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Automatic assessment of impairment and disease severity is a key challenge in data-driven medicine.
We propose a framework to address this challenge, which leverages Al models trained exclusively on
healthy individuals. The COnfidence-Based chaRacterization of Anomalies (COBRA) score exploits
the decrease in confidence of these models when presented with impaired or diseased patients to
quantify their deviation from the healthy population. We applied the COBRA score to address a key
limitation of current clinical evaluation of upper-body impairment in stroke patients. The gold-standard
Fugl-Meyer Assessment (FMA) requires in-person administration by a trained assessor for 30-45
minutes, which restricts monitoring frequency and precludes physicians from adapting rehabilitation
protocols to the progress of each patient. The COBRA score, computed automatically in under one
minute, is shown to be strongly correlated with the FMA on an independent test cohort for two different
data modalities: wearable sensors (o =0.814, 95% CI [0.700,0.888]) and video (o =0.736, 95% C.I
[0.584, 0.838]). To demonstrate the generalizability of the approach to other conditions, the COBRA
score was also applied to quantify severity of knee osteoarthritis from magnetic-resonance imaging
scans, again achieving significant correlation with an independent clinical assessment (o = 0.644,

95% C.I[0.585,0.696]).

In current clinical practice, assessment of impairment and disease severity
typically relies on examinations by medical professionals™’. As a result,
assessment is often qualitative and its frequency is constrained by clinician
availability. Developing data-driven quantitative metrics of impairment and
disease severity has the potential to enable continuous and objective mon-
itoring of patient recovery or decline. Such monitoring would facilitate
personalized treatment and administration of appropriate therapeutic
interventions in telehealth and other remotely supervised contexts where
ongoing access to clinicians is not readily available™.
Artificial-intelligence (AI) models based on machine learning are a
natural tool to perform data-driven patient assessment”". These models
can be trained in a supervised fashion to estimate labels associated with
patient data from large curated datasets of examples'"'**’. Unfortunately, it
is often very challenging to assemble datasets containing an exhaustive
representation of severity or impairment levels, which is necessary to ensure
the accuracy of the Al models’' . Moreover, supervised approaches require

the existence of an objective quantitative metric that can be computed for
every patient in the dataset, but such metrics do not exist for many medical
conditions™**.

To address these challenges, we consider the problem of performing
automatic patient assessment using Al models trained only on data from
healthy subjects. This is an anomaly detection problem, where the goal is to
identify data points that are systematically different from a reference
population”. Existing anomaly-detection methods for medical data are
mostly based on generative models™". These models are designed to
reconstruct high-dimensional data from a learned low-dimensional repre-
sentation. Once trained, they are typically unable to accurately reconstruct
data that are anomalous, due to their inconsistency with the training set.
Consequently, the model reconstruction error tends to be higher for
anomalies than for normal data, and can therefore be used as an anomaly-
detection score. This approach has been applied to identify chronic brain
infarcts”, Alzheimer’s disease®, microstructural abnormalities in diffusion
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MRI tractometry™, and abnormalities of cosmetic breast reconstruction in
cancer patients™.

Anomaly detection based on generative models has an important
disadvantage: it does not constrain the Al model to learn clinically relevant
features. Consequently, the model reconstruction error may depend on
properties of the data unrelated to the medical condition of interest. Here,
we propose a novel anomaly-detection framework that is tailored to a spe-
cific medical condition. This is achieved by utilizing an AI model that pre-
dicts an attribute of the data, which is directly relevant to the condition (e.g.
type of motion primitive performed by the stroke-impaired side, or tissue
type for knee osteoarthritis). Crucially, the model is trained exclusively on
healthy subjects, using annotated data describing the attribute. When the
models are presented with data where the attribute is affected by the medical
condition of interest, we observe that the average model confidence tends to
decrease proportionally to severity. This yields a quantitative patient-
assessment metric, which we call the COnfidence-Based chaRacterization of
Anomalies (COBRA) score. Figure 1 provides a schematic description of the
proposed framework.

