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Abstract—Hyperdimensional computing (HDC) is emerging
as an efficient and robust computing paradigm that has strong
resilience to various types of errors. The robustness of HDC makes
it a good match for error-prone memory systems. In this work, we
propose HyperMetric, a framework to develop highly robust and
hardware-friendly HDC models. First, we propose HyperMetric
training which is based on metric learning to optimize for high
robustness. The experiments show that HyperMetric-trained HDC
models deliver up to 17× larger distance margin and 14.3%
accuracy gain. Compared to state-of-the-art HDC algorithms
OnlineHD [1] and HyDREA [2], HyperMetric ReRAM accelerator
is > 20% more accurate for computing-in-memory (CIM) errors
and > 10% more accurate for bit errors even in the face of
variations. Furthermore, HyperMetric hardware is 35% more
accurate in comparison with state of the art tinyHD [3] and
GENERIC [4] accelerators in the face of 3× ReRAM resistance
variance, and 20% more accurate with BER of up to 20% due
to voltage scaling while keeping a good balance between area,
power, and processing latency.

Index Terms—Hyperdimensional computing, metric learning,
memory errors, hardware robustness.

I. INTRODUCTION

Deep learning (DL) has shown excellent accuracy on

various classification tasks. However, the high accuracy comes

at the cost of expensive computation complexity and data

movement, hindering DL’s deployment on low-power embedded

devices with constrained resources. ReRAM-based computing-

in-memory (CIM) [5, 6] and voltage scaling techniques [7, 8]

are the two effective solutions to obtain high energy efficiency

for data-intensive DL algorithms. However, increasing energy

efficiency while maintaining high inference accuracy for DNNs

is challenging because both ReRAM-based CIM and voltage

scaling schemes are inevitably error-prone. ReRAM has proven

unreliable and incurs accuracy degradation when running

DNNs [6, 9] due to imperfect memory devices and sensing

circuits [9]. Meanwhile, aggressive voltage scaling helps reduce

power consumption, but the number of bit errors increases while

the DNN’s inference accuracy drops exponentially [7, 8].

There are two popular approaches to address memory errors:

1. adding error correction (ECC) hardware [5, 10], 2.
enhancing the algorithm’s robustness [2, 6]. While adding

ECC significantly improves the memory’s reliability, it is not

cost-effective due to the large implementation overhead. For

example, CIM-SECDED [5] sacrifices 20% memory cells

and requires additional 15% energy consumption for ECC,

degrading both energy and hardware efficiency. Enhancing

the algorithm’s robustness is hardware-friendly without costly

circuit modifications. However, the DNN models do not have

good error resilience as > 1% error rate may bring catastrophic

accuracy loss [7, 8].
In this work, we propose the HyperMetric framework to

develop the error-robust and low-complexity classification

algorithm as well as hardware implementation for error-

prone memories based on the brain-inspired hyperdimensional

computing (HDC) [11, 12]. HDC processes cognitive tasks in

a lightweight manner [3, 13]: the inference can be performed

via Hamming distance-based associative memory search, only

requiring binary XOR and addition operations. HDC’s unique

computing pattern is efficient for both CIM and low-power

applications [1, 13–15]. Meanwhile, HDC is error-resilience

and can be easily integrated into existing memory architecture

without additional modifications. The Hamming distance search

shows great error robustness due to HDC’s distributed nature

of feature storage [11]. Our contributions include:

• We propose HyperMetric, a framework to derive robust and

efficient HDC designs. HyperMetric uses metric learning [16]

to optimize the Hamming distance margin, which is improved

by 2-17× compared to state-of-the-art OnlineHD [1] and Hy-

DREA [2]. The large Hamming distance margin significantly

improves model error resilience (10-35% less accuracy loss)

and classification accuracy (up to 14.3% gain).

• We present the efficient ASIC design for HyperMetric,

achieving excellent robustness and balance between latency,

power, and overhead compared to existing HDC designs

(tinyHD [3] and GENERIC [4]).

II. PRELIMINARY

A. Error-prone Memories
We consider two types of typical memory errors in this

work: Type 1 Readout Bit Errors are mainly resulted

from scaling down the voltage of memories [7, 8]. Though

aggressive reduction for on-chip memory’s voltage is beneficial

for achieving higher energy efficiency for data-intensive DNN

inference tasks, the lower readout voltage inevitably injects

errors into the readout data from voltage-scaled memories.

As a result, the errors create significant accuracy degradation.

We emulate the readout error patterns using the random bit

flipping model with a bit error rate (BER) given in [7].

