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1 INTRODUCTION

The scramble for vaccine development during the global COVID-19 pandemic has highlighted the
profound importance of accelerating key bioinformatics tasks, particularly those that aid in vaccine
research, therapeutics against bioterror, and pathogen surveillance. One of the most commonly
occurring computational kernels in many bioinformatics algorithms is k-mer counting, which in-
volves building a histogram of genome sequence substrings of a fixed size. For example, de novo
genome assemblers that piece together an unknown genome from a collection of short reads,
such as in characterizing a new virus, require a filtering step where k-mers that appear fewer
times than a set threshold are regarded as erroneous and dismissed [1, 31, 47, 60, 64, 71, 79-81].
k-mer frequency information is also extensively used in the identification of repeat sequence re-
gions [15, 43, 46, 48, 50, 62], variant calling [63], and alignment of multiple DNA or protein se-
quences [19, 69, 70].

This work seeks to address the critical need for accelerating k-mer counting in a scalable way for
current and future bioinformatics workloads. Bioinformatics pipelines typically analyze unknown
genome samples of various sizes, ranging from small viruses (e.g., a COVID test) to extremely large
environmental data in metagenomics (e.g., analyzing soil samples). Investigating a k-mer count-
ing accelerator design has tremendous economic and societal benefits. For example, the market
share of metagenomics alone is expected to reach $1.4 billion by 2025 [78]. As another example
in the emerging precision medicine domain, a patient’s sample is first sequenced on the NovaSeq
instrument in under 48 hours, producing 6~12 TB microbiome and human DNA/RNA data. This
raw sequence data is then passed through various stages, including de novo genome assembly for
~3,600 CPU hours, out of which ~60% is spent on k-mer counting [81]. Overall, efficient execution
of k-mer counting can help transform many bioinformatics tasks important to human health from
vision to reality. With the rapid growth of NGS, genomics is projected to soon become the largest
data producer, surpassing astronomy, particle physics, and websites such as YouTube and Twitter
[67], and the number of reads that need to be assembled is growing at a rate vastly outstripping
Moore’s Law [3], putting forth a great pressure on executing k-mer counting more efficiently.

While the idea of counting k-mers is straightforward, doing so while achieving high memory-
and time efficiency is challenging. The traditional approach is to leverage large hash tables to
count k-mers, and parallel implementations of these approaches distribute the input reads among
several worker threads, where each thread independently extracts and counts k-mers from its
share of the input [6, 8, 57, 59]. However, the size of the hash table increases exponentially with
the size of k, making it infeasible to store and maintain it in memory for large genomes with
many k-mer patterns [55]. Furthermore, multiple threads are bound to compete for accessing the
same set of k-mer entries, resulting in frequent serialization [57]. Therefore, these approaches tend
to scale poorly, imposing prohibitively high overheads in performance and hardware resource
requirements.

To alleviate these overheads, state-of-the-art k-mer counting tools [7, 17, 18, 20, 34, 41] typically
adopt a two-phase, disk-based (out-of-core) approach, where the input data is first partitioned into
a set of files containing a subset of all k-mers to be counted in a subsequent parallel counting phase.
This not only results in a much smaller memory footprint, as the memory only needs to hold a few
partitions and their corresponding k-mer histograms at each iteration, but also minimizes thread
contention by allowing each thread to independently build partial k-mer histograms from its share
of partitions without competition from other threads. However, these approaches are also easily
susceptible to overheads imposed by secondary storage devices. In particular, a large amount of
data needs to be moved across the deep hardware stack (hierarchies within an SSD, main memory,
cache layers, etc.) and system software stack (flash transaction layer, NVMe protocols, OS file
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systems, etc.) between CPU and the hard drive, which incurs significant command and control
overhead. Moreover, the external host I/O data links are typically lagging and difficult to improve
compared to the internal aggregated disk bandwidth potential. In fact, our profiling experiments
on a state-of-the-art disk-based k-mer counting software with optimized I/O access [20] reveal
that a significant portion of its execution time (over 75%, see Section 3.1) is spent on file handling
alone, constantly stalling the processor.

Several prior efforts have sought to accelerate k-mer counting using GPUs [20], FPGAs [12, 58],
and processing-in-memory architectures [29, 33, 81]. However, these approaches do not consider
the I/O bottleneck—while some only accelerate the compute-intensive counting phase [12, 20]
or assume that the data is already loaded into memory [29, 81], others accelerate one-phase
in-memory k-mer counting [33, 58] algorithms that do not scale with larger workloads. To im-
prove the end-to-end performance of state-of-the-art k-mer counting algorithms, the I/O overhead,
which is increasingly more likely to be the real bottleneck, needs to be addressed.

Integrating logic as close to the data storage media as possible is a promising alternative that
addresses the I/0-bound nature of data-intensive applications. Such storage-centric architectures
come in two flavors, In-storage processing (ISP) and Processing-with-storage-technology
(PWST), which are characterized by different tradeoffs and design philosophies. ISP typically di-
rectly leverages the embedded multi-core CPU controllers and DRAM inside the solid state drive
(SSD) with modified firmware to offload computation [11, 27, 39, 42, 44, 45, 74, 76]. Commercial
products include Samsung’s SmartSSD [5], which features an FPGA-enhanced SSD, can also be
considered an ISP implementation. An ISP device is fundamentally still a storage product with small
hardware overhead to enable computing at the place where the data reside. This solution is less intru-
sive but does not always guarantee speedups [39, 40, 76]. In contrast, a PWST architecture from the
ground up is built to be a standalone, performance-optimized accelerator leveraging storage devices
by aggressively integrate custom logic at different layers of the SSD internal hierarchy (i.e., chip-,
channel-, and SSD-level) to handle a variety of applications [9, 40, 49, 54, 56], and SSD is simply
a helpful technology that enables processing near the huge volume of data involved in the task.
This work leverages PWST to propose novel and scalable accelerator designs, collectively named
Abakus, to eliminate the I/O overheads imposed by out-of-core k-mer counting.

To enable an effective end-to-end PWST-based acceleration of k-mer counting, we provide cus-
tom hardware solutions for a set of key k-mer counting operations and distribute them at different
SSD levels to (1) enhance the limited computing capabilities of the existing SSD infrastructure
and (2) take advantage of the multi-channel, multi-way setup of an SSD for better parallelism. We
optimize performance with bioinformatics domain-specific knowledge, notably a set of hardware-
implemented Bloom filters, to reduce the data volume and subsequently improve execution ef-
ficiency. The add-on logic is not only lightweight but also reusable for different purposes such
as read partitioning, Bloom Filter operations, partition statistics calculations, and counting table
probing.

Note that Abakus is first and foremost an accelerator, and SSD is a technology choice selected to
build this accelerator for its high capacity of storing a large volume of bio-sequence data, high band-
width, and closest proximity to raw data to largely eliminate data movement. We do not propose
modifying the design of a conventional, data-storage-oriented SSD; we leverage SSD technology
to build a new accelerator. Although Abakus can still act as a data storage unit, it does not need
to compete in the commodity SSD market, similar to References [54] and [56]. The large size of
the bioinformatics market suggests that there is a potential market for a product that is purely an
accelerator that overcomes the I/O bottleneck. Furthermore, future computing environments are
increasingly more likely to be heterogeneous and accelerator-abundant [35, 52]. Therefore, we en-
vision Abakus to be deployed in the cloud with other genomics accelerators to fulfill the need for

ACM Transactions on Architecture and Code Optimization, Vol. 21, No. 1, Article 10. Publication date: January 2024.



10:4 L. Wu et al.