The COBRA score is inspired by a technique proposed in*, which
identifies anomalous data points using the confidence of AT models. In this
and subsequent works”™*' anomalies were identified based on the loss of
confidence of the AT models for a single data point. The effectiveness of this
approach depends on the overlap in the distribution of confidences*. In our
applications of interest, AI models trained on healthy subjects tend to lose
confidence on average when presented with multiple inputs from an
impaired or diseased patient. However, the confidence for individual data
points is very noisy and results in an unreliable metric, as illustrated by Fig. 2.
For this reason, the COBRA score is computed using multiple data points
for each subject, corresponding to different motions in the application to
stroke and to different voxels in the application to knee osteoarthritis.
Aggregating the confidence associated with multiple data via averaging
dramatically reduces the noise, resulting in a stable and accurate subject-
level metric.

Our proposed framework can be interpreted as a form of normative
modeling, where the goal is to quantify individual deviations from a refer-
ence population"**’. Existing normative models in neuroscience and psy-
chiatry are based on probabilistic regression, which explicitly captures the
normal variation of brain-derived phenotypes®. In contrast, the Al models
used to compute the COBRA score perform normative modeling implicitly,
by learning features associated with the attribute of interest within the
reference population.

We apply the COBRA score to automatically evaluate the impairment
level of stroke patients. Stroke commonly causes motor impairment in the
upper extremity (UE), characterized by loss of strength, precise control, and
intrusive muscle co-activation, which collectively interfere with normal
function. Rehabilitation seeks to reduce motor impairment through the
repeated practice of functional movements with the UE. In this process, it is
crucial to monitor the impairment level of the patient. The gold-standard
method of measuring motor impairment is the Fugl-Meyer Assessment
(FMA)’. Unfortunately, it requires in-person administration by a trained
assessor and is time-consuming (30-45 minutes), which makes it imprac-
tical for frequent monitoring. Automatic assessment of motion impairment
based on video or wearable-sensor data would address these limitations,
facilitating actionable and granular tracking of motor recovery.

Motor impairment evaluation in stroke patients illustrates the difficulty
of applying standard supervised AI methodology to patient assessment. An
existing study shows the feasibility of the approach®, but only includes 17
patients. Training a supervised model to predict impairment and rigorously
evaluating its performance on held-out data requires a database of at least
hundreds, and ideally thousands of patients, labeled with the corresponding
impairment level. However, the largest such publicly available dataset
consists of just 51 patients”. Here, we use this dataset as a held-out test set to
evaluate the proposed framework.

In order to assess impairment in stroke patients using the COBRA
score, we trained AI models to predict classes of UE motion, known as

functional primitives, from video and wearable-sensor data. The models
were trained on a cohort of healthy individuals. Crucially, although the
healthy cohort is relatively small (25 individuals), the number of labeled
primitives per patient is large (typically around 300,000), which provides a
rich training dataset with more than 6 million examples. Once trained on the
healthy subjects, the models were applied to data from a test cohort of stroke
patients and held-out healthy subjects performing nine different stroke
rehabilitation activities. The confidence of the motion predictions for each
test subject was averaged to compute the corresponding COBRA score. Our
results show that the COBRA score is correlated with the Fugl-Meyer
Assessment of the patients, obtained in person by trained experts, for both
data modalities. The score is computed in under a minute and does not
require expert input. This greatly expands on our preliminary findings,
which used a similar approach with wearable-sensor data from a single
rehabilitation activity™.

To demonstrate the general applicability of the COBRA framework, we
show that it can be used to evaluate severity of knee osteoarthritis from
magnetic resonance imaging (MRI) scans. Knee osteoarthritis is a muscu-
loskeletal disorder characterized by a progressive loss of knee cartilage. To
quantify severity, we trained an Al model to perform segmentation of dif-
ferent knee tissues (including cartilage) on MRIs of healthy knees. We then
applied the model to knee MRIs from a test cohort of diseased patients and
held-out healthy subjects. The confidence of the tissue predictions for each
test subject was averaged to compute the corresponding COBRA score. The
resulting COBRA score is again highly correlated with an independent
assessment of disease severity (in this case, the Kellgren-Lawrence grade).

