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Abstract—Transformer models have achieved a number of
breakthrough results in a variety of complex tasks. Transformer’s
promising performance originates from multi-head attention
(MHA), which can model long-range sequence data dependency.
Better performance has been demonstrated to be obtained by
increasing the sequence length N. However, scaling up the
sequence length is extremely challenging for memory-constrained
hardware because the naive Transformer requires quadratic
O(N?) complexity. In this work, we address this challenge by
leveraging the binding operation in vector symbolic architecture
(VSA). We propose the memory-efficient MHA algorithm to
simplify the MHA computation at the cost of linear complexity.
Then, we present the ASIC hardware architecture with optimized
timing and dataflow to accelerate the proposed algorithm. We
extensively evaluate our design across various long-range attention
tasks. Our experiments show that the accuracy is competitive to
state-of-the-art MHA optimization approaches with lower memory
consumption and inference latency. The proposed algorithm
achieves 7.8x speedup and 4.5x reduction in data movement
over the naive Transformer on ASIC. Meanwhile, our design
supports 8 to 16 x sequence lengths compared to existing hardware
accelerators.

Index Terms—Transformer, multi-head attention, vector sym-
bolic architecture, accelerator.

I. INTRODUCTION

Transformer is one of the most important backbones of
deep learning in recent years. There have been various models
built upon Transformer that have achieved significant accuracy
improvements for various important machine learning tasks,
such as natural language processing [1], computer vision [2],
and video analysis. The secret of Transformer’s powerful
performance is the multi-head attention (MHA) mechanism that
can accurately model long-range data dependency. Previous
works [1, 3] show that Transformer performance can be further
enhanced by increasing the input sequence length.

However, MHA turns out to be a major bottleneck when
scaling the sequence length N because of the quadratic
O(N?) memory and computation complexity. This memory
constraint hinders the further improvement of Transformer
to long-sequence tasks. Previous Transformer models and
hardware accelerators [4—6] have mainly been designed for
relatively short sequences <1K. Although previous works, like
SpAttn [4], utilize sorting and sparsity to reduce the memory
footprint during inference, the area constraint and limited on-
chip memory of hardware, such as ASIC, still limit the scaling
of MHA. Therefore, a hardware design that supports long-range
attention >1K length is needed.

On the other hand, various works [3, 7-9] have tried to devise
a more memory-efficient attention mechanism at the algorithm
level. These works present various strategies to avoid the
quadratic computational cost resulting from the MHA module
when processing input sequences. But these works still require
additional overhead to process the MHA module. For example,
Hrrformer [3] requires fast Fourier transform (FFT) while
Nystromformer [10] requires additional convolution operations,
which both complicate the dataflow. The other drawback of
previous works [7-9] are the inferior accuracy performance on
long-range tasks [10].

In this paper, we address the mentioned challenges by
utilizing the compact data structure and advanced computing
paradigm in emerging vector symbolic architecture (VSA) [11].
The contributions are summarized as follows:

o We propose a software and hardware co-design, AttBind, to
accelerate long-range multi-head attention (MHA) in Trans-
former [1]. By utilizing the VSA binding operation [3, 11],
we first propose the memory-efficient VDS-based MHA
algorithm with only O(ND+/D) complexity.

e According to our evaluation on the Long Range Arena
benchmark [12], our algorithm provides competitive accuracy
compared to the state-of-the-art MHA variants [3, 10],
but requires less memory consumption and delivers faster
inference speed.

o To further improve inference efficiency, we develop a
reconfigurable ASIC accelerator to implement the proposed
algorithm. Dataflow optimization is developed to maximize
hardware utilization and reduce redundant data movement.

o Experiments show that the AttBind design scales well with
the sequence length, delivering 7.8 speedup and 4.5x data
movement saving over the naive Transformer. Compared
to existing ASICs [4-6], AttBind has comparable hardware
performance and efficiency while supporting 8-16x longer
sequences.

II. PRELIMINARY
A. Transformer and Multi-head Attention

Transformer. Transformer has been widely applied to different
tasks, including computer vision (CV) and natural language
processing (NLP). Transformer has a feedforward structure
consisting of multiple encoders. Fig. 1 illustrates an example
for the encoder block [1]. The embedding of sentences or other
sequence data are first divided into different fragments with
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Fig. 1: Transformer and multi-head attention (MHA) module.

the same sequence length N. Then, the input sequence is fed
into the Transformer encoder model chunk by chunk (/N = 3
in Fig. 1). Here, each encoder is composed of three subblocks:
layer normalization, multihead attention (MHA), and multilayer
perceptron (MLP) module.

