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SCHMIDT RANK AND SINGULARITIES

David Kazhdan,! Amichai Lampert,” and Alexander Polishchuk?* UDC 512.5

We revisit Schmidt’s theorem connecting the Schmidt rank of a tensor with the codimension of a certain
variety and adapt the proof to the case of arbitrary characteristic. We also establish a sharper result for this
kind for homogeneous polynomials, assuming that the characteristic does not divide the degree. Further,
we use this to relate the Schmidt rank of a homogeneous polynomial (resp., a collection of homogeneous
polynomials of the same degree) with the codimension of the singular locus of the corresponding hy-
persurface (resp., intersection of hypersurfaces). This gives an effective version of Ananyan—Hochster’s
theorem [J. Amer. Math. Soc., 33, No. 1, 291-309 (2020), Theorem A].

1. Introduction

Let k be a field (of any characteristic) and let P: V; x Vo x ... x V3 — k be a polylinear form, where V;
are finite-dimensional vector spaces over k. Equivalently, we consider P as atensorin V" ® ... ® V.

Definition 1.1.

(i)

(ii)

We say that P # 0 has the Schmidt rank 1 if there exist a partition [1,d] = I L J into two nonempty
parts and polylinear forms Pr(v;,,...,v;.) and Pj(vj,,...,v;,), where v, € V, I = {i1 < ... <1},
and J ={j1 < ... < jr}, suchthat P = Pr- P;. In general the Schmidt rank of P, denoted by rk® (P)
is the smallest number r such that P = Z:_l P; with P; of Schmidt rank 1. For a collection of tensors

P = (Py,...,P,), wedefine the Schmidt rank tk®(P) as the minimum of Schmidt ranks of the nontrivial
linear combinations of (P;).

Given a collection of nonempty subsets Iy, ..., I, C [1,d] and a collection (Py,, ..., Py, ), where Py, is

a polylinear form on H o Va, we denote by (Py,,...,Pr.) C Vi*®...® V] and call this the tensor
a€l;

ideal generated by Py, ..., Py, , and the subspace of polylinear forms of the form

T
P=Y P,-Qy,
i=1

for some polylinear forms Q) j, on HbeJ- Vi, where J; = [1,d] \ L.

The Schmidt rank of a tensor, along with a set of related notions, such as slice rank, G-rank, analytic rank,
and a version of Schmidt rank for homogeneous polynomials also known as strength (see in what follows) has
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been a subject of study in many recent works (see [1, 4, 5, 8, 9] and the references therein). One of the goals of
the present paper is to establish a precise relation (in the case of an algebraically closed base field k) between
this notion and the codimension of the singular locus of the corresponding hypersurface, thus giving an effective
version of Ananyan—Hochster’s theorem [2, Theorem A].

We define a subvariety

Zp=2Zp} CVax...xVy

as the set of (va,...,vq) such that P(vy,vs,...,v4) = 0 for all v; € V;. Following Schmidt, we set
g(P) := codimy, x...xv, Zp.

In [10] (where the authors considered the case d = 3), this number is called the geometric rank of P. By using
[10, Theorem 3.2], we can see that it does not depend on the ordering of the variables vy, ..., vq4.
It is easy to see that

g(P) < 1k%(P) (1.1)
(see Lemma 2.1(i) in what follows or [10, Theorem 1]).

Similarly, for a collection P = (P4, ..., P;), we define Z5 C Vs x ... x V; by the condition on (v, ..., vq)
that the corresponding map

V1 — k% V1 — (Pi(vl, V2,... 7'Ud))1§i§s
has rank < s, and we set
g(P) := codimy, «._xv, Zp.
The proof of the following theorem closely follows the proof of a similar result presented in [11] for the case
where k = C and P is symmetric. We modified the proof so that it would work for an arbitrary characteristic and

also streamlined some parts of the original arguments. The fact that the original proof can be adapted to an arbitrary
characteristic was also pointed out in [11, Section 4].

Theorem 1.1.
(i) Let ¢g'(P) denote the codimension in Vo X ... X Vy of the Zariski closure of the set of k-points in Zp
(so that g(P) < ¢'(P) and g(P) = ¢'(P) if k is algebraically closed). Then
1S (P) < Cag/(P),
where
Cyq = max(2 4 04_5,2972 — 1)
and 0, is the number of ordered collections of disjoint nonempty subsets I, U ... U I, C [1,n] (with
p > 1). In particular, Cs = 2, Cy = 4, and C5 = 14.

(ii) Assume that k is algebraically closed. Then, for a collection P = (P, ..., Py), the following inequality
is true:

rk%(P) < Cy(g(P) + s —1).

In the appendix, we prove another version of Theorem 1.1 with better bounds for d > 6. Even though Schmidt
applied the above result to the symmetric tensors P corresponding to homogeneous polynomials, we observe that,
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in the symmetric case, it is natural to modify the relevant variety Zp and that this leads to much better estimates
for the rank.

Let f be a homogeneous polynomial of degree d on a finite-dimensional k-vector space V. The Schmidt rank
of f, denoted by rk®(f), is the minimal number r such that

=1

where g; and h; are homogeneous polynomials of positive degrees. Note that if rk¥ (f) = r, then, in the termi-
nology of [2], f has strength r — 1. For a collection f = (f1,..., fs), the Schmidt rank rk®(f) is defined as the
minimum of Schmidt ranks of the nontrivial linear combinations of f;.

By Hy(x)(-,-) we denote the Hessian form of f given by the second derivatives of f. This is a symmetric
bilinear form on V, which polynomially depends on the point € V. The symmetric analog of the variety Zp is
a subvariety Z;ym C V x V given by

77" = {(v,x) € V. x V | v € ker Hy(z) }.
Further, we set

gsym(f) = COdimvxv(Z;ym).

The symmetric analog of (1.1) is the following inequality:

Gsym(f) < 41K5(f) (1.2)

[see Lemma 2.1(i1)].
Similarly, for a collection f = (fi,..., fs) of homogeneous polynomials of degree d, we define a subvari-
ety Z;ym C V x V as the set of (v, z) such that the map

Voski:v— (Hfi(a:)(v',v))lgigs
has the rank < s. By gsym(f) we denote the codimension of Z;ym inV xV.