Results

Quantification of impairment in stroke patients

The application of the COBRA score to the impairment quantification in
stroke patients was carried out using the publicly available StrokeRehab
dataset”. StrokeRehab contains video and wearable-sensor data from a
cohort of 29 healthy individuals and 51 stroke patients performing multiple
trials of nine rehabilitation activities (described in Supplementary Tables 1,
2). The impairment level of each patient was quantified via the Fugl-Meyer
assessment (FMA)”. The FMA score is a number between 0 (maximum
impairment) and 66 (healthy) equal to the sum of itemized scores (each
from 0 to 2) for 33 upper body mobility assessments carried out in-clinicby a
trained expert. The wearable-sensor and video data are labeled to indicate
what functional primitive is being performed by the paretic arm over time:
reach (UE motion to make contact with a target object), reposition (UE
motion to move into proximity of a target object), transport (UE motion to
convey a target object in space), stabilization (minimal UE motion to hold a
target object still), and idle (minimal UE motion to stand at the ready near a
target object).

The COBRA score was computed based on AI models trained to
predict the functional primitives performed by a training cohort, which
includes 25 of the 29 healthy individuals (selected at random). The model
input was either wearable sensor or video data. Detailed descriptions of these
models are provided in the Methods section. The models were applied to a
test cohort consisting of the remaining 4 healthy individuals and the
51 stroke patients. Demographic and clinical information about the training
and test cohorts is provided in Table 1. The COBRA score is equal to the
average of the model confidence for data points identified by the models as
corresponding to functional primitives that involve motion (transport,
reposition, and reach).

The COBRA score was evaluated by computing its Pearson correlation
coefficient with the Fugl-Meyer Assessment (FMA) score” on the test cohort
of 51 stroke patients and 4 healthy individuals (n =55). The correlation
coefficient is 0.814 (95% CI [0.700,0.888]) for the wearable-sensor data and
0.736 (95% CI [0.584, 0.838]) for the video data. Figure 3 (a) shows scat-
terplots of the COBRA and FMA scores. For both data modalities, the
COBRA score has a strong, statistically significant correlation with the in-
clinic assessment. The Supplementary Methods reports additional results on
the wearable-sensor data using a completely different AI architecture for
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Quantification of motion impairment in stroke patients
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Fig. 1 | The COnfidence-Based chaRacterization of Anomalies (COBRA) score.
In Step 1,an Al model is trained to perform a clinically meaningful task on data from
healthy individuals. For impairment quantification in stroke patients, the task is
prediction of functional primitive motions from videos or wearable-sensor data
(top). For severity quantification of knee osteoarthritis, the task is segmentation of

Confidence level
(COBRA score)

knee tissues from magnetic resonance imaging scans (bottom). In Step 2, the
COBRA score is computed based on the confidence of the Al model when per-
forming the task on patient data. Data from patients with higher degrees of
impairment or severity differ more from the healthy population used for training,
which results in decreased model confidence and hence a lower COBRA score.

primitive prediction. The correlation coefficient between the resulting
COBRA score and the FMA score is again high: 0.774 (95% CI [0.636,
0.865]). This indicates that the proposed approach is robust to the choice of
underlying AT model.

Figure 4 reports the correlation coefficients between the FMA score
and the COBRA score computed using subsets of the data corresponding to

individual rehabilitation activities (see Supplementary Tables 1, 2 for a
detailed description of the activities). Scatterplots of the FMA and COBRA
scores for each activity are provided in Supplementary Figs. 2, 3. For both
data modalities, the correlation is higher for more structured activities
(moving objects to targets on a table-top or shelf, donning glasses) and is
lower for more complex activities (hair-combing, face-washing, teeth-
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Fig. 2 | Averaging model confidence yields a discriminative subject-level metric.
The plots show histograms and kernel density estimates of the confidence of a model
trained on healthy subjects when presented with test data from an impaired or
diseased patient (red), and from a held-out healthy individual (blue). The confidence
distributions overlap, so individual values do not allow to discriminate between
healthy and impaired individuals. In contrast, the average confidence is

Model Confidence for Motion-based Primitives
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Healthy individual (KL = 0)
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systematically higher for healthy subjects, and therefore provides a discriminative
subject-level metric. The first and second plot correspond to wearable-sensor and
video data associated with the same healthy and impaired individuals from the test
cohort for quantification of stroke-induced impairment. The third plot corresponds
to MRI scans from a healthy and diseased individual in the knee-osteoarthritis test
cohort.

