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SCHMIDT RANK AND SINGULARITIES

David Kazhdan,1 Amichai Lampert,2 and Alexander Polishchuk3,4 UDC 512.5

We revisit Schmidt’s theorem connecting the Schmidt rank of a tensor with the codimension of a certain
variety and adapt the proof to the case of arbitrary characteristic. We also establish a sharper result for this
kind for homogeneous polynomials, assuming that the characteristic does not divide the degree. Further,
we use this to relate the Schmidt rank of a homogeneous polynomial (resp., a collection of homogeneous
polynomials of the same degree) with the codimension of the singular locus of the corresponding hy-
persurface (resp., intersection of hypersurfaces). This gives an effective version of Ananyan–Hochster’s
theorem [J. Amer. Math. Soc., 33, No. 1, 291–309 (2020), Theorem A].

1. Introduction

Let k be a field (of any characteristic) and let P : V1 ⇥ V2 ⇥ . . . ⇥ Vd ! k be a polylinear form, where Vi

are finite-dimensional vector spaces over k. Equivalently, we consider P as a tensor in V
⇤
1 ⌦ . . .⌦ V

⇤
d .

Definition 1.1.

(i) We say that P 6= 0 has the Schmidt rank 1 if there exist a partition [1, d] = I t J into two nonempty
parts and polylinear forms PI(vi1 , . . . , vir) and PJ(vj1 , . . . , vjs), where va 2 Va, I = {i1 < . . . < ir},

and J = {j1 < . . . < jr}, such that P = PI ·PJ . In general the Schmidt rank of P, denoted by rk
S
(P )

is the smallest number r such that P =

Xr

i=1
Pi with Pi of Schmidt rank 1. For a collection of tensors

P = (P1, . . . , Ps), we define the Schmidt rank rk
S
(P ) as the minimum of Schmidt ranks of the nontrivial

linear combinations of (Pi).

(ii) Given a collection of nonempty subsets I1, . . . , Ir ⇢ [1, d] and a collection (PI1 , . . . , PIr), where PIi is
a polylinear form on

Y
a2Ii

Va, we denote by (PI1 , . . . , PIr) ⇢ V
⇤
1 ⌦ . . . ⌦ V

⇤
d and call this the tensor

ideal generated by PI1 , . . . , PIr , and the subspace of polylinear forms of the form

P =

rX

i=1

PIi ·QJi ,

for some polylinear forms QJi on
Y

b2Ji
Vb, where Ji = [1, d] \ Ii.

The Schmidt rank of a tensor, along with a set of related notions, such as slice rank, G-rank, analytic rank,
and a version of Schmidt rank for homogeneous polynomials also known as strength (see in what follows) has
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been a subject of study in many recent works (see [1, 4, 5, 8, 9] and the references therein). One of the goals of
the present paper is to establish a precise relation (in the case of an algebraically closed base field k) between
this notion and the codimension of the singular locus of the corresponding hypersurface, thus giving an effective
version of Ananyan–Hochster’s theorem [2, Theorem A].

We define a subvariety

ZP = Z
V1
P ⇢ V2 ⇥ . . .⇥ Vd

as the set of (v2, . . . , vd) such that P (v1, v2, . . . , vd) = 0 for all v1 2 V1. Following Schmidt, we set

g(P ) := codimV2⇥...⇥Vd
ZP .

In [10] (where the authors considered the case d = 3), this number is called the geometric rank of P. By using
[10, Theorem 3.2], we can see that it does not depend on the ordering of the variables v1, . . . , vd.

It is easy to see that

g(P )  rk
S
(P ) (1.1)

(see Lemma 2.1(i) in what follows or [10, Theorem 1]).
Similarly, for a collection P = (P1, . . . , Ps), we define ZP ⇢ V2⇥ . . .⇥Vd by the condition on (v2, . . . , vd)

that the corresponding map

V1 ! ks : v1 7! (Pi(v1, v2, . . . , vd))1is

has rank < s, and we set

g(P ) := codimV2⇥...⇥Vd
ZP .

The proof of the following theorem closely follows the proof of a similar result presented in [11] for the case
where k = C and P is symmetric. We modified the proof so that it would work for an arbitrary characteristic and
also streamlined some parts of the original arguments. The fact that the original proof can be adapted to an arbitrary
characteristic was also pointed out in [11, Section 4].

Theorem 1.1.

(i) Let g0(P ) denote the codimension in V2 ⇥ . . . ⇥ Vd of the Zariski closure of the set of k-points in ZP

(so that g(P )  g
0
(P ) and g(P ) = g

0
(P ) if k is algebraically closed). Then

rk
S
(P )  Cdg

0
(P ),

where

Cd = max(2 + ✓d−2, 2
d−2

− 1)

and ✓n is the number of ordered collections of disjoint nonempty subsets I1 t . . . t Ip ( [1, n] (with
p ≥ 1). In particular, C3 = 2, C4 = 4, and C5 = 14.

(ii) Assume that k is algebraically closed. Then, for a collection P = (P1, . . . , Ps), the following inequality
is true:

rk
S
(P )  Cd(g(P ) + s− 1).

In the appendix, we prove another version of Theorem 1.1 with better bounds for d ≥ 6. Even though Schmidt
applied the above result to the symmetric tensors P corresponding to homogeneous polynomials, we observe that,
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in the symmetric case, it is natural to modify the relevant variety ZP and that this leads to much better estimates
for the rank.

Let f be a homogeneous polynomial of degree d on a finite-dimensional k-vector space V. The Schmidt rank
of f, denoted by rk

S
(f), is the minimal number r such that

f =

rX

i=1

gihi,

where gi and hi are homogeneous polynomials of positive degrees. Note that if rkS(f) = r, then, in the termi-
nology of [2], f has strength r − 1. For a collection f = (f1, . . . , fs), the Schmidt rank rk

S
(f) is defined as the

minimum of Schmidt ranks of the nontrivial linear combinations of fi.
By Hf (x)(·, ·) we denote the Hessian form of f given by the second derivatives of f. This is a symmetric

bilinear form on V, which polynomially depends on the point x 2 V. The symmetric analog of the variety ZP is
a subvariety Z

sym
f ⇢ V ⇥ V given by

Z
sym
f :=

�
(v, x) 2 V ⇥ V | v 2 kerHf (x)

 
.

Further, we set

gsym(f) := codimV⇥V (Z
sym
f ).

The symmetric analog of (1.1) is the following inequality:

gsym(f)  4 rk
S
(f) (1.2)

[see Lemma 2.1(ii)].
Similarly, for a collection f = (f1, . . . , fs) of homogeneous polynomials of degree d, we define a subvari-

ety Z
sym

f
⇢ V ⇥ V as the set of (v, x) such that the map

V ! ks : v0 7! (Hfi(x)(v
0
, v))1is

has the rank < s. By gsym(f) we denote the codimension of Zsym

f
in V ⇥ V.

Theorem 1.2.

(i) Assume that d ≥ 3 and that the characteristic of k does not divide (d − 1)d. Let g0sym(f) denote the
codimension in V ⇥ V of the Zariski closure of the set of k-points in Z

sym
f . Then

rk
S
(f)  2

d−3
g
0
sym(f).

