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Abstract—Hyperdimensional computing (HDC) is emerging
as an efficient and robust computing paradigm that has strong
resilience to various types of errors. The robustness of HDC makes
it a good match for error-prone memory systems. In this work, we
propose HyperMetric, a framework to develop highly robust and
hardware-friendly HDC models. First, we propose HyperMetric
training which is based on metric learning to optimize for high
robustness. The experiments show that HyperMetric-trained HDC
models deliver up to 17x larger distance margin and 14.3%
accuracy gain. Compared to state-of-the-art HDC algorithms
OnlineHD [1] and HyDREA [2], HyperMetric ReRAM accelerator
is > 20% more accurate for computing-in-memory (CIM) errors
and > 10% more accurate for bit errors even in the face of
variations. Furthermore, HyperMetric hardware is 35% more
accurate in comparison with state of the art tinyHD [3] and
GENERIC [4] accelerators in the face of 3x ReRAM resistance
variance, and 20% more accurate with BER of up to 20% due
to voltage scaling while keeping a good balance between area,
power, and processing latency.

Index Terms—Hyperdimensional computing, metric learning,
memory errors, hardware robustness.

[. INTRODUCTION

Deep learning (DL) has shown excellent accuracy on
various classification tasks. However, the high accuracy comes
at the cost of expensive computation complexity and data
movement, hindering DL’s deployment on low-power embedded
devices with constrained resources. ReRAM-based computing-
in-memory (CIM) [5, 6] and voltage scaling techniques [7, 8]
are the two effective solutions to obtain high energy efficiency
for data-intensive DL algorithms. However, increasing energy
efficiency while maintaining high inference accuracy for DNNs
is challenging because both ReRAM-based CIM and voltage
scaling schemes are inevitably error-prone. ReRAM has proven
unreliable and incurs accuracy degradation when running
DNNs [6, 9] due to imperfect memory devices and sensing
circuits [9]. Meanwhile, aggressive voltage scaling helps reduce
power consumption, but the number of bit errors increases while
the DNN’s inference accuracy drops exponentially [7, 8].

There are two popular approaches to address memory errors:
1. adding error correction (ECC) hardware [5, 10], 2.
enhancing the algorithm’s robustness [2, 6]. While adding
ECC significantly improves the memory’s reliability, it is not
cost-effective due to the large implementation overhead. For
example, CIM-SECDED [5] sacrifices 20% memory cells
and requires additional 15% energy consumption for ECC,
degrading both energy and hardware efficiency. Enhancing
the algorithm’s robustness is hardware-friendly without costly
circuit modifications. However, the DNN models do not have

good error resilience as > 1% error rate may bring catastrophic

accuracy loss [7, 8].

In this work, we propose the HyperMetric framework to
develop the error-robust and low-complexity classification
algorithm as well as hardware implementation for error-
prone memories based on the brain-inspired hyperdimensional
computing (HDC) [11, 12]. HDC processes cognitive tasks in
a lightweight manner [3, 13]: the inference can be performed
via Hamming distance-based associative memory search, only
requiring binary XOR and addition operations. HDC’s unique
computing pattern is efficient for both CIM and low-power
applications [1, 13-15]. Meanwhile, HDC is error-resilience
and can be easily integrated into existing memory architecture
without additional modifications. The Hamming distance search
shows great error robustness due to HDC’s distributed nature
of feature storage [11]. Our contributions include:

« We propose HyperMetric, a framework to derive robust and
efficient HDC designs. HyperMetric uses metric learning [16]
to optimize the Hamming distance margin, which is improved
by 2-17x compared to state-of-the-art OnlineHD [1] and Hy-
DREA [2]. The large Hamming distance margin significantly
improves model error resilience (10-35% less accuracy loss)
and classification accuracy (up to 14.3% gain).

o« We present the efficient ASIC design for HyperMetric,
achieving excellent robustness and balance between latency,
power, and overhead compared to existing HDC designs
(tinyHD [3] and GENERIC [4]).