brushing, feeding), which tend to involve more heterogeneous motions
across individuals. The correlation coefficient with the FMA score is lower
for the COBRA score computed from individual activities than for the
COBRA score that aggregates all activities. The only exception is the table-
top task, which is the most regular and structured activity. The correlation
between the corresponding COBRA score, computed from wearable-sensor
data, and the FMA score is very high (0.849, 95% CI [0.752, 0.910]), which
suggests that it may be possible to obtain accurate impairment assessment
from a reduced number of data using activities that are highly structured.
An important consideration when applying the proposed framework is
that extraneous factors may produce a spurious decrease in the confidence
of the AT model. Figure 5 shows that this occurs for the table-top activity,
which was carried out with light-colored and dark-colored objects by dif-
ferent subjects. Dark objects are much more difficult to detect in videos,
which produces a systematic loss of confidence in the video-based Al model
that translates to lower COBRA scores. This explains why the correlation
between the FMA score and the COBRA score is lower for the table-top
video data than for the table-top wearable-sensor data, which is unaffected

Table 1 | Demographic and clinical characteristics of the
training and testing cohorts for the application to
quantification of motion impairment in stroke patients

Training Testing
Number of subjects 25 55
Trials 1265 2183
Age 62.4+13.1 57.7+14.0
Sex 13 male, 12 female 25 male, 30 female
Race® 10W,12B,0A, 1Al 24W,14B,9A,0Al, 80
20
Paretic Side n/a 28 left, 23 right, 4 n/a
Fugl-Meyer 66 43.5+16.2
Assessment
Impairment level® 25 healthy 4 healthy, 20 mild, 23
moderate, 8 severe
Time since stroke n/a 5.4 + 6.1 years (for stroke

patients)

The mean + standard deviation is reported for age, Fugl-Meyer assessment and time since stroke.
2Race: White (W), Black (B), Asian (A), American Indian (Al), Other (O).
"Based on FMA: 0-25 is severe, 26-52 moderate, 53-65 mild, and 66 healthy.

by this confounding factor. As depicted in Fig. 5, we can correct for the
confounding factor by stratifying the subjects according to the object color.
This increases the COBRA score from 0.615 (95% CI [0.411, 0.760]) to 0.679
(95% CI [0.294, 0.874]) for dark objects and 0.756 (95% CI [0.553, 0.874])
for light objects. For comparison, the correlation of the video-based COBRA
score computed from all activities is 0.736 (95% CI [0.584,0.838]). Supple-
mentary Fig. 4 shows that image quality can also act as a confounding factor:
blurring the video images results in a systematic decrease of the COBRA
score, which can also be corrected via stratification.

The COBRA score is the average of the AI-model confidence for data
points identified by the model as corresponding to functional actions that
involve motion (reach, reposition, transport), as opposed to functional
actions that do not (idle, stabilize). These data can be considered as clinically
relevant to impairment quantification associated with motion. Figure 6
shows that the correlation coefficient between the FMA score and a COBRA
score computed from data points identified as non-motion functional
actions is low (in fact, for the video data it is not even statistically significant).
It also shows that a COBRA score computed from all actions has a lower
correlation with the FMA score than the proposed motion-based COBRA
score for both data modalities.

Quantification of knee-osteoarthritis severity

The application of the COBRA score to the quantification of knee-
osteoarthritis (OA) severity was carried out using the publicly available
OAI-ZIB dataset”. This dataset provides 3D MRI scans of 101 healthy right
knees and 378 right knees affected by knee osteoarthritis, a long-term
degenerative joint condition. Each knee is labeled with the corresponding
Kellgren-Lawrence (KL) grade”, retrieved from the NIH Osteoarthritis
Initiative collection’. The KL grade quantifies OA severity on a scale from 0
(healthy) to 4 (severe), as illustrated in Supplementary Fig. 1. Each voxel in
the MRI scans is labeled to indicate the corresponding tissue (tibia bone,
tibia cartilage, femur bone, femur cartilage or background).