(ii) Under the same assumptions as in (i), assume, in addition, that k is algebraically closed. Then

rk
S
(f)  2

d−3
�
gsym(f) + s− 1

�
.

For algebraically closed k , we prove another version of Theorem 1.2 in the appendix with better bounds
for d ≥ 6. The invariant gsym(f) can be viewed as invariant measuring singularities of the polar map

x 7! (@if(x))1idimV
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of f (see Section 3.3). We also prove that gsym(f) is related to the codimension of the singular locus of the
hypersurface f = 0. Namely, we set

c(f) := codimV Sing(f = 0).

Under the assumption that char(k) does not divide 2(d− 1), we prove that

c(f)  gsym(f)  (d+ 1)c(f) for even d,

c(f)  gsym(f)  dc(f) for odd d

(see Proposition 3.1).
More generally, for a collection f = (f1, . . . , fs), we set

c(f) := codimV Sing
�
V (f)

�
,

where V (f) ⇢ V is a subscheme defined by the ideal (f1, . . . , fs). We also consider the related invariant

c
0
(f) := codimV S(f),

where S(f) ⇢ V is the locus where the Jacobi matrix of (f1, . . . , fs) has the rank < s. It is easy to see that

c
0
(f)  c(f)  c

0
(f) + s.

Here is our main result concerning the relation between the Schmidt rank and the codimension of the singular
locus. It can be regarded as a more precise version of the corresponding result in [9] in the case of an algebraically
closed field of sufficiently large (or zero) characteristic, as well as an effective version of a result of Ananyan and
Hochster (see [2, Theorem A(a)]) playing a central role in their proof of Stillman’s conjecture.

Theorem 1.3. Assume that char(k) does not divide d. Let ck(f) be the codimension in V of the Zariski
closure of the k-points of Sing(f = 0).

(i) The following inequalities are true:

c(f)

2
 rk

S
(f)  (d− 1)ck(f).

(ii) Assume that k is algebraically closed. Then, for a collection f = (f1, . . . , fs),

rk
S
(f)  (d− 1)

�
c
0
(f) + s− 1

�
.

Combining Theorem 1.3(i) with [2, Theorem A(c)], we get the following result:

Corollary 1.1. Assume that k is algebraically closed and char(k) does not divide d!. For i = 2, . . . , d,

let Wi ⇢ k[V ]i be a subspace of forms of degree i. Also let W =
L

iWi, w = dimW. Assume that,
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for some m ≥ 1, the following inequalities are true:

rk
S
(Wi) ≥ (i− 1)(m+ 2) + 3(w − 1) for i = 3, . . . , d,

rk
S
(W2)− 1 ≥

⇠
m+ 1

2

⇡
+ 3(w − 1).

Then every sequence of linearly independent homogeneous forms in W is regular, and the corresponding
complete intersection subscheme in V satisfies the Serre condition Rm.

Note that, without any assumptions on the characteristic on k, we are able to estimate, in terms of c(f),

the rank of Hf (x)(u, v) regarded as a polynomial in (u, v, x) 2 V ⇥ V ⇥ V (see Remark 3.1).
For a homogeneous polynomial f(x) of degree d on V and a vector v 2 V, we denote the derivative of f

in the direction v by @vf(x). Our next result concerns @vf for generic v.

Theorem 1.4. Let f be a homogeneous polynomial of degree d ≥ 3. Assume that k is algebraically closed
of characteristic that does not divide (d− 1)d.

(i) For generic v 2 V, the following inequality is true:

rk
S
(@vf) ≥ 2

2−d
rk

S
(f).

(ii) For s  2
2−d

rk
S
(f) +

1

2

✓
resp., s  2

2−d
rk

S
(f)−

1

2

◆
and for generic v1, . . . , vs 2 V, the deriva-

tives (@v1f, . . . , @vsf) define a (resp., normal) complete intersection of the codimension s in V.

In the appendix we prove another version of Theorem 1.4 with better bounds for d ≥ 6. In Section 3.4,
we also discuss the relationship between the invariant gsym(f) , the polar map of f, and the Gauss map of the
corresponding projective hypersurface.

2. Schmidt Rank of Polylinear Forms

2.1. Elementary Observations. First, we prove (1.1) and its symmetric version (1.2). We denote by k[V ]

the space of polynomial functions on a vector space V. Moreover, by k[V ]d ⇢ k[V ] we denote the subspace of
homogeneous polynomials of degree d.

Lemma 2.1.

(i) For P 2 V
⇤
1 ⌦ . . .⌦ V

⇤
d , the inequality g(P )  rk

S
(P ) is true.

(ii) For f 2 k[V ]d, the inequality gsym(f)  4 rk
S
(f) is true.

Proof. (i) If r = rk
S
(P ), then there exists a decomposition

P =

rX

i=1

PIi ·QJi

as in Definition 1.1. Swapping, if necessary, some Ii with Ji, we can assume that 1 2 Ii for all i. Then the
intersection of r hypersurfaces QJi = 0 in V2 ⇥ . . .⇥ Vd is contained in ZP and has the codimension  r.



SCHMIDT RANK AND SINGULARITIES 1425

(ii) If we have a decomposition

f =

rX

i=1

gihi,

then, over the subvariety Y = V (g1, . . . , gr, h1, . . . , hr) ⇢ V, the symmetric form Hf (x) has the rank  2r :
the subspace cut out by dg1|x, . . . , dgr|x, dh1|x, . . . , dhr|x is contained in its kernel. Since codimV Y  2r,

the preimage of Y in Z
sym
f has the codimension  4r in V ⇥ V.

Lemma 2.1 is proved.

For a subset of indices I = {i1 < . . . < is} ⇢ [1, d], we set

VI := Vi1 ⌦ . . .⌦ Vis .

Thus, we have the following simple observation:

Lemma 2.2. Let V 0
1 ⇢ V1 be a subspace of codimension c and let (`1, . . . , `r) be a basis of the subspace

orthogonal to V
0
1 in V

⇤
1 . Suppose that we have tensors

PIs 2 V
⇤
1 ⌦ V

⇤
Is and QJt 2 V

⇤
Jt

for some subsets I1, . . . , Ir, J1, . . . , Jp ⇢ [2, . . . , d] such that P |V 0
1⇥V2⇥...Vd

belongs to the tensor ideal

�
PIs |V 0

1⌦VIs
, QJt | s = 1, . . . , r; t = 1, . . . , p

�
.

Then P belongs to the tensor ideal

�
(`i | i = 1, . . . , c), (PIs , QJt | s = 1, . . . , r; t = 1, . . . , p)

�
.

In particular,

rk
S
(P )  rk

S
(P |V 0

1⇥V2⇥...⇥Vd
) + c.

Proof. This immediately follows from the fact that the tensor ideal (`i | i = 1, . . . , c) is exactly the kernel of
the restriction map

(V1 ⌦ V2 ⌦ . . .⌦ Vd)
⇤
! (V

0
1 ⌦ V2 ⌦ . . .⌦ Vd)

⇤
.