Type 2 CIM Errors exist in the silicon-proven 1T1R ReRAM

architecture [5]. ReRAM suffers from various types of hardware

imperfections, including limited resistance ratios, variable

resistance distributions, imperfect sense amplifiers, and leakage

current [9]. These imperfections cause CIM errors and result

in severe accuracy loss for DNN inference on ReRAM.
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B. Hyperdimensional Computing (HDC)
The HDC algorithm consists of the encoding, training, and

inference steps as follows:
1) Encoding: Consider a feature vector x ∈ R

F . The goal

of HDC encoding is to convert x into a D-dimensional binary

hypervector (HV) H ∈ {+1,−1}D using the signed random

projection (RP) with a matrix R ∈ R
D×F :

H = sign(R · x). (1)

2) Training and Retraining: For each class j, we denote

Hj
i as the encoded HV for input feature xi, belonging to j-th

class. Assuming there are k encoded HVs for for each class j,

the associated class HV Cj ∈ {+1,−1}D is computed as:

Cj = sign(

k∑
n=1

Hj
n), (2)

which means that we are simply adding together all encoded

HV for each class. The HDC model is then built using a

collection of all class HVs Cj . A major advantage of HD is

the simplicity of training, as it can reach high accuracy with a

single pass through the training data.
The accuracy of the HDC model can then be improved

through the retraining process, where each feature vector is

encoded again and compared to each class HV. The prediction

is made from the most similar class HV. Then for each incorrect

prediction, we update the model as follows:{
Cj = Cj + α ·Hj ,

Ck = Ck − α ·Hj ,
(3)

where α denotes the learning rate applied to update class HVs.

The intermediate data of updated class HVs are non-binary.

For the binary HDC model, the class HVs are finally binarized

using the sign function after the retraining process.
3) Inference: The inference step finds the most similar class

HV Cj to the encoded HV H as: argmin
j

Hamming(H,Cj),

where the HDC prediction is made based on the class that

generates the smallest Hamming distance.

III. HYPERMETRIC ALGORITHM AND HARDWARE DESIGN

A. HyperMetric Training
The HDC noise robustness theory (Theorem 10) in [12]

demonstrates that increasing the Hamming distance margin

(distance difference between the correct class and other classes)

can improve the HDC error resilience. In Fig. 1, we propose

HyperMetric training to improve HDC’s model robustness

based on deep metric learning [16]. During the retraining

phase, existing HDC models first encode the query and then

the class HVs are updated based on the correctness of prediction

(Eq. (3)). Instead, HyperMetric optimizes both class HVs and

HDC encoder to maximize the Hamming distance margin.

HyperMetric uses the following CosFace loss [16] modified

based on Softmax to perform the stochastic gradient descent

(SGD)-based training. For each batch of N training samples,

the CosFace loss is:

L = − 1

N

N∑
i=1

log
es·(cos(θyi,i)−m)

es·(cos(θyi,i)−m) +
∑

j �=yi
es·cos(θj,i)

, (4)

Encoded
Query HVs

HDC
Encoder

Hamming
Distance

1. SGD Train

HDC TrainD

Training Batch

Query

F

CosFace Loss

Class HVs

HyperMetric flow Typical HDC flow

...
Training

Data

2. HDC + 3. HDC Train

HyperMetric Training

Fig. 1: Comparison for HyperMetric and typical HDC.

where cos(θj,i) = C∗
j · x∗

i is the cosine angle between the nor-

malized j-th class C∗
j and the normalized i-th feature vector x∗

i .

m controls the penalty threshold of cosine margin while s is the

scaling parameter that impacts the classification performance.

We replace the original linear layer with normalized HDC class

HVs C∗. This allows us to use SGD to optimize both HDC

encoder weight R and class HVs C.

HyperMetric training mainly consists of three steps: 1) Use

the modified CosFace loss in Eq. (4) with SGD to optimize

the HDC encoder weights R while freezing the class HVs C.

2) Freeze the encoder weights R and use the HDC retraining

in Eq. (3) to update only the class HVs C. 3) Update both

encoder weights R and class HVs C. The other modification is

that HyperMetric’s training needs the soft gradient information.