Multi-head Attention (MHA). Transformer’s promising perfor-
mance originates from the MHA module [1] because it provides
long-range attention capablity. In essence, the MHA module
identifies the relations between input sequences. To realize this
mechanism, each MHA module has the fully-connected (FC)
layer as well as a self-attention layer. For an input sequence
with length N, the FC layer receives an embedding matrix of
size N x H (H is the embedding dimension) and generates
three different matrices: 1. query @, 2. key K, and 3. value V'
using the corresponding weight matrices. The query, key, and
value matrices have identical dimensions of N x D, where
D denotes the intermediate dimension of the encoder. The
encoder block then feeds the (), K, and V' matrices into the
self-attention (SA) layer. The original Transformer model uses
the scaled dot-product attention [1] as follows:

QK"
VD

as the pairwise correlation matrix

Self-attention(Q, K, V') = Softmax( WV, (1)

QKT

where we denote
between N input sequences while Softmax(-) is the Softmax
function. The normalized Softmax scores S = Softmax(QI;T)
are finally multiplied by the value matrix V' to generate the
MHA output. Without loss of generality, the Transformer adopts
the multi-head mechanism to further improve the performance.
The difference is that the (), K and V matrices are uniformly
divided into h segments (heads) before being fed into the SA
module.
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Fig. 2: (a) Increased inference latency and (b) Increased data
traffic of MHA as a function of input sequence length.

Challenges. The key factor that determines the performance
of the Transformer is the input sequence length used. However,
the MHA module in the original Transformer model is a
type of memory-intensive workload that imposes several
critical challenges. We profile the original Transformer with
intermediate dimension D =1K and h = 4 heads. Fig. 2
summarizes the profiling results by ranging the input sequence
length NV from 128 to 4K. The first challenge is the severely
degraded inference speed for long sequences. Fig. 2-(a) shows
the measured inference latency on the NVIDIA RTX 4090
GPU. We see a growth of nearly quadratic latency when linearly
increasing the input sequence length /N. This is mainly because
the MHA module in Eq. (1) requires quadratic O(N?) memory
and computational complexity. The slowness effect is much
more significant for N >1K. For this reason, most models and
accelerators [4—6] are only capable of handling sequences of
up to 1K.

The other challenge of boosting long-sequence MHA is
prohibitive data movement. In Fig. 2-(b), we use the simulator
of proposed ASIC design in Section III-B to estimate the
data traffic resulting from two key modules in the Transformer
encoder: MHA and MLP modules, respectively. The data traffic
of the MHA module contributes most of the overall memory
footprint. This is due to the fact that the limited on-chip buffer
is unable to cache the large N x N pairwise attention matrix.
Additional data movement between the off-chip memory and
on-chip buffers is needed.

B. Binding in Vector Symbolic Architecture

Vector symbolic architecture (VSA) is proposed to perform
brain-like symbolic processing in cognitive tasks [11]. Two
key operations in VSA are binding and unbinding. The binding
operation B combines abstract concepts into a single numerical
vector. This can be expressed by the following equation:

B:RYoR? — RY, )

where the abstract concepts are presented by two high-
dimensional vectors R%. Unbinding is the inverse process of
binding but performs the similar operation: B! : R? o R? —
R%.

Binding and unbind operations in VSA need to be discrimina-
tive for most given vectors x, y, which means that the following
condition should satisfy:

B~H(B(z,y),y) ~ . )
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The binding and unbinding in VSA allow us to construct com-
pact data presentation by binding multiple high-dimensional
vectors to a limited number of vectors, thus significantly
reducing memory consumption. The key problem boils down
to choosing binding and unbinding methods that can accurately
retrieve the bound vectors as in Eq. (3). Previous work [3]
adopts circular convolution-based binding, called holographic
reduced representations (HRR).

III. PROPOSED ATTBIND DESIGN

In this section, we propose a software and hardware co-
design by leveraging the vector-derived symbolic (VDS)
binding approach in VSA [11]. Section III-A presents the
VDS-based attention algorithm with compact data structure
and high memory efficiency. In Section III-B, we develop
an ASIC accelerator to efficiently implement the proposed
VDS-based attention.