Theorem 1.2.

(i) Assume that d > 3 and that the characteristic of k does not divide (d — 1)d. Let gi,,(f) denote the
codimensionin V. x V of the Zariski closure of the set of k-points in stcy ™ Then

I‘kS(f) < 2d_3géym(f)‘

(ii) Under the same assumptions as in (i), assume, in addition, that k is algebraically closed. Then

rk® (?) < 2d=3 (gsym(?) +s— 1)'

For algebraically closed k, we prove another version of Theorem 1.2 in the appendix with better bounds
for d > 6. The invariant gsy1,(f) can be viewed as invariant measuring singularities of the polar map

r = (0 f (7)) 1<i<dim Vv



SCHMIDT RANK AND SINGULARITIES

1423

of f (see Section 3.3). We also prove that gsym(f) is related to the codimension of the singular locus of the

hypersurface f = 0. Namely, we set

c(f) := codimy Sing(f = 0).
Under the assumption that char(k) does not divide 2(d — 1), we prove that
c(f) < gsym(f) < (d+1)e(f) for even d,

C(f) S gsym(f> < dC(f) for odd d

(see Proposition 3.1).
More generally, for a collection f = (f1,..., fs), we set

c(f) = codimy Sing (V(f)),

where V(f) C V is a subscheme defined by the ideal (f1,..., fs). We also consider the related invariant

d(f) := codimy S(f),

where S(f) C V is the locus where the Jacobi matrix of (fi, ..., fs) has the rank < s. It is easy to see that

d(f) <e(f) <d(f) +s.

Here is our main result concerning the relation between the Schmidt rank and the codimension of the singular
locus. It can be regarded as a more precise version of the corresponding result in [9] in the case of an algebraically
closed field of sufficiently large (or zero) characteristic, as well as an effective version of a result of Ananyan and

Hochster (see [2, Theorem A(a)]) playing a central role in their proof of Stillman’s conjecture.

Theorem 1.3. Assume that char(k) does not divide d. Let cx(f) be the codimension in V of the Zariski

closure of the k-points of Sing(f = 0).

(i) The following inequalities are true:

C(2f) < rk%(f) < (d = Dexl(f)-

(ii) Assume that k is algebraically closed. Then, for a collection f = (fi,..., fs),
tk”(f) < (d—1)((f) + s —1).

Combining Theorem 1.3(i) with [2, Theorem A(c)], we get the following result:

Corollary 1.1. Assume that k is algebraically closed and char(k) does not divide d\. For i = 2,...,d,
let W; C k[V]; be a subspace of forms of degree i. Also let W = @, W;, w = dimW. Assume that,
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for some m > 1, the following inequalities are true:
rk®(W;) > (i — 1)(m+2) +3(w—1) for i=3,...,d,

kS (W) — 1 > [m“w +3(w—1),

Then every sequence of linearly independent homogeneous forms in W is regular, and the corresponding
complete intersection subscheme in V satisfies the Serre condition R,,.

Note that, without any assumptions on the characteristic on k, we are able to estimate, in terms of c(f),
the rank of H¢(x)(u,v) regarded as a polynomial in (u,v,x) € V x V x V (see Remark 3.1).

For a homogeneous polynomial f(z) of degree d on V' and a vector v € V, we denote the derivative of f
in the direction v by 0, f (). Our next result concerns 9, f for generic v.

Theorem 1.4. Let f be a homogeneous polynomial of degree d > 3. Assume that k is algebraically closed
of characteristic that does not divide (d — 1)d.

(i) For generic v € V, the following inequality is true:

rk¥(0,f) > 22791k (f).

1
(ii) For s < 2274rk5(f) + 3

tives (Oy, f,...,0p, f) define a (resp., normal) complete intersection of the codimension s in V.

1
<resp., s < 2274rkS(f) — 2) and for generic vy, ...,vs € V, the deriva-

In the appendix we prove another version of Theorem 1.4 with better bounds for d > 6. In Section 3.4,
we also discuss the relationship between the invariant gsym(f), the polar map of f, and the Gauss map of the
corresponding projective hypersurface.

2. Schmidt Rank of Polylinear Forms

2.1. Elementary Observations. First, we prove (1.1) and its symmetric version (1.2). We denote by k[V]
the space of polynomial functions on a vector space V. Moreover, by k[V]; C k[V] we denote the subspace of
homogeneous polynomials of degree d.

Lemma 2.1.
(i) For P € V¥ ®...®Vy, the inequality g(P) < rk°(P) is true.
(ii) For f € k[Vq, the inequality gsym(f) < 4rk3(f) is true.
Proof. (i) If r = 1k° (P), then there exists a decomposition
r
P=Y P,-Qy
i=1

as in Definition 1.1. Swapping, if necessary, some I; with J;, we can assume that 1 € I; for all . Then the
intersection of r hypersurfaces ), = 0 in Vo x ... x Vj is contained in Zp and has the codimension < r.
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(i1) If we have a decomposition
T
f= Z gihi,
i=1

then, over the subvariety Y = V(g1,...,9r,h1,...,hy) C V, the symmetric form Hy(x) has the rank < 27 :
the subspace cut out by dgi|s,-..,dgr|z,dh1|s, ..., dhy|; is contained in its kernel. Since codimy Y < 2r,
the preimage of V" in Z"™ has the codimension < 4r in V' x V.

Lemma 2.1 is proved.

For a subset of indices I = {i1 < ... <is} C [1,d], we set

Vi=V;,®...0V

Thus, we have the following simple observation:

Lemma 2.2. Let V] C Vi be a subspace of codimension ¢ and let ({1, ...,¢,) be a basis of the subspace
orthogonal to V| in Vi*. Suppose that we have tensors

Pr, e Vl* ® V]t and Qj, € VJ*t
for some subsets I,..., 1., Ji,...,J, C[2,...,d| such that P|v1'xv2x...vd belongs to the tensor ideal

(PIS‘V{®V]S7 th ‘ 821,...,7’; t:1,...,p).