Thus, the signed random projection in Eq. (1) is revised to a

differentiable encoding function: H = tanh(R · x).
B. Hardware Architecture and Implementation

1) Approximate Encoding: The HDC encoding in Eq. (1)

requires O(D · F ) complexity. Previous works [13] show

it is critical to reducing the encoding overhead for better

efficiency. We propose the approximate encoding to reduce

the encoding overhead. The Kronecker product (KP) [17] is

used to decompose the encoding weight matrix R into the

summation of r KPs of sub-matrices Ai and Bi as:

R ≈
(

r∑
i=1

Ai ⊗Bi

)
· x ≈

r∑
i=1

Bi · vec(x) ·AT
i , (5)

where ⊗ denotes the KP operation. Ai ∈ R
d1,i×f1,i and Bi ∈

R
d2,i×f2,i , where the submatrix dimension satisfies:

∏
i d1,i ·

d2,i = D and
∏

i f1,i ·f2,i = F . vec(·) reshape the input vector

to a new matrix in the column-major order.

The KP-based approximate encoding effectively reduces the

encoding overhead in terms of computational complexity and

the memory space. Our evaluation shows 13-20× computation

complexity reduction and 180× compression ratio. The total

number of summations r (called rank) determines the recon-

struction quality. A higher rank leads to less reconstruction

error as more free parameters can be used to reconstruct R. But

it also reduces the compression effect. We discuss the optimal

rank value to balance quality and efficiency in Section IV.

2) Retraining: To obtain better performance and faster

training convergence, the sub-matrices {Ai,Bi} are initialized

to minimize the reconstruction error given a rank value r. This

is achieved by solving the following equation that generates

the minimum L2 distance to the full-precision encoding weight
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Fig. 2: Pipelined hardware architecture for the KP-based

approximate encoder in HyperMetric.

matrix R: argminAi,Bi
‖R−∑r

i=1 Ai ⊗Bi‖2, which can be

solved effectively based on the singular value decomposition

(SVD) of R according to [17]. The KP-based approximate

encoding introduces performance degradation to the full-

precision model. Thus, an additional retraining phase is needed

to restore the accuracy and Hamming distance margin. The

retraining follows the identical process as HyperMetric training.

3) Hardware Design: We propose a pipelined encoder

architecture in Fig. 2 to efficiently realize the approximate

encoding in Eq. (5). The encoder architecture consists of 2

processing element (PE) arrays, each with r ×NPE MACs, r
NPE-input adder trees, and 16kb SRAM buffer, respectively.

The SRAM in each PE stores the KP sub-matrices with

4-b quantization. The KP-based approximate encoding is

processed in a two-stage pipelined manner to maximize the

hardware utilization: the first array PE-1 computes each row

of Bi · vec(x) while the second array PE-2 computes each

row of encoded output H based on the results from PE-1.

PE-1 parallelizes the computation along the rank r dimen-

sion in its r × NPE MACs. Each cycle PE-1 computes the

partial sum for NPE elements at the same row of matrix B
and the corresponding NPE elements from the reshaped input

feature vec(x). PE-1 consumes f1 · � f2
NPE

� cycles to generate

one f1-dimensional row of Bi · vec(x) with r ranks. Then

PE-2 receives the row data from PE-1 and reuses them to

multiply with each AT
i , respectively. The output from PE-2

is r-rank Bi · vec(x) ·Ai data and needs to be accumulated

to generate the partial encoded HV H. The encoded HV is

sequentially generated row by row. PE-2 requires d1 · � f1
NPE

�
cycles to generate each row for H.

The computations of PE-1 and PE-2 are overlapped. To

balance latency and hardware complexity, we set NPE = 16 and

r = 4, meaning that the proposed encoder design supports HDC

dimension D = 1024 with input feature dimension F = 1024.

HyperMetric hardware supports the KP rank value r = 4
because the rank r = 4 achieves a good trade-off between

algorithm performance and hardware overhead.

IV. EVALUATION

A. Methodology

HyperMetric Algorithm. The HyperMetric training algorithm

is implemented using PyTorch. The training uses a batch size

of 256 and the SGD optimizer with a learning rate lr = 1e−3.

Fig. 3: Accuracy and Hamming distance margin (log scale)

for Kronecker product encoding with rank values from 2 to

16 and HDC dimension D = 1024.

Each HDC is trained for 35 epochs using either metric learning

or HDC retraining. The default HDC dimension D is 1024.

Hardware Modeling. The encoder hardware of HyperMetric is

implemented using Verilog HDL and synthesized by Synopsys

Design Compiler using TSMC 40nm technology node. The

clock frequency is 500MHz. The ReRAM parameters are

extracted from foundry’s ReRAM [5]. We use the log-norm

distribution [9] to fit the resistance distribution. We do not

assume any write verification schemes that reduce the resistance

variance. We build an in-house simulator based on DL-

RSIM [9] to emulate the CIM behavior of ReRAM. The

reference current of sense amplifier is the midpoint of two

neighbors. We assume that the number of activated WLs is

NWL = 16. For SRAM voltage scaling, we inject random bit

flipping errors into the readout data based on the BERs [7, 8].