©Original (Unknown) Sequence ©k-mer counting (k=7) ODownstream tasks
.g., 6.4 billi b AAATATG ATGTGCA . filtered i
(e.g., illions bps) e ToreeAC thresholding .y ars de Bruijn graph
AAATATGTGCACCATATTTATGAATA CATATTT  GTGCACC | e~ Camerdo>
) ATATTTA TGCACCA “ e e
| \@G“O“_.v TATTTAT GCACCAT Ccmer2 D+—Clemers >
Pl .. CACCATA
AAATATGT L counting ¢ de novo sequence assembly
ATGTGCACCATA | A/I:_A?:Tre cg:gt 5 w E’, Genetic analysis
2 100
CATATTTAT AATATGT 320 e » O W \fetagenomics
@ONGS Reads (100~300 bpS) CACEATA 123 k-mer frequency

Distribution pattern

Fig. 1. The application of k-mer counting in bioinformatic pipelines.

faster genome analysis, amortizing the Non-recurring engineering (NRE) cost and the Total
cost of ownership (TCO) of developing and maintaining Abakus among the entire community
of users. Since data centers composed of proprietary accelerators for non-general-purpose com-
puting such as Bitcoin mining, high-frequency trading, and web search acceleration are common
nowadays, and genomic analysis is growing rapidly with high-performance sensitivity, it seems
reasonable to posit interest in cloud support for faster k-mer counting. Due to the extensive pres-
ence of k-mer matching in bioinformatics, Abakus has the potential to be a staple residing in the
genomic cloud to support many high-volume, planet-scale genomics analysis tasks.

We propose three designs, namely, (a) Abakus-Basic, where a set of near-storage-processing
logic fits at the chip level, (b) Abakus-BF, which significantly reduces the data volume by lever-
aging a set of distributed Bloom filters, and (c) Abakus-OP (one-phase), which overlaps different
operations to form a pipeline. Designing a k-mer counting accelerator as a specialized product
is a flexible solution to support a variety of downstream bioinformatics pipelines, because it is
such a widely used bio-kernel. Through hardware/software co-design and optimization, we in-
crementally add more complexity to unlock more performance. We compare the performance of
Abakus with that of CPU-, GPU-, and PIM-based accelerators using large real-world genomes.
Our evaluation suggests our most aggressive design, Abakus-OP, is able to achieve 6.95x/11.20X
average/maximum end-to-end speedup over a conventional system (CPU + GPU) and 2.32x/9.84%
average/maximum end-to-end speedup over the state-of-the-art near-data processing accelerator.

2 BACKGROUND AND RELATED WORK
2.1 k-mer Counting Basics

Definition. Let 3 = {A, C, G, T} denote the alphabet of DNA nucleotide (AKA base pair) sequences.
A read r of length [ is a sequence of nucleotides over the alphabet 3. A k-mer is a substring of
length k in r (k<I). All k-mers of a read r can be obtained by sliding a window of size k over r.
Let R be a collection of such input reads. k-mer counting is defined as finding the total number of
occurrences of each distinct k-mer pattern that is present in R. Consider a read set R of 3 reads:
{ACGGTA, CGGTAC, TTTAC}. For k = 3, a k-mer counting algorithm would recover eight distinct
3-mers and their respective number of occurrences from read set R: {ACG:1, CGG: 2, GGT: 2, GTA:2,
TAC:2, TTT:1, TTA:1, TAC:1}. k-mer is a critical step in several bioinformatic pipelines including
sequence assembly [64], genetic analysis [10], metagenomics [68], and so on, as shown in Figure 1.

Use Case. The predominant genome sequencer today is based on the Next Generation Se-
quencing (NGS) technology, which cannot output the entirety of a genome sequence in one
sitting but instead produces many overlapping short reads that are pieced together into the un-
derlying genome through a process called genome assembly. Due to the errors introduced in the
underlying chemical and electrical processes of the sequencers, the output reads have an error
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rate of roughly one in a thousand bps. To ensure each region of the genome is correctly covered
at least a minimum threshold times for a highly accurate assembly result, genomes need to pass
the sequencer multiple times.

A quintessential use case of k-mer counting arises in the context of de novo genome assemblers
based on the de Bruijn graph (DBG), which leverages the overlapping portion of the NGS reads
to put them together into a complete genome. De novo assembly is used when the sequenced
reads are from an organism whose genome sequence is yet to be constructed, and there is no
available reference sequence. Currently, there are only 3,500 species of complex life that have
been sequenced, and only about 100 have been sequenced at “reference quality” [53], so DBG
assemblers will remain an essential stage of the genome sequencing pipeline. DBG is a form of
directed multigraph where each unique k-mer is represented as a node in the graph, and an edge
is formed between two nodes if the “k-1” suffix of the first node exactly matches the “k-1” prefix of
the second node. An Eulerian path that visits each node exactly once represents the target genome
sequence.

The primary purpose of k-mer counting in a DBG assembler is to reduce the data size by re-
moving potentially erroneous k-mers (i.e., graph nodes). Since each genome region has coverage
of multiple NGS reads to defeat the inherent sequencing error rate, low-frequency k-mers such
as those that appear only once or twice are likely caused by sequencing errors and, therefore, dis-
regarded. The number of erroneous k-mers can be fairly large in real-world genome datasets (up
to 80%), because one incorrect base pair can result in k erroneous overlapping k-mers. For this
reason, k-mer counting is an essential step to address the genome sequencing and assembly data
explosion problem. Furthermore, k-mer frequency information is also used to resolve branches in
DBG graph traversal [81].

2.2 Out-of-core k-mer Counting

k-mer counting implementation has been thoroughly studied, and various data structures (hash
tables, Tries, suffix array, etc.) and methodologies (sorting, hashing, etc.) have been employed to
accelerate it. A generic histogram framework can be applied to solve the k-mer counting problem,
but to achieve higher performance, the characteristics of genome data have to be considered, such
as those that leverage minimizers and Bloom filters, introduced in the following sections.

One way of generating k-mer histogram is to use atomics and maintain an in-memory k-mer
frequency count table. An example is Jellyfish [57]. However, Jellyfish might have difficulty han-
dling large genome files, because it keeps the histogram in memory [55]. This is the limitation of
in-memory k-mer counting tools in general. One solution is batched processing but then it creates
partial histograms and requires merging, degrading the benefit of in-memory counting by creating
the I/O overhead. For data that fits in memory, it performs similarly to other tools [55]. Since the
number of distinct k-mer patterns in a production genome dataset is often astronomical, resulting
in a huge peak memory footprint, it is worthwhile to consider counting k-mers out-of-core in a
batched manner. The memory consumption of processing one batch can be tuned to fit inside the
memory of a workstation. Batches that are not currently being processed are temporarily saved
in the secondary storage devices and later brought into the memory. Such an out-of-core design
allows a small desktop to process large genomes.

Many high-performance out-of-core k-mer counting tools such as Gerbil [20], KMC3 [41], and
DSK execute in two distinct phases: a partition phase and a counting phase, and they differ mainly
in their strategies to partition input reads and their approaches to count k-mers (e.g., sorting vs.
hashing). Figure 2 illustrates the high-level workflow of these tools.