The COBRA score was computed based on an Al model trained to
perform tissue segmentation on a training cohort of 44 healthy individuals
(selected at random). A detailed description of the model is provided in the
Methods section. The model was applied to a test cohort consisting of the
remaining 57 healthy individuals and the 378 patients with knee OA.
Demographic and clinical information about the training and test cohorts is
provided in Table 2. The COBRA score is equal to the average of the model
confidence for data points identified by the model as corresponding to
cartilage tissue (tibia cartilage and femur cartilage).
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Fig. 3 | Correlation between the COBRA score and
clinical assessment. a The graphs show scatterplots
of the Fugl-Meyer assessment (FMA) score, based
on in-person examination by an expert, and the
proposed data-driven COBRA score computed from
wearable-sensor data (left) and from video data
(right). The correlation coefficient p between the two
scores is high, particularly for the wearable-sensor
data. b The graph shows scatterplots and density
plots of COBRA scores computed from magnetic-
resonance imaging (MRI) knee scans of patients
with different Kellgren-Lawrence (KL) grades. The
KL grade and the COBRA score exhibit significant
inverse correlation.
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Fig. 4 | Impairment quantification from individual rehabilitation activities. The
graph shows the correlation coefficient (indicated by black markers with 95%
confidence intervals) between the Fugl-Meyer score of stroke patients, and the
COBRA score computed from single activities using wearable-sensor (left) or video

Video
Video
1.0 60
g <
gEO.S f
= 9]
2zo06 1405
6204 s
o< 0. 5
ECES 20 %
00O 0.21
£O
o
O 0.01
T —— 0
“«
S LLLLSEFEET S
ST IS o25S$
ST EITSF N
(P Q K S QO
‘(@ O @QQ/ N (Jo

(right) data. The number of trials available for each activity are indicated by the
yellow bars. Simple, more structured activities (Glasses, Shelf, Table-top) have
higher correlation than more complicated activities (Face-wash, Feeding, Combing)
for both data modalities.

The COBRA score was evaluated by computing its Pearson corre-
lation coefficient with the Kellgren-Lawrence (KL) grading scores™ on
the test cohort of 378 patients with knee OA and 57 healthy subjects
(n=435), which equals -0.644 (95% CI [-0.696, -0.585]). There is
therefore a significant inverse correlation between the scores, indicating

that the COBRA score quantifies knee OA severity. Figure 3(b) shows
scatterplots and density plots of the COBRA scores corresponding to
different KL grades. The Supplementary Methods section reports addi-
tional results using a different AI architecture for tissue segmentation.
The magnitude of the correlation coefficient between the resulting
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Fig. 5 | Object color as a confounding factor for the video-based COBRA score
and correction via stratification. The table-top rehabilitation activity in the stroke
impairment quantification task involves dark and light-colored objects (top row).

The bottom left scatterplot shows the COBRA score computed only using video data
from this activity and the corresponding Fugl-Meyer assessment (FMA) score. The
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dark objects are difficult to detect, which results in a systematic loss of confidence in
the video-based Al model, and hence lower COBRA scores (independently from the
FMA score). The bottom middle and right scatterplots show that stratifying
according to object color corrects for the confounding factor, improving the cor-
relation coefficient p between the COBRA and FMA scores.

COBRA score and the KL grade is lower, but still statistically significant:
~0.429 (95% CI [-0.503,-0.349]).

The COBRA score is computed as an average of the AI-model con-
fidence for voxels identified by the model as corresponding to cartilage, as
opposed to bone tissue. These data can be considered as clinically relevant
because knee OA produces gradual degradation of articular cartilage (bone
alterations and osteophyte formation may also occur, but are less
frequent)”>*. Figure 6 shows that the magnitude of the correlation coeffi-
cient between the KL score and the COBRA score is significantly lower than
for cartilage. The magnitude of the correlation coefficient for the COBRA
score computed from all voxels is only slightly lower than that of the pro-
posed cartilage-based COBRA score, indicating that including bone is not
very detrimental.

Discussion

In this work we introduce the COBRA score, a data-driven anomaly-
detection framework for automatic quantification of impairment and dis-
ease severity. We show its utility for clinically relevant quantification in two
different medical conditions (stroke and knee osteoarthritis) and for three
different data modalities (wearable sensors, video and MRI). The framework
is suitable for applications where it is challenging to gather large-scale
databases of patients with different degrees of impairment or severity,
because it only requires data from a healthy cohort of moderate size. The
domains of potential applicability are broad, as they encompass any con-
dition affecting patient motion, as in our application to stroke, or producing
structural abnormalities in imaged tissues, as in our application to knee
osteoarthritis.