2.2. Determinantal Construction. Let f : V1 ! V2 be a morphism of vector bundles on a scheme X.

For every r ≥ 0, we have a natural morphism

r :
^r

V
_
2 ⌦

^r+1
V1 ! V1 : (φ1 ^ . . . ^ φr)⌦ ↵ 7! ◆f_φ1 . . . ◆f_φr↵,

where, for a section  of V _
, we denote the corresponding contraction operator by ◆ :

Vi
V !

Vi−1
V .

Lemma 2.3.

(i) Assume that
Vr+1

f = 0. Then the image of r is contained in ker(f).
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(ii) Assume, in addition, that V1 and V2 are trivial vector bundles and, for some point x 2 X, the rank of
f(x) : V1|x ! V2|x is equal to r. Let n = rkV1. Then there exist n − r global sections s1, . . . , sn−r

of V1 such that f(si) = 0 for all i and s1(x), . . . , sn−r(x) is a basis of ker f(x).

Proof. (i) This is equivalent to the statement that ◆f_φr+1r(↵) = 0 for any local section φr+1 of V
_
2 .

However, ◆f_φ1 . . . ◆f_φr ◆f_φr+1 = 0 since
Vr+1

f
_
= 0.

(ii) Since V1 and V2 are trivial, we can choose splittings V1 = K ⊕ W1 and V2 = C ⊕ W2 into trivial
subbundles such that K|x = ker f(x), W2|x = im f(x), and f(x) : W1|x ! W2|x is an isomorphism. We now
consider a composed map

s :
^r

W
_
2 ⌦

⇣^r
W1 ⌦K

⌘
!

^r
V

_
2 ⌦

^r+1
V1

r
−! V1.

Thus, f ◦ s = 0 and the image of s(x) is exactly ker f(x). Choosing a trivialization of the target of s, we can
represent s as a collection of global sections of V1, which has the required properties.

Lemma 2.3 is proved.

2.3. Higher Derivatives. Let V be a finite-dimensional vector space and let k[V ] denote the ring of poly-
nomial functions on V.

For each f 2 k[V ], each n ≥ 1, and v0 2 V, we define a homogeneous form f
(n)
v0 (v) of degree n on V

as the n th graded component of f(v + v0) 2 k[V ] (regarded as a function of v for fixed v0 ) with respect to the
degree grading on k[V ] so that we get a (finite) Taylor decomposition

f(v + v0) =

X

n≥0

f
(n)
v0 (v).

We refer to f
(n)
v0 as the n th derivative of f at v0.

Lemma 2.4. Let X ⇢ V be an irreducible closed subvariety of codimension c and let v0 2 X be a smooth
k-point. Also let g1, . . . , gc be the set of elements in the ideal IX of X with linearly independent differentials
at v0. Then, for any f 2 IX and any n ≥ 1, the form f

(n)
v0 2 k[V ] belongs to the ideal in k[V ] generated

by ((gi)
(j)
v0 )i=1,...,c;1jn.

Proof. Without loss of generality, we can assume that v0 = 0. We set A = k[V ]. Also let Â denote the
completion of the origin (the ring of formal power series) with respect to the ideal. Then the keypoint is that
IX · Â is generated by g1, . . . , gc. Indeed, this follows from the fact that the local homomorphism of local regular
k-algebras Am/(g1, . . . , gc) ! OX,v0 (where m is the maximal ideal of v0 in A) induces an isomorphism on
tangent spaces and, hence, also induces an isomorphism of completions. Note that the higher derivatives are
meaningful for elements of Â (as components in An = k[V ]n ) and, hence, the assertion follows if we express any
element of IX in the form

X
i
gihi for some hi 2 Â.

Lemma 2.4 is proved.

It is also necessary to consider certain polylinear forms of mixed derivatives. Assume that we have a decom-
position V = V1 ⊕ . . .⊕ Vn. Then we get the following induced direct-sum decomposition:

k[V ]m =

M

m1+...+mn=m

k[V1]m1 ⌦ . . .⌦ k[Vn]mn .

Further, for f 2 k[V ]m with m  n and a subset of indices 1  i1 < . . . < im  n, we denote the
component of f in k[Vi1 ]1 ⌦ . . . ⌦ k[Vim ]1 by f

(Vi1
,...,Vim )

. In particular, if we apply this to the m th derivative
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of f at v0, then we get a polylinear form

f
(Vi1

,...,Vim )
v0 := (f

(m)
v0 )

(Vi1
,...,Vim )

2 V
⇤
i1 ⌦ . . .⌦ V

⇤
im , (2.1)

which is called the (Vi1 , . . . , Vim)-mixed derivative of f at v0 .

Lemma 2.5. In the situation of Lemma 2.4, assume, in addition, that V = V1 ⊕ . . . ⊕ Vn. Then, for any
f 2 k[V ] and any collection of indices I = {i1 < . . . < im} ⇢ [1, n], the polylinear form f

(Vi1
,...,Vim )

v0 belongs

to the tensor ideal generated by (gi)
(Vj1

,...,Vjs )
v0 for i = 1, . . . , c and J = {j1 < . . . < js} ⇢ I, J 6= ?.

Proof. The proof easily follows from Lemma 2.4.

2.4. Dimension Count. We now change the notation to

P : U ⇥ V ⇥W1 ⇥ . . .⇥Wd−2 ! k.

Further, we denote W = W1 ⇥ . . . ⇥ Wd−2 and consider the variety ZP ⇢ V ⇥ W of all (v, w) such that
P (u, v, w) = 0 for all u 2 U.

Let Z be an irreducible component of the Zariski closure of the set of k-points ZP (k) (with reduced scheme
structure) such that codimV⇥W Z = g

0
(P ), and let ZW ⇢ W denote the closure of the image of Z under the

projection ⇡W : V ⇥W ! W (also with reduced scheme structure). Then the k-points are dense in ZW .

We can treat P as a linear map from U ⌦ V to the space of polynomial functions on W. Hence, it gives
a morphism of trivial vector bundles over W,

PW : V ⌦OW ! U
⇤
⌦OW , (2.2)

and ⇡
−1
W (w) \ ZP for w 2 ZW can be identified with ker(PW (w)).

Let U ⇢ ZW denote a nonempty open subset, where PW has the maximal rank denoted by r. Then, over U ,
the cokernel of PW is locally free over ZW and, hence, the kernel of PW is a subbundle K ⇢ V ⌦O. We denote
by totU (K) the total space of the bundle K over U and obtain

totU (K) = ⇡
−1
W (U) \ ZP ⇢ V ⇥W.

Note that the k-points are dense in

totU (K) = ⇡
−1
W (U) \ ZP

and, hence, ⇡−1
W (U) \ Z is an irreducible component of ⇡−1

W (U) \ ZP . Since totU (K) is irreducible, we get

⇡
−1
W (U) \ Z = totU (K).