Partitioning Phase. The partitioning phase splits reads into smaller chunks and shuffles them
into a number of files. Many partition algorithms make use of a minimizer, which is a substring of
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Fig. 2. lllustration of a two-phase disk-based k-mer counting algorithm workflow (F: input sequence files, P:
s-mer partition files, C: k-mer counting table files).

a k-mer whose ranking is the lowest with respect to a total ordering (e.g., lexicographical order)
of all possible substrings of the same size m (m < k). Consecutive k-mers that share the same
minimizer are grouped together into a super-mer or s-mer and saved into a file. Figure 2 illustrates
the process of splitting one read CGAGCACT into two s-mers. Let k = 4, m = 2, and all minimizer
patterns are ranked based on their lexicographical order, i.e., A < C < G < T. Since the first three
contiguous 4-mers {CGAG, GAGC, AGCA} share the same lexicographically smallest 2-mer, AG,
they are grouped into one s-mer CGAGCA. Similarly, GCAC and CACT belong to the same s-mer
GCACT. Phase one utilizes two nested sliding windows: an outer one of size k that generates
overlapping k-mers from the input reads and an inner one of size m to identify a minimizer within
each k-mer. Each partition file is responsible for saving s-mers generated by one or more minimizer
pattern(s), which guarantees that identical k-mer patterns are saved into one partition file. Besides
using the lexicographical order to rank minimizers, there are numerous other strategies to achieve
partitioning effects such as even partition file sizes or shorter/longer average s-mers [20, 41].
Counting Phase. In this phase, each partition file is read from the disk to memory for k-mer
extraction and counting (Figure 2). Both hashing and sorting-based approaches are viable, but
sorting can be slower for longer k values [20, 55]. The sorting-based approach puts identical k-
mers in adjacent positions and their counts naturally emerge. Hashing-based approaches store
k-mers as keys and counters as values, and collisions can be resolved through quadratic hashing.
Since partitioning guarantees that no k-mers can be found in more than one partition, the final
k-mer frequency can be obtained by simply concatenating the individual k-mer histograms.

2.3 Bioinformatics Accelerators

The field of Bioinformatics has received unprecedented attention from the computer architecture
community, and there has been an explosion of hardware accelerator designs targeting different
stages of sequence alignment [14, 24, 28, 32, 38, 61], assembly [23, 75, 81], and various other tasks
such as k-mer matching [78], insertion-deletion realignment [77], variant calling [25], and the
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list is growing. This is the first work to recognize the I/O bound nature of k-mer counting and
proposes an in-storage-processing solution to holistically improve its end-to-end execution. We
have discussed several prior k-mer counting accelerators [12, 20, 29, 33, 58, 81] in Section 1, in-
cluding their specific hardware technologies and limitations. We also extensively analyzed a wide
variety of ISP projects [9, 11, 27, 39, 40, 42, 44, 45, 49, 54, 56, 66, 74, 76] in Section 3. Among them,
the most related one is GenStore [56], which accelerates read mapping, a key performance bottle-
neck in some genome sequence analysis applications. However, read mapping is used for guided
genome assembly, whereas k-mer counting is usually integrated into the unguided genome assem-
bly pipelines.

3 MOTIVATION AND KEY IDEAS
3.1 1/O Is the Bottleneck

Prior work [33] has shown that I/O greatly affects the performance of Gerbil, one of the best k-
mer counting tools available today [20, 55]. First, one-third of Gerbil’s instructions are composed
of memory and I/O operations. Such frequent data accesses result in poor CPU utilization (idle for
over 75% of the time). Second, as the number of intermediate files increases (necessary for larger
genomes), Gerbil’s runtime also linearly increases, further decreasing the CPU activity. These ob-
servations also broadly match our profiling results using VTune [30]—Gerbil’s execution does not
sufficiently exercise the computing capability of the underlying architecture. We then measure
stalls caused by I/O. Gerbil adopts a pipelined design where pipeline stages collaborate through
a set of consumer-producer queues. In phase one, a set of threads read raw sequence data from
files and put them into a queue for subsequent “splitters” threads to extract s-mers. This requires
minimal computation, and the data access is strictly sequential for both reading (from the disk)
and writing (to the queue), therefore, its latency approximates the I/O response time. The second
phase has a similar setup to read s-mers from the partition file. We estimate the I/O overhead by
measuring how often the splitter threads are idle due to an empty input queue. Figure 3 shows the
I/O overhead of two Gerbil phases. Clearly, I/O causes a significant overhead, and simply removing
I/O overhead could improve performance by ~10x.

Note the ratio of I/O in k-mer counting can be different for different input genomes due to factors
such as file types (compressed or uncompressed) and sequence formats (FASTQ or FASTA), which
can change the amount of time the CPU spends processing the raw input, subsequently resulting in
different ratios of I/O in the overall execution time. Genome characteristics also influence the I/O
overhead. For example, in phase one, genome patterns determine the size of each s-mer (also the
total number of s-mers), leading to diverse latencies to write back s-mer files; in phase two, some
genomes work well with the hashing scheme (fewer numbers of probings per k-mer insertion)
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while others do not, leading to longer/shorter CPU processing time and thus decreasing/increasing
I/O time ratio. Regardless, we found the I/O consistently occupies a significant portion (> 50%) of
runtime.

3.2 ISP k-mer Counting Considerations

Benefits of PWST. While k-mer counting can be accelerated through GPU [20], FPGA [12, 58],
and even near-data-processing approaches [29, 33], PWST can fundamentally solve the bottleneck
caused by data movement issues. Several characteristics of k-mer counting make it a good candi-
date to be processed at the location where the data initially resides. First, SSD has a notable internal
(between flash chips and the SSD controller) and external (between host and SSD) bandwidth gap.
Moreover, the internal bandwidth is easier to scale up, for example, by providing more channels
(~1.2 GB/s per channel X number of channels [56]), while the external bandwidth (~7 GB/s for
PCle-4) is limited by expensive data pins. Furthermore, k-mer counting features simple computa-
tion patterns that exhibit a low compute-to-data ratio. Thus, moving the computation into SSD is
always a more effective and scalable solution than bringing data out to compute if SSD can support
sufficient compute throughput that saturates the internal bandwidth. Second, the input genome
dataset contains a high percentage of erroneous k-mers, which are filtered out at the end. More-
over, a standard genome input file may also include a large chunk of information that is useless to
k-mer counting. For example, genome files coded in the standard FASTQ format include a quality
score for each base pair that are thrown away as soon as they arrive at the processor, meaning
~50% of the data brought in is never touched. However, prior accelerator work still has to pay
the price of transferring such a bloated dataset to the main memory and compute units, which is
sub-optimal, considering there are multiple choke points (e.g., limited external I/O and off-chip
memory bandwidth) along the data path and k-mer counting exhibits a strong streaming pattern
with limited data reuse. In our evaluation, even when all computation is free, simply reading the
entire dataset into the memory makes up about 50% to 80% of the execution time. For this reason,
even if a workstation is fitted with enough main memory, the I/O bottleneck still persists. Addition-
ally, PWST approaches can offer better energy efficiency due to the reduction of unnecessary data
movement. Finally, processing genome data in storage can be more scalable and cost-effective than
processing-in-memory, considering an off-the-shelf dual-socket server supports over 16 NVMe
SSDs that provide tens of TB of storage capacity to accommodate large genome data and dozens
of GB/s of bandwidth, all at a 20-40 times lower price point than DRAM [21].

Which Storage-centric Solution Is Suitable? We consider two storage-centric architectures:
(1) a centralized ISP organization that directly leverages the SSD controller and its DRAM [11, 27,
39, 42, 44, 45, 74, 76] and (2) a PWST solution with distributed and dedicated custom compute
elements deeply integrated along the SSD internal data path to do the processing [9, 40, 49, 54, 56].
While both successfully reduce the data volume coming out of the storage devices, they have
different capabilities and tradeoffs. We argue that the second approach is more suitable for k-mer
counting. The embedded commodity SSD controller is usually an energy-efficient CPU (3-4x lower
power than the host CPU) clocked at merely several hundred megahertz [40, 72, 76] and the DRAM
is also usually smaller capacity (e.g., a few GBs), weaker (e.g., single-channel), and lower generation
(DDR3). Besides that, an SSD controller could only allocate 30% to 70% of its processing time for
ISP kernels, because it needs to perform other management tasks such as garbage collection [27].
Simply executing k-mer counting logic using SSD core results in compute-bound, offsetting the
benefit of removing its I/O bottleneck.