From a methodological perspective, our results suggest that fine-
grained annotations describing clinically relevant attributes can be useful
even if they are only available for healthy subjects. We hypothesize that Al
models trained with such annotations can be leveraged in different ways
beyond the proposed approach. To illustrate this, an alternative anomaly-
detection procedure that does not utilize model confidence is included in the
Supplementary Methods section.

Our study identifies a key consideration when applying the proposed
framework: confounding factors unrelated to the medical condition of
interest (e.g. object color or blurriness in a video) can influence the con-
fidence of the Al models, and therefore distort the COBRA score. This is an
instance of a general challenge inherent to the use of deep neural networks:
these models are so flexible that they can easily learn spurious structure in
high-dimensional data**. Our results suggest that the influence of con-
founding factors can be mitigated by gathering a training set of healthy
subjects that is sufficiently diverse with respect to the population of interest.
In the case of stroke-induced impairment, we show that this can be achieved
by utilizing multiple different rehabilitation activities. In addition, we
demonstrate that it is possible to explicitly correct for known confounding
factors via stratification. These factors could be identified by monitoring
their correlation with the average confidence of the Al models over multiple
individuals (under the assumption that the factors are uncorrelated with
impairment or disease severity). Nevertheless, automatic identification and
control of confounders is an important topic for future research.

Methods

In this section we describe a general framework to estimate impairment and
disease severity using Al models trained only on data from healthy subjects.
We frame this as an anomaly detection and quantification problem, where
the goal is to identify subjects that deviate from the healthy population, and
to quantify the extent of this deviation.

Confidence-based characterization of anomalies

The proposed COnfidence-Based chaRacterization of Anomalies (COBRA)
framework utilizes a model trained to perform an Al task only on healthy
patients. Intuitively, if the model has low confidence when performing the
task on a new subject, this indicates that the subject deviates from the healthy
population. In order to ensure that this deviation is due to a certain type of
impairment or disease, it is crucial to choose an appropriate Al task. For
quantification of stroke-induced impairment, we predict the functional
actions carried out by the subject from wearable sensor or video data. For the
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Fig. 6 | The COBRA score exploits clinically-relevant structure. a The first row
show scatterplots of the clinical Fugl-Meyer assessment and the proposed COBRA
score, obtained from wearable-sensor data. In the left graph, the COBRA score is
computed only using data identified as clinically relevant (i.e. corresponding to
motion actions). In the middle graph, the score is computed using the remaining
data. In the right graph, it is computed using all of the data. The second row shows
the same scatterplots, with the only difference that the COBRA score is obtained
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higher correlation with the clinical assessment in both cases. b The graphs show
scatterplots of the Kellgren-Lawrence grade and the proposed COBRA score,
obtained from knee MRI scans. In the left graph, the COBRA score is computed only
using data identified as clinically relevant (i.e. corresponding to cartilage tissue). In
the middle graph, the score is computed using the remaining data. In the right graph,
it is computed using all of the data. The COBRA score using clinically relevant data
again achieves a higher correlation with the clinical assessment.
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Table 2 | Demographic and clinical characteristics of study
participants for the application to quantification of knee-
osteoarthritis severity

Training Testing
Number of individuals 44 435
Age 59.2+8.2 62.0+9.4
Sex 20 male, 24 female 228 male, 207 female
Race® 36W,7B,10 339W,81B,5A,100

Kellgren-Lawrence
grades

44 healthy (KL =0) 57 healthy (KL = 0),

58 doubtful (KL =1),
109 minimal (KL = 2),
138 moderate (KL = 3),
73 severe (KL =4)

The mean + standard deviation is reported for age.
“Race: White (W), Black (B), Asian (A), Other (O).

application to knee osteoarthritis, we predict the tissue present in each voxel
of a 3D MRI scan.