II. PRELIMINARY
A. Error-prone Memories

We consider two types of typical memory errors in this
work: Type 1 Readout Bit Errors are mainly resulted
from scaling down the voltage of memories [7, 8]. Though
aggressive reduction for on-chip memory’s voltage is beneficial
for achieving higher energy efficiency for data-intensive DNN
inference tasks, the lower readout voltage inevitably injects
errors into the readout data from voltage-scaled memories.
As a result, the errors create significant accuracy degradation.
We emulate the readout error patterns using the random bit
flipping model with a bit error rate (BER) given in [7].
Type 2 CIM Errors exist in the silicon-proven 1T1IR ReRAM
architecture [5]. ReRAM suffers from various types of hardware
imperfections, including limited resistance ratios, variable
resistance distributions, imperfect sense amplifiers, and leakage
current [9]. These imperfections cause CIM errors and result
in severe accuracy loss for DNN inference on ReRAM.
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B. Hyperdimensional Computing (HDC)

The HDC algorithm consists of the encoding, training, and
inference steps as follows:

1) Encoding: Consider a feature vector x € RY. The goal
of HDC encoding is to convert x into a D-dimensional binary
hypervector (HV) H € {+1, —1}? using the signed random
projection (RP) with a matrix R € RP*¥":

H =sign(R - x). (1)

2) Training and Retraining: For each class j, we denote
H as the encoded HV for input feature x;, belonging to j-th

class. Assuming there are k£ encoded HVs for for each class 7,
the associated class HV C; € {+1, —1}” is computed as:

k
Cj = Slgl’l(z HZL)7
n=1

which means that we are simply adding together all encoded
HV for each class. The HDC model is then built using a
collection of all class HVs C;. A major advantage of HD is
the simplicity of training, as it can reach high accuracy with a
single pass through the training data.

The accuracy of the HDC model can then be improved
through the retraining process, where each feature vector is
encoded again and compared to each class HV. The prediction
is made from the most similar class HV. Then for each incorrect
prediction, we update the model as follows:

Cj :(jj—i-Ot'Hj7
Ck :Ck—CX'Hj,

(@)

3

where « denotes the learning rate applied to update class HVs.

The intermediate data of updated class HVs are non-binary.
For the binary HDC model, the class HVs are finally binarized
using the sign function after the retraining process.

3) Inference: The inference step finds the most similar class
HV C; to the encoded HV H as: arg min Hamming(H, C;),

j
where the HDC prediction is made based on the class that
generates the smallest Hamming distance.

III. HYPERMETRIC ALGORITHM AND HARDWARE DESIGN
A. HyperMetric Training

The HDC noise robustness theory (Theorem 10) in [12]
demonstrates that increasing the Hamming distance margin
(distance difference between the correct class and other classes)
can improve the HDC error resilience. In Fig. 1, we propose
HyperMetric training to improve HDC’s model robustness
based on deep metric learning [16]. During the retraining
phase, existing HDC models first encode the query and then
the class HVs are updated based on the correctness of prediction
(Eq. (3)). Instead, HyperMetric optimizes both class HVs and
HDC encoder to maximize the Hamming distance margin.
HyperMetric uses the following CosFace loss [16] modified
based on Softmax to perform the stochastic gradient descent
(SGD)-based training. For each batch of N training samples,
the CosFace loss is:

1

L= N ; log

es-(cos(eyi)i)f'm)

G
65'(505(9yi.i)—m) + Zj;ﬁy es~cos(9],1)
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Fig. 1: Comparison for HyperMetric and typical HDC.

where cos(0;,;) = C; -x; is the cosine angle between the nor-
malized j-th class C7 and the normalized i-th feature vector x;.
m controls the penalty threshold of cosine margin while s is the
scaling parameter that impacts the classification performance.
We replace the original linear layer with normalized HDC class
HVs C*. This allows us to use SGD to optimize both HDC
encoder weight R and class HVs C.

HyperMetric training mainly consists of three steps: 1) Use
the modified CosFace loss in Eq. (4) with SGD to optimize
the HDC encoder weights R while freezing the class HVs C.
2) Freeze the encoder weights R and use the HDC retraining
in Eq. (3) to update only the class HVs C. 3) Update both
encoder weights R and class HVs C. The other modification is
that HyperMetric’s training needs the soft gradient information.
Thus, the signed random projection in Eq. (1) is revised to a
differentiable encoding function: H = tanh(R - x).

B. Hardware Architecture and Implementation

1) Approximate Encoding: The HDC encoding in Eq. (1)
requires O(D - F') complexity. Previous works [13] show
it is critical to reducing the encoding overhead for better
efficiency. We propose the approximate encoding to reduce
the encoding overhead. The Kronecker product (KP) [17] is
used to decompose the encoding weight matrix R into the
summation of r KPs of sub-matrices A; and B; as:

R~ (ZAi®Bi> CX R ZB" -vee(x) - AT, (5)
i=1 i=1

where ® denotes the KP operation. A; € R%+*f1i and B; €
R42.%f2i where the submatrix dimension satisfies: [, d1 ; -
da; = D and []; f1,i- fo,; = F. vec(-) reshape the input vector
to a new matrix in the column-major order.