Another motivation for adopting PWST is its better parallelism potential, which benefits both
phase one and phase two. Specifically, the key operation of phase one is scanning raw reads to
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Fig. 4. The overall architecture of Abakus.

extract s-mers, and the key operation of phase two is scanning s-mers to extract k-mers from parti-
tions. Both can be handled independently by a pool of “workers” (CPU threads or other comparable
processing units). In addition, the logic required by each phase is relatively simple (string manipu-
lation and hashing, which are discussed in Section 4.4.1), so we can implement a set of lightweight
dedicated accelerator logic and distribute them at different levels (e.g., SSD-channel and SSD-chip)
to fully exploit parallelism. A high-end SSD with 32 channels and four chips/channel can provide
128 chip-level processing units, which is difficult to achieve in a centralized ISP design where the
application logic is handled in one place, such as the SSD controller. This has been noticed in prior
work [9, 54], whose design space explorations conclude that a group of channel-level “weak” pro-
cessors outperforms a single “beefy” SSD-level processor. Furthermore, a distributed PWST scheme
offers better performance scaling as adding more chips/channels increases both data bandwidth
and processing capabilities [9].

Finally, prior work [66] finds that SmartSSD [5] is limited by DRAM, because the data from the
flash must be first written to the SSD DRAM and then read into the FPGA kernels. In comparison,
PWST inserts logic at the chip or channel level, gaining more direct access to the flash data page,
thus avoiding the trip to DRAM. k-mer counting is a stable algorithm and is unlikely to receive
major updates; therefore, its need for performance outweighs the need for flexibility.

4 ABAKUS-BASIC DESIGN

4.1 Overview of the PWST Architecture

Figure 4 provides the architectural overview of Abakus for both the basic (Abakus-Basic) and the
two optimized versions (Abakus-BF and Abakus-OP), based on a standard SSD structure. Abakus
contains multiple channels, and each channel controls multiple flash chips through a flash mem-
ory controller (FMC). The key components include an SSD controller (small CPU cores), a DRAM,
and other control units for FTL and garbage collection (not shown in the figure) along with a
custom near-storage-processing unit (NSPU) that is responsible for extracting k-mers from
raw input reads and independently building partial histograms. Each NSPU directly interfaces
with the flash chip page buffer, alleviates the bandwidth pressure of the SSD DRAM, and con-
nects to a data buffer (SRAM scratchpad) to hold the data required for each operation. Note that
this basic design, dubbed Abakus-Basic, is only able to exploit chip-level parallelism. In Section 5,
we describe mechanisms to integrate logic into the channel and SSD levels to extract greater
performance.
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Fig. 5. The basic two-phase hardware workflow of Abakus. Bloom filter is effective in Abakus-BF
(Section 5.1).

4.2 Abakus-Basic

Figure 5 shows the design and workflow of Abakus-Basic that directly maps the two-phase algo-
rithm onto the SSD.

4.2.1 Abakus-Basic Overview. In the first phase, reads are split into s-mers that are then gath-
ered into the same partition if they share the same minimizer (Section 2). The raw input reads are
evenly distributed to each chip a priori so each NSPU is able to continuously read pages containing
raw inputs provided to it, generate s-mers, and deposit them into its SRAM scratchpad. A partition
tag is provided for each extracted s-mer to indicate its destination partition. Once the scratchpad
memory is full, the corresponding NSPU transfers its data (i.e., s-mers) to the SSD DRAM that
stores the received s-mer in a reserved space called the s-mer cache that is further divided into
multiple sets, with each set storing s-mers that belong to the same partition. If a set is full, then all
of its s-mers are written to its target chip based on the partition-to-chip mapping table, and the set
space is reclaimed. We generate the mapping table based on a partitioning strategy described in
Section 4.3. The partial partition is combined in the destination chip with those from the previous
DRAM write-back to form the final partition. Phase one concludes when every NSPU finishes its
share of input reads and the s-mer cache is emptied, with each chip storing a number of s-mer
partitions as a result.

In the second phase, each chip-level NSPU reads pages that contain partitions and attempts to
build one hash table for each partition to count k-mers in that partition. We adopt hash-based
counting rather than a sorting-based approach given its more stable performance [20] and due to
the fact that the hashing logic can be reused to enable optimizations such as the Bloom filter, a
feature we use in our optimized designs (Section 5). Each chip-level NSPU has a small bookkeeping
data structure (~2 KB) that tracks the address of each partition. Once the NSPU completes counting
the k-mers for a partition, its associated hash table is saved/written back into the chip. For a large
partition where its hash table exceeds the chip-level scratchpad memory at runtime, the unfinished
partition and its hash table are transferred to the larger capacity SSD DRAM, and the SSD controller
takes over the work of building the hash table. Once the SSD controller completes counting k-mer
for the large partition, the hash table is written back to the chip. Note that while this basic version
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executes phase one and phase two separately, similar to the CPU baseline, we later introduce a
pipelined version (Section 5.2 Abakus-OP) as an optimization.

4.3 Partitioning Strategy

Clearly, the performance of the proposed design is bottlenecked by the number of large partitions
whose hash tables will not fit in the chip-level NSPU’s scratchpad memory. Since large partitions
need to be sent to the SSD and processed using the SSD controller and DRAM, too many large
partitions could degrade performance. Given our ability to process multiple partitions in parallel,
we reduce the number of large partitions by dividing s-mers into a number of smaller partitions,
allowing us to continue to exploit parallelism while minimizing additional data transfer costs. In
our design, we maintain a one-to-one mapping between a minimizer and a partition, namely, one
partition containing all s-mers that are generated from the same minimizer, therefore, the more
the minimizers, the more partitions, and the smaller each partition will be. For a minimizer of
length m, there are 4™ minimizers (four possible base pairs at each position). If m = 9 and we let
the chip-level scratchpad size be 1 MB, then for the set of genomes in our evaluation, only 0.03%
to 1.04% partitions are too large to be processed at the chip level. This percentage is expected to
dwindle further with a larger m and scratchpad memory.

The second factor that affects performance is the basis of the assignment of partitions to chips.
Uneven distribution of partitions could create a performance bottleneck similar to thread diver-
gence resulting from workload imbalance. However, the exact sizes of partitions are unknown
until the end of the first phase. To this end, we explore three possible mapping strategies: (1) a
round-robin strategy where the partition corresponding to minimizer i is assigned to chip i, (2) a
random distribution scheme where any partition can be assigned to any chip, and (3) a heuristic-
based scheme that leverages the inherent ordering of all minimizers. We observe that a minimizer
with a lower ranking is likely to generate more s-mers than ones with a higher ranking. Therefore,
we assign pairs of partitions to chips where each pair contains a partition corresponding to a low-
ranking minimizer and another one corresponding to a high-ranking minimizer. Our evaluation
shows that the heuristic-based mapping has a slight performance edge compared to the random
scheme, and both outperform round-robin consistently.

Note that all aforementioned partition strategies in this work fully utilize the computation re-
sources and parallelism. The number of partitions can be calculated as 4™, where m is the minimizer
size. We let m > 9, which leads to at least 26,2144 partitions. A high-end SSD comes with 32 4-way
channels (128 chips or NSPUs). It is unlikely to have more NSPUs than partitions. All proposed
partition schemes would distribute an equal amount of partitions (2,048) to each NSPU to process.
Moreover, we find out that the proposed prediction-based scheme can further minimize the tail
latency, balance workload among NSPUs, and reduce Flash chip wear (Section 7.4.1).

Finally, data reduction could also improve performance. In particular, phase one shuffles input
reads in the form of s-mers that are written first to DRAM and then to a chip, wasting bandwidth
if they eventually land back on the same chip. For such s-mers, we save them directly to their
respective partitions. Our evaluation suggests that trimming off this portion of data yields a small
but noticeable (7%-10%) speedup.