Let us assume that we have access to a training cohort of Niy;, healthy
subjects, and that each of them is associated with a set of annotated data
relevant to the medical condition of interest:

T, = {(x[f],y[ll])

Herex!! € R denotes the jth data point associated with the ith subject, and
M; is the number of data available for that subject. The label y[ e
{1,..., K} assigns x to one of K predefined classes. For the stroke apph—
cation, the label encodes the functional action carried out by the subject at a
certain time. The corresponding data point is a segment of wearable-sensor
or video data. For the knee-osteoarthritis application, the label encodes the
type of tissue at a certain position in the knee, and the corresponding data are
the surrounding MRI voxels.
The training dataset

(Xﬁ:YKl)} 1SiSNtra‘m' (1)

Strain = {Tlv ) TNWn } (2)

is used to train an Al model f : R* — [0, 1]¥ to predict the labels from the
data. The input to the model is an L-dimensional data point and the output
is a K-dimensional vector

A= redh, 1<isN
where the kth entry is an estimate of the probability that the data point
belongs to the kth class. In our applications of interest, the models are deep
neural networks, described in detail below. Crucially, if the dataset asso-
ciated with each subject is large, then the total number of training examples

1<i<M, 3)

train »

Mt.rain = ZM (4)

is orders of magnitude larger than the number of training subjects Niyin.
This enables us to train deep-learning models using relatively small training
cohorts.

Let X0 = {x{ xyr. } denote a dataset associated with a test
subject. We can obtain probablhtles corresponding to the jth test data point
by applying the trained AI model,

test

test . f(xtest )7 1 S] < Mtest . (5)

This yields a prediction of the class associated with the data point

test

7™ 1= arg max pjte“[k], 6)

where p;** [k] denotes the kth entry of p]t-eSt . The estimated probability that
the data point belongs to the predicted class is commonly known as the
confidence of the model (see e.g.”),

C;est = II<I}<a<XK Jtest[kL (7)
because it can be interpreted as an estimate of the probability that the model
prediction is correct.

Several existing works propose to use confidence values to perform
anomaly detection™*'. Intuitively, if a model is well trained (and there is no
inherent uncertainty in the training labels™), it should be able to confidently
classify new examples. Therefore low model confidence is evidence that the
data point may be anomalous, in the sense that it deviates from the training
distribution. Our proposed framework builds upon this idea, incorporating
two novel elements. First, multiple data points are aggregated to perform
subject-level anomaly detection. As illustrated by Fig. 2, this is critical to
achieve accurate anomaly detection in our applications of interest, because
the individual confidences are very noisy. Second, we determine which of the
classes are most clinically relevant, and restrict our attention to data points
predicted to belong to those classes. As reported in Fig. 6, for the stroke
application this provides a substantial improvement over using all the data.

Let CR C {1,...,K} denote the subset of clinically relevant classes,
and

Jetent 1= {2 € CR} ®)

the subset of test data predicted to belong to those classes. We define the
COBRA score as the arithmetic average of the confidences associated with
the datain J

relevant >

1

test
G ©)

relevant

COBRA (X)) =

| ]relevant | FET el

The lower the COBRA score, the less confident the Al model is on
average when performing the task on the test subject, which indicates a
greater degree of impairment or disease.

Estimation of stroke-related motor impairment
In order to apply the COBRA framework to automatic impairment quan-
tification in stroke patients, we propose to utilize auxiliary AT models trained
to predict the functional primitive carried out by the subjects’ paretic upper
extremity (UE) while performing rehabilitation activities. The K:=5 pri-
mitive classes are reach, reposition, transport, stabilize, and idle. UE motor
impairment affects the three functional primitives involving motion
CR := {transport, reposition, reach}, (10)
rendering them systematically different to those of healthy individuals. Our
hypothesis is that this causes AT models trained on healthy subjects to lose
confidence when they are applied to stroke patients, and that the loss of
confidence is indicative of the degree of impairment. In the following
paragraphs, we describe the AT models that we use to test this hypothesis for
two different data modalities, wearable sensors and video.
The wearable-sensor data is a 77-dimensional time series, recorded at
100 Hz using nine inertial measurement units (IMUs) attached to the upper
body"". The data correspond to kinematic features of 3D linear accelerations,
3D quaternions, joint angles from the upper body, and a binary value that
indicates the side (left or right) performing the motion. In order to identify
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functional primitives from these data, we utilized a Multi-Stage Temporal
Convolutional Network (MS-TCN)*’. This model was found to be effective
for primitive segmentation in a prior study”. In the Supplementary
Methods section we report results with a different model architecture, based
on a sequence-to-sequence model***.

