the Euclidean and hyperbolic
spaces applies here. By [6], 𝑆 is contained in a hemisphere, say, the northern hemisphere 𝑆3+.
Let Π denote the central projection from 𝑆3+ to the tangent plane ℝ

3 at the north pole (the so-
called Beltrami map). It preserves strict convexity, as half great spheres in 𝑆3+ are mapped to affine
2-planes and the order of contact is maintained by diffeomorphisms.
Consider a great circle 𝑐 ∈ 1 − {oriented great circles intersecting 𝑆}. If 𝑐 is not contained in

the equator 𝑆2 = 𝜕𝑆3+, thenΠ(𝑐) is an oriented affine line 𝓁 inℝ
3. Now, as shown in Subsection 1.3

for 𝜅 = 0, there exist exactly two affine planes 𝑃̄± containing 𝓁 and tangent toΠ(𝑆), andΠ−1(𝑃̄±)

are the desired great spheres containing 𝑐 and tangent to 𝑆 at points 𝑝±. Notice that 𝐵(𝑐) ∈  ,
that is, 𝐵(𝑐) is disjoint from 𝑆, as this holds for the lines in ℝ3 corresponding to 𝑐 and 𝐵(𝑐).
Now suppose that 𝑐 is contained entirely in the equator 𝑆2. As 𝑆 is a positive distance from the

equator 𝑆2, any sufficiently small perturbation of the latter does not intersect 𝑆. In particular, we
may perturb the equator to a great sphere that does not contain the circle 𝑐 and argue as in the
above paragraph.
Let 𝑑 be the distance from 𝑝+ to 𝑐. If 𝑑 < 𝜋∕2, there exists a unique point 𝑞+ ∈ 𝑐 realizing the

distance, and the outer billiard map is well-defined. If 𝑑 = 𝜋∕2, then 𝑐 belongs to , and so it is
not in . The construction continues as in the Euclidean and hyperbolic cases. □
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OUTER BILLIARDS IN THE SPACE OF ORIENTED GEODESICS 9 of 25

We observe that if 𝑞 is any point of 𝑐 ∈ , then the parallel transport of 𝑐 along the geodesic
joining 𝑞 with 𝑝+ between 0 and 𝜋 is a rotation by 𝜋. So the image of 𝑐 is the same great circle
with the opposite orientation (it would hold 𝐵(𝑐) = −𝑐, had we not excluded  from the billiard
table).

2.2 The Jacobi fields of the three-dimensional space forms

Here we provide a brief review of Jacobi fields, which arise naturally when studying variations
of geodesics, and thus play a central role in the proofs of the main theorems. A more thorough
treatment can be found in any standard Riemannian geometry text, for example, [5].
Let 𝑀 be a complete Riemannian manifold and let 𝛾 be a unit speed geodesic of 𝑀. A Jacobi

field 𝐽 along 𝛾 is by definition a vector field along 𝛾 arising via a variation of geodesics as follows:
Let 𝛿 > 0 and 𝜙 ∶ ℝ × (−𝛿, 𝛿) → 𝑀 be a smooth map such that 𝑟 ↦ 𝜙(𝑟, 𝑠) is a geodesic for each
𝑠 ∈ (−𝛿, 𝛿) and such that 𝜙(𝑟, 0) = 𝛾(𝑟) for all 𝑟. Then

𝐽(𝑟) = 𝑑

𝑑𝑠

|||0𝜙(𝑟, 𝑠).
Let (𝑀𝜅, ⟨, ⟩𝜅) denote the three-dimensional complete simply connected manifold of constant

sectional curvature 𝜅. The curvature tensor of𝑀𝜅 is given by

𝑅𝜅(𝑥, 𝑦)𝑧 = 𝜅(⟨𝑧, 𝑥⟩𝜅𝑦 − ⟨𝑧, 𝑦⟩𝜅𝑥), (3)

and the Jacobi fields along a geodesic 𝛾 and orthogonal to 𝛾′ are exactly the vector fields 𝐽 along
𝛾 satisfying

⟨
𝐽, 𝛾′

⟩
𝜅
= 0 and

𝐷2𝐽

𝑑𝑟2
+ 𝜅𝐽 = 0, (4)

where 𝐷

𝑑𝑟
is the covariant derivative associated with the Levi Civita connection of𝑀𝜅. Following

a common abuse of notation, given a smooth vector field 𝐽 along a curve 𝛾, we write 𝐽′ = 𝐷𝐽

𝑑𝑟
if

there is no danger of confusion.
A Jacobi field 𝐽 along 𝛾 is determined by the values 𝐽(0) and 𝐽′(0) in the following way. Suppose

that a Jacobi field 𝐽 along 𝛾 satisfies 𝐽(0) = 𝑢 + 𝑎𝛾′(0) and 𝐽′(0) = 𝑣 + 𝑏𝛾′(0) where 𝑎, 𝑏 ∈ ℝ and
𝑢, 𝑣 ∈ 𝛾′⊥. Let 𝑈 and 𝑉 be the parallel vector fields along 𝛾 with 𝑈(0) = 𝑢 and 𝑉(0) = 𝑣. Then

𝐽(𝑟) = 𝑐𝜅(𝑟)𝑈(𝑟) + 𝑠𝜅(𝑟)𝑉(𝑟) + (𝑎 + 𝑟𝑏)𝛾′(𝑟), (5)

where

𝑐1(𝑟) = cos 𝑟, 𝑐0(𝑟) = 1, 𝑐−1(𝑟) = cosh 𝑟,
𝑠1(𝑟) = sin 𝑟, 𝑠0(𝑟) = 𝑟, 𝑠−1(𝑟) = sinh 𝑟.

Note that 𝑠′𝜅 = 𝑐𝜅 and 𝑐′𝜅 = −𝜅𝑠𝜅. Equation (5) will allow us to performmost computationswithout
having to resort to coordinates of𝑀𝜅 or a particular model of it.
Next we see that the tangent vectors to the space 𝜅 at an oriented geodesic [𝛾]may be identified

with Jacobi fields along 𝛾. Let 𝛾 be a complete unit speed geodesic of𝑀𝜅 and let 𝔍𝛾 be the space
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10 of 25 GODOY et al.

of all Jacobi fields along 𝛾 that are orthogonal to 𝛾′. There is a canonical isomorphism

𝑇𝛾 ∶ 𝔍𝛾 → 𝑇[𝛾]𝜅, 𝑇𝛾(𝐽) =
𝑑

𝑑𝑠

|||0[𝛾𝑠], (6)

where 𝛾𝑠 is any variation of 𝛾 by unit speed geodesics associated with 𝐽. Moreover, if 𝐽 is the
Jacobi field associated with a variation 𝜙 ∶ ℝ × (−𝛿, 𝛿) → 𝑀𝜅 of 𝛾 by unit speed geodesics (𝐽 is
not necessarily orthogonal to 𝛾′), then

𝑇𝛾
(
𝐽𝑁

)
= 𝑑

𝑑𝑠

|||0[𝜙𝑠], (7)

where 𝐽𝑁(𝑟) = 𝐽(𝑟) − ⟨𝐽(𝑟), 𝛾′(𝑟)⟩𝜅𝛾′(𝑟) (see [19, section 2] or [24]).
We offer one simple but useful application of the isomorphism 𝑇𝛾. Let 𝑆 be a smooth, closed,

strictly convex surface in 𝑀𝜅, and let  ⊂ 𝜅 be the collection of oriented geodesics that are
tangent to 𝑆.

Lemma 2.1. The isomorphism 𝑇𝛾 identifies
{
𝐾 ∈ 𝔍𝛾 ∣ 𝐾(0) ∈ 𝑇𝛾(0)𝑆

}
with the tangent space

𝑇[𝛾].