Hence, we have

dimZ = dimZW + dimV − r

or, equivalently,

codimW ZW + r = codimV⇥W Z = g
0
(P ). (2.3)
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2.5. Proof of Theorem 1.1. Step 1. Choosing a General k-Point. Shrinking the open subset U ⇢ ZW

considered above, we can assume that U is smooth. Since k-points are dense in ZW we can choose a k-point

w
0
= (w

0
1, . . . , w

0
d−2) 2 U ⇢ ZW .

We set

SV := ker(PW (w
0
) : V ! U

⇤
) and SU := ker(PW (w

0
)
⇤ : U ! V

⇤
).

Step 2. The First Set of Key Tensors. Let

c := codimW ZW .

Since w
0 is a smooth point of ZW , we can choose c elements g1, . . . , gc in the ideal IZW

⇢ k[W ] with linearly
independent derivatives at w0

. Recall that W = W1⇥ . . .⇥Wd−2. Thus, for each a = 1, . . . , c and any nonempty
subset of indices I = {i1 < . . . < im} ⇢ [1, d − 2], we can consider the polylinear forms, obtained as mixed
derivatives at w0

:

ga,I := g
(Wi1

,...,Wim )

a,w0 2 W
⇤
i1 ⌦ . . .⌦W

⇤
im .

Step 3. Setting Up the Key Identity. We set k = dimV − r. Applying Lemma 2.3(ii) to the morphism
of trivial vector bundles (2.2) over ZW , we find global sections v1(w), . . . , vk(w) 2 V ⌦ k[ZW ] such that
v1(w

0
), . . . , vk(w

0
) form a basis of SV and, moreover,

P (u, vi(w), w) = 0 for any u 2 U and w 2 ZW , i = 1, . . . , k.

Since k[W ] ! k[ZW ] is surjective, we can lift vi(w) to polynomials in V ⌦k[W ], which are denoted in the same
way. We now define a collection of U⇤-valued polynomials on W as

fi(w) := P (u, vi(w), w) 2 U
⇤
⌦ k[W ]. (2.4)

By construction, all fi(w) belong to U
⇤
⌦ IZW

⇢ U
⇤
⌦ k[W ]. Equation (2.4) is the key identity used in the

present work.

Step 4. The Second Set of Key Tensors. We consider certain mixed derivatives of vi(w) viewed as V -valued
polynomials on W. Namely, for each

I = {i1 < . . . < ip} ⇢ [1, d− 2],

we set

vi,I := v
(Wi1

,...,Wip )

i,w0 2 W
⇤
I ⌦ V = Hom(WI , V ),

where

WI := Wi1 ⌦ . . .⌦Wip .

Since (vi(w
0
)) form a basis in SV , there exists a unique operator

CI : SV ! Hom(WI , V ) : vi(w0
) 7! vi,I .
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We extend CI in any way to an operator V ! Hom(WI , V ), which is also denoted by CI . Note that we can also
treat CI as a linear map

CI : V ⌦WI ! V.

For an ordered collection of disjoint subsets I1, . . . , Ip ⇢ [1, d− 2], we consider a composition

CI1 . . . CIp : V ⌦WI1t...tIp
CIp
−−! V ⌦WI1t...tIp−1 ! . . . ! V ⌦WI1

CI1
−−! V.

The case of an empty collection, i.e., p = 0, is allowed. In this case, we just get the identity map V ! V.

We choose a basis `1, . . . , `r 2 V
⇤ in the subspace orthogonal to SV . For ordered collections I1 t . . .t Ip ⇢

[1, d− 2] and for j = 1, . . . , r, we consider the polylinear forms

`j ◦ CI1 . . . CIp 2 V
⇤
⌦W

⇤
I1t...tIp .

Note that, for an empty collection, i.e., for p = 0, we just get `j 2 V
⇤
.

Step 5. Differentiating the Key Identity. For each

I = {i1 < . . . < ip} ⇢ [1, d− 2],

we consider the embedding

◆(I) : WI ! W1 ⌦ . . .⌦Wd−2,

which completes wi1 ⌦ . . .⌦ wip by the components w0
j in the factors Wj with j 62 I.

By induction on p = 0, . . . , d − 2, we prove that, for any I = {i1 < . . . < ip} ⇢ [1, d − 2], the following
inclusion is true:

P |SU⌦V⌦◆(I)(WI) 2

⇣
(`j ◦ CI1 . . . CIs | I1 t . . . t Is ( I, 1  j  r, s ≥ 0),

(ga,I0 | 1  a  c, I
0
⇢ I, I

0
6= ?)

⌘
,

where, on the right-hand side, we have the tensor ideal generated by the specified elements. Note that all the
subsets It are supposed to be nonempty.

The base of induction p = 0 is clear because P (u, v, w
0
1, . . . , w

0
d−2) = 0 for any u 2 SU and v 2 V. Assume

that p > 0 and the assertion holds for p− 1. We fix a subset I0 = {i1 < . . . < ip} ⇢ [1, d− 2].

Further, we equate the (Wi1 , . . . ,Wip)-mixed derivatives at w0 of both sides of the key identity (2.4). As a re-
sult, we get the following equality in U

⇤
⌦W

⇤
I0
:

(fi)
(Wi1

,...,Wip )

w0 = P |U⌦vi(w0)⌦◆(I0)WI0
+

X

ItJ=I0,I 6=?

P |U⌦CIvi(w0)⌦◆(J)WJ
. (2.5)

Note that, by Lemma 2.5, (fi)
(W1,...,Wp)

w0 belong to the tensor ideal generated by ga,I0 with 1  a  c and
I
0
⇢ I0, I

0
6= ?. We also note that the term in the sum on the right-hand side of (2.5) corresponding to J = ?
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has zero restriction to SU . Hence, we get

P |SU⌦SV ⌦◆(I0)WI0
+

X

ItJ=I0;I,J 6=?

P |(idU ⌦CI)(U⌦SV )⌦◆(J)WJ

2 (ga,I0 | 1  a  c, I
0
⇢ I, I

0
6= ?).

The induction assumption now implies that P |SU⌦SV ⌦◆(I0)WI0
belongs to the tensor ideal generated by ga,I0

with I
0
⇢ I0, I

0
6= ?, and by the restrictions of `j ◦ CI1 . . . CIs with s ≥ 1 (where I1 t . . . t Is is a proper

subset of I0 ). By Lemma 2.2, adding (`j) to the generators of the tensor ideal, we get the required assertion
about P |SU⌦V⌦◆(I0)WI0

.

Step 6. Conclusion of the Proof for a Single Tensor. By using the result of the previous step for p = d − 2,

we now get

rk
S
P |SU⌦V⌦W1⌦...⌦Wd−2

 r(1 + ✓d−2) + c(2
d−2

− 1),

where ✓n is the number of ordered collections of disjoint nonempty subsets I1 t . . . t Ip ( [1, n] (with p ≥ 1).
By Lemma 2.2, this implies that

rk
S
P  r + r(1 + ✓d−2) + c(2

d−2
− 1).

Further, recall that r + c = g
0
(P ) [see (2.3)]. Hence, we get

rk
S
P  (r + c)max

�
2 + ✓d−2, 2

d−2
− 1

�
= g

0
(P )Cd,

as claimed.