MS-TCN is a state-of-the-art deep-learning model for action seg-
mentation consisting of four convolutional stages, each composed of 10
layers of dilated residual convolutions with 64 output channels. A softmax
layer at the end of the network produces the final output, which is a
5-dimensional vector indicating the probability that each entry in the time
series corresponds to each functional primitive. The model was trained on
the healthy training cohort using the weighted cross-entropy loss function
proposed in®. This cost function was minimized for 50 epochs using the
Adam optimizer” with a learning rate of 5- 107 (selected via cross-vali-
dation). The accuracy and precision of the resulting model are reported in
Supplementary Table 4.

The video data were acquired with two high-speed (60 Hz), high-
definition (1088 x 704 resolution) cameras (Ninox, Noraxon) positioned
orthogonally <2 m from the subject. The cameras have a focal length of f4.0
mm and a large viewing window (length: 2.5 m, width: 2.5 m). The videos
were then downsampled to a resolution of 256 x 256 to enable efficient
processing. To perform functional primitive identification from these data,
we utilized the X3D model®, a 3D convolutional neural network designed
for primitive classification from video data. The model was pretrained on
the Kinetic dataset”, where the labels are high-level activities such as run-
ning, climbing, sitting, etc.

Following the approach proposed in”, after pretraining, the X3D
model was fine-tuned to perform classification of functional primitives on
the rehabilitation activities performed by the healthy training cohort. The
input to the model are video segments with duration two seconds, as sug-
gested in"’, and the output is the estimated probability that the central frame
corresponds to each of the five functional primitives. Model fine-tuning was
carried out by minimizing the cross entropy between these probabilities and
the functional primitive labels via stochastic gradient descent with a base
learning rate of 0.01 and a cosine learning rate policy. The accuracy and
precision of the resulting model on held-out subjects are reported in the
Supplementary Tables 3, 4.

Estimation of knee-osteoarthritis severity
In order to apply the COBRA framework to automatic quantification of
knee-osteoarthritis severity we propose to utilize an auxiliary AI model
trained to predict the type of tissue in each voxel of a 3D MRI scan. The
K:=5 classes for this classification problem are fermur bone, femur cartilage,
tibia bone, tibia cartilage and background (indicating absence of tissue).
Knee osteoarthritis deforms cartilage structure, so the clinically relevant
labels are chosen to be
CR := {femur cartilage, tibia cartilage }. (11)

Our hypothesis is that the systematic difference in cartilage structure
causes Al models trained on healthy knees to lose confidence when applied
to diseased knees, and that the loss of confidence is indicative of disease
severity.

In order to predict tissue type we applied a Multi-Planar U-Net™. In the
Supplementary Methods section, we report results with a different model
architecture, based on a 3D U-Net®. The Multi-Planar U-Net processes the
input 3D MRI scan from different views using a version of the 2D U-Net
architecture™. The output from the different views are then averaged to
produce a probability estimate at each 3D voxel. During training, random
elastic deformations (RED) are applied to a third of the images in each batch
to improve generalization®.

The model was trained by minimizing the cross entropy loss
between the estimated probabilities and the 3D voxel-wise labels cor-
responding to 37 of the 44 healthy individuals in the training cohort. The
remaining 7 individuals were used as a validation set. In the cost

function, images augmented via RED were downweighted by a factor of
1/3. The Adam optimizer was used for minimization, with an initial
learning rate of 5 - 10~° that was reduced by 10% after two consecutive
epochs without improvement in the validation Dice score. A criterion
based on the validation Dice score (excluding background) was used to
perform early stopping. Additional hyperparameters are listed in Sup-
plementary Tables of®. The accuracy and precision of the resulting
model are reported in Supplementary Table 7.

Ethics statement
For the StrokeRehab dataset, all subjects provided written informed consent
in accordance with the Declaration of Helsinki. The study was approved by
the Institutional Review Board at the New York University Grossman
School of Medicine.

For the OAI-ZIB dataset, the National Institute of Arthritis and
Musculoskeletal and Skin Diseases (NIAMS) at the National Institutes of
Health (NIH) appointed an independent Observational Study Monitoring
Board (OSMB) to oversee the Osteoarthritis Initiative (OAI) study from
2002 to 2014. The OSMB was disbanded upon study completion when
monitoring obligations were fulfilled.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Links to all the data used in this study are available at https://github.com/
fishneck/COBRA/tree/main/data.

Code availability
Code to reproduce all results is available at https://github.com/
fishneck/COBRA.
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