4.4 Custom Hardware Design

We introduce custom logic in different levels of SSD to accelerate k-mer counting. Specifically,
in Abakus-Basic, chip-level NSPUs process chip-independent operations (s-mer extraction and
hash table building). We also introduce a set of custom designs at the SSD level to handle global
operations or those that exceed the capability of chip-level hardware.
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4.4.1 Chip-level NSPU. Each flash chip implements one NSPU to provide k-mer counting-
related computations. As shown in Figure 6, each NSPU contains three main components: (1) an
s-mer splitter for s-mer extraction, (2) a Hasher module to compute hash values for given k-mer,
and (3) an SRAM that stores intermediate data. In phase one, the s-mer splitter is activated to
iteratively compare the incoming k-mer with the stored minimizer. The k-mer is concatenated
and cached in the s-mer buffer. When the next minimizer is detected (by a k-mer comparator), the
cached s-mer is sent to the SRAM. The hasher module implements n = 8 SeaHash [2], a lightweight
hashing scheme with low collision probability, with different seeds to calculate hash values. The
hasher is activated during phase two to support either the hash table or the Bloom filter, depending
upon the memory mapping in SRAM (shown in Figure 7). While operating in the hash table mode,
the k-mer string and the counting value (CNT) are concatenated in one row with w-bit width,
with the log, d-bit address truncated from the hash value. The Bloom filter mode needs bit-level
data granularity, so an additional log 2w-bit address is added to the address. In this case, the w-bit
word is first fetched from SRAM by the log, d-bit hash, and the target bit in the row is indexed by
the remaining log 2,,-bit hash.

4.4.2 SSD-level Processing. While our design philosophy avoids heavy usage of SSD-level re-
sources, we still need customized SSD-level processing to efficiently support end-to-end k-mer
counting. There are multiple use cases of SSD-level processing in the Abakus workflow. First,
phase one needs to merge s-mers from different chips for each partition, which is then written
back to the corresponding chip. Second, during phase two, we need SSD-level processing for a
large counting table that cannot fit in the low-level (e.g., chip-level) scratchpad. To support such
operations, Abakus adds custom control logic and buffer at the SSD level and repurposes the SSD
DRAM to store various data structures.
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In conventional SSD, the SSD-level DRAM primarily acts as a write cache to hide the latency of
costly SSD write. In Abakus, we re-purpose it to store the metadata as well as the global interme-
diate results. In phase one, it stores an s-mer cache and an s-mer mapping table to merge s-mers
from different chips and track the locations of partitions for different s-mers. When chip-level
NSPUs extract s-mers and send them to the SSD-level, the Abakus front-end stores the received
s-mers in the corresponding s-mer cache set and writes the buffered set back to the chip if it is full
as described earlier. In phase two, the SSD DRAM serves as backup storage for counting hash ta-
bles when a partition requires a large hash table that cannot fit in the low-level scratchpad. Since
all chips share the DRAM, the SSD-level counting for different partitions needs to be serialized.
Therefore, too many large hash tables could result in a performance loss.

5 ABAKUS OPTIMIZATIONS

Abakus-Basic significantly improves the execution of k-mer counting. However, its performance
can be bottlenecked by the capacity of the chip-level scratchpad. In this section, we first describe an
optimized design, Abakus-BF, that integrates a Bloom filter per NSPU leveraging the characteris-
tics of the k-mer dataset, and then propose a more aggressive design, Abakus-OP, which leverages
a set of additional channel-level and SSD-level NSPUs to aggressively overlap operations to merge
two k-mer counting phases into one.

5.1 Abakus-BF

5.1.1 Abakus-BF Motivation. As alluded to in the previous sections, a Bloom filter can optimize
the performance of k-mer counting, since low-frequency k-mers can be disregarded (as is typical
in most use cases [1, 31, 47, 60, 64, 71, 79-81]). The exact frequency threshold varies, but it is safe
to assume that single-occurrence k-mers is always erroneous and can be discarded. A Bloom filter
is a space-efficient data structure that can be used to determine if an item has appeared previously
with a small false positive rate but with zero false negative rates. It consists of n hash functions and
a bit vector. When it encounters an item, it computes n hash values indexing into n positions of the
bit vector. If all indexed bits are ones, then it assumes that it has probably seen the item. If some
indexed bits are zeros, then it assumes that it has definitely never seen the item and can be inserted
into the filter by flipping those zero bits to ones. In the context of k-mer counting, we integrate a
Bloom filter to preemptively filter out as many single-occurrence k-mers as possible before they
make it to the hash table. The procedure is to query the Bloom filter for each extracted k-mer
before inserting it into the hash table. If the Bloom filter returns true, then the k-mer is inserted
into the hash table. Otherwise, it is inserted into the Bloom filter. In other words, only k-mers that
appear more than once are inserted into the hash table. Filtering out single-occurrence k-mers
can be immensely helpful in terms of reducing the hash table size for each partition by reducing
the number of keys, because single-occurrences k-mers make up a large portion of k-mer patterns
(e.g., 98.32% for the Thaliana genome). See Table 2.

Notice each k-mer pattern can only appear in one specific partition, thanks to the minimizer-
based partitioning strategy (Section 2.2 Partitioning Phase). Since each partition is assigned to a
specific chip/NSPU, and no partition is split to more than one chip, there will not be any k-mer
patterns that appear in more than one private Bloom filter.

Determining when, where, and how to incorporate a Bloom filter into Abakus is a large design
space exploration problem. In this subsection, we introduce one such solution (Abakus-BF) where a
set of Bloom filters is instantiated in phase two at the chip level. In the next subsection (Section 5.2),
we discuss another variation where the Bloom filters are used earlier.

5.1.2  Abakus-BF Overview. Figure 5(b) illustrates the workflow of phase two in Abakus-BF.
Most of the features of Abakus-Basic are retained, with the additional step of probing Bloom
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filters before inserting k-mers into the hash tables during phase two. Note that Abakus-BF main-
tains a separate Bloom filter for each partition instead of keeping a centralized one. This is because
a big Bloom filter that tracks the single k-mers in all of the partitions would be too large to fit in
the chip-level scratchpad, so it has to be kept in the SSD DRAM at runtime. Subsequently, all of
the chip-level NSPUs have to access the DRAM to perform their Bloom filter operations, creating
a bottleneck. Alternatively, if each partition can maintain its own private (albeit smaller) Bloom
filter, then each chip-level NSPU can be fully independent, preserving the parallelism.

5.1.3  Estimate the Bloom Filter Size. Building an effective Bloom filter for each partition entails
solving several issues. The first is to determine an appropriate false positive rate P to find an
optimal size of the bit vector without taking up an excessive amount of chip-level scratchpad
memory. In Abakus-BF, both the Bloom filter, specifically its bit vector, and the hash table have
to be stored in the chip-level scratchpad memory. As previously stated, a Bloom filter has a false
positive rate, which means that it might incorrectly determine that a k-mer occurs multiple times,
even though it occurs only once, due to which a single-occurrence k-mer might slip through the
Bloom filter and get added to the hash table, incurring unnecessary hash lookups and potentially
making the hash table too large to fit inside the scratchpad memory.

The interplay of the bit vector size m, false positive rate P, and the number of items to be inserted
into the Bloom filter n (i.e., number of unique k-mers of a partition) can be captured in the formula:

= — '(‘;11;)123 , which indicates that the false positive rate declines as the bit vector size increases,
given a certain number of elements that need to be inserted to the Bloom filter. We first vary P from
1% to 25% and empirically measure the expected Bloom filter and hash table sizes for all partitions
of the five selected input genomes, assuming n for each partition is known. We discover that as
P decreases, the hash table sizes decrease, because more single-occurrence k-mers are filtered out.
But at the same time, the Bloom filter size increases, because a more powerful Bloom filter requires
a larger bit vector. A sweet spot is around P = 5%, where both the bit vector and the hash table can
be fit inside the chip-level scratchpad memory for the largest number of partitions per genome.
Another possibility is to develop a sophisticated control unit to dynamically adjust an optimal P
for each partition based on variables such as n, scratchpad memory, and the performance of the
previous Bloom filter, although it may entail additional latency and control complexity.