Proof. It suffices to show that 𝑇[𝛾] ⊂ 𝑇𝛾(
{
𝐾 ∈ 𝔍𝛾 ∣ 𝐾 (0) ∈ 𝑇𝛾(0)𝑆

}
), as both spaces have

dimension 3. Let 𝑋 ∈ 𝑇[𝛾] and let 𝑐 be a smooth curve on  (defined on an interval 𝐼 con-
taining 0) such that 𝑐(0) = [𝛾] and 𝑐′(0) = 𝑋. For each 𝑠 ∈ 𝐼, let [𝛾𝑠] ∈  such that 𝛾𝑠(0) ∈ 𝑆 and
[𝛾𝑠] = 𝑐(𝑠). By (7), 𝑋 = 𝑇𝛾(𝐽

𝑁), where 𝐽 is given by

𝐽(𝑟) = 𝑑

𝑑𝑠

|||0𝛾𝑠(𝑟).
Now 𝛾′(0) ∈ 𝑇𝛾(0)𝑆, and as 𝑠 ↦ 𝛾𝑠(0) is a smooth curve on 𝑆, 𝐽(0) =

𝑑

𝑑𝑠

|||0 𝛾𝑠(0) ∈ 𝑇𝛾(0)𝑆. Therefore,
𝐽𝑁 (0) = 𝐽(0) − ⟨𝐽(0), 𝛾′(0)⟩𝜅𝛾′(0) ∈ 𝑇𝛾(0)𝑆, as desired. □

2.3 Kähler structures on the spaces of oriented geodesics

In Subsection 1.2, we introduced the two canonical Kähler structures (g𝐾, ) and
(
g×,

)
on the

space of oriented geodesics𝜅, for 𝜅 = 1,−1, and also theKähler structure
(
g×,

)
and the Poisson

bivector field  on 0. Next we present the precise definitions in terms of the isomorphism (6).
We also include the expressions of the associated fundamental forms (see [1, 8, 11, 14, 23, 24]).
Given 𝓁 = [𝛾] ∈ 𝜅, the linear complex structure 𝓁 on 𝔍𝛾 ≅ 𝑇𝓁𝜅, which was described

geometrically in Subsection 1.2, is defined by

𝓁(𝐽) = 𝛾′ × 𝐽, for 𝐽 ∈ 𝔍𝛾 ≅ 𝑇𝓁𝜅, (8)

and the square norms of the metrics g× and g𝐾 are given by

g×(𝐽, 𝐽) = ⟨𝛾′ × 𝐽, 𝐽′⟩𝜅 and g𝐾(𝐽, 𝐽) = |𝐽|2𝜅 + 𝜅|𝐽′|2𝜅.
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OUTER BILLIARDS IN THE SPACE OF ORIENTED GEODESICS 11 of 25

Notice that by (4) the right-hand sides are constant functions, so the left-hand sides are well-
defined. By polarization, we have

2 g×(𝐼, 𝐽) = ⟨𝐼 × 𝐽′ + 𝐽 × 𝐼′, 𝛾′⟩𝜅 for 𝜅 = −1, 0, 1; (9)

g𝐾(𝐼, 𝐽) = ⟨𝐼, 𝐽⟩𝜅 + 𝜅⟨𝐼′, 𝐽′⟩𝜅 for 𝜅 = ±1. (10)

The second one is the push down onto 𝜅 of the left-invariant pseudo-Riemannian metric on the
Lie group Iso0(𝑀𝜅) given at the identity by a multiple of the Killing form. It is Riemannian for
𝜅 = 1 and split for 𝜅 = −1. [24, Proposition 4] provides a geometric interpretation for the metrics
g× and g𝐾 in the case 𝜅 = −1, with characterizations of space-like, time-like and null curves in
−1 in both cases.
The associated fundamental forms are given by

𝜔×(𝐼, 𝐽) = g×( (𝐼), 𝐽) =
1

2
(⟨𝐼′, 𝐽⟩𝜅 − ⟨𝐼, 𝐽′⟩𝜅), (11)

𝜔𝐾(𝐼, 𝐽) = g𝐾( (𝐼), 𝐽) = ⟨𝐼 × 𝐽 + 𝜅𝐼′ × 𝐽′, 𝛾′⟩𝜅. (12)

We comment that 𝑝∗𝜔× is a constant multiple of Ω, where 𝑝 ∶ 𝑇1𝑀𝜅 → 𝜅, 𝑣 ↦ [𝛾𝑣] is the
canonical submersion and Ω is the restriction to 𝑇1𝑀𝜅 of the canonical symplectic form on 𝑇𝑀𝜅

(identified with the cotangent bundle 𝑇∗𝑀𝜅 through the Riemannian metric).
The bilinear form g𝐾 degenerates for 𝜅 = 0, but we have the canonical Poisson structure on 0

well-defined at each 𝓁 by

(𝓁) = 𝐽 ∧ 𝓁(𝐽),

where 𝐽 is any parallel Jacobi field along 𝓁, orthogonal to it, with ‖𝐽‖ ≡ 1. Although no such sec-
tion 𝓁 ↦ 𝐽𝓁 ∈ 𝑇𝓁0 exists globally (otherwise, it would induce a unit vector field on the 2-sphere),
 is easily seen to be well-defined and smooth; the Schouten bracket [ ,] vanishes, as the dis-
tribution on 0 induced by  is integrable. In fact, the symplectic leaves are the submanifolds of
parallel lines.

3 THE SMOOTHNESS OF THE OUTER BILLIARDMAP

Here we establish notation and prove various technical lemmas, working toward the proof of
Theorem 1.2. Let 𝑆 be a closed smooth surface in 𝑀𝜅. Let 𝑛 be the inward-pointing unit normal
vector field on 𝑆. The complex structure 𝑖 on 𝑆 is defined by 𝑖𝑧 = 𝑛(𝑝) × 𝑧 for 𝑧 ∈ 𝑇𝑝𝑆.
Given 𝑤 ∈ 𝑇1𝑀𝜅, we denote by 𝛾𝑤 the unique geodesic in𝑀𝜅 with initial velocity 𝑤. For 𝜅 =

0,−1, let 𝑇 = ∞, and for 𝜅 = 1, let 𝑇 = 𝜋∕2. Define

𝐹 ∶  × (−𝑇, 𝑇) ≅ 𝑇1𝑆 × (−𝑇, 𝑇) → 𝜅, 𝐹(𝑢, 𝑡) = [𝛾𝑢𝑡 ],

where 𝑢𝑡 is the parallel transport on𝑀𝜅 of 𝑢 along 𝛾𝑖𝑢 between 0 and 𝑡; see Figure 5. Let 𝐹+ and
𝐹− denote the restrictions of 𝐹 to 𝑇1𝑆 × (0, 𝑇) and 𝑇1𝑆 × (−𝑇, 0), respectively.
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12 of 25 GODOY et al.

F IGURE 5 The parallel transport of 𝑢 along 𝛾𝑖𝑢 between 0 and 𝑡.

By the construction in Subsection 1.3, the outer billiard map 𝐵 ∶  →  is equal to the
composition

𝐵 = 𝐹+◦g◦(𝐹−)
−1, (13)

where g ∶ 𝑇1𝑆 × (−𝑇, 0) → 𝑇1𝑆 × (0, 𝑇) is defined by g(𝑢, 𝑡) = (𝑢, −𝑡). Clearly,𝐹 is a smooth func-
tion and g is a diffeomorphism, and so the proof of Theorem 1.2 reduces to showing that 𝐹± are
diffeomorphisms. As they are bijections, we must show that

(𝑑𝐹)(𝑢,𝑡) ∶ 𝑇𝑢𝑇
1𝑆 × 𝑇𝑡ℝ → 𝑇𝐹(𝑢,𝑡)𝜅 ≅ 𝔍𝛾𝑢𝑡

,

is nonsingular for all 𝑢 ∈ 𝑇1𝑆 and 0 ≠ |𝑡| < 𝑇. To verify this, wewill compute the differential with
respect to certain canonical bases that we introduce next.
Given an oriented geodesic 𝓁 ∈ , there are three perturbations of 𝓁 that stay in: one that

skates along 𝑆 in the direction of 𝓁, one that parallel transports 𝓁 along 𝑆 in the direction orthog-
onal to 𝓁, and one that rotates 𝓁, maintaining the point of tangency. These three perturbations
may be thought of as generating the tangent space 𝑇𝓁. We formalize this intuitive idea below,
via the natural identification of with 𝑇1𝑆.
In what follows, we fix 𝑢 ∈ 𝑇1𝑝𝑆 and 𝑡 ≠ 0 and denote 𝑣 = 𝑖𝑢.
Given a unit tangent vector 𝑧 ∈ 𝑇1𝑆, we call 𝜎𝑧 the geodesic of 𝑆 with initial velocity 𝑧. Let

𝜋 ∶ 𝑇𝑆 → 𝑆 be the canonical projection and let 𝑢 ∶ 𝑇𝑢𝑇𝑆 → 𝑇𝑝𝑆 be the connection operator,
which is well-defined as follows: Given 𝜉 ∈ 𝑇𝑢𝑇𝑆, let 𝑈 ∶ (−𝛿, 𝛿) → 𝑇𝑆 be a smooth curve with
𝑈 (0) = 𝑢 and initial velocity 𝜉. Then 𝐾𝑢 (𝜉) =

𝐷𝑈

𝑑𝑡
(0), where 𝐷

𝑑𝑡
is the covariant derivative along

the foot-point curve 𝜋◦𝑈.