Then P belongs to the tensor ideal

((€i|i:1,...,c), (Pr,,Qu, |s=1,...,1; tzl,...,p)).

In particular,
rkS(P) < rkS(P’V{XVQX...XVd) +c.

Proof. This immediately follows from the fact that the tensor ideal (¢; | i = 1,...,c) is exactly the kernel of
the restriction map

M.V = (Veolhe...o V)"

2.2. Determinantal Construction. Let f: Vi — V5 be a morphism of vector bundles on a scheme X.
For every r > 0, we have a natural morphism

r r+1
Eri/\v2v®/\ Vl—>vli(¢1/\.../\¢r)®a'—>Lfv(z,l...bqugra,
where, for a section ) of V'V, we denote the corresponding contraction operator by ¢ : /\Z V - /\i_1 V.

Lemma 2.3.

(i) Assume that \"Tf = 0. Then the image of k, is contained in ker(f).
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(ii) Assume, in addition, that Vi and Vo are trivial vector bundles and, for some point x € X, the rank of
f(z): Vi|lo — Vil is equal to r. Let n = vk Vi. Then there exist n — r global sections si,...,Sy_r
of Vi such that f(s;) =0 forall i and s1(x), ..., sn—r(z) is a basis of ker f(x).

Proof. (i) This is equivalent to the statement that tyvg, ., Ky (a) = 0 for any local section ¢4 of VQV.
However, tpvg, ... LEVo LV g = 0 since /\T+1f\/ =0.

(i) Since V7 and V5 are trivial, we can choose splittings V7 = K & W) and Vo = C & Ws into trivial
subbundles such that K|, = ker f(z), Wa|, = im f(x), and f(z): Wi|z — Wa|, is an isomorphism. We now
consider a composed map

s AWy e (AN wiek) > Ao\ v S

Thus, f o s = 0 and the image of s(x) is exactly ker f(z). Choosing a trivialization of the target of s, we can
represent s as a collection of global sections of 1/, which has the required properties.
Lemma 2.3 is proved.

2.3. Higher Derivatives. Let V be a finite-dimensional vector space and let k[V] denote the ring of poly-
nomial functions on V.

For each f € k[V], each n > 1, and vy € V, we define a homogeneous form f£§ )(v) of degree n on V
as the nth graded component of f(v + vy) € k[V] (regarded as a function of v for fixed vg) with respect to the
degree grading on k[V] so that we get a (finite) Taylor decomposition

flo+wo) =Y 7).

n>0

We refer to f5§} ) as the nth derivative of f at vg.

Lemma 2.4. Let X C V be an irreducible closed subvariety of codimension c and let vy € X be a smooth
k-point. Also let g1, ...,g. be the set of elements in the ideal Ix of X with linearly independent differentials
at vg. Then, for any [ € Ix and any n > 1, the form f5§ ) ¢ k[V] belongs to the ideal in k[V| generated

by ((gz')S;Jo))izl,...,c;1§jgn.

Proof. Without loss of generality, we can assume that vg = 0. We set A = k[V]. Also let A denote the
completion of the origin (the ring of formal power series) with respect to the ideal. Then the keypoint is that
Ix-Ais generated by gy, ..., g.. Indeed, this follows from the fact that the local homomorphism of local regular
k-algebras An/(g1,-..,9:) = Ox., (Where m is the maximal ideal of vy in A) induces an isomorphism on
tangent spaces and, hence, also induces an isomorphism of completions. Note that the higher derivatives are
meaningful for elements of A (as components in A,, = k[V],,) and, hence, the assertion follows if we express any
element of Ix in the form ZZ g;h; for some h; € A.

Lemma 2.4 is proved.

It is also necessary to consider certain polylinear forms of mixed derivatives. Assume that we have a decom-
position V =V; @ ... ® V,,. Then we get the following induced direct-sum decomposition:

kKVin= @B  kVilm @...@Kk[Vi]m,.

mi+...+mp=m

Further, for f € k[V],, with m < n and a subset of indices 1 < i3 < ... < iy, < n, we denote the
component of f in k[V;,]1 ® ... ® k[V;, |1 by f(VérVim) In particular, if we apply this to the mth derivative
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of f at vp, then we get a polylinear form

iVim) o () ViVin) € V2 L @ V7 @.1)

v 7
which is called the (V;,,...,V;, )-mixed derivative of f at vy.

Lemma 2.5. [n the situation of Lemma 2.4, assume, in addition, that V. =V, ® ... ® V,,. Then, for any

f € k[V] and any collection of indices I = {i1 < ... < iy} C [1,n], the polylinear form fé;fil""’wm) belongs

to the tensor ideal generated by (gi)i‘fl"”’vjs) fori=1,...;cand J={j1 <...<js}CI, J#@.

Proof. The proof easily follows from Lemma 2.4.
2.4. Dimension Count. We now change the notation to

P:UxVxW; x...xWy_9—k

Further, we denote W = W x ... x Wy_o and consider the variety Zp C V x W of all (v,w) such that
P(u,v,w) =0 forall u € U.

Let Z be an irreducible component of the Zariski closure of the set of k-points Zp (k) (with reduced scheme
structure) such that codimy xyw Z = ¢/'(P), and let Zy, C W denote the closure of the image of Z under the
projection myy : V x W — W (also with reduced scheme structure). Then the k-points are dense in Zyy .

We can treat P as a linear map from U ® V to the space of polynomial functions on W. Hence, it gives
a morphism of trivial vector bundles over W,

Py:VeOy—U*® Oy, 2.2)
and 7,/ (w) N Zp for w € Zy can be identified with ker( Py (w)).
Let U C Zy denote a nonempty open subset, where Py has the maximal rank denoted by r. Then, over U,

the cokernel of Py is locally free over Zyy and, hence, the kernel of Py is a subbundle X C V ® O. We denote
by toty(KC) the total space of the bundle X over U/ and obtain

toty (K) = mt U) N Zp CV x W.