5.1.4 Estimate Partition Cardinality. The next challenge is to estimate n, the number of unique
k-mers, for each partition. A naive approach would be to scan each partition and add its unique
k-mers into a dictionary prior to phase two. However, this approach is extremely expensive in
terms of space and latency and, moreover, entails performing redundant operations. Our solution
is to leverage a cardinality approximation algorithm called Hyperloglog [22], which stems from its
basic form called Loglog, which uses a counter x to track the longest streak of trailing (or leading)
zeros of the hashed values of all the elements (i.e., k-mers) in a set (i.e., partition). The total number
of unique elements in the set is then estimated as 2*. This algorithm only needs a few bits to count
tens of billions of unique elements, but it tends to have large variances, especially with smaller
sets. Hyperloglog improves its accuracy using additional counters and other statistical measures to
remove outliers. To integrate partition cardinality estimation into Abakus-BF, we store the counter
bits per partition inside the SSD DRAM. The SSD core performs the Hyperloglog computation
for that s-mer set before it is evicted to the target chip. This adds an insignificant overhead in
execution time (< 1%), because the SSD core is mostly idle and there is enough surplus computing
power to spare (Abakus uses the SSD core very conservatively). The additional storage overhead
for counters is less than 14 MB for all partitions.
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Fig. 8. Abakus-OP workflow.

5.2 Abakus-OP

5.2.1 Motivation. The performance of Abakus-Basic and Abakus-BF is primarily limited by the
chip-level SRAM scratchpad memories (512 KB in current design). If a partition’s Bloom filter
and/or hash table is too large, then the data and computation need to be transferred to the SSD
core and the DRAM to handle (Section 4.2.1), creating additional data movement and resource
contention. Fitting a larger scratchpad at the chip level might be challenging due to potential
power delivery issues and area overheads. Previous works have explored the placement of logic and
memory at the channel and SSD levels [9, 49, 54], trading parallelism for better processing power
and area budget [9, 54]. In Abakus-OP, we propose keeping the chip-level NSPU phase one logic
unmodified but moving its phase two logic into the SSD and channel levels. Specifically, Abakus-
OP adds an SSD-level SRAM scratchpad memory (SSD S.pad in Figure 4) to store Bloom filters
and a series of channel-level NSPUs and their SRAM scratchpad memories for hash tables. With
the larger capacity of the SSD and channel-level scratchpad memories, nearly all of the partitions’
Bloom filters and hash tables can be accommodated without resorting to the DRAM.

Further, recall that in both Abakus-Basic and Abakus-BF, the s-mers partitions are written to
the chips in phase one and read out again in phase two. If the partitions are converted to hash
tables right away, we can skip the step of storing them back and eliminate the cost of reading
the partitions out. To this end, in Abakus-OP, we orchestrate the operations pertaining to the two
phases to overlap in a pipelined fashion.

5.2.2  Abakus-OP Overview. Figure 4 illustrates the architecture, and Figure 8 illustrates the
workflow of Abakus-OP, which represents our most aggressive Abakus variation, where the cus-
tom logic is distributed and integrated along the SSD data path at all levels. At the SSD level, there
is a large (32 MB in the current design) SRAM scratchpad memory that buffers Bloom filter(s) for
one or more partition(s), and at each channel level, there is a scratchpad memory (swept from
256 KB to 32 MB for a sensitivity study in Section 7.4.3) to buffer hash tables. The chip level NSP is
simplified to only have the logic that extracts s-mers, as the counting is performed at the channel
level. We keep the total aggregated chip-level scratchpad memory of each channel at the same
capacity as that of channel-level scratchpad memory.

The chip-level NSPUs extract s-mers and send them to the SSD DRAM to aggregate partitions.
This step is exactly the same as that in Abakus-Basic and Abakus-BF. Once a set that contains
s-mers for a partition is full, Abakus-OP loads the Bloom filter for that partition into the SSD
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scratchpad memory from the chip to filter out single k-mers by breaking each s-mers down to a
bag of loose k-mers used to probe the Bloom filter. The SSD-level scratchpad typically has enough
capacity to simultaneously cache more Bloom filters than the number of channels, and further in-
creasing its size offers no perceivable speedup. k-mers that passed its Bloom filter will be directed
to the channel-level NSPUs for hashing, and its hash table is cached at the channel-level scratch-
pad that can store multiple hash tables for different partitions. As more s-mer sets corresponding
to different partitions arrive, some of the cached Bloom filters in the SSD-level scratchpad and
the hash tables in the channel-level scratchpad need to be evicted to make room. We once again
leverage the total ordering of the minimizers to keep the “hot” ones in the scratchpads and write
those corresponding to lower-ranking minimizers to the chips. This replacement scheme is highly
effective, because the lower-ranking minimizers often generate smaller partitions, and their s-mer
set only needs to be evicted once, with their Bloom filters, and hash tables also used only once.

Once all s-mer sets in the DRAM are drained, the entire k-mer counting process terminates.
Note that the partitions are not saved and read back out in the process. However, we can still
occasionally encounter large partitions whose hash table memory requirement exceeds that of the
channel-level scratchpad, even after passing the Bloom filter. When this happens, the bag of loose k-
mers created from the Bloom filter probing and the corresponding hash table is temporarily saved
to the chips to be later processed using the SSD core and the DRAM. While this does negatively
impact the performance of Abakus-OP due to the additional data movement, it is also extremely
rare. Of all the genomes that we evaluated, with a 4 MB channel-level scratchpad setup, the worst
case has only seven large partitions that need separate handling.

5.2.3  Abakus-OP Estimate Partition Cardinality. Although the separation of phase one (s-mer
extraction at chip level) and phase two logic (k-mer counting at channel level) allows for a pipelined
implementation, the partition k-mer cardinality estimation, which is essential to sizing the Bloom
filters, still remains unaddressed. In Abakus-BF, this step is piggybacked with the s-mer set write-
back in phase one, and Bloom filters are only later instantiated in phase two. But in Abakus-OP,
s-mer sets are used to build the hash tables right away, leaving us no chance of finalizing the
unique k-mer count for each partition. To this end, we add an additional stage called phase zero,
where each chip locally scans reads to estimate cardinality information and sends the results (i.e.,
Hyperloglog counters) to the DRAM to aggregate a final estimation. The resulting data footprint
is small, since only the integer counters are communicated, rather than the actual s-mers.

6 EXPERIMENT SETUP

Baseline. We compare the performance of Abakus against several existing platforms for k-mer
counting, including multi-core CPU, GPU, and previous DIMM-based accelerators [29]. For CPU
and GPU baselines, we use a state-of-the-art disk-based k-mer counting tool, Gerbil [20], that
provides the best performance and memory efficiency among other tools [55]. The DIMM-based
accelerator, NEST [29], adds parallel processing elements for k-mer counting in the rank-level of
LDDIMM. NEST only accelerates the counting phase (similar to phase 2 in our algorithm) when
the DRAM can fit the whole original read and the counting table. For a fair comparison, we adopt
128 GB of memory (1 channel and 2 DIMMS), which can hold all tested datasets. We use the tim-
ing and energy values reported in the NEST paper to build the roofline model, which takes in the
k-mer statistics for performance evaluation. We also implement a roofline evaluation for Abakus-
OP on a commercial product (SmartSSD [5]), which has an SSD-level FPGA accelerator with
DDR4 SDRAM@2,400 Mbps, consuming 25 W power in total. We assume the SSD-level accelerator
can efficiently process all k-mer counting operations with the same frequency as Abakus, repre-
senting the state-of-the-art in-storage processing acceleration. We assume SmartSSD has infinite
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Fig. 9. The overall performance and energy across different platforms, genomes, and k sizes.