Step 7. The Case of Several Tensors. Now assume that k is algebraically closed. Suppose that we have a given
collection P = (P1, . . . , Ps) of polylinear forms on V1 ⇥ . . . ⇥ Vd. For a nonzero collection of coefficients c =

(c1, . . . , cs) in k, we set

Pc = c1P1 + . . .+ csPs.

The key observation is that

ZP =

[

c6=0

ZPc ,

where we can consider c as points in the projective space Ps−1
. As already proved, for each c,

codimV2⇥...⇥Vd
ZPc ≥ C

−1
d rk

S
(Pc) ≥ C

−1
d rk

S
(P ).

By taking the union over c in Ps−1
, we get

codimV2⇥...⇥Vd
ZP ≥ C

−1
d rk

S
(P )− s+ 1,

as claimed.
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3. Symmetric Case

3.1. More on Higher Derivatives. Let f 2 k[V ]d. Treating the n th derivative of f 2 k[V ] (where n  d)
as a polynomial map of degree d− n :

V ! k[V ]n : v0 7! f
(n)
v0

we can write it in the form of a tensor

f
(n,d−n)

2 k[V ]n ⌦ k[V ]d−n.

By definition,

f(v1 + v2) =

dX

n=0

f
(n,d−n)

(v1, v2).

Hence, f (n,d−n) is just the component of f(v1 + v2) of bidegree (n, d− n) in (v1, v2).

Similarly, we define an operation for n1 + . . .+ np = d,

k[V ]d ! k[V ]n1 ⌦ . . .⌦ k[V ]np : f 7! f
(n1,...,np),

by assuming that f (n1,...,np) is the component of multidegree (n1, . . . , np) in f(v1 + . . .+ vp). Thus,

f
(1,1,d−2)

2 V
⇤
⌦ V

⇤
⌦ k[V ]d−2

is exactly Hf , i.e., the Hessian symmetric form on V (with polynomial dependence on x 2 V ).
We use two properties of this construction that can be easily checked:

(i) f
(n1,...,np)(x, . . . , x) =

d!

n1! . . . np!
f(x);

(ii) for mni, the m th derivative of f (n1,...,np)(x1, . . . , xp) with respect to xi at (x01, . . . , x
0
p) is equal to

f
(n1,...,ni−1,m,ni−m,...,np)

�
x
0
1, . . . , x

0
i−1, v, x

0
i , . . . , x

0
p

�
.

3.2. Proof of Theorem 1.2. It is convenient to denote by X one copy of V in the product V ⇥V = V ⇥X.

In addition, we treat Hf = f
(1,1,d−2) as a bilinear form on U ⇥ V, where U = V, so that Zsym consists of pairs

(v, x) 2 V ⇥X such that f (1,1,d−2)
(u, v, x) = 0 for all u 2 U.

Step 1. Dimension Count and Choosing a General k-Point. Let Z be an irreducible component of the Zariski
closure of the set of k-points Z

sym
f (k) such that codimV⇥X Z = g

0
sym(f) and let ZX ⇢ X denote the closure

of the image of Z under the projection p2 : V ⇥X ! X. As earlier, we choose a nonempty smooth open subset
U ⇢ ZX over which Hf has the maximal rank r so that p−1

2 (U)\Z is a vector bundle of rank dimV −r over U .
In particular,

codimX ZX + r = g
0
sym(f).

We choose a k-point x0 in U ⇢ ZX and set

S := ker(Hf (x
0
)) ⇢ V.
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Step 2. The First Set of Key Polynomials. We set

c := codimX ZX .

Since x0 is a smooth point of ZX , we can choose c elements g1, . . . , gc in the ideal IZX
⇢ k[X] with linearly

independent derivatives at x0. Thus, for each a = 1, . . . , c and for 1  i  d− 2, we consider the derivatives

(ga)
(i)
x0 2 k[X]i.

Step 3. Setting up the Key Identity. We set k = dimV −r. Applying Lemma 2.3(ii) to the morphism of trivial
vector bundles V ⌦O ! V

⇤
⌦O given by Hf = f

(1,1,d−2) over ZX , we find global sections v1(x), . . . , vk(x) 2
V ⌦ k[ZX ], such that v1(x0), . . . , vk(x0) form a basis in S and

f
(1,1,d−2)

(u, vi(x), x) = 0 for any u 2 U and x 2 ZX , i = 1, . . . , k.

We lift vi(x) up to polynomials in V ⌦k[X], which are denoted in the same way. Further, we define the following
collection of U⇤-valued polynomials on X :

fi(x) := f
(1,1,d−2)

(u, vi(x), x) 2 U
⇤
⌦ k[X]. (3.1)

By construction, all fi(x) belong to U
⇤
⌦ IZX

⇢ U
⇤
⌦ k[X].

Step 4. The Second Set of Key Forms. For each 1  m  d − 2, we consider higher derivatives of vi at x0

regarded as V -valued polynomials on X :

(vi)
(m)
x0 2 V ⌦ k[X]m.

Since (vi(x
0
)) form a basis of S, there exists a linear operator

Cm : S ! V ⌦ k[X]m : vi(x0) 7! (vi)
(m)

.

We extend Cm in any way to an operator V ! V ⌦k[X]m, which is also denoted by Cm. For m1+. . .+mp 

d− 2, we consider a composition

Cm1 . . . Cmp : V
Cmp
−−−! V ⌦ k[X]mp ! . . . ! V ⌦ k[X]m2+...+mp

Cm1
−−−! V ⌦ k[X]m1+...+mp .

We allow the case of empty collection, i.e., p = 0. In this case, we just get the identity map V ! V.

Finally, by `1, . . . , `r 2 V
⇤ we denote a basis in the subspace orthogonal to S. For m1 + . . . +mp  d− 2

and for j = 1, . . . , r, we consider the elements

`j ◦ Cm1 . . . Cmp 2 V
⇤
⌦ k[X]m1+...+mp .

Note that, for the empty collection, i.e., for p = 0, we just get `j 2 V
⇤
.
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Step 5. Differentiating the Key Identity. We proceed by induction on p = 0, . . . , d− 2 and prove that

f
(1,1,p,d−2−p)

(u, v, x, x
0
)|S⇥V⇥X

2

⇣�
(`j ◦ Cm1 . . . Cms)(v, x) | m1 + . . .+ms < p, 1  j  r

�
,

�
(ga)

(m)
x0 (x) | 1  a  c, 1  m  p

�⌘
.

Here, on the right-hand side, we have the ideal generated by the specified elements.

The base of induction p = 0 is clear, since f
(1,1,d−2)

(u, v, x
0
) = 0 for any u 2 S and v 2 V. Assume that

p > 0 and the assertion holds for p − 1. We now equate the p th derivatives at x = x
0 on both sides of (3.1).

As a result, we get the following equality in U
⇤
⌦ k[X]p :

(fi)
(p)
x0 (x) = f

(1,1,p,d−2−p)
(u, vi(x

0
), x, x

0
) +

pX

q=1

f
(1,1,p−q,d−2−p+q)

(u,Cq(vi(x
0
), x), x, x

0
).