Note that the k-points are dense in
toty (K) = mt (U) N Zp

and, hence, ;' () N Z is an irreducible component of 7, () N Zp. Since toty(K) is irreducible, we get

T (U) N Z = toty (K).
Hence, we have
dimZ =dim Zy +dimV —r
or, equivalently,

codimy Zy + r = codimy xw Z = ¢'(P). (2.3)
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2.5. Proof of Theorem 1.1. Step 1. Choosing a General k-Point. Shrinking the open subset U C Zw
considered above, we can assume that I/ is smooth. Since k-points are dense in Zy, we can choose a k-point

w’ = (w?, ... W) ) €U C Zy.

We set
Sy :=ker(Py(w®): V=>U*) and Sy :=ker(Py(w®)*: U = V*).
Step 2. The First Set of Key Tensors. Let

¢ := codimyy Zyy .

Since w® is a smooth point of Zy, we can choose ¢ elements g1, ..., g. in the ideal Iz, C k[W] with linearly
independent derivatives at w°. Recall that W = Wy x ... x W4_,. Thus, foreach @ = 1, ..., ¢ and any nonempty
subset of indices [ = {i; < ... < i} C [1,d — 2], we can consider the polylinear forms, obtained as mixed

derivatives at w? :

Wi 7~--,Wim * *
Ja,1 = g;w(} ) e W.®...0 W, .
Step 3. Setting Up the Key Identity. We set k = dimV — r. Applying Lemma 2.3(ii) to the morphism
of trivial vector bundles (2.2) over Zy,, we find global sections vy (w),...,vx(w) € V ® k[Zw] such that
v1(w), ..., v (w") form a basis of Sy, and, moreover,

P(u,vi(w),w) =0 forany ue U and we€ Zy, i=1,... k.

Since k[W] — k[Zw/] is surjective, we can lift v;(w) to polynomials in V @ k[W], which are denoted in the same
way. We now define a collection of U*-valued polynomials on W as

fi(w) :== P(u,vi(w),w) € U* @ k[W]. (2.4)

By construction, all f;(w) belong to U* ® Iz, C U* @ k[W]. Equation (2.4) is the key identity used in the
present work.

Step 4. The Second Set of Key Tensors. We consider certain mixed derivatives of v;(w) viewed as V-valued

polynomials on W. Namely, for each

I={i) <...<ip}C[l,d—2],

we set

vig = vl ) W e v = Hom (W, V),
where

Wi ::Wi1®-~-®Wip-

Since (v;(w)) form a basis in Sy, there exists a unique operator

C] : Sv — HOIII(W[, V) : Uz‘(w()) = Ui .
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We extend C7 in any way to an operator V' — Hom (W7, V'), which is also denoted by C. Note that we can also
treat C7 as a linear map

Cr: VoW —V.

For an ordered collection of disjoint subsets 1, ..., I, C [1,d — 2], we consider a composition

Cr Cr
CIl e C[p Ve W[lumu]p —p> V® W[lumu[p_l —...=V® W[l —1> V.
The case of an empty collection, i.e., p = 0, is allowed. In this case, we just get the identity map V' — V.

We choose a basis /1, ...,f, € V* in the subspace orthogonal to Sy . For ordered collections I; ... U I, C
[1,d — 2] and for j = 1,...,r, we consider the polylinear forms

ljoCr...Cr, e VW[ 1,
Note that, for an empty collection, i.e., for p = 0, we just get £; € V™.
Step 5. Differentiating the Key Identity. For each
I={i1<...<ip} C[l,d—2],

we consider the embedding
L(I)Z Wi=Wi®...0 Wy_o,
which completes w;;, ® ... ® w;, by the components w? in the factors W; with j & I.

By induction on p = 0,...,d — 2, we prove that, for any I = {i; < ... < i,} C [1,d — 2], the following
inclusion is true:

Pls, ovenw;) € ((zjoch...cfs |LU...ULCI, 1<j<r s>0),
(ga,l’|1§a§07 I,CIv I/#@)),

where, on the right-hand side, we have the tensor ideal generated by the specified elements. Note that all the
subsets I; are supposed to be nonempty.

The base of induction p = 0 is clear because P(u, v, w?, . ,w2_2) =0 forany u € Sy and v € V. Assume
that p > 0 and the assertion holds for p — 1. We fix a subset [o = {i; < ... <4,} C [1,d —2].
Further, we equate the (W, ..., Wip)—mixed derivatives at w” of both sides of the key identity (2.4). As are-

sult, we get the following equality in U* @ W7

(Wiy oo Wi)
(f)wo 7" = Pluge ) euto)w, + > Pluscis)elyw,: (2.5)
1UJ=Io, 45

Note that, by Lemma 2.5, ( fi)fﬂvgl""’Wp) belong to the tensor ideal generated by g, ;7 with 1 < a < ¢ and
I' C Iy, I' # @. We also note that the term in the sum on the right-hand side of (2.5) corresponding to J = &
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has zero restriction to Si;. Hence, we get

Plsyesyeuiow,, + Z Pldy 01 (Uesy)@u )W,
[UJ=TIo:],J#%

€(garll<a<e I'Cl, I'#9).

The induction assumption now implies that Plg, gg, & o)Wy, belongs to the tensor ideal generated by g, v
with I’ C Iy, I' # @, and by the restrictions of ¢; o C, ... Cp, with s > 1 (where I; U ... U I is a proper
subset of Ip). By Lemma 2.2, adding (¢;) to the generators of the tensor ideal, we get the required assertion

about P|SU®V®L(IO)WIO .

Step 6. Conclusion of the Proof for a Single Tensor. By using the result of the previous step for p = d — 2,
we now get

k% Pls,avewie..ow, , < (14 04_2) +c(2¢72 = 1),

where 6,, is the number of ordered collections of disjoint nonempty subsets I; LI ... U I, C [1,n] (with p > 1).
By Lemma 2.2, this implies that

kS P <7+ 7(1+6049) +c(2472 - 1).
Further, recall that r 4+ ¢ = ¢/(P) [see (2.3)]. Hence, we get
k% P < (r + ¢) max (2 + 0g_0,297% — 1) =¢(P)Cq,
as claimed.
Step 7. The Case of Several Tensors. Now assume that k is algebraically closed. Suppose that we have a given

collection P = (P, ..., P;) of polylinear forms on V; x ... x V. For a nonzero collection of coefficients ¢ =
(c1,...,cs) in k, we set

P=ciP+...+cPs.