Lemma 3.1. For𝑚 = 1, 2, 3, let 𝑤𝑚 ∶ ℝ → 𝑇1𝑆 be the curve defined by

𝑤1(𝑠) = 𝜎′𝑢(𝑠), 𝑤2(𝑠) = 𝜏
𝜎𝑣
0,𝑠
(𝑢), 𝑤3(𝑠) = cos 𝑠 𝑢 + sin 𝑠 𝑣, (14)

where 𝜏𝜎
0,𝑠
denotes the parallel transport on 𝑆 along 𝜎 between 0 and 𝑠. Then

{
𝑤′
1
(0), 𝑤′

2
(0), 𝑤′

3
(0)

}
is a basis of 𝑇𝑢𝑇1𝑆.

Proof. We claim that under the linear isomorphism

𝜑𝑢 ∶ 𝑇𝑢𝑇𝑆 → 𝑇𝑝𝑆 × 𝑇𝑝𝑆, 𝜑𝑢(𝜉) = (𝑑𝜋𝑢𝜉,𝑢𝜉)

 14697750, 2024, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12922 by Princeton U

niversity, W
iley O

nline Library on [27/08/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



OUTER BILLIARDS IN THE SPACE OF ORIENTED GEODESICS 13 of 25

(see, for instance, [3]), 𝑤′
1
(0), 𝑤′

2
(0), 𝑤′

3
(0) are mapped, respectively, to the linearly independent

vectors (𝑢, 0), (𝑣, 0) and (0, 𝑣). We compute

𝑑𝜋𝑢(𝑤
′
1(0)) =

𝑑

𝑑𝑠

|||0𝜋(𝑤1(𝑠)) =
𝑑

𝑑𝑠

|||0𝜎𝑢(𝑠) = 𝑢,

and, by definition of𝑢,

𝑢(𝑤
′
1(0)) =

𝐷

𝑑𝑠

|||0𝑤1(𝑠) =
𝐷

𝑑𝑠

|||0𝜎′𝑢(𝑠) = 0.

Hence, 𝜑𝑢(𝑤′
1
(0)) = (𝑢, 0). The other cases are similar. □

We consider the basis 𝑡 = {𝑊1,𝑊2,𝑊3,𝑊4} of 𝑇𝑢𝑇1𝑆 × 𝑇𝑡ℝ, with

𝑊𝑚 = (𝑤′
𝑚(0), 0), for𝑚 = 1, 2, 3 and 𝑊4 =

(
0, 𝑑

𝑑𝑠

|||𝑡), (15)

where 𝑤𝑚 are the curves defined in (14). Now, the image of𝑊𝑚 by (𝑑𝐹)(𝑢,𝑡) is a tangent vector to
𝜅 at 𝐹 (𝑢, 𝑡), and so by (6), it corresponds to a Jacobi field along 𝛾𝑢𝑡 in𝔍𝛾𝑢𝑡

, which we call 𝐽𝑚. We
state this in the following proposition, whose proof is straightforward from the definitions.

Proposition 3.2. For𝑚 = 1,… , 4 we have

(𝑑𝐹)(𝑢,𝑡)(𝑊𝑚) = 𝑇𝛾𝑢𝑡
(𝐽𝑚),

where 𝐽𝑚 is the normal component of the Jacobi field arising from the geodesic variations of 𝛾𝑢𝑡 given
by

(𝑠, 𝑟) ↦ 𝛾(𝑤𝑚(𝑠))𝑡 (𝑟)

for𝑚 = 1, 2, 3, and (𝑠, 𝑟) ↦ 𝛾𝑢𝑡+𝑠 (𝑟) for𝑚 = 4.

We need 𝐽𝑚 explicitly. We consider the parameterized surface

𝑓𝑚 ∶ ℝ2 → 𝑀𝜅, 𝑓𝑚(𝑟, 𝑠) = 𝛾𝑖𝑤𝑚(𝑠)(𝑟).

In particular, 𝑓𝑚(𝑟, 0) = 𝛾𝑣(𝑟). We write

𝜎𝑚 = 𝜋◦𝑤𝑚 = 𝑓𝑚(0, ⋅),

so 𝜎1 = 𝜎𝑢, 𝜎2 = 𝜎𝑣, and 𝜎3 ≡ 𝑝. Nowwe can describe the initial conditions of 𝐽𝑚 in terms of some
vector fields along 𝑓𝑚.

Proposition 3.3. For𝑚 = 1, 2, 3, we have

𝐽𝑚(0) = 𝐾𝑚(𝑡) − ⟨𝐾𝑚(𝑡), 𝑢𝑡⟩𝜅𝑢𝑡 and 𝐽′𝑚(0) =
𝐷

𝑑𝑠

|||0𝑍𝑚(𝑡, 𝑠),
where 𝐾𝑚 is the Jacobi vector field along 𝛾𝑣 associated with the geodesic variation 𝑓𝑚, that is,

𝐾𝑚(𝑟) =
𝑑

𝑑𝑠

|||0𝑓𝑚(𝑟, 𝑠),
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14 of 25 GODOY et al.

and 𝑍𝑚 is the vector field along the surface 𝑓𝑚 obtained by parallel transporting𝑤𝑚(𝑠) on𝑀𝜅 along
the geodesic 𝛾𝑖𝑤𝑚(𝑠) from 0 to 𝑟, that is,

𝑍𝑚(𝑟, 𝑠) = 𝑃
𝛾𝑖𝑤𝑚(𝑠)

0,𝑟
𝑤𝑚(𝑠).

Also,
𝐽4(0) = 𝑣𝑡 and 𝐽′4(0) = 0,

where 𝑣𝑡 is the parallel transport on𝑀𝜅 of 𝑣 between 0 and 𝑡 along 𝛾𝑣 .

Proof. Let 𝐽𝑚 (𝑟) =
𝑑

𝑑𝑠

|||0 𝛾(𝑤𝑚(𝑠))𝑡 (𝑟). By (7), 𝐽𝑚 (𝑟) = (𝐽𝑚 (𝑟))
𝑁 . We compute

𝐽𝑚(0) =
𝑑

𝑑𝑠

||||0𝛾(𝑤𝑚(𝑠))𝑡 (0) = 𝑑

𝑑𝑠

||||0𝛾𝑖𝑤𝑚(𝑠)(𝑡) = 𝑑

𝑑𝑠

||||0𝑓𝑚(𝑡, 𝑠) = 𝐾𝑚(𝑡).

Then 𝐽𝑚 (0) is as stated. Also, 𝐽′𝑚 (0) = 𝐽′𝑚 (0), as the geodesics in the variation have unit speed.
Now,

𝐽′𝑚(0) =
𝐷

𝜕𝑟

||||0 𝜕

𝜕𝑠

||||0𝛾(𝑤𝑚(𝑠))𝑡 (𝑟) = 𝐷

𝜕𝑠

||||0 𝜕

𝜕𝑟

||||0𝛾(𝑤𝑚(𝑠))𝑡 (𝑟) = 𝐷

𝜕𝑠

||||0(𝑤𝑚(𝑠))𝑡 =
𝐷

𝑑𝑠

|||0𝑍𝑚(𝑡, 𝑠).
The validity of the remaining assertions, involving 𝐽4, follows from similar (simpler)
arguments. □

We require explicit formulae for 𝐾𝑚 and 𝐷

𝑑𝑠

|||0 𝑍𝑚(𝑡, 𝑠), which are vector fields along 𝛾𝑣. In the
next three lemmas we compute their coordinates with respect to the basis {𝑢𝑟, 𝑣𝑟, 𝑛𝑟} of 𝑇𝛾𝑣(𝑟)𝑀𝜅,
where 𝑢𝑟, 𝑣𝑟, and 𝑛𝑟 are obtained by parallel transporting 𝑢, 𝑣, and 𝑛(𝑝) along 𝛾𝑣, between 0 and 𝑟.
Given 𝑝 ∈ 𝑆, the shape operator 𝐴𝑝 ∶ 𝑇𝑝𝑆 → 𝑇𝑝𝑆 is defined by

𝐴𝑝(𝑥) = −∇𝑥𝑛, (16)

where∇ denotes the Levi–Civita connection of𝑀𝜅. In what follows we assume that𝐴𝑝 is positive
definite at each 𝑝 ∈ 𝑆 (that is, 𝑆 is quadratically convex).
We consider thematrix of𝐴𝑝 with respect to the orthonormal basis {𝑢, 𝑣} and call 𝑏𝑖𝑗 its entries,

that is,
[
𝐴𝑝

]
{𝑢,𝑣}

=

(
𝑏11 𝑏12
𝑏21 𝑏22

)
, with 𝑏12 = 𝑏21.