(unrealistic) compute throughput and DRAM capacity and evaluate the performance mainly based
on internal SSD and DRAM bandwidth.

The evaluation is conducted on a server with Intel i7-11700K CPU and 64 GB DDR4-2400 RAM
and NVIDIA RTX 4090 GPU. We measure CPU and GPU energy consumption using Intel Power
Gadget and nvidia-smi. The equipped SSD is SK Hynix Gold P31 NVMe SSD with 2 TB size and
3D TLC. It is an integrated PCle 3 x4 bus and LPDDR4-4266 DRAM to realize a peak 3.5 GB/s
sequential read rate. For a fair comparison, we follow a similar methodology described in a prior
in-storage acceleration paper [54] for a simulated host baseline using the same SSD specifications
as Abakus. Specifically, we collect the real SSD traces on the baseline systems and feed the collected
traces to our simulation infrastructure. Figure 9 shows the performance and energy efficiency of
the simulated baselines, which are 7.6% to 12.8% faster than the performance measured on the real
machine.

Workloads. We evaluate five genome datasets from different species: Balbisiana, Crassa, Gallus,
Thaliana, and Vesca (see Table 2), which are large enough to sufficiently exercise all hardware
components in Abakus. All datasets are downloaded from NCBI [4] by entering their SRA codes
from Gerbil [20].

Simulation Infrastructure. We model the performance of Abakus in a modified, trace-driven,
state-of-the-art SSD simulator, MQSim [72]. We implement several new SSD commands in MQSim
to simulate read, write, and k-mer counting computation in the chip and the channel level. We also
implement a new DRAM cache mode to simulate the behavior of SSD DRAM for k-mer counting.
We first collect k-mer traces of Gerbil running on the CPU workstation, as well as the statistics
of each partition, and then sweep parameters relating to various Bloom filter setups, partitioning
strategies, Hyperloglog parameters, and NSPU configurations including scratchpad memory sizes,
to generate detailed traces that feed into the custom MQSim simulator for performance modeling.
We note that our simulation platform based on MQSim [72] simulates end-to-end behaviors of SSD
requests, including the host, the device, and host-device communication (e.g., PCle bus). Table 1
summarizes the parameters for Abakus. We assume that the SSD has 32 channels and each channel
has 4 chips by default. We use the triple-level cell (TLC) technology for flash chip, which features
60pus read latency and 700 ps write latency for an 8 KB page [26, 51]. The configuration of NSPU
and buffer depends on the design. The NSPU is implemented using Verilog HDL and synthesized
using Synopsys Design Compiler using TSMC 40 nm technology node. The clock frequency is
200 MHz, and the design is scaled to 22 nm. Timing and energy values of SRAM are extracted from
CACTI-3DD [16] in 22 nm.
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Table 1. Area and Power Breakdown

Component Area Leakage Dynamic
P (mm?) Power(mW) | Energy(n])

k-mer splitter 0.004 0.001 0.001

SeaHash x8 0.027 0.001 0.004

SRAM 512 KB 0.48 63.5 0.008

SRAM 2 MB 1.71 617.7 0.017

Abakus-Basic . Peak Power (W)

(128 x 512 KB SRAM/chip) | VNP | g6

Abakus-BF . Peak Power (W)

(128 x 512 KB SRAM/chip) | > VP | g6

Abakus-OP Peak Power (W)

(32 x 2 MB SRAM/channel) | --8¥/channel | o, o

7 EVALUATION
7.1 Area Overhead Analysis

Table 1 shows the area and power breakdown for NSPU and the three Abakus designs. The ASIC
components of Abakus-Basic and Abakus-BF are implemented in the flash chips, resulting in
0.51 mm? additional overhead for each chip. Abakus-Basic and Abakus-BF have the same total
area of 65.9 mm?, while Abakus-OP (58.6 mm?) is slightly smaller, because 2 MB SRAM has higher
area efficiency than 512 KB SRAM. We observe that state-of-the-art flash chips [36, 37] have over
120 mm? total area, and around 10% of the area is reserved for peripheral circuits. Thus, Abakus-
Basic and Abakus-BF have around 4% area overhead for each flash chip. For Abakus-OP, the over-
head is negligible, since the 2 MB SRAM is implemented in FMC. Although we lack the resources
to model the exact area of FMC, we note that LDPC ECC [73], a module implemented in FMC,
has a comparable area with 2 MB SRAM. Therefore, we believe that all three Abakus variants are
practical for manufacturing and have a minor impact on storage density.

7.2 Overall Performance and Energy Efficiency

Figure 9 shows the overall performance and energy consumption across the different platforms. All
Abakus architectures adopt 32 SSD channels where each channel consists of 4 chips. We assume
the same amount of distributed NSPU SRAM scratchpad (64 MB) in all architectures for a fair
comparison. Specifically, both Abakus-Basic and Abakus-BF have a 512 KB scratchpad in each chip,
while Abakus-OP features a 2 MB scratchpad in each channel. We find that our most aggressive
design, Abakus-OP, is 8.38X%, 6.95%, and 2.32X faster and consumes 15.22%, 19.93%, and 3.23X less
energy than Gerbil CPU, Gerbil CPU+GPU, and NEST, respectively. As compared to SmartSSD [5],
Abakus-OP is 3.47x faster and consumes 2.18X less energy. This indicates the state-of-the-art in-
storage acceleration for k-mer counting cannot effectively utilize the internal bandwidth of SSD
device and waste a large amount of energy using the shared SSD-level processing. The speedup
over NEST is more significant for larger k than smaller k, demonstrating its substantial scalability
benefits. We also observe that Abakus-OP significantly improves the performance of the naive
design (Abakus-Basic) and its optimization (Abakus-BF), outperforming them by 2.57x and 1.76x
while consuming 0.98% and 1.66X energy, respectively, since the power of each scratchpad memory
does not linearly scale with capacity.

We make three major observations regarding Abakus’s performance in relation to its input data
characteristics. First, Abakus-BF improves upon Abakus-Basic the most when there is a large per-
centage of single-occurrence k-mers, as evidenced by Crassa and Thaliana genomes when k = 28
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Table 2. Input Genome Datasets (Default k = 28)

Dataset | Size (GB) | # 28-mers | # Unique [ # Single

Balbisiana | 91 20.5 billion | 965.7 million | 518.4 million
Crassa 23.3 15.7 billion | 15.0 billion 14.8 billion
Gallus 28 6.3 billion | 1.4 billion 479.2 million
Thaliana | 17 8.9 billion | 8.4 billion 8.3 billion
Vesca 13.5 5.8 billion | 1.8 billion 1.4 billion

= Flash Read ® Flash Write DRAM Access ® Computation
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Fig. 10. Performance breakdown for the three Abakus designs.

(See Table 2). This is because Bloom filters reduce the size of each partition’s hash table by preemp-
tively removing the single-occurrence k-mers, and the number of large partitions to be processed
using SSD-core and DRAM (Section 4.2.1 and 4.4.2), resulting in an overall reduction in the num-
ber of Flash writes and DRAM accesses. In fact, Abakus-BF only performs marginally better than
Abakus-Basic when k = 14, because the percentage of single-occurrence 14-mers per partition is
low (2%~3%) and all partitions are small enough to fit in the chip-level scratchpad. Second, on work-
loads that generate large s-mer partitions, such as Balbisiana and the Crassa, where a large number
of Flash writes is required, Abakus-OP significantly outperforms Abakus-BF and Abakus-Basic
by removing the latency spent on saving the s-mer partitions. In addition, for these workloads,
their resulting k-mer histograms, which can be estimated using # Unique - #_Single k-mers in
Table 2, are rather small, further reducing the number of Flash writes, providing a substantial
speedup. Third, while Abakus-OP outperforms other Abakus setups and prior proposals in most
cases, it might suffer from data explosion and workload imbalance for some input, for example,
Vesca at k = 28. This is due to one large s-mer partition, which generates an excessive amount of
loose k-mers for the local channel-level scratchpad to handle (Section 5.2.2), resulting in a signifi-
cant increase of read/write commands that are handled by one chip.