The key observation is that

Zp = Zr,
40

where we can consider ¢ as points in the projective space P*~!. As already proved, for each ¢,
. —1.3.5/p -1.1.8%
codimy, x...xv, Zp, > C; " 1k’ (Pg) > C; " rk”(P).
By taking the union over ¢ in P5~!, we get

codimy, x.. xv, 45 > Cgl rks(ﬁ) —s+1,

as claimed.
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3. Symmetric Case

3.1. More on Higher Derivatives. Let f € k[V],. Treating the nth derivative of f € k[V] (where n < d)
as a polynomial map of degree d — n:

V = k[V],: v f

we can write it in the form of a tensor

Frmt=) € K[V, @ K[V]a-n.

By definition,
d

Flor+vg) =Y 7 (v, ).

n=0

Hence, f(™9~") is just the component of f(v; 4 v) of bidegree (n,d — n) in (vi,vs).
Similarly, we define an operation for nq + ... +n, = d,

k[V]g = k[V]p, ®...@Kk[V],, : frs fr0eme),
by assuming that f("1"») is the component of multidegree (n1, ..., np) in f(v1 + ...+ vp). Thus,
FOLA2) e v* @ V* @ k[V]g_o

is exactly Hy, i.e., the Hessian symmetric form on V' (with polynomial dependence on = € V).
We use two properties of this construction that can be easily checked:

d!

G foem) () = — L),
ni:... np.
(ii) for m<n;, the mth derivative of f(1:- ) (zq,... , Tp) with respect to z; at (29, ... ,xg) is equal to
yee T — 1, MM — 1My 0 0 0 0
Flrnimmoni—m ”p)(azl,...,:pi_l,v,xi,...,er).

3.2. Proof of Theorem 1.2. It is convenient to denote by X one copy of V inthe product V xV =V x X.
In addition, we treat Hy = f(11:4=2) as a bilinear form on U x V, where U = V, so that Z*™ consists of pairs
(v,z) € V x X such that f114=2) (y, v, ) = 0 forall u € U.

Step 1. Dimension Count and Choosing a General k-Point. Let Z be an irreducible component of the Zariski
closure of the set of k-points Z3"™ (k) such that codimyxx Z = gjy,,(f) and let Zx C X denote the closure
of the image of Z under the projection ps: V x X — X. As earlier, we choose a nonempty smooth open subset
U C Zx over which H has the maximal rank r so that p, Y(U)NZ is a vector bundle of rank dim V —7 over U.
In particular,

codimy Zx + 1 = gl (f)-
We choose a k-point 29 in U C Zx and set

S :=ker(Hy(2")) C V.
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Step 2. The First Set of Key Polynomials. We set

c:=codimyx Zx.

0

Since z" is a smooth point of Zx, we can choose ¢ elements g1, ..., g. intheideal I, C k[X] with linearly

independent derivatives at 20, Thus, foreach a = 1,...,c and for 1 < i < d — 2, we consider the derivatives

(92) € K[X];.

20
Step 3. Setting up the Key Identity. We set k = dim V' —r. Applying Lemma 2.3(ii) to the morphism of trivial
vector bundles V@O — V*®O givenby Hy = f1A4=2) over Zy, we find global sections v (z), . .., v (x) €
V @ k[Zx], such that vy (z°),...,v;(2°) form a basis in S and

f(l’l’d_Q)(u, vi(x),z) =0 forany ue U and x€ Zx, i=1,...,k.

We lift v;(z) up to polynomials in V ® k[X], which are denoted in the same way. Further, we define the following
collection of U*-valued polynomials on X :

filw) = fEMD(,0;(2), ) € U* @ k[X]. 3.1)
By construction, all f;(x) belongto U* ® Iz, C U* ® k[X].

Step 4. The Second Set of Key Forms. For each 1 < m < d — 2, we consider higher derivatives of v; at z°
regarded as V'-valued polynomials on X :

)% € V @ K[X]n.
Since (v;(x")) form a basis of S, there exists a linear operator
Cn: S = VOK[X]m: vi(2) — (v;)™.

We extend C), in any way to an operator V' — V ®k[X],,, which is also denoted by C,,,. For m1+...+m,, <
d — 2, we consider a composition

Cm
Cony - Crny s V—LV @K[X]pp, = ... = V K[ Xyt

We allow the case of empty collection, i.e., p = 0. In this case, we just get the identity map V' — V.
Finally, by ¢1,...,¢, € V* we denote a basis in the subspace orthogonal to S. For m1 + ... +m, < d —2
and for j = 1,...,r, we consider the elements

ljoCpmy...Cny, €V QK[ Xy 4. 4m,-

Note that, for the empty collection, i.e., for p = 0, we just get £; € V*.
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Step 5. Differentiating the Key Identity. We proceed by inductionon p =0, ...,d — 2 and prove that
FOPA20) (4, 2,20 gy x
& (50 Comy - G )(v.2) [+ tmy <p, 1<5< 1),
()W @) [1<a<e, 1<m gp)).

Here, on the right-hand side, we have the ideal generated by the specified elements.
The base of induction p = 0 is clear, since f(l’l’d_Q) (u,v,2%) = 0 forany u € S and v € V. Assume that
p > 0 and the assertion holds for p — 1. We now equate the pth derivatives at z = 2% on both sides of (3.1).

As aresult, we get the following equality in U* ® k[X],:

p
(fi)2) (@) = fOLPA=27P) (4 0y(20), 2, 20) 4 S fOIP=0d204) (y O (0;(2°), 2), 2, 2°).
qg=1

The left-hand side belongs to the ideal generated by (ga)i?) () with 1 < a < cand 1 <m < p. We also note
that the term corresponding to ¢ = p on the right-hand side has zero restriction to v € S. Hence, we get
f(l,Lp,diZip) (’LL, U, l‘, xo) |S><S><X

p—1
+ 37 e d=2on4 ) (4 Oy (v, 1), 2,2°) g, g, € (95 (2) |1 <a<e, 1<m <p).