Lemma 3.4. For𝑚 = 1, 2, 3, the Jacobi vector field 𝐾𝑚 along 𝛾𝑣 is given by

𝐾1(𝑟) = 𝑐𝜅(𝑟)𝑢𝑟 + 𝑏21𝑠𝜅(𝑟)𝑛𝑟,

𝐾2(𝑟) = 𝑣𝑟 + 𝑏22𝑠𝜅(𝑟)𝑛𝑟,

𝐾3(𝑟) = −𝑠𝜅(𝑟)𝑢𝑟.

(17)

Proof. We compute the initial values of 𝐾𝑚 and 𝐾′
𝑚 and use (5). We write down the details for

𝑚 = 1. The other cases are similar. We compute

𝐾1(0) =
𝑑

𝑑𝑠

|||0𝑓1(0, 𝑠) = 𝑑

𝑑𝑠

|||0𝜎1(𝑠) = 𝑢
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OUTER BILLIARDS IN THE SPACE OF ORIENTED GEODESICS 15 of 25

and
𝐾′
1(0) =

𝐷

𝜕𝑟

|||0 𝜕

𝜕𝑠

|||0𝑓1(𝑟, 𝑠) = 𝐷

𝜕𝑠

|||0 𝜕

𝜕𝑟

|||0𝑓1(𝑟, 𝑠) = 𝐷

𝜕𝑠

|||0𝑖𝑤1(𝑠).

We compute the coordinates of 𝐾′
1
(0) with respect to the orthonormal basis {𝑢, 𝑣, 𝑛(𝑝)} of 𝑇𝑝𝑀𝜅.

To obtain
⟨
𝐾′
1
(0), 𝑛(𝑝)

⟩
𝜅
, we observe that ⟨𝑖𝑤1(𝑠), 𝑛(𝜎1(𝑠))⟩𝜅 = 0 for all 𝑠. Hence,⟨

𝐷

𝜕𝑠

|||0𝑖𝑤1(𝑠), 𝑛(𝑝)
⟩
𝜅
= −

⟨
𝑖𝑢, 𝐷

𝜕𝑠

|||0𝑛(𝜎1(𝑠))⟩𝜅 = −⟨𝑣,∇𝑢𝑛⟩𝜅 = ⟨
𝑣, 𝐴𝑝(𝑢)

⟩
𝜅
= 𝑏21.

In the same way,
⟨
𝐾′
1
(0), 𝑢

⟩
𝜅
= 0 =

⟨
𝐾′
1
(0), 𝑣

⟩
𝜅
. Therefore, 𝐾′

1
(0) = 𝑏21𝑛(𝑝). Notice that 𝐾𝑚 is

not necessarily orthogonal to 𝛾′𝑣 . □

For the sake of simplicity of notation, we denote by 𝑌𝑚 (𝑟) =
𝐷

𝑑𝑠

|||0 𝑍𝑚(𝑟, 𝑠).
Lemma 3.5. For𝑚 = 1, 2, 3, the vector field 𝑌𝑚 along 𝛾𝑣 is given by

𝑌1(𝑟) = 𝜅𝑠𝜅(𝑟)𝑣𝑟 + 𝑏11𝑛𝑟, 𝑌2(𝑟) = 𝑏12𝑛𝑟, 𝑌3(𝑟) = 𝑐𝜅(𝑟)𝑣𝑟.

Before proving the lemma, we introduce the vector field 𝑁𝑚 along the surface 𝑓𝑚 obtained by
parallel transporting 𝑛(𝜎𝑚(𝑠)) on𝑀𝜅 along the geodesic 𝛾𝑖𝑤𝑚(𝑠) from 0 to 𝑟, that is,

𝑁𝑚(𝑟, 𝑠) = 𝑃
𝛾𝑖𝑤𝑚(𝑠)

0,𝑟
𝑛(𝜎𝑚(𝑠)).

Lemma 3.6. Let 𝜁𝑚 (𝑟) =
⟨

𝐷

𝑑𝑠

|||0 𝑁𝑚(𝑟, 𝑠), 𝑢𝑟

⟩
𝜅
. Then 𝜁1 ≡ −𝑏11, 𝜁2 ≡ −𝑏12, and 𝜁3 ≡ 0.

Proof. We compute

𝜁′𝑚(𝑟) =
𝑑

𝑑𝑟

⟨
𝐷

𝑑𝑠

|||0𝑁𝑚(𝑟, 𝑠), 𝑢𝑟

⟩
𝜅
=

⟨
𝐷

𝑑𝑟

𝐷

𝑑𝑠

|||0𝑁𝑚(𝑟, 𝑠), 𝑢𝑟

⟩
𝜅

=
⟨

𝐷

𝑑𝑠

|||0 𝐷𝑑𝑟𝑁𝑚(𝑟, 𝑠) + 𝑅𝜅

(
𝜕𝑓𝑚
𝜕𝑟

(𝑟, 0),
𝜕𝑓𝑚
𝜕𝑠
(𝑟, 0)

)
𝑁𝑚(𝑟, 0), 𝑢𝑟

⟩
𝜅

= ⟨𝑅𝜅(𝑣𝑟, 𝐾𝑚(𝑟))𝑛𝑟, 𝑢𝑟⟩𝜅 = 𝜅
⟨⟨𝑛𝑟, 𝑣𝑟⟩𝜅𝐾𝑚(𝑟) − ⟨𝑛𝑟, 𝐾𝑚(𝑟)⟩𝜅𝑣𝑟, 𝑢𝑟⟩𝜅 = 0,

by (3). Hence, 𝜁𝑚 is constant, equal to

𝜁𝑚(0) =
⟨

𝐷

𝑑𝑠

|||0𝑁𝑚(0, 𝑠), 𝑢0

⟩
𝜅
=

⟨
∇𝜎′𝑚(0)

𝑛, 𝑢
⟩
𝜅
= −

⟨
𝐴𝑝(𝜎

′
𝑚(0)), 𝑢

⟩
𝜅
.

Now, the assertions follow from the definition of 𝜎𝑚 and the values of the entries of the matrix[
𝐴𝑝

]
{𝑢,𝑣}

. □

Proof of Lemma 3.5. Observe that ⟨𝑍𝑚, 𝑍𝑚⟩𝜅, ⟨𝑍𝑚,𝑁𝑚⟩𝜅 and ⟨𝑍𝑚, 𝜕𝑓𝑚𝜕𝑟 ⟩𝜅 are constant functions
of the second variable 𝑠. Hence, we can compute the components 𝑌𝑚(𝑟) with respect to the basis
{𝑢𝑟, 𝑣𝑟, 𝑛𝑟} of 𝑇𝛾𝑣(𝑟)𝑀𝜅 as follows:

⟨𝑌𝑚(𝑟), 𝑢𝑟⟩𝜅 = ⟨
𝐷

𝑑𝑠

|||0𝑍𝑚(𝑟, 𝑠), 𝑍𝑚(𝑟, 0)⟩𝜅 = 0.
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16 of 25 GODOY et al.

Also,

⟨𝑌𝑚(𝑟), 𝑣𝑟⟩𝜅 = ⟨
𝐷

𝑑𝑠

|||0𝑍𝑚(𝑟, 𝑠), 𝑣𝑟⟩𝜅 = −
⟨
𝑍𝑚(𝑟, 0),

𝐷

𝑑𝑠

|||0𝛾′𝑖𝑤𝑚(𝑠)(𝑟)⟩𝜅
= −

⟨
𝑢𝑟,

𝐷

𝑑𝑟

𝑑

𝑑𝑠

|||0𝛾𝑖𝑤𝑚(𝑠)(𝑟)⟩𝜅 = −
⟨
𝑢𝑟,

𝐷

𝑑𝑟
𝐾𝑚(𝑟)

⟩
𝜅
.