7.3 Performance Breakdown

Figure 10 shows the performance breakdown and bandwidth utilization of three designs. We mea-
sure the execution time spent on SSD DRAM operations, chip read, chip write, and NSPU com-
putation. As shown in the figure, Abakus-OP has the highest utilization of NSPU, where the
computation takes up 59.3% of execution time on average, more than doubling the utilization
rate of Abakus-Basic and Abakus-BF. This is because Abakus-Basic and Abakus-BF spends more
time on costly Flash write operations which are significantly reduced in Abakus-OP via hardware
Bloom filters, pipelined operation of the two phases, and an overall reduction in the DRAM access
latency due to fewer occurrences of large tables in the DRAM.
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Fig. 11. The performance of different partitioning strategies.

7.4 Sensitivity Analysis

7.4.1  Partition Allocation. We first analyze the effect of different partitioning schemes for
Abakus, including a naive round-robin scheme, a fully random scheme, and a scheme using the
prediction-based heuristic method (see Section 4.3). Recall that the partitioning scheme has an im-
pact on data distribution (e.g., s-mers, Bloom filters, and hash tables) and ISP operations, and an
unbalanced partitioning may lead to long tail latency. Figure 11 shows the result of this exploration.
We observe that the random scheme uniformly outperforms the round-robin (by 1.65-2.18x)
for all values of k. The prediction-based heuristic scheme is 1.87%, 2.36X, and 1.97x faster than
the round-robin scheme when k is set to 14, 21, and 28, respectively. While the prediction-based
scheme overall only outperforms the random scheme slightly, it does offer the benefit of distribut-
ing the data more evenly among chips, potentially limiting Flash wear. Thus, we default the parti-
tioning strategy to the prediction-based scheme.

7.4.2  SSD Scalability. We scale the number of SSD channels from 8 to 32, which also increases
the parallelism by 4x. We observe that the 16- and 32-channel architectures are 1.63X and 2.44X
faster than the 8-channel architecture, respectively. The performance improvements due to the
increased hardware parallelism vary across different workloads, but overall, Abakus achieves good
scalability because of its ability to limit contention for high-level shared resources.

7.4.3  Buffer Size. Figure 12 explores the performance sensitivity due to varying the SRAM
buffer size. As compared to 4 MB, 8 MB, 16 MB, and 32 MB channel-level buffers, we observe
that the 2 MB buffer is 1.03X, 1.08X, 1.17X, and 1.43X slower. However, if the buffer size is larger
than 4 MB, then the custom hardware requires more than 42.7 W power and 104.2 mm? area in
a 32-channel SSD. At the same time, 2 MB is 1.19x faster than 1 MB while only requiring 19.8 W
power and 54.6 mm? area overhead. Therefore, 2 MB channel-level buffers provide a good balance
of performance and area/power efficiency.

Overall, Abakus-OP with a smaller channel-level scratchpad suffers from performance degrada-
tion, because it cannot efficiently handle large partitions due to a larger number of additional chip
read/write commands generated for loose k-mers after Bloom Filter probing (Section 5.2.2). How-
ever, smaller scratchpad designs can exhibit better area/power efficiency than larger scratchpad
designs. For example, Abakus-OP with 512 KB scratchpad per channel-level NSPU is 1.98% slower
but only requires 15.47 mm?/2.03 W area/power overhead, which is 3.53x/9.73x better than its
2 MB counterpart. Furthermore, 512 KB configuration is only 4% slower than its 2 MB
counterpart in three out of five workloads. This observation shows the possibility of fur-
ther reducing the overhead of Abakus while maintaining the acceleration benefits for some

workloads.
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Fig. 12. Exploration of different buffer sizes for Abakus-OP.

8 DISCUSSION

Impact on Error Detection and Correction. A major concern of ISP and PWST is flash memory
errors. The error detection and correction mechanisms are typically located outside the flash. For
example, there is usually an ECC module at each channel-level FMC to ensure the data integrity
of a page [13, 39, 42, 56]. However, the chip-level NSPUs in Abakus tap into the flash chips for fast
data access, which means the error correction is skipped. Providing an ECC module per chip-level
NSPU can be challenging. We argue this should not present an issue for Abakus for several reasons.
First, most bioinformatics algorithms, including k-mer counting, are inherently error-tolerant. In
fact, there have been accelerator designs using a probabilistic data structure called counting bloom
filters to approximately counting k-mers [29, 58]. In general, k-mer counting algorithms do not
have to be exact for most use cases [59]. Second, the raw NGS reads already have an average error
rate of 0.1%, meaning there is one erroneous base pair in every thousand base pairs, which is much
worse than the raw bit error rate of a flash chip (in the order of 10 [65]). Third, we simulate a
process of counting 28-mers of the E. coli genome without ECC by randomly flipping bits based
on the flash raw bit error rate [65]. We discover that roughly 7% of 28-mers are miscounted, but
over 90% of them are off by only one or two. We then input this miscounted 28-mer set into a DBG
assembler [47] and get no assembly score degradation, showing that ECC is likely not needed for
the specific case of k-mer counting in storage.

Wear-leveling and Write Amplification. As the initial effort of enabling a PWST k-mer
counting algorithm, Abakus does not lead to more severe endurance issues than the CPU base-
line. First, the amount of data that needs to be written to the chips are smaller (Abakus-OP) or at
least equal to (Abakus-Basic and Abakus-BF) that of the CPU baseline. Second, our partitioning
scheme 4.3 ensures that each chip handles a similar amount of writes for s-mer partitions and
hash tables. Third, writes of s-mer partitions and hash tables only access sequential data once in
the SSD chip, making the offline remapping an effective and simple wear-leveling scheme. Write
amplification happens when an SSD writes more data to disk than the host submits. Counting k-
mers in Abakus would not cause significant write amplification, since the intermediary partitions
can be written back to the chip in any order. Abakus simply appends a set of s-mers from SSD-
DRAM to a chip. Thus, each write block can be written to an SSD chip without extensive meta-data
management to erase and copy blocks of data.

Interfacing/coordinating with SSD internals/frontend Similar to how a GPU-based DNN
accelerator would not need to support gaming simultaneously, Abakus is intended to function
primarily as an accelerator/co-processor rather than a data storage unit; therefore, its SSD internals
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does not handle requests from other applications while it is processing k-mer counting, and data
pages can be safely pinned in the chip page buffers. Abakus interacts with its SSD frontend (i.e.,
FTL and garbage collection) minimally when counting k-mers, because the physical addresses are
statistically determined by the partitioning algorithm (Section 4-C), which happens to also support
wear-leveling to a certain degree, avoiding the necessity of designing a custom garbage collector.

9 CONCLUSIONS

This work proposes Abakus, a set of hardware accelerators for k-mer counting using emerging
PWST architecture. The key idea is to integrate a set of custom hardware logic at the chip, chan-
nel, and SSD levels to take advantage of the internal bandwidth and parallelism potential of a
modern SSD. By exploiting real DNA sequence characteristics, we optimize our design with a set
of distributed Bloom filters to aggressively prune data volume. Furthermore, we propose several
hardware-aware algorithm-level modifications to the classic two-phase algorithm to fully exploit
the benefits of PWST. These optimizations synergistically offer the combined benefit of speedups
and energy savings over the state-of-the-art CPU+GPU system by 6.95X and 19.93X.
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