The KP-based approximate encoding effectively reduces the
encoding overhead in terms of computational complexity and
the memory space. Our evaluation shows 13-20x computation
complexity reduction and 180x compression ratio. The total
number of summations r (called rank) determines the recon-
struction quality. A higher rank leads to less reconstruction
error as more free parameters can be used to reconstruct R. But
it also reduces the compression effect. We discuss the optimal
rank value to balance quality and efficiency in Section IV.

2) Retraining: To obtain better performance and faster
training convergence, the sub-matrices {A;, B;} are initialized
to minimize the reconstruction error given a rank value r. This
is achieved by solving the following equation that generates
the minimum L4 distance to the full-precision encoding weight
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Fig. 2: Pipelined hardware architecture for the KP-based
approximate encoder in HyperMetric.

matrix R: argminy | g, [R— Y7, A; ® B; H2, which can be
solved effectively based on the singular value decomposition
(SVD) of R according to [17]. The KP-based approximate
encoding introduces performance degradation to the full-
precision model. Thus, an additional retraining phase is needed
to restore the accuracy and Hamming distance margin. The
retraining follows the identical process as HyperMetric training.
3) Hardware Design: We propose a pipelined encoder
architecture in Fig. 2 to efficiently realize the approximate
encoding in Eq. (5). The encoder architecture consists of 2
processing element (PE) arrays, each with » x Npg MACs, r
Npg-input adder trees, and 16kb SRAM buffer, respectively.
The SRAM in each PE stores the KP sub-matrices with
4-b quantization. The KP-based approximate encoding is
processed in a two-stage pipelined manner to maximize the
hardware utilization: the first array PE-1 computes each row
of B; - vec(x) while the second array PE—-2 computes each
row of encoded output H based on the results from PE-1.
PE-1 parallelizes the computation along the rank  dimen-
sion in its 7 X Npg MACs. Each cycle PE-1 computes the
partial sum for Npg elements at the same row of matrix B
and the corresponding Npg elements from the reshaped input

feature vec(x). PE-1 consumes fi - []\{—2] cycles to generate

one fi-dimensional row of B; - vec(xg)Ewith r ranks. Then
PE-2 receives the row data from PE-1 and reuses them to
multiply with each AT respectively. The output from PE-2
is r-rank B; - vec(x) - A; data and needs to be accumulated
to generate the partial encoded HV H. The encoded HV is

sequentially generated row by row. PE—-2 requires d; - [Nf—;E]

cycles to generate each row for H.

The computations of PE-1 and PE-2 are overlapped. To
balance latency and hardware complexity, we set Npg = 16 and
r = 4, meaning that the proposed encoder design supports HDC
dimension D = 1024 with input feature dimension F' = 1024.
HyperMetric hardware supports the KP rank value r = 4
because the rank » = 4 achieves a good trade-off between
algorithm performance and hardware overhead.

IV. EVALUATION

A. Methodology

HyperMetric Algorithm. The HyperMetric training algorithm
is implemented using PyTorch. The training uses a batch size
of 256 and the SGD optimizer with a learning rate Ir = le~3.
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Fig. 3: Accuracy and Hamming distance margin (log scale)
for Kronecker product encoding with rank values from 2 to
16 and HDC dimension D = 1024.

Each HDC is trained for 35 epochs using either metric learning
or HDC retraining. The default HDC dimension D is 1024.

Hardware Modeling. The encoder hardware of HyperMetric is
implemented using Verilog HDL and synthesized by Synopsys
Design Compiler using TSMC 40nm technology node. The
clock frequency is 5S00MHz. The ReRAM parameters are
extracted from foundry’s ReRAM [5]. We use the log-norm
distribution [9] to fit the resistance distribution. We do not
assume any write verification schemes that reduce the resistance
variance. We build an in-house simulator based on DL-
RSIM [9] to emulate the CIM behavior of ReRAM. The
reference current of sense amplifier is the midpoint of two
neighbors. We assume that the number of activated WLs is
Nwr = 16. For SRAM voltage scaling, we inject random bit
flipping errors into the readout data based on the BERs [7, 8].

TABLE I: Specifications of evaluated datasets.