By Lemma 3.4, we have

−
⟨
𝑢𝑟, 𝐾

′
𝑚(𝑟)

⟩
𝜅
=

⎧⎪⎨⎪⎩
𝜅𝑠𝜅(𝑟), if𝑚 = 1,
0, if𝑚 = 2,
𝑐𝜅(𝑟), if𝑚 = 3.

In the same way,

⟨𝑌𝑚(𝑟), 𝑛𝑟⟩𝜅 = ⟨
𝐷

𝑑𝑠

|||0𝑍𝑚(𝑟, 𝑠), 𝑁𝑚(𝑟, 0)
⟩
𝜅
= −

⟨
𝑍𝑚(𝑟, 0),

𝐷

𝑑𝑠

|||0𝑁𝑚(𝑟, 𝑠)
⟩
𝜅
= −𝜁𝑚(𝑟),

with 𝜁𝑚 as in Lemma 3.6. □

With the computational lemmas above, we can present the proof of Theorem 1.2.

Proof of Theorem 1.2. To complete the proof of Theorem 1.2, it remains to show that

(𝑑𝐹)(𝑢,𝑡) ∶ 𝑇𝑢𝑇
1𝑆 × 𝑇𝑡ℝ → 𝑇𝐹(𝑢,𝑡)𝜅 ≅ 𝔍𝛾𝑢𝑡

is nonsingular for all 𝑢 ∈ 𝑇1𝑆 and 0 ≠ |𝑡| < 𝑇. To verify this, we compute the matrix of (𝑑𝐹)(𝑢,𝑡)
with respect to the bases 𝑡 (given in (15)) of 𝑇𝑢𝑇1𝑆 × 𝑇𝑡ℝ and 𝑡 =

{
𝐸𝑡
1
, … , 𝐸𝑡

4

}
of 𝔍𝛾𝑢𝑡

, where
𝐸𝑡𝑚 are the Jacobi fields along 𝛾𝑢𝑡 whose initial conditions are

𝐸𝑡
1
(0) = 0, 𝐸𝑡

2
(0) = 𝑛𝑡, 𝐸𝑡

3
(0) = 0, 𝐸𝑡

4
(0) = 𝑣𝑡,

(𝐸𝑡
1
)′(0) = 𝑛𝑡, (𝐸𝑡

2
)′(0) = 0, (𝐸𝑡

3
)′(0) = 𝑣𝑡, (𝐸𝑡

4
)′(0) = 0.

(18)

By Proposition 3.3 and Lemmas 3.4 and 3.5, we have

𝐽𝑚(0) =

⎧⎪⎪⎨⎪⎪⎩

𝑏21𝑠𝜅(𝑡)𝑛𝑡, 𝑚 = 1,
𝑣𝑡 + 𝑏22𝑠𝜅(𝑡)𝑛𝑡, 𝑚 = 2,
0, 𝑚 = 3,
𝑣𝑡, 𝑚 = 4,

and 𝐽′𝑚(0) =

⎧⎪⎪⎨⎪⎪⎩

𝜅𝑠𝜅(𝑡)𝑣𝑡 + 𝑏11𝑛𝑡, 𝑚 = 1,
𝑏12𝑛𝑡, 𝑚 = 2,
𝑐𝜅(𝑡)𝑣𝑡, 𝑚 = 3,
0, 𝑚 = 4.

Hence, calling 𝐶𝑡 the matrix of (𝑑𝐹)(𝑢,𝑡) with respect to the bases 𝑡 and 𝑡, we obtain that

𝐶𝑡 =

⎛⎜⎜⎜⎜⎜⎝

𝑏11 𝑏12 0 0

𝑏21𝑠𝜅(𝑡) 𝑏22𝑠𝜅(𝑡) 0 0

𝜅𝑠𝜅(𝑡) 0 𝑐𝜅(𝑡) 0

0 1 0 1

⎞⎟⎟⎟⎟⎟⎠
. (19)
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OUTER BILLIARDS IN THE SPACE OF ORIENTED GEODESICS 17 of 25

Therefore, det 𝐶𝑡 = 𝑐𝜅(𝑡)𝑠𝜅(𝑡)𝑏, where 𝑏 = det
(
𝐴𝑝

)
. As, by hypothesis, 0 ≠ |𝑡| < 𝑇 and [𝐴𝑝]{𝑢,𝑣}

is definite, we have that 𝐶𝑡 is nonsingular. □

Proof of Proposition 1.3. By the reflection invariance, 𝐵 preserves the oriented lines orthogonal to
the plane 𝑃 = {(𝑥, 𝑦, 𝑧) ∣ 𝑦 = 0} and induces in the obvious manner the outer billiard map 𝐵 on 𝑃
determined by the closed strictly convex curve 𝛾 with image 𝑆 ∩ 𝑃, which includes the graph of
𝑓. Accordingly, we identify 𝑃 and the set of oriented lines orthogonal to it with ℝ2.
Given a small 𝑠 ⩾ 0, we next compute 𝐵 (−1, 𝑠). Let 𝓁𝑠 be the straight line passing through

(−1, 𝑠) tangent to 𝛾 at (𝑥𝑠, 𝑓 (𝑥𝑠)), with−1 < 𝑥𝑠 ⩽ 0. Then 𝓁𝑠 can be parameterized by 𝑡 ↦ 𝑙𝑠 (𝑡) =

(𝑥𝑠, 𝑓 (𝑥𝑠)) + 𝑡
(
1, 𝑓′ (𝑥𝑠)

)
and there exists a unique 𝑡𝑠 such that 𝑙𝑠 (𝑡𝑠) = (−1, 𝑠). We have

𝑥0 = 0, 𝑥𝑠 + 𝑡𝑠 = −1 and 𝑓(𝑥𝑠) + 𝑡𝑠𝑓
′(𝑥𝑠) = 𝑠. (20)

Hence,

𝐵(−1, 𝑠) = 𝑙𝑠(−𝑡𝑠) =
(
𝑥𝑠 − 𝑡𝑠, 𝑓(𝑥𝑠) − 𝑡𝑠𝑓

′(𝑥𝑠)
)
= (2𝑥𝑠 + 1, 2𝑓(𝑥𝑠) − 𝑠).

Suppose that 𝐵 is smooth, then so are 𝑠 ↦ 𝑥𝑠 and 𝑠 ↦ 𝑡𝑠. We compute the right derivative at 𝑠 = 0

of both sides of the last equation in (20) and obtain

0 = 𝑓′(0)𝑥′0 + 𝑡′0𝑓
′(0) + 𝑡0𝑓

′′(0)𝑥′0 = 1,

a contradiction. □

4 THE KÄHLER FORMULATION OF THE OUTER BILLIARDMAP

To prove Theorem 1.4, we need the presentation of 𝜅 as a symmetric homogeneous space. The
details of the following description can be found, for instance, in [11]. For 𝜅 = ±1, we consider the
standard presentation of𝑀𝜅 as a submanifold of ℝ4: If {𝑒0, 𝑒1, 𝑒2, 𝑒3} is the canonical basis of ℝ4,
then𝑀𝑘 is the connected component of 𝑒0 of the set{

(𝑡, 𝑥, 𝑦, 𝑧) ∈ ℝ4 | 𝜅𝑡2 + 𝑥2 + 𝑦2 + 𝑧2 = 𝜅
}
.

Let 𝐺𝜅 be the identity component of the isometry group of 𝑀𝜅, that is, 𝐺1 = 𝑆𝑂4 and 𝐺−1 =
𝑂𝑜 (1, 3). The group 𝐺𝜅 acts smoothly and transitively on 𝜅 as follows: g ⋅ [𝛾] = [g◦𝛾]. Let 𝛾𝑜 be
the geodesic in 𝑀𝜅 with 𝛾𝑜(0) = 𝑒0 and initial velocity 𝑒1 ∈ 𝑇𝑒0𝑀𝜅 and let 𝐻𝜅 be the stabilizer
group of [𝛾𝑜] in 𝐺𝜅. Then there exists a diffeomorphism 𝜙 ∶ 𝐺𝜅∕𝐻𝜅 → 𝜅, given by 𝜙(g𝐻𝜅) =

g ⋅ [𝛾𝑜].
The Killing form of Lie (𝐺𝜅) provides 𝐺𝜅 with a bi-invariant metric and thus there exists a

unique pseudo-Riemannian metric g̃𝐾 on 𝐺𝜅∕𝐻𝜅 such that the canonical projection 𝜋 ∶ 𝐺𝜅 →

𝐺𝜅∕𝐻𝜅 is a pseudo-Riemannian submersion. The diffeomorphism 𝜙 turns out to be an isometry
onto 𝜅 endowed with a constant multiple of the metric g𝐾 defined in (10).
Besides, it is well-known that (𝐺𝜅∕𝐻𝜅, g̃𝐾) is a pseudo-Riemannian symmetric space. In par-

ticular, if Lie (𝐺𝜅) = Lie (𝐻𝜅) ⊕ 𝔭𝜅 is the Cartan decomposition determined by [𝛾𝑜], then for any
𝑍 ∈ 𝔭𝜅 the curve 𝑡 ↦ exp (𝑡𝑍)𝐻𝜅 is a geodesic of 𝐺𝜅∕𝐻𝜅.
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18 of 25 GODOY et al.