A. Memory-efficient Attention using VSA Binding

The previous work [3] uses circular convolution-based
binding and unbinding to reduce the memory footprint and
speed up MHA. However, this method exhibits several draw-
backs: The previous binding based on circular convolution is
computationally intensive. Although the fast Fourier transform
(FFT) is utilized to realize efficient convolution, FFT and
inverse FFT still require additional overhead and memory for
conversion.

The selection of VSA binding and unbinding methods should
take into account both computing efficiency and retrieval
accuracy. We leverage the vector-derived symbolic (VDS)
binding and unbinding [11] to alleviate the overhead of FFT
while achieving promising accuracy. According to [11], the
VDS-based method shows competitive retrieval performance
after unbinding. Moreover, the VDS only requires general
matrix multiply (GEMM) operations, which are especially
hardware-friendly. The VDS-based binding is given by:

1
B(z,y) =zoy \/g(1®mat(ar)) Y,
where ® denotes the Kronecker product operator while I is
the identity matrix. mat(-) denotes the reshape operation to
convert a d?-dimensional vector into the square-shape matrix
with size d x d. According to [11], the VDS-based unbinding
follows a similar computation as in Eq. 4.

Fig. 3 shows the dataflow comparison for computing the
naive attention [1] and the proposed VDS-based attention. The
overall flow of the proposed VDS-based attention is similar to
that of Hrrformer [3]. The main differences lie in two factors:
1. We use more efficient VDS-based binding and unbinding. 2.
The inner product is adopted as the metric instead of Cosine
similarity. The first step is to bind the K and V' matrices to
one KV matrix. Without loss of generality, we extend the
binding definition in Eq. 4 from two vectors to two matrices
as given by:

“

KV =B(K,V)=Y KoV, ©)
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Fig. 3: Comparison for (a) naive attention [1] and (b) VDS-
based attention.

where the VDS-based binding is applied to each pair of row
vectors when the inputs are two matrices, and then summation
is performed along the row dimension. In this way, we can
generate the compact vector K'V.

The second step is to use the query (Q to retrieve the
bound KV based on the unbind operation as B~(Q;, KV).
Unbinding results are measured against the original query @)
using the inner product (IP) similarity metric in the 3rd step.
As a result, the similarity sim; for j-th row vector of matrix
Q is given by:

6)

In the 4th step, the generated IP similarity vector from Eq. 6
passes through a one-dimensional (1-D) Softmax function to
normalize the similarities. The encoder output is generated
by weighting the value matrix V' using the Softmax output.
After putting Steps 1 to 4 in Fig. 3-(b) together, the proposed
VSD-based attention can be expressed as:

VSD-attention(Q, K, V) = Softmax (B~'(Q,KV) - Q) - V.
(N

The proposed VSD-based AttBind attention benefits from
the advantages of low memory and computational complexity
of VSA. This can be seen from the dataflow comparison in
Fig. 3. AttBind and Hrrformer [3] do not directly compute
the pairwise attention matrix with O(N?) complexity as naive
attention [1]. Instead, the key K and value V are first bound
together for lower memory complexity. Then the query @
retrieves the corresponding similarities from the bound K'V.
The required memory and computation complexity of AttBind
attention is reduced from original Transformer’s O(N2D)
to only O(ND+/D), where N and D denote the sequence
length and encoder intermediate dimension, respectively. This
property allows us to efficiently scale the model size as well

simj = Bil(Qj, KV) . Qj'
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as the sequence length used. It should be noted that although
Hrrformer’s O(N D log D) complexity is theoretically lower
than AttBind, the actual performance of Hrrformer is worse
than AttBind. This is because AttBind only needs GEMM
operations which are more efficient than Hrrformer’s FFT (see
details in Fig. 5).

B. Hardware Architecture

The optimized VDS-based AttBind attention is memory-
efficient and allows us to realize more efficient MHA using
limited on-chip buffers. For better efficiency, we choose to
implement AttBind on ASIC.

Overview. Previous work [4] demonstrates that Transformer
is a memory-intensive workload that requires high memory
bandwidth. Hence, we adopt the high-bandwidth memory
(HBM) [13] as the external memory. HBM is able to provide
over 128GB/s bandwidth for the ASIC accelerator. Fig. 4-(a)
shows the overall architecture of AttBind accelerator connected
to the off-chip HBM with the HBM interface. The AttBind
accelerator is composed of routing buses and Npy processing
units (PUs), which are extensible.