The left-hand side belongs to the ideal generated by (ga)
(m)
x0 (x) with 1  a  c and 1  m  p. We also note

that the term corresponding to q = p on the right-hand side has zero restriction to u 2 S. Hence, we get

f
(1,1,p,d−2−p)

(u, v, x, x
0
)|S⇥S⇥X

+

p−1X

q=1

f
(1,1,p−q,d−2−p+q)

�
u,Cq(v, x), x, x

0
� ��

S⇥S⇥X
2
�
(ga)

(m)
x0 (x)

�� 1  a  c, 1  m  p
�
.

The induction assumption now implies that f (1,1,p,d−2−p)
(u, v, x, x

0
)|S⇥S⇥X belongs to the ideal generated

by (ga)
(m)
x0 (x) for 1  a  c and 1  m  p and by the restrictions to S ⇥ X of (`j ◦ Cm1 . . . Cms)(v, x)

with s ≥ 1, m1+ . . .+ms < p, and 1  j  r. By Lemma 2.2, adding (`j) to the generators of the ideal, we get
the required assertion for f (1,1,p,d−2−p)

(u, v, x, x
0
)|S⇥V⇥X .

Step 6. Conclusion of the Proof for a Single Polynomial. By using the result obtained in the previous step
for p = d− 2, we get

f
(1,1,d−2)

(u, v, x)|S⇥V⇥X

2

⇣�
(`j ◦ Cm1 . . . Cms)(v, x)

�� m1 + . . .+ms < d− 2, 1  j  r
�
,

�
(ga)

(m)
x0 (x)

�� 1  a  c, 1  m  d− 2
�⌘

.

Hence,

f
(1,1,d−2)

(u, v, x) 2 ((`j(u)
�� 1  j  r),

�
(`j ◦ Cm1 . . . Cms)(v, x)

�� m1 + . . .+ms < d− 2, 1  j  r
�
,

�
(ga)

(m)
x0 (x)

�� 1  a  c, 1  m  d− 2)
�
. (3.2)
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Thus, setting u = v = x, we obtain

d(d− 1) · f(x) 2

⇣�
Fj;m1,...,ms(x)

�� m1 + . . .+ms < d− 2, 1  j  r
�
,

�
(ga)

(m)
x0 (x)

�� 1  a  c, 1  m  d− 2
�⌘

,

where Fj;m1,...,ms(x) = (`j ◦ Cm1 . . . Cms)(x, x) has the degree 1 +m1 + . . .+ms < d− 1. This yields

rk
S
(f)  r

�
1 + ✓

sym
d−2

�
+ c(d− 2),

where ✓
sym
n is the number of (m1, . . . ,ms), with s ≥ 1, mi ≥ 1, and m1 + . . .+ms < n. It is easy to see that

✓
sym
n = 2

n−1
− 1. Since r + c = g

0
sym(f), we get

rk
S
P  (r + c)max(2

d−3
, d− 2) = g

0
sym(f) · 2

d−3
,

as claimed.

Step 7. The Case of Several Polynomials. We now assume that k is algebraically closed and we have
a given collection f = (f1, . . . , fs) of homogeneous polynomials on V of degree d. For a nonzero collection
of coefficients c = (c1, . . . , cs) in k, we set fc = c1f1 + . . . + csfs. As in the nonsymmetric case, the key
observation is that

Z
sym

f
=

[

c6=0

Z
sym
fc

, (3.3)

where c can be considered as points in the projective space Ps−1
. By using the case of a single polynomial,

we deduce that

codimV⇥V Z
sym

f
≥ 2

−d+3
rk

S
(f)− s+ 1,

as claimed.

3.3. Relation to Singularities. We now relate gsym(f) to the codimension c(f) of the singular locus of the
hypersurface f = 0 in V.

Proposition 3.1.

(i) The subvariety Z
sym
f ⇢ V ⇥X = V ⇥ V contains the singular locus of f (2,d−2)

(v, x) = 0.

(ii) gsym(f)  (d+ 1)c(f) (resp., gsym(f)  dc(f) if d is odd and char(k) 6= 2).

(iii) If char(k) does not divide d− 1, then c(f)  gsym(f).

Proof. (i) The first derivative of f (2,d−2)
(v, x) along v at (v0, x0) is f (1,1,d−2)

(v, v
0
, x

0
). Hence, if (v0, x0)

is a singular point of f (2,d−2)
(v, x) = 0, then

f
(1,1,d−2)

(v, v
0
, x

0
) = 0

for all v, i.e., (v0, x0) 2 Z
sym
f .
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(ii) Since we are comparing the dimensions of algebraic varieties, without loss of generality, we can assume
that k is algebraically closed.

By part (i), we have gsym(f)  c(F ), where F = f
(2,g−2)

. It is easy to see that if F (x) = F1(x)+. . .+Fr(x),

then c(F )  c(F1) + . . . + c(Fr). Moreover, if A : V ! W is a linear surjective map and g 2 k[W ], then
c(g ◦A) = c(g).

Thus, it remains to check that f (2,d−2)
(v, x) is a linear combination of d + 1 (resp., d, if d is odd and

char(k) 6= 2) polynomials of the form f(Ai(v, x)) for some linear surjective maps Ai : V ⇥ V ! V.

We consider f(v + x) as an inhomogeneous function of v, g(v) = g0 + g1 + . . . + gd of degree  d (with
coefficients in k[V ]). Further, picking any d+ 1 distinct elements λ0, . . . ,λd 2 k, we can express g0, . . . , gd as
linear combinations of g(λ0v), . . . , g(λdv) (because the corresponding linear change is given by the Vandermonde
matrix).

In the case where d is odd and char(k) 6= 2, we can similarly express the components of even degree,
(g2i)i(d−1)/2 as linear combinations of g0 = g(0) and (g(λiv) + g(−λiv))/2, for 1  i  (d − 1)/2, where
(λi) are nonzero constants such that (λ2

i ) are all distinct.
It remains to observe that g2 = f

(2,d−2) and that each g(λv) = f(λv + x) is of the required type.

(iii) This follows from the relation

(d− 1)f
(1,d−1)

(v, x) = f
(1,1,d−2)

(v, x, x).

Indeed, this implies that the intersection of Z
sym
f with the diagonal V ⇢ V ⇥ V is exactly the singular locus

of f = 0, which gives the desired inequality.
Proposition 3.1 is proved.

We now consider the case of a collection f = (f1, . . . , fs) of homogeneous polynomials of degree d on V.

We consider the corresponding family of hypersurfaces in V, fc = 0, parametrized by the projective space Ps−1
.

It is clear that, for the locus S(f) ⇢ V, where the rank of the Jacobi matrix of (f1, . . . , fs) is < s, we have

S(f) =

[

c6=0

Sing(fc = 0).

Proposition 3.2.

(i) The following inclusion is true:
[

c6=0

Sing
�
f
(2,d−2)
c = 0

�
⇢ Z

sym

f
.