Proof of Theorem 1.4. To see that 𝐵 = 𝐵′, as  ≅ 𝑇1𝑆, we only need to show that for 𝑢 ∈ 𝑇1𝑝𝑆,

the curve Γ(𝑡) =∶
[
𝛾𝑢𝑡

]
is the geodesic in (𝜅, g𝐾) with initial velocity  𝜈(𝑢), where 𝜈(𝑢) is the

outward-pointing normal vector of  at [𝛾𝑢]. First we verify that Γ′(0) =  𝜈(𝑢) and afterward
that Γ is a geodesic of 𝜅.
The initial velocity of Γ corresponds, via the isomorphism 𝑇𝛾𝑢 of (6), with the Jacobi field along

𝛾𝑢 given by

𝐽(𝑠) = 𝑑

𝑑𝑡

|||0𝛾𝑢𝑡 (𝑠).
A straightforward computation shows that 𝐽 is determined by the conditions 𝐽(0) = 𝑖𝑢 and 𝐽′(0) =
0.
On the other hand, let 𝐼 ∈ 𝔍𝛾𝑢

be the Jacobi field given by the initial conditions 𝐼(0) = −𝑛(𝑝)

and 𝐼′(0) = 0. We claim that after the identification with 𝑇[𝛾𝑢]𝜅, 𝐼 corresponds to the unit
outward-pointing normal vector field 𝜈 on. Indeed,

g𝐾(𝐼, 𝐼) = ⟨𝐼, 𝐼⟩𝜅 + 𝜅⟨𝐼′, 𝐼′⟩𝜅 = (−1)2||𝑛(𝑝)||2𝜅 = 1,

and for 𝐾 ∈ 𝑇[𝛾𝑢], 𝐾(0) ∈ 𝑇𝛾𝑢(0)𝑆 by Lemma 2.1, and so

g𝐾(𝐼, 𝐾) = −⟨𝑛(𝑝), 𝐾(0)⟩𝜅 = 0.

Also, 𝜈(𝑢) points to because 𝑛 is the inward-pointing unit normal vector field of 𝑆.
Now, by the definition of the complex structure  in (8), the identity [𝛾𝑢](𝜈[𝛾𝑢]) = Γ′(0) trans-

lates into 𝐽 = 𝛾′𝑢 × 𝐼, which holds because 𝐽(0) = 𝑖𝑢 = 𝑛(𝑝) × 𝑢 = 𝛾′𝑢(0) × 𝐼(0) and 𝐽′(0) = 0 =

𝐼′(0).
Next we show that Γ is a geodesic. By homogeneity, we may suppose that 𝑝 = 𝑒0, the inward-

pointing unit normal vector of 𝑆 at 𝑒0 is 𝑒3 and 𝑢 = 𝑒1. Hence, 𝑖𝑢 = 𝑒2 and 𝑢𝑡 = 𝑒1 ∈ 𝑇𝛾(𝑡)𝑀𝜅 where
𝛾(𝑡) = 𝑐𝜅(𝑡)𝑒0 + 𝑠𝜅(𝑡)𝑒2.
Let 𝑍 be the linear transformation of ℝ4 defined by 𝑍(𝑒0) = 𝑒2, 𝑍(𝑒2) = −𝜅𝑒0 and 𝑍(𝑒1) =

𝑍(𝑒3) = 0. It is easy to verify that 𝑍 ∈ Lie(𝐺𝜅) and exp(𝑡𝑍) [𝛾𝑢] =
[
𝛾𝑢𝑡

]
for all 𝑡. Now, one can

see in the preliminaries of [11] (page 752) that 𝑍 ∈ 𝔭𝜅, and so Γ is a geodesic by the properties of
symmetric spaces presented above. □

Proof of Proposition 1.5. Suppose that 𝓁 = [𝛾𝑢] with 𝛾𝑢 (0) = 𝑝 ∈ 𝑆. The Jacobi field 𝐼 along 𝛾𝑢
with 𝐼 (0) = 0 and 𝐼′ (0) = 𝑖𝑢 spans the normal space to 𝑇𝓁 and is null (see (9)). By Lemma 2.1,
𝐼 is also tangent to at 𝓁 (this shows, in particular, that g× degenerates on 𝑇𝓁). Now,

( 𝐼)(0) = 0 and ( 𝐼)′(0) = 𝑛𝑝

(where 𝑛 is the inward-pointing unit normal vector field of 𝑆, as before). Again by Lemma 2.1,
 𝐼 ∈ 𝑇𝓁.
The geodesicΓ in𝜅 withΓ (0) = 𝓁 andΓ′ (0) =  𝐼 consists of oriented geodesics in𝑀𝜅 rotating

around 𝑝 in the totally geodesic surface orthogonal to 𝑆 containing the image of 𝛾𝑢, that is,

Γ(𝑡) =
[
𝛾cos 𝑡 𝑢+sin 𝑡 𝑛𝑝

]
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OUTER BILLIARDS IN THE SPACE OF ORIENTED GEODESICS 19 of 25

(this can be verified with computations similar to those we made at the end of the proof of the
theorem above). Hence, for each 𝑡, the oriented geodesic Γ (𝑡) intersects 𝑆 and so, the image of Γ
is disjoint from . As any normal 𝑁 is multiple of 𝐼, the proof concludes. □

5 THE SYMPLECTIC PROPERTIES OF THE OUTER BILLIARDMAP

Proof of Theorem 1.6(a). As in (13), we write

𝐵 = 𝐹+◦g◦𝐹
−1
− .

Given 𝓁 ∈  , suppose that 𝓁 = 𝐹−(𝑢, −𝑡) for some 0 < 𝑡 < 𝑇. We compute the matrix of (𝑑𝐵)𝓁
with respect to the canonical bases −𝑡 and 𝑡 of𝔍𝛾𝑢−𝑡

and𝔍𝛾𝑢𝑡
as in (18), respectively, obtaining[

(𝑑𝐵)𝓁
]
−𝑡,𝑡

=
[
(𝑑𝐹)(𝑢,𝑡)

]
𝑡 ,𝑡

[
𝑑g(𝑢,−𝑡)

]
−𝑡,𝑡

([
(𝑑𝐹)(𝑢,−𝑡)

]
−𝑡,−𝑡

)−1
= 𝐶𝑡

(
𝐼 0

0 𝑅

)
(𝐶−𝑡)

−1 =

(
𝑅 02

𝐷 𝑅

)
,

(21)

where 𝐶𝑡 is as in (19), 𝐼 is the (2 × 2)-identity matrix, 𝑅 =

(
1 0

0 −1

)
and

𝐷 =
2

𝑏

(
𝑠𝜅(𝑡)𝜅𝑏22 𝜅𝑏12

−𝑏21 −
𝑏11
𝑠𝜅(𝑡)

)
,

with 𝑏 = det
(
𝐴𝑝

)
. Thus,

(𝑑𝐵)𝓁
(
𝐸−𝑡
1

)
= 𝐸𝑡

1
+ 2

𝑏
𝑠𝜅(𝑡)𝜅𝑏22𝐸

𝑡
3
− 2

𝑏
𝑏21𝐸

𝑡
4
,

(𝑑𝐵)𝓁
(
𝐸−𝑡
2

)
= −𝐸𝑡

2
+ 2

𝑏
𝜅𝑏12𝐸

𝑡
3
− 2

𝑏

𝑏11
𝑠𝜅(𝑡)

𝐸𝑡
4
,

(𝑑𝐵)𝓁
(
𝐸−𝑡3

)
= 𝐸𝑡3 and (𝑑𝐵)𝓁

(
𝐸−𝑡4

)
= −𝐸𝑡4.