TABLE I: Specifications of evaluated datasets.
Dataset Application Class C Feature F Train Size Test Size

MNIST [18] Image classification 10 784 60,000 10,000

UCIHAR [19] Activity recognition 12 561 6,213 1,554

FACE [20] Face detection 2 608 1,913 213

PAMAP2 [21] Activity recognition 5 27 16,384 16,384

Baselines and Datasets. We compare HyperMetric to four state-

of-the-art HDC algorithms (HyDREA [2] and OnlineHD [1])

and hardware designs (tinyHD [3] and GENERIC [4]). We use

four real-world datasets for various applications as in Table I.

B. HyperMetric Algorithm and Hardware Evaluation

Approximate Encoding. Fig. 3 shows the impact of KP-based

approximate encoding on the inference accuracy and Hamming

distance margin. HyperMetric-Kron-r represents the KP-based

encoding with rank r and the weights quantized to 4-b. Full-

precision HyperMetric and HyDREA are the baselines for com-

parison. The approximation of KP and quantization introduce

degradation to both accuracy and Hamming distance margin.

Up to 2% accuracy loss and 72% Hamming margin decrease

are observed using HyperMetric-Kron-2. The degradation is

less significant for higher rank r because more free parameters

can be tuned to restore the full-precision performance. However,

HyperMetric with approximate encoding still outperforms

HyDREA [2] in terms of accuracy and Hamming margin.
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Fig. 4: HyperMetric and tinyHD [3] accuracy on ReRAM.

TABLE II: HyperMetric vs. HDC ASICs [3, 4] in 40nm node.
Design tinyHD [3] GENERIC [4] HyperMetric

Enc. Algorithm Cyclic RP Optimized level-ID Metric learning + RP

HD dim. D 4000 4000 1024

Area (mm2) 0.025 0.297 0.099

Power (mW) 15.351 0.735 5.774

Latency (cycles) 12250 256 1568

Accuracy 93.9% 94.0% 96.1%

Error resilience Low Low High

ReRAM-based CIM Evaluation. Fig. 4 shows the impact

of ReRAM’s resistance variance (1-3× sigma) on inference

accuracy. We use the HyperMetric-Kron-4 model and adopt

tinyHD [3] as the baseline. HyperMetric achieves much better

error resilience compared to tinyHD: the inference accuracy

on FACE and PAMAP2 datasets receives the least influence

because the Hamming distance margins on these datasets are

highest. In the worst case 3× variance, HyperMetric’s 13%

accuracy loss is much lower than tinyHD’s 35% on MNIST.

Fig. 5: Accuracy vs. BERs for HyperMetric vs. OnlineHD [1].

BER Evaluation for Voltage Scaling. Fig. 5 shows the impact

of bit errors on the accuracy when scaling SRAM voltages [7,

8]. OnlineHD [1] is considered as the baseline. OnlineHD

incurs over 20% accuracy loss on MNIST when BER increases

to 20%. HyperMetric with approximate encoding shows < 10%
loss in the worst case. For FACE dataset, negligible accuracy

loss is observed due to the much larger Hamming margin

compared to MNIST.

Hardware comparison with other HDC designs. For Hyper-

Metric’s hardware implementation, we choose HyperMetric-

Kron-4 with HDC dimension D = 1024 since it provides good

accuracy loss as well as Hamming distance margin while not

requiring costly overhead. The key hardware parameters of

HyperMetric are listed in Table II. Two state-of-the-art HDC

encoder designs on ASIC, tinyHD [3] and GENERIC [4], are

used for comparison. We only include the hardware components

related to HDC encoding for fair comparison. The encoding

latency and accuracy are calculated on dataset MNIST [18].

While HyperMetric is 4× larger, it achieves 2.7× power saving

and 8× encoding latency reduction as compared to tinyHD [3].

GENERIC [4] achieves better power efficiency and shorter

encoding latency at the cost larger area. HyperMetric achieves

a good balance between area, power and latency. Notably,

HyperMetric delivers the best accuracy and error resilience

among the three designs.

V. CONCLUSION

In this work, we present HyperMetric’s metric learning-

based training for obtaining more accurate HDC models with

enhanced error resilience. Then we propose the efficient ASIC

hardware to implement HyperMetric. The experiments show

that the HDC model and hardware optimized by HyperMetric

have significantly strengthened error resilience and hardware

efficiency compared to state-of-the-art HDC baselines [1–3].
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