20
q=1

The induction assumption now implies that f(L1P4=2P)(y v 2, 20)|gx5x x belongs to the ideal generated
by (ga);?)(x) for 1 < a < cand 1 < m < p and by the restrictions to S x X of ({; 0 Cy,, ...Ch, ) (v, )
withs > 1, mi+...+mgs <p,and 1 < j <r. By Lemma 2.2, adding (ﬁj) to the generators of the ideal, we get
the required assertion for f(L1P4=2-P) (y v 2, 20)|gy v x.

Step 6. Conclusion of the Proof for a Single Polynomial. By using the result obtained in the previous step
for p=d — 2, we get

f(1717d_2) ('LL, v, .%') |S><V><X

€ (((éjole...Cms)(v,x)|m1+...+ms<d—2, 1<j<r),

()@ [1<a<e, 1<m<d-2)).

20

Hence,

FOM (w,0,2) € ((4(u) [ 1< < 1),

(9) @) |[1<a<e 1<m<d-2). (32)
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Thus, setting © = v = x, we obtain
d(d = 1)« f(@) € ((Fymom. (@) [ ma 4 bmg <d =2, 1< <),

((ga)(m)(a:) ‘ 1<a<eg 1 §m§d—2)>,

1?0
where Fjn, . m () = ({j 0 Cpy, ... Cp,)(x, x) has the degree 1 +m1 + ...+ my < d — 1. This yields
tk¥(f) <r(1+677%) + c(d —2),

where 6™ is the number of (mq,...,mg), with s > 1, m; > 1, and my + ... + ms < n. Itis easy to see that
o™ = 2771 — 1. Since r + ¢ = g, (f), we get
1k P < (r + ) max(297%,d — 2) = gly(f) - 245,

as claimed.

Step 7. The Case of Several Polynomials. We now assume that k is algebraically closed and we have
a given collection f = (f1,..., fs) of homogeneous polynomials on V of degree d. For a nonzero collection
of coefficients ¢ = (cy,...,cs) in k, we set fz = c1f1 + ... + ¢sfs. As in the nonsymmetric case, the key
observation is that

sym sym
Z" = 90 zym, (3.3)
C:

where ¢ can be considered as points in the projective space P*~!. By using the case of a single polynomial,
we deduce that

codimy v Z;ym > 273 S (F) — s + 1,

as claimed.

3.3. Relation to Singularities. 'We now relate gsym (f) to the codimension ¢(f) of the singular locus of the
hypersurface f =0 in V.

Proposition 3.1.

(i) The subvariety Z]Scym CV x X =V x V contains the singular locus of f(*4—2) (v,2) = 0.

(ii)  Gsym(f) < (d+ 1)e(f) (resp., gsym(f) < de(f) if d is odd and char(k) # 2).
(iii) If char(k) does not divide d — 1, then c(f) < gsym(f)-

Proof. (i) The first derivative of f(>4=2) (v, z) along v at (v°,29) is f(1:14=2)(p 00, 29). Hence, if (v°, 2°0)

is a singular point of f(24=2) (v, z) = 0, then

f(171’d_2) (’U, ,UO7 xO) -0

for all v, i.e., (v°,2°) € Z;ym.
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(i) Since we are comparing the dimensions of algebraic varieties, without loss of generality, we can assume
that k is algebraically closed.

By part (i), we have gsym (f) < ¢(F), where F' = f(2972) Ttis easy to see thatif F(z) = Fy(2)+...+F(x),
then ¢(F) < ¢(F1) + ...+ ¢(F,). Moreover, if A: V — W is a linear surjective map and g € k[WW], then
c(go A) =c(g).

Thus, it remains to check that f(>9=2)(v, z) is a linear combination of d + 1 (resp., d, if d is odd and
char(k) # 2) polynomials of the form f(A;(v,z)) for some linear surjective maps 4;: V x V — V.

We consider f(v + z) as an inhomogeneous function of v, g(v) = go+ g1 + ... + gq of degree < d (with

coefficients in k[V']). Further, picking any d + 1 distinct elements A, ..., Aq € k, we can express go, ..., gq as
linear combinations of g(Agv), ..., g(Aqv) (because the corresponding linear change is given by the Vandermonde
matrix).

In the case where d is odd and char(k) # 2, we can similarly express the components of even degree,
(92i)i<(d—1)/2 as linear combinations of go = ¢(0) and (g(\iv) + g(=Av))/2, for 1 < i < (d — 1)/2, where
(A\;) are nonzero constants such that (A?) are all distinct.

It remains to observe that go = f(>»9~2) and that each g(\v) = f(\v + ) is of the required type.

(iii) This follows from the relation

(d—1)fOdV(w, z) = fOLD (4 2 7).

Sym

Indeed, this implies that the intersection of Z p with the diagonal V' C V x V is exactly the singular locus
of f =0, which gives the desired inequality.
Proposition 3.1 is proved.

We now consider the case of a collection f = (f1,..., fs) of homogeneous polynomials of degree d on V.
We consider the corresponding family of hypersurfaces in V, fz = 0, parametrized by the projective space P51,

It is clear that, for the locus S(f) C V, where the rank of the Jacobi matrix of (f1,..., fs) is < s, we have

S(f) = | Sing(fz = 0).
T£0
Proposition 3.2.

(i) The following inclusion is true:

. ,d— m
U Sing (fE(2 2 - 0) C Z;y )
e£0

(i) gogm(F) < (d+1)/(F)+d(5—1) (resp., gm(F) < de'(F)+(d—1)(s—1) if d is odd and chax(k) # 2
(iii) Assume that (fi,..., fs) define a complete intersection V(f) C V, i.e., codimy V(f) = s. Then

d(f) <e(f) <d(f) +s.
Assume, in addition, that char(k) does not divide d — 1. Then
Cl(?) < gsym (?)