Processing unit (PU). The data transfer from the external
HBM is distributed to different PUs through the global and PU
routing buses. Inside each PU, the PU routing bus connects a
reconfigurable MAC unit, a 128KB weight buffer (W-Buffer),
a 128kB data buffer(D-Buffer), layer norm (LN), and Softmax
module. W-Buffer is used to store the weight matrices for FC or
MLP layer while D-Buffer is used to store the input sequence
or intermediate data. Different instructions can be loaded into
each PU to realize different computation functionalities. The
reconfigurable MAC unit consists of two 12 x 12 systolic arrays
with GeLU activation gates. These two systolic arrays can either
independently receive two matrix inputs in 2 x 12 x 12 mode

or process GEMM for the same matrix in 24 x 12 cooperative
mode. The details are introduced in the following sections.
Softmax approximation. The exact Softmax calculation incurs
a large overhead for Transformer inference [4]. To simplify the
calculation, we adopt the 2-based Softmax approximation [14]
to reduce the circuit complexity. The basic idea is to replace
the original exponential function with the two-based function.
Given a vector z € R?, the approximate Softmax function
becomes: o

7
> 2

where the approximation allows us to easily implement the
Softmax function using floating-point (FP) adders and dividers,
giving better area and timing performance.

Timing and dataflow. Similar to naive Transformer, the VDS-
based MHA algorithm has a data dependency between @, K,
and V, as shown in Fig. 3-(b), where K and V' will be bound
to form the compact KV and then () is used to retrieve from
KV. Ideally, we need to optimize the data flow to reduce the
overhead to cache (), K, and V. Previous MHA accelerators [4,
5] realize this goal by pipelining the attention calculation.
However, this requires a large number of MACs. Based on the
VDS-based MHA algorithm, Fig. 4-(b) shows the optimized
timing diagram of AttBind ASIC. We use two systolic arrays
in the reconfigurable MAC unit to compute the K and K
branches in parallel. Then the bound KV is stored in the
D-Buffer. The remaining calculations required for ¢) and MLP
layer are sequential without branches. Hence, we configure
the two systolic arrays in 24 x 12 mode to process the same
matrix. The optimized timing is helpful to maintain high MAC
utilization while reducing redundant data movement.

®)

Softmax(z;) =

1V. EVALUATION
A. Methodology

Hardware modeling. The proposed hardware architecture is
implemented using Verilog HDL and synthesized on TSMC
40nm CMOS library with clock frequency at 1GHz. Npy =
1 is implemented with a total of 256KB on-chip buffers.
CACTI [15] is used to estimate the area and power consumption
of on-chip buffers. We assume an HBM bandwidth of 128GB/s,
and the off-chip energy is extracted from [13].

Workloads. We use the Long Range Arena (LRA) bench-
mark [12] to evaluate the performance of the MHA algorithms.
The tasks span across four workloads and sequence lengths:
1. Image (1K) - image classification on CIFAR-10 dataset with
1K sequence length. 2. ListOps (2K) - modeling capability test
for hierarchically structured data [16] with 2K sequence length.
3. Retrieval (4K) - byte-level document retrieval [17] with 4K
sequence length. 4. Text (4K) - byte-level text classification
using IMDb reviews [18] with 4K sequence length.
Baselines. We compare AttBind with six state-of-the-art
counterparts: 1. The naive Transformer [1], 2. Reformer [8],
3. Linformer [7], 4. Performer [9], 5. Nystromformer [10],
and 6. Hrrformer [3]. The Transformer structure used follows
the setting in [10], where a 2-layer Transformer model with
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Fig. 5: GPU performance comparison using sequence lengths from 256 to 8K for MHA algorithms (Transformer [1], Reformer [8],
Linformer [7], Performer [9], Nystromformer [10], Hrrformer [3], and AttBind).

TABLE I: Accuracy results for various MHA algorithms on
the Long Range Arena (LRA) benchmark [12].

MHA Algorithm | TImage (1K) [ ListOps 2K) | Retrieval (4K) | Text 4K) [ Avg.
Transformer [1] 38.2 37.1 79.4 65.0 54.9
Reformer [8] 433 19.1 78.6 64.9 515
Linformer [7] 37.8 372 79.4 55.9 52.6
Performer (9] 37.1 18.8 78.6 63.8 49.6
Nystromformer [10] 41.6 37.1 79.6 65.5 559
Hrrformer [3] 425 37.0 79.2 65.5 56.0
This work 42.6 372 78.5 65.3 55.9

embedding dimension of 64, hidden dimension of 128, 4
attention heads. Mean pooling is used for all tasks. The
number of hashes for Reformer is 2, the projection dimension
for Linformer is 256, and the random feature dimension for
Performer is 256. AttBind algorithms are implemented using
PyTorch on a system with an 8-core Intel i7-11700K CPU and
NVIDIA RTX 4090 GPU.