Recall from (12) the definition of the symplectic form 𝜔𝐾 . Straightforward computations yield
that ⟨

𝐸𝑡
𝑖 (0) × 𝐸

𝑡
𝑗(0), 𝑢𝑡

⟩
𝜅
=

⟨(
𝐸𝑡
𝑖

)′
(0) ×

(
𝐸𝑡
𝑗

)′
(0), 𝑢𝑡

⟩
𝜅

= 0

for all 1 ⩽ 𝑖 < 𝑗 ⩽ 3, except for

⟨
𝐸𝑡2(0) × 𝐸

𝑡
4(0), 𝑢𝑡

⟩
𝜅
=

⟨(
𝐸𝑡1

)′
(0) ×

(
𝐸𝑡3

)′
(0), 𝑢𝑡

⟩
𝜅
= −1.

Hence,

[𝜔𝐾]𝑡 =

(
02 𝜌

−𝜌 02

)
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20 of 25 GODOY et al.

with 𝜌 =
(
𝜅 0

0 1

)
. We observe that [𝜔𝐾]−𝑡 = [𝜔𝐾]𝑡 . Hence, calling𝐻 the matrix in (21), we have

to check that

𝐻𝑇[𝜔𝐾]𝑡𝐻 = [𝜔𝐾]−𝑡

The left-hand side equals (
−𝐷𝑇𝜌𝑅 + 𝑅𝜌𝐷 𝜌

−𝜌 02

)

and

−𝐷𝑇𝜌𝑅 + 𝑅𝜌𝐷 =
2

𝑎

(
1 − 𝜅2

)( 0 −𝑏12

𝑏21 0

)
,

which is the zero matrix because 𝜅 = ±1, as desired. □

Proof of Theorem 1.6(b). Following the computations in the proof of part (a), we have

[
𝜔×

]
𝑡
=

(
𝑗 02

02 𝑗

)
,

where 𝑗 = 1

2

(
0 1

−1 0

)
and

[
𝜔×

]
−𝑡

=
[
𝜔×

]
𝑡
. Further computations yield

𝐻𝑇
[
𝜔×

]
𝑡
𝐻 =

(
𝑗 −(𝑅𝑗𝐷)𝑇

𝑅𝑗𝐷 𝑗

)
. (22)

Now, 𝑅𝑗𝐷 = 1

𝑏

(
−𝑏21 −𝑏11∕𝑠𝜅 (𝑡)

𝑠𝜅 (𝑡) 𝜅𝑏22 𝜅𝑏12

)
and 𝑏11∕𝑠𝜅(𝑡) ≠ 0 because by the hypothesis 𝑆 is

quadratically convex. Therefore, 𝑅𝑗𝐷 ≠ 02 and the expression (22) is not equal to
[
𝜔×

]
−𝑡
. □

We conclude this section with the following proposition, which relates Theorem 1.6 with plane
hyperbolic outer billiards [30] and supports the fact that 𝜔𝐾 (in contrast with 𝜔×) is the natural
symplectic form in our context.

Proposition 5.1. Let𝐻2 be a totally geodesic hyperbolic plane in hyperbolic space.

(a) Let 𝜈 be a unit normal vector field on 𝐻2 and let 𝑓 ∶ 𝐻2 → −1, 𝑓(𝑝) = [𝛾𝜈(𝑝)]. Then 𝑓∗𝜔𝐾 is
the area form on𝐻2.

(b) Let 𝑆 be a smooth, closed, quadratically convex surface in 𝐻3 that is invariant by the reflection
with respect to 𝐻2. Then the outer billiard map on −1 associated with 𝑆 preserves the oriented
lines orthogonal to 𝐻2 and induces in the obvious manner the outer billiard map on 𝐻2 deter-
mined by the closed strictly convex curve with image 𝑆 ∩ 𝐻2. This plane outer billiard preserves
the area form on𝐻2.
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OUTER BILLIARDS IN THE SPACE OF ORIENTED GEODESICS 21 of 25

Proof. For part (a), let 𝑝 ∈ 𝐻2 and let {𝑧1, 𝑧2} be a positively oriented (with respect to the orien-
tation on 𝐻2 determined by 𝜈) orthonormal basis of 𝑇𝑝𝐻2. For 𝑖 = 1, 2, let 𝐽𝑖 be the Jacobi field
along 𝛾𝜈(𝑝) satisfying 𝐽𝑖(0) = 𝑧𝑖 and 𝐽′𝑖 (0) = 0. Using (12) and that 𝐻2 is totally geodesic we have
that

(𝑓∗𝜔𝐾)𝑝(𝑧1, 𝑧2) = 𝜔𝐾(𝑑𝑓𝑝(𝑧1), 𝑑𝑓𝑝(𝑧2)) = 𝜔𝐾(𝐽1, 𝐽2) = 1.

Part (b) is an immediate consequence of part (a) and Theorem 1.6. □

6 DYNAMICS OF THE OUTER BILLIARDMAP ON −𝟏

Before proving Proposition 1.8, we comment on the Klein model of hyperbolic space, that is, the
open ball centered at the origin with radius 1, where the trajectories of geodesics are the inter-
sections of Euclidean straight lines with the ball. The intersections of  with Euclidean planes
are totally geodesic hyperbolic planes.
We recall the following well-known constructions on  (see, for instance, [4, chapter 6]). For

an oriented line 𝓁 in  we call 𝓁+ and 𝓁− its forward and backward ideal end points in the two
sphere 𝜕.
Let 𝓁1 and 𝓁2 be two coplanar oriented lines in  such that the corresponding extensions to

Euclidean straight lines intersect in the complement of the closure of. In particular, 𝓁1 and 𝓁2
do not intersect and are not asymptotic and hence there exists the shortest segment joining them
with respect to the hyperbolic metric; we call it 𝑠(𝓁1,𝓁2).
The hyperbolic midpoint of 𝑠(𝓁1,𝓁2) is the intersection of the Euclidean segments joining 𝓁+1

with 𝓁−
2
and 𝓁−

1
with 𝓁+

2
, or joining 𝓁+

1
with 𝓁+

2
and 𝓁−

1
with 𝓁−

2
, depending on the orientation of

the lines.
Suppose that 𝓁1 and 𝓁2 lie in the plane 𝑃, let 𝐷 = 𝑃 ∩, and let 𝐶 be the boundary of 𝐷. We

describe the construction of the segment 𝑠(𝓁1,𝓁2) in the case when one of the lines, say 𝓁1, is a
diameter in 𝐷. Let 𝑝 be the intersection of the tangent lines to 𝐶 through the ideal end points 𝓁+

2
and 𝓁−

2
. Then 𝑠(𝓁1,𝓁2) is the segment that joins 𝓁1 and 𝓁2 and is contained in the straight line

through 𝑝 perpendicular to 𝓁1 (the point 𝑝 is called the pole of 𝓁2 in the plane 𝑃).
We recall the formula for the hyperbolic distance between a point in and themidpoint of any

chord containing it: Let 𝑋,𝑌 be two distinct points in 𝑆2 = 𝜕 and let 𝐶 be the midpoint of the
segment joining 𝑋 and 𝑌, that is, 𝐶 = 1

2
(𝑋 + 𝑌). Then, for any 𝑡 ∈ (0, 1),

𝑑
(
𝐶, 𝐶 + 𝑡 𝑌−𝑋

2

)
= arctanh 𝑡, (23)

where 𝑑 is the hyperbolic distance in (it is not difficult to deduce the expression from the second
displayed formula of [4, Proposition 6.2]).
As quadratic contact is invariant by diffeomorphisms, a quadratically convex surface ofℝ3 con-

tained in  is also quadratically convex with the hyperbolic metric. By abuse of notation, we
describe an oriented geodesic 𝓁 in  by the straight Euclidean line 𝑝 + ℝ𝑢 containing 𝓁, with
𝑝 ∈  and 𝑢 a unit vector giving the orientation.

Proof of Proposition 1.8. We use the Klein model of hyperbolic space. Let 𝓁 = ℝ𝑒3 and 𝓁𝜃 =
ℝ(sin 𝜃 𝑒2 + cos 𝜃 𝑒3). We construct a surface 𝑆 contained in the region 𝑥 ⩾ 0, 𝑦 ⩾ 0 of  whose
associated outer billiardmap𝐵 satisfies𝐵3(𝓁) = 𝓁𝜃.We fix a real number 𝑟 in the interval (sin 𝜃, 1).
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F IGURE 6 Elements for the construction of 𝑆.