(ii) gsym(f)  (d+1)c
0
(f)+d(s−1) (resp., gsym(f)  dc

0
(f)+(d−1)(s−1) if d is odd and char(k) 6= 2).

(iii) Assume that (f1, . . . , fs) define a complete intersection V (f) ⇢ V, i.e., codimV V (f) = s. Then

c
0
(f)  c(f)  c

0
(f) + s.

Assume, in addition, that char(k) does not divide d− 1. Then

c
0
(f)  gsym(f).

Proof. (i) This follows from Proposition 3.1(i) due to (3.3).
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(ii) Since S(f) has the codimension c
0
(f) in V, we conclude that, for some a  s − 1, there exists

an a-dimensional subvariety X ⇢ Ps−1 such that

c(fc) = codimV Sing(fc)  c
0
(f) + a for c 2 X.

Applying Proposition 3.1(ii), we see that, for each c 2 X,

codimV⇥V Z
sym
fc

 (d+ 1)(c
0
(f) + a)

(resp.,  d(c
0
(f) + a) if d is odd). Hence, by using (3.3), we get

codimV⇥V Z
sym

f
 (d+ 1)(c

0
(f) + a)− a

(resp.,  d(c
0
(f) + a)− a if d is odd). Since a  s− 1, this implies the required assertion.

(iii) If (f1, . . . , fs) specify a complete intersection, then, by the Jacobi criterion of smoothness, we obtain

Sing V (f) = S(f) \ V (f).

In particular, we get an inclusion Sing V (f) ⇢ S(f). Therefore,

c
0
(f) = codimV S(f)  c(f).

Moreover, we get

c(f)− s = codimV (f) Sing V (f)  codimV S(f) = c
0
(f).

If we assume in addition that char(k) does not divide d− 1, then the intersection of Zsym

f
with the diagonal

V ⇢ V ⇥ V is exactly S(f). Hence, we obtain

c
0
(f) = codimV S(f)  gsym(f).

Proposition 3.2 is proved.

Proof of Theorem 1.3. (i) If

f(x) =

rX

i=1

hi(x)gi(x),

then the locus hi(x) = gi(x) = 0 for i = 1, . . . , r is contained in the singular locus of f(x) = 0 and,
hence, c(f)  2r.

Now let, for the other inequality, c = ck(f) and let X be an irreducible component of codimension c of the
Zariski closure of the k-points of Sing(f = 0). Also let v0 2 X be a smooth k-point and let g1, . . . , gc 2 I(X)

be defined over k with linearly independent differentials at v0. For all k 2 [n], we have @kf 2 I(X) and, hence,
Lemma 2.4 implies that

@kf = (@kf)
(d−1)
v0 2

⇣
(gi)

(j)
v0

⌘

i2[c],j2[d−1]
.
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By Euler’s formula, we get

f =
1

d

nX

k=1

xk@kf 2

⇣
(gi)

(j)
v0

⌘

i2[c],j2[d−1]
.

This gives rkS(f)  (d− 1) · c.

(ii) We deduce the required assertion from the result for a single form as in the proof of Theorem 1.2.

Proof of Corollary 1.1. In the notation of [2, Theorem A] (recalling that the strength of f is rk
S
(f) − 1),

the inequality of Theorem 1.3(i) implies that we can take

m
A(d) = (d− 1)(m+ 2)− 1.

It is also well known that, for d = 2, we can take

m
A(2) =

⇠
m+ 1

2

⇡

(see, e.g., [3, Proposition 4.10]). Thus, the assertion follows from [2, Theorem A(c)].

Remark 3.1. For k algebraically closed of arbitrary characteristic, Eq. (3.2) shows that

rk
S
f
(1,1,d−2)

(u, v, x)  (2
d−3

+ 1) · gsym(f)  (2
d−3

+ 1) · (d+ 1) · c(f).

The proof of Theorem 1.4 is based on the following geometric observation:

Lemma 3.1. For generic v1, . . . , vs 2 V, where s < dimV, the following inequality is true:

c
0
(@v1f, . . . , @vsf) ≥ gsym(f)− s+ 1.

Proof. By Z
(s)

⇢ V
s
⇥ V we denote a locally closed subvariety formed by (v1, . . . , vs, x) such that

v1, . . . , vs are linearly independent and

dim span
�
Hf (x)(·, v1), . . . , Hf (x)(·, vs)

�
< s

(here, we consider Hf (·, v) as a linear form on V ). Our aim is to estimate the dimension of Z
(s)

. We get
a surjective map (with at least 1-dimensional fibers) eZ(s)

! Z
(s)

, where eZ(s)
⇢ V ⇥ V

s
⇥ V is given by

eZ(s)
=

n
(v, v1, . . . , vs, x) | v 2 kerHf (x), v 6= 0, (v1, . . . , vs)

are linearly independent, v 2 span(v1, . . . , vs)

o
.

We have a natural projection

eZ(s)
! Z

sym
f : (v, v1, . . . , vs, x) 7! (v, x),

which is a locally trivial fibration whose fibers are irreducible of dimension n(s − 1) + s, where n = dimV.
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This yields

dimZ
(s)

 dim eZ(s)
− 1  dimZ

sym
f + n(s− 1) + s− 1.

Hence,

codimV s⇥V Z
(s)

≥ gsym(f)− s+ 1.

Further, we observe that

Hf (x)(·, v) = f
(1,1,d−2)

(·, v, x) = (@vf)
(1,d−2)

(·, x).

Thus, S(@v1f, . . . , @vsf) is exactly the fiber over (v1, . . . , vs) of the projection Z
(s)

!V
s
. For generic v1, . . . , vs,

only the components of Z(s) predominant over V s play a role, and we conclude that

c
0
(@v1f, . . . , @vsf) = codimV S(@v1f, . . . , @vsf) ≥ codimV s⇥V Z

(s)
≥ gsym(f)− s+ 1.

Lemma 3.1 is proved.

Proof of Theorem 1.4. (i) By Lemma 3.1 with s = 1, we have c(@vf) ≥ gsym(f). Hence, by Theo-
rems 1.3(i) and 1.2,

rk
S
(@vf) ≥

1

2
c(@vf) ≥

1

2
gsym(f) ≥ 2

2−d
rk

S
(f).

(ii) If c
0
(@v1f, . . . , @vsf) ≥ s (resp., c0(@v1f, . . . , @vsf) ≥ s + 2), then (@v1f, . . . , @vsf) define a (resp.,

normal) complete intersection of codimension s. Hence, the required assertion follows from Theorem 1.2 and
Lemma 3.1.

3.4. Singularities of the Polar Map. Let f 2 k[V ]d. Note that Hf (x) can be identified with the map
tangent to the polar map φf : V ! V

⇤ of f sending x to f
(1)
x = df |x. Thus, gsym(f) measures the degeneracy

of this map.
More precisely, for any morphism φ : X ! Y between smooth connected varieties, we define the Thom–

Boardman rank 5 of φ denoted by rk
TB

(φ) as follows: Consider a subvariety Zφ in the tangent bundle TX of X
consisting of (x, v) such that dφx(v) = 0. Then we set

rk
TB

(φ) = codimTX Zφ.