Proof. (i) This follows from Proposition 3.1(i) due to (3.3).
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(ii) Since S(f) has the codimension ¢/(f) in V, we conclude that, for some a < s — 1, there exists
an a-dimensional subvariety X C P*~! such that

c(fz) = codimy Sing(fz) < (f) +a for ce€ X.
Applying Proposition 3.1(ii), we see that, for each ¢ € X,
codimyxy Z7™ < (d+1)(¢(f) + a)

(resp., < d(c'(f) + a) if d is odd). Hence, by using (3.3), we get

codimy xy Z;ym < (d+1)(d(f) +a) -
(resp., < d(c'(f) + a) — a if d is odd). Since a < s — 1, this implies the required assertion.

(iii) If (f1,..., fs) specify a complete intersection, then, by the Jacobi criterion of smoothness, we obtain
Sing V() = S(F) N V(7).
In particular, we get an inclusion Sing V' (f) C S(f). Therefore,
d(f) = codimy S(f) < c(f).

Moreover, we get

c(f)—s= codimy, 7 Sing V(f) < codimy S(f) = ¢ (f).

Sym

If we assume in addition that char(k) does not divide d — 1, then the intersection of Z with the diagonal

V CV x V isexactly S(f). Hence, we obtain

d(f) = codimy S(f) < gsym(f)-

Proposition 3.2 is proved.

Proof of Theorem 1.3. (i) If

= Z hz(x)gz(x)
=1

then the locus h;(z) = gi(z) = 0 for ¢ = 1,...,r is contained in the singular locus of f(x) = 0 and,
hence, c(f) < 2r.

Now let, for the other inequality, ¢ = ¢ (f) and let X be an irreducible component of codimension ¢ of the
Zariski closure of the k-points of Sing(f = 0). Also let vg € X be a smooth k-point and let g, ...,g. € I(X)
be defined over k with linearly independent differentials at vy. For all k£ € [n], we have J;f € I(X) and, hence,
Lemma 2.4 implies that

_ (d—1) (7)
ok f (8k:f)vo ((‘gl)vo )zE[C]JG[dfl} '
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By Euler’s formula, we get

/= Clil;l“kakf € ((Qi)%)) :

i€[cl,j€ld—1]

This gives k% (f) < (d — 1) - ¢.

(i) We deduce the required assertion from the result for a single form as in the proof of Theorem 1.2.

Proof of Corollary 1.1. In the notation of [2, Theorem A] (recalling that the strength of f is rk® (f)—1),
the inequality of Theorem 1.3(i) implies that we can take

MA(d) = (d—1)(m+2) — 1.
It is also well known that, for d = 2, we can take

-]

(see, e.g., [3, Proposition 4.10]). Thus, the assertion follows from [2, Theorem A(c)].

Remark 3.1. For k algebraically closed of arbitrary characteristic, Eq. (3.2) shows that
kLD (w0, 2) < (2970 1) - gy (f) < 2772+ 1) - (d+ 1) - o)

The proof of Theorem 1.4 is based on the following geometric observation:

Lemma 3.1. For generic vy, ...,vs € V, where s < dim V, the following inequality is true:

(Op fyensOu f) > Gsym(f) —s+ 1.

Proof. By Z®) C V*® x V we denote a locally closed subvariety formed by (v1,...,vs,2) such that
v1,..., Vs are linearly independent and

dimspan (Hy(z)(-,v1), ..., Hp(z)(-,v5)) < s

(here, we consider H(-,v) as a linear form on V). Our aim is to estimate the dimension of Z (s), We get
a surjective map (with at least 1-dimensional fibers) Z(*) — Z() where Z(®) C V x V*® x V is given by

AQ. {(v,vl,...,vs,x) |vekerHy(x), v#0, (vi,...,0s)

are linearly independent, v € span(vy, ... ,US)}.
We have a natural projection
JASN stcym: (v,v1,...,vs,2) = (v, T),

which is a locally trivial fibration whose fibers are irreducible of dimension n(s — 1) + s, where n = dim V.
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This yields
dim Z¢) < dim Z) =1 < dim Z7™ 4+ n(s — 1) + s — 1.
Hence,
codimy sy v ASDS Gsym(f) — s+ 1.

Further, we observe that
Hf(.’E)(, U) = f(l’LdiQ)('? v, JI) = (8Uf)(17d72)('7 IL')

Thus, S(0y, f,- .., 0y, f) is exactly the fiber over (vy, ..., vs) of the projection Z) V5. For generic v1, . . ., v,
only the components of Z (5) predominant over V*® play a role, and we conclude that

(O, fy- -, 00, f) = codimy SOy, f, ..., 0u, f) > codimysyy 76 > Gsym(f) — s+ 1.
Lemma 3.1 is proved.

Proof of Theorem 1.4. (i) By Lemma 3.1 with s = 1, we have ¢(0,f) > gsym(f). Hence, by Theo-
rems 1.3(i) and 1.2,

5 (0uf) > el@uf) > Sanmlf) > 205 ().

DO

() If (0w f,..., 00, f) > s (tesp., (Op, fy--., 00, f) > s+ 2), then (Oy, f,..., 0y, f) define a (resp.,
normal) complete intersection of codimension s. Hence, the required assertion follows from Theorem 1.2 and
Lemma 3.1.

3.4. Singularities of the Polar Map. Let f € k[V];. Note that H¢(z) can be identified with the map
tangent to the polar map ¢y: V — V* of f sending z to f;,gl) = df|;. Thus, gsym(f) measures the degeneracy
of this map.

More precisely, for any morphism ¢: X — Y between smooth connected varieties, we define the Thom—
Boardman rank> of ¢ denoted by rk’Z(¢) as follows: Consider a subvariety Z in the tangent bundle T'X of X
consisting of (x,v) such that d¢,(v) = 0. Then we set

k7B (¢) = codimrx Zy.
Note that rk’? (¢) < r, where r is the generic rank of the differential of ¢. However, the inequality can be strict.
By definition,
gsym(f) = rkTB(d)f)‘

It is well known that the generic rank of d¢y = Hy is related to the dimension of the projective dual variety X*
of the projective hypersurface associated with f (more precisely, dim X* + 2 is the generic rank of H; over the
hypersurface f = 0). However, it is easy to see that g™ (f) can be much smaller than the generic rank of ¢¢.