Let 𝓁1 = 𝑟𝑒1 + ℝ𝑒3 and 𝓁2 = 𝑟𝑒2 + ℝ𝑒3, and let 𝑝 = (𝑥0, 0, 0) and 𝑞 = (0, 𝑦0, 𝑧0) be the hyperbolic
midpoints between 𝓁 and 𝓁1 and between 𝓁𝜃 and 𝓁2, respectively, (see Figure 6).
There exists a smooth, closed, quadratically convex surface 𝑆 contained in  and tangent to

the vertical planes 𝑦 = 0, 𝑦 + 𝑥 = 𝑟 and 𝑥 = 0, at the points 𝑝, (𝑟∕2, 𝑟∕2, 0) and 𝑞, respectively. In
fact, consider a quadratically convex compact surface 𝑆′ tangent to those planes at the points 𝑝,
(𝑟∕2, 𝑟∕2, 0) and (0, 𝑦0, 0), respectively, such that the absolute value of the height function 𝑧|𝑆′ is
bounded by 𝜀 for some 𝜀 > 0. Let 𝑇 be the unique affine transformation of ℝ3 fixing the vertical
plane through 𝑝 and (𝑟∕2, 𝑟∕2, 0) and sending (0, 𝑦0, 0) to 𝑞. Then 𝑆 = 𝑇

(
𝑆′
)
satisfies the desired

conditions (in particular, it preserves the vertical planes and the quadratical contact), provided
that 𝜀 is small enough. By the properties of 𝑆, we have that 𝐵(𝓁) = 𝓁1, 𝐵2(𝓁) = 𝓁2 and 𝐵3(𝓁) =
𝓁𝜃. □

Proof of Proposition 1.9. As in the proof of Proposition 1.8, we use the Klein model  for hyper-
bolic space. We write ℝ3 = ℂ × ℝ. Given 0 < 𝑎 < 1

2
< 𝑟𝑜 < 1 and ℎ𝑜 =

√
1 − 𝑟2𝑜 , we consider the

straight lines

𝛾0(𝑡) = (𝑡, 0), 𝛾1(𝑡) = ( 𝑖
2
+ 𝑡(1 − 𝑎𝑖), 0),

𝛾2(𝑡) = ( 𝑖
2
+ 𝑡(1 − 𝑎𝑖), ℎ𝑜), 𝛾3(𝑡) = (𝑡, ℎ𝑜).

For 𝑘 = 0, 1, 2, 3, let 𝓁𝑘 be the corresponding oriented geodesic in  and set 𝓁4 = 𝓁0. Notice
that 𝓁𝑘 and 𝓁𝑘+1 are coplanar for any 𝑘 = 0, 1, 2, 3. We call 𝑃𝑘 the hyperbolic plane containing 𝓁𝑘
and 𝓁𝑘+1. As 0 < 2𝑎 < 1, the lines 𝓁𝑘 and 𝓁𝑘+1 are disjoint and not asymptotic, and so the shortest
segment 𝜎𝑘 joining them is well-defined.
We will show the existence of a smooth, closed, quadratically convex surface 𝑆 in not inter-

secting 𝓁0 such that the associated billiard map 𝐵 satisfies 𝐵𝑘(𝓁0) = 𝓁𝑘 for 𝑘 = 0,… , 4 and its
holonomy at 𝓁0 is not trivial.
We make computations for general values of 𝑟 and ℎ =

√
1 − 𝑟2, with 0 < 𝑎 < 1

2
< 𝑟 ⩽ 1, in

order to deal simultaneously with 𝓁0 and 𝓁1 on the one hand (case 𝑟 = 1) and 𝓁2 and 𝓁3 on the
other (case 𝑟 = 𝑟𝑜), as the former lie in a disc of radius 1 at height 0 and the latter in a disc of radius
𝑟𝑜 at height ℎ𝑜.
The end points of 𝓁1 and 𝓁2 are given by

𝓁𝜀1 = (𝑧𝜀(1), 0) and 𝓁𝜀2 = (𝑧𝜀(𝑟𝑜), ℎ𝑜),
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F IGURE 7 Elements for the construction of 𝑆.

for 𝜀 = ±1, where 𝑧𝜀(𝑟) =
𝑖

2
+ 𝑡𝜀(𝑟) (1 − 𝑎𝑖), with 𝑡−(𝑟) < 𝑡+(𝑟) being the solutions of the equa-

tion 𝑡2 +
(
1

2
− 𝑎𝑡

)2
= 𝑟2. As 𝓁1 and 𝓁2 are parallel, the end points of 𝜎1 are the respective

midpoints, whose (common) component in ℂ is

𝑧𝑜 =
1

2

(
𝑧+(1) + 𝑧−(1)

)
= 1

2

(
𝑧+(𝑟𝑜) + 𝑧−(𝑟𝑜)

)
= 1

2(𝑎2+1)
(𝑎 + 𝑖).

Hence, 𝑞+(𝓁1) = (𝑧𝑜, 0) and 𝑞−(𝓁2) = (𝑧𝑜, ℎ𝑜). Similarly, 𝑞−(𝓁0) = (0, 0) and 𝑞+(𝓁3) = (0, ℎ𝑜).
Let 𝑝1 = (𝑤(1), 0) and 𝑝2 = (𝑤(𝑟𝑜), ℎ𝑜) be the poles of the line 𝓁1 in the plane ℂ × {0} and of

the line 𝓁2 in the plane ℂ × {ℎ𝑜}, respectively. That is, 𝑤(𝑟) is the intersection of the lines tangent
to the circle of radius 𝑟 in ℂ at the points 𝑧−(𝑟) and 𝑧+(𝑟), in the horizontal plane at height ℎ, for
ℎ = 0, ℎ𝑜 (see Figure 7). Using the construction of the shortest segment joining two oriented lines,
the segment𝜎2 is contained in the line perpendicular to𝓁3 passing through (𝑤 (𝑟𝑜) , ℎ𝑜), that is, the
line (Re𝑤 (𝑟𝑜) + ℝ𝑖, ℎ𝑜). Putting 𝑟 = 1, we get that 𝜎0 is contained in the line (Re𝑤 (1) + ℝ𝑖, 0).
We have that 𝑤(𝑟) = 𝑧+(𝑟) + 𝑠𝑜(𝑟)𝑖𝑧+(𝑟), where 𝑠𝑜 is the solution of the equation

𝑧+(𝑟) + 𝑠𝑖𝑧+(𝑟) = 𝑧−(𝑟) − 𝑠𝑖𝑧−(𝑟).

A straightforward computation yields Re𝑤(𝑟) = 2𝑎𝑟2.
Now, computing the intersections of the remaining 𝜎𝑘 with the lines 𝓁𝑗 , we obtain the rest of

the 𝑞±(𝓁𝑗):

𝑞+(𝓁0) = (Re𝑤(1), 0) = 2(𝑎, 0), 𝑞−(𝓁1) = 2
(
𝑎 + 𝑖

(
1

4
− 𝑎2

)
, 0
)

𝑞+(𝓁2) =
(
2
(
𝑎𝑟𝑜 + 𝑖

(
1

4
− 𝑎2𝑟2𝑜

))
, ℎ𝑜

)
, 𝑞−(𝓁3) = (Re𝑤(𝑟𝑜), ℎ𝑜) =

(
2𝑎𝑟2𝑜, ℎ𝑜

)
.

As in Proposition 1.8, for each 𝑎 > 0 there exists a quadratically convex surface 𝑆𝑎 in tangent
to the plane 𝑃𝑘 at the midpoint of 𝜎𝑘 for any 𝑘 = 0,… , 3. The associated billiard map 𝐵𝑎 satisfies
(𝐵𝑎)

4 (𝓁0) = 𝓁0 and its holonomy at 𝓁0 turns out to be

𝐻(𝑎) =
∑3

𝑘=0
(−1)𝑘𝑑(𝑞+(𝓁𝑘), 𝑞−(𝓁𝑘)).
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Particularizing 𝑟𝑜 = ℎ𝑜 = 1∕
√
2, using (23) we obtain that

𝐻(𝑎) = arctanh(2𝑎) − arctanh
(
𝑎
√
4𝑎2 + 3

)
+ arctanh

(
𝑎
√
2𝑎2 + 1

)
− arctanh(𝑎).

We compute 𝐻(0) = 0 and 𝐻′(0) ≠ 0. Therefore, for sufficiently small 𝑎 > 0, the holonomy of
𝐵𝑎 at 𝓁0 does not vanish. □
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