Note that rkTB
(φ)  r, where r is the generic rank of the differential of φ. However, the inequality can be strict.

By definition,

gsym(f) = rk
TB

(φf ).

It is well known that the generic rank of dφf = Hf is related to the dimension of the projective dual variety X
⇤

of the projective hypersurface associated with f (more precisely, dimX
⇤
+ 2 is the generic rank of Hf over the

hypersurface f = 0). However, it is easy to see that gsym(f) can be much smaller than the generic rank of φf .

5 This name is explained by the relationship with the Thom–Boardman stratification in singularity theory; see [6].
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Thus, if q1(x) and q2(y) are nondegenerate quadratic forms in two different groups of variables (x1, . . . , xn)

and (y1, . . . , yn), then rk
S
(q1(x)q2(y)) = 1 and, therefore,

gsym(q1(x)q2(y))  4.

On the other hand, the generic rank of φq1(x)q2(y) is 2n (under the assumption that the characteristic of k

is 6= 2, 3).

Example 3.1. In the case where d = 3, the Schmidt rank of f is equal to its slice rank s(f), i.e., the mini-
mal s such that there exists a linear subspace L ⇢ V of codimension s contained in (f = 0). Thus, for a cubic
form f, we assume that k is algebraically closed of characteristic 6= 2, 3. In this case, it follows from Theorem 1.2
and from (1.2) that

s(f)  rk
TB

(φf )  4s(f).

If f is a general homogeneous polynomial of degree d, then we still have rk
S
(f) = s(f) (see [4]). Hence,

for this f, under the assumption that k is algebraically closed of characteristic not dividing (d− 1)d, we obtain

2
3−d

s(f)  rk
TB

(φf )  4s(f).

It seems that the invariant rkTB
(φ) deserves to be studied more comprehensively. Indeed, we do not know

whether it is always true that rkTB
(φ) = dimX for a finite morphism φ between smooth projective varieties of

characteristic zero. We now present the following corollary of Proposition 3.1(iii):

Corollary 3.1. Assume that char(k) does not divide d− 1. Then

rk
TB

(φf ) ≥ c(f).

In particular, if the projective hypersurface associated with f is smooth, then

rk
TB

(φf ) = dimV.

Let Vf ⇢ PV denote the projective hypersurface associated with f. In [7], the authors considered (for k = C)
the closed locus S≥r ⇢ Vf , where the co-rank of the Hessian Hf is ≥ r. They proved that if Vf is smooth, then,
for r(r + 1)  dimV, the subvariety S≥r(V ) is nonempty and

codimVf
S≥r(V )  r(r + 1)/2.

By using Corollary 3.1, we get the inequality

codimVf
S≥r(V ) ≥ r − 1.

If Vf is smooth, then the projectivization of the restriction of φf to (f = 0) can be identified with the Gauss
map

γ : Vf ! PV ⇤
.
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It is easy to check that if char(k) does not divide d(d− 1), then, for any point x 2 (f = 0) ⇢ V, we have

ker(d(φf )x) ⇢ Tx(f = 0),

and the natural projection

ker(d(φf )x) ! ker(dγx)

is an isomorphism. Thus, the above inequalities can be treated as restrictions to possible degeneracies of the Gauss
map of Vf (which is finite by a result of Zak from [12]).

Appendix A

This appendix gives alternative versions of Theorems 1.1, 1.2, and 1.4, with better bounds for d ≥ 6. The sec-
ond version of Theorem 1.1 is as follows:

Theorem A.1.

(i) Let g0(P ) denote the codimension in V2 ⇥ . . .⇥ Vd of the Zariski closure of ZP (k). Then

rk
S
(P )  (2

d−1
− 1)g

0
(P ).

(ii) Assume that k is algebraically closed. Then, for a collection P = (P1, . . . , Ps), the following inequality
is true:

rk
S
(P )  (2

d−1
− 1)(g(P ) + s− 1).

For algebraically closed fields, the result presented above matches the result obtained by Cohen and
Moshkowitz in [13] but we give a very short proof.

Proof. (i) The proof mimics the proof of Theorem 1.3. We write g = g
0
(P ) and assume that X is an irre-

ducible component of the Zariski closure of ZP (k) such that

codimV1⇥V2⇥...⇥Vd−1
X = g.

Let x1, . . . , xn be a basis for V ⇤
d . We write

P =

nX

k=1

xk ·Qk,

where Qk : V1⇥V2⇥ . . .⇥Vd−1 ! k are polylinear forms. Let v0 2 X be a smooth k-point and let h1, . . . , hg 2

I(X) be defined over k with linearly independent differentials at v0. For all k 2 [n], we have

Qk = (Qk)
(V1,V2,...,Vd−1)
v0 2 I(X)

and, therefore, by Lemma 2.5, this is in the tensor ideal generated by

⇣
(hi)

(Vj1
,...,Vjs )

v0

⌘

i2[g],? 6={j1<...<js}⇢[d−1]
.
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By definition, P is in the tensor ideal generated by Qk and, hence,

rk
S
(P )  (2

d−1
− 1) · g.

(ii) We deduce this assertion from the result obtained for a single tensor as in the proof of Theorem 1.1.

The second version of Theorem 1.2 is as follows:

Theorem A.2. Assume that k is algebraically closed of characteristic not dividing (d− 1)d.

(i) For a single form f of degree d,

rk
S
(f)  (d− 1)gsym(f).

(ii) If (f1, . . . , fs) specify a complete intersection of codimension s in V, then

rk
S
(f)  (d− 1)

�
gsym(f) + s− 1

�
.

Proof. (i) Combine Theorem 1.3(i) with Proposition 3.1(iii).

(ii) Combine Theorem 1.3(ii) with Proposition 3.2(iii).

The second version of Theorem 1.4 is as follows:.

Theorem A.3. Let f be a homogeneous polynomial of degree d. Assume that k is algebraically closed of
characteristic not dividing (d− 1)d.

(i) For generic v 2 V,

rk
S
(@vf) ≥

1

2d− 2
rk

S
(f).

(ii) For s 
1

2d− 2
rk

S
(f)+

1

2

✓
resp., s 

1

2d− 2
rk

S
(f)−

1

2

◆
and for generic v1, . . . , vs 2 V, the deriva-

tives (@v1f, . . . , @vsf) define a (resp., normal) complete intersection of codimension s in V.

Proof. (i) By Lemma 3.1 with s = 1, we get c(@vf) ≥ gsym(f). Hence, by Theorems 1.3(i) and A.2,

rk
S
(@vf) ≥

1

2
c(@vf) ≥

1

2
gsym(f) ≥

1

2d− 2
rk

S
(f).

(ii) If c
0
(@v1f, . . . , @vsf) ≥ s (resp., c0(@v1f, . . . , @vsf) ≥ s + 2), then (@v1f, . . . , @vsf) define a (resp.,

normal) complete intersection of codimension s. Hence, the required assertion follows from Theorem A.2
and Lemma 3.1.
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