Dataset ‘ Application ‘ Class C' ‘ Feature F' ‘ Train Size ‘ Test Size
MNIST [18] Image classification 10 784 60,000 10,000
UCIHAR [19] Activity recognition 12 561 6,213 1,554
FACE [20] Face detection 2 608 1,913 213
PAMAP2 [21] Activity recognition 5 27 16,384 16,384

Baselines and Datasets. We compare HyperMetric to four state-
of-the-art HDC algorithms (HyDREA [2] and OnlineHD [1])
and hardware designs (tinyHD [3] and GENERIC [4]). We use
four real-world datasets for various applications as in Table .

B. HyperMetric Algorithm and Hardware Evaluation

Approximate Encoding. Fig. 3 shows the impact of KP-based
approximate encoding on the inference accuracy and Hamming
distance margin. HyperMetric-Kron-r represents the KP-based
encoding with rank r and the weights quantized to 4-b. Full-
precision HyperMetric and HyDREA are the baselines for com-
parison. The approximation of KP and quantization introduce
degradation to both accuracy and Hamming distance margin.
Up to 2% accuracy loss and 72% Hamming margin decrease
are observed using HyperMetric-Kron-2. The degradation is
less significant for higher rank r because more free parameters
can be tuned to restore the full-precision performance. However,
HyperMetric with approximate encoding still outperforms
HyDREA [2] in terms of accuracy and Hamming margin.
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Fig. 4: HyperMetric and tinyHD [3] accuracy on ReRAM.
TABLE II: HyperMetric vs. HDC ASICs [3, 4] in 40nm node.

Design [ tinyHD [3] [  GENERIC [4] | HyperMetric

Enc. Algorithm Cyclic RP Optimized level-ID | Metric learning + RP
HD dim. D 4000 4000 1024
Area (mm”) 0.025 0.297 0.099
Power (mW) 15.351 0.735 5.774
Latency (cycles) 12250 256 1568
Accuracy 93.9% 94.0% 96.1%
Error resilience Low Low High

ReRAM-based CIM Evaluation. Fig. 4 shows the impact
of ReRAM’s resistance variance (1-3x sigma) on inference
accuracy. We use the HyperMetric-Kron-4 model and adopt
tinyHD [3] as the baseline. HyperMetric achieves much better
error resilience compared to tinyHD: the inference accuracy
on FACE and PAMAP?2 datasets receives the least influence
because the Hamming distance margins on these datasets are
highest. In the worst case 3x variance, HyperMetric’s 13%
accuracy loss is much lower than tinyHD’s 35% on MNIST.

dataset = MNIST dataset = FACE
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Fig. 5: Accuracy vs. BERs for HyperMetric vs. OnlineHD [1].

—— HyperMetric-Kron-2

BER Evaluation for Voltage Scaling. Fig. 5 shows the impact
of bit errors on the accuracy when scaling SRAM voltages [7,
8]. OnlineHD [1] is considered as the baseline. OnlineHD
incurs over 20% accuracy loss on MNIST when BER increases
to 20%. HyperMetric with approximate encoding shows < 10%
loss in the worst case. For FACE dataset, negligible accuracy
loss is observed due to the much larger Hamming margin
compared to MNIST.

Hardware comparison with other HDC designs. For Hyper-
Metric’s hardware implementation, we choose HyperMetric-
Kron-4 with HDC dimension D = 1024 since it provides good
accuracy loss as well as Hamming distance margin while not
requiring costly overhead. The key hardware parameters of
HyperMetric are listed in Table II. Two state-of-the-art HDC
encoder designs on ASIC, tinyHD [3] and GENERIC [4], are
used for comparison. We only include the hardware components
related to HDC encoding for fair comparison. The encoding
latency and accuracy are calculated on dataset MNIST [18].
While HyperMetric is 4 x larger, it achieves 2.7x power saving
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and 8x encoding latency reduction as compared to tinyHD [3].
GENERIC [4] achieves better power efficiency and shorter
encoding latency at the cost larger area. HyperMetric achieves
a good balance between area, power and latency. Notably,
HyperMetric delivers the best accuracy and error resilience
among the three designs.

V. CONCLUSION

In this work, we present HyperMetric’s metric learning-
based training for obtaining more accurate HDC models with
enhanced error resilience. Then we propose the efficient ASIC
hardware to implement HyperMetric. The experiments show
that the HDC model and hardware optimized by HyperMetric
have significantly strengthened error resilience and hardware
efficiency compared to state-of-the-art HDC baselines [1-3].
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