> This name is explained by the relationship with the Thom-Boardman stratification in singularity theory; see [6].
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Thus, if ¢1(x) and ¢2(y) are nondegenerate quadratic forms in two different groups of variables (x1,...,zy)
and (y1,...,yn), then 1k”(g1(2)q2(y)) = 1 and, therefore,

gsym (Q1 (w)Q2 (y)) § 4.

On the other hand, the generic rank of </5q1 (z)ga(
is # 2,3).

y) 18 2n (under the assumption that the characteristic of k

Example 3.1. In the case where d = 3, the Schmidt rank of f is equal to its slice rank s(f), i.e., the mini-
mal s such that there exists a linear subspace L C V' of codimension s contained in (f = 0). Thus, for a cubic
form f, we assume that k is algebraically closed of characteristic # 2, 3. In this case, it follows from Theorem 1.2
and from (1.2) that

s(f) <tk (o) < 4s(f).

If f is a general homogeneous polynomial of degree d, then we still have rk(f) = s(f) (see [4]). Hence,
for this f, under the assumption that k is algebraically closed of characteristic not dividing (d — 1)d, we obtain

257d5(f) < tkTB () < 4s(f).

It seems that the invariant rk”?(¢) deserves to be studied more comprehensively. Indeed, we do not know
whether it is always true that rk’ (¢) = dim X for a finite morphism ¢ between smooth projective varieties of
characteristic zero. We now present the following corollary of Proposition 3.1(iii):

Corollary 3.1. Assume that char(k) does not divide d — 1. Then
k™ (¢5) > e(f).
In particular, if the projective hypersurface associated with f is smooth, then
tk?B(¢;) = dim V.

Let Vy C PV denote the projective hypersurface associated with f. In [7], the authors considered (for k = C)
the closed locus S>, C Vy, where the co-rank of the Hessian H is > r. They proved that if V is smooth, then,
for r(r 4+ 1) < dim V, the subvariety S>,(V') is nonempty and

codimy, S>.(V) <r(r+1)/2.
By using Corollary 3.1, we get the inequality

codimy, S>.(V) > r — 1.

If V7 is smooth, then the projectivization of the restriction of ¢ to (f = 0) can be identified with the Gauss
map

v Vf — PV*.
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It is easy to check that if char(k) does not divide d(d — 1), then, for any point = € (f = 0) C V, we have

ker(d(¢f).) C To(f = 0),

and the natural projection

ker(d(¢y)z) — ker(dvyz)

is an isomorphism. Thus, the above inequalities can be treated as restrictions to possible degeneracies of the Gauss
map of Vy (which is finite by a result of Zak from [12]).

Appendix A

This appendix gives alternative versions of Theorems 1.1, 1.2, and 1.4, with better bounds for d > 6. The sec-
ond version of Theorem 1.1 is as follows:

Theorem A.l.

(i) Let ¢'(P) denote the codimension in Vo X ... x Vy of the Zariski closure of Zp(k). Then
rk%(P) < (2471 = 1)¢/(P).

(ii) Assume that k is algebraically closed. Then, for a collection P = (P, ..., Py), the following inequality
is true:

k% (P) < (241 = 1)(g(P) + 5 — 1).

For algebraically closed fields, the result presented above matches the result obtained by Cohen and
Moshkowitz in [13] but we give a very short proof.

Proof. (i) The proof mimics the proof of Theorem 1.3. We write ¢ = ¢/(P) and assume that X is an irre-
ducible component of the Zariski closure of Zp(k) such that

codimy; xvpx..xv,_, X = ¢.

Let x1,...,x, be abasis for V. We write
n
P = Z T - Qk7
k=1
where Q) : Vi x Vo x...xVz_1 — k are polylinear forms. Let v9 € X be a smooth k-pointand let hy,...,hy €

I(X) be defined over k with linearly independent differentials at vy. For all k € [n], we have
Vi, Vo, Vg
Qr = (Qu)ie"" ") e 1(X)

and, therefore, by Lemma 2.5, this is in the tensor ideal generated by

(Viy s Vis)

(O

)i€[9]7®7é{j1<...<js}dd*1] '
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By definition, P is in the tensor ideal generated by )i and, hence,
rk%(P) < (2971 —1) . g.
(i) We deduce this assertion from the result obtained for a single tensor as in the proof of Theorem 1.1.

The second version of Theorem 1.2 is as follows:
Theorem A.2. Assume that k is algebraically closed of characteristic not dividing (d — 1)d.
(i) For a single form f of degree d,

rks(f) < (d = 1)gsym(f)-

(i) If (f1,-..,[fs) specify a complete intersection of codimension s in V, then
tk*(f) < (d = 1) (gsym (f) +5 = 1).

Proof. (i) Combine Theorem 1.3(i) with Proposition 3.1(iii).
(ii) Combine Theorem 1.3(ii) with Proposition 3.2(iii).
The second version of Theorem 1.4 is as follows:.

Theorem A.3. Let f be a homogeneous polynomial of degree d. Assume that k is algebraically closed of
characteristic not dividing (d — 1)d.

(i) For generic v €'V,

IS > K9(£).
(0, f) > 5 15 )
(ii) For s < rks(f)—i—} resp., s < rk(f) ! and for generic v1 vs €V, the deriva-
~2d—2 2 T T 2d—2 2 e
tives (Oy, f,..., 0y, f) define a (resp., normal) complete intersection of codimension s in V.

Proof. (i) By Lemma 3.1 with s = 1, we get ¢(0,f) > gsym(f). Hence, by Theorems 1.3(i) and A.2,

1
2d — 2

E(00f) 2 5e(0uf) = 50 2 57— k(D).

| =

() If ¢(Ou fy... 00, f) = s (tesp., (Op, fy-- 00 f) > s+ 2), then (Oy, f,..., 0y, f) define a (resp.,
normal) complete intersection of codimension s. Hence, the required assertion follows from Theorem A.2
and Lemma 3.1.
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