B. Algorithm and Software Evaluation

Comparison to other MHA algorithms. We first evaluate the
accuracy of different MHA algorithms in four workloads of the
LRA [12] benchmark. Table I compares the accuracy of AttBind
to six state-of-the-art MHA algorithms: Transformer [1], Re-
former [8], Linformer [7], Performer [9], Nystromformer [10],
and Hrrformer [3]. Our proposed AttBind achieves the best
accuracy on Image (1K) and ListOps (2K) tasks. Mean-
while, AttBind also produces competitive performance with
Nystromformer [10] and Hrrformer [3] on the other two
tasks. In general, AttBind achieves the second highest average
accuracy 55.9% in all tasks, which is comparable (< 0.1% gap)
to Nystromformer and Hrrformer. The experiment demonstrates
that AttBind can provide satisfactory performance on different
types of sequence data and at different sequence lengths.

Inference performance on GPU. As pointed out in Section II,
the key challenge of accelerating long-range MHA is prohibitive
memory consumption due to the quadratic self-attention layer.
The other aspect that we focus on is how AttBind can
help improve inference efficiency of the Transformer. We
implement the six baselines as well as AttBind on Pytorch.
Then, the average GPU memory consumption and latency per
instance using 256 to 8K sequence lengths are measured and
summarized in Fig. 5. We use different batch sizes (from
4 to 256) depending on the sequence length to saturate the
GPU performance. For memory consumption in Fig. 5-(a),
AttBind consistently consumes less memory footprint than the

I Transformer
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10° 4
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512 1024 2048 4096 8192
Sequence Length
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Fig. 6: (a) Inference latency and (b) Off-chip data traffic on
ASIC for various input sequence lengths.

other benchmarked models. As a result, AttBind yields 6.7x
memory efficiency on 8K length over the naive MHA [1].
Compared to Hrrformer [3], AttBind reduces 15% to 50%
memory consumption because AttBind avoids using FFT and
IFFT functions for binding and unbinding operations. Instead,
only GEMM is required for AttBind, suggesting that our design
gains better memory efficiency.

The inference speed comparison is given in Fig. 5-(b).
The speedup of AttBind over naive Transformer [1] is more
significant for long sequences (up to 6.5x at 8K). AttBind
achieves comparable latency to Linformer [7] which uses a
low-dimensional projection to speed up the MHA module.
However, AttBind has 3.3% accuracy improvement compared
to Linformer. Compared to the most accurate Nystromformer
and Hrrformer models, AttBind generates 1.1x to 1.3x
speedup over Nystromformer. > 20% runtime reduction over
Hrrformer is observed in different sequence lengths due to
AttBind’s lower binding and unbinding overhead. In summary,
AttBind provides a good balance between memory efficiency
and inference speed among all baselines.

C. Hardware Performance Comparison

Effectiveness of AttBind algorithm on ASIC. AttBind is
memory-efficient due to its compact data structure after VDS-
based binding operation. This is especially effective for an
ASIC accelerator that has limited on-chip buffers. We evaluate
the benefits of implementing AttBind’s VDS-based MHA
algorithm on the proposed ASIC design. The latency and
data movement estimations are illustrated in Fig. 6, where
the naive Transformer [1] is regarded as the baseline. We
use the same configurations as the experiment in Fig. 5
while the sequence length ranges from 512 to 8K. The naive
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TABLE II: AttBind vs. existing ASICs in 40nm node.

Design | SpAtten [4] | DTQAtten [6] | RAWAtten [5] | AttBind
CIk. Freq. (GHz) 1.0 1.0 1.0 1.0
Area (mm?) 155 1.41 1.64 1.84
Throughput (GOPs) 360 953 768 489
Energy Efficiency 382 1298 1170 1178
(GOP/))
Area Efficiency 238 678 469 266
(GOP/mm?)
Supported <IK <512 - <8K
seq. length

Transformer’s attention matrix is assumed to offload to off-chip
HBM. As the input sequence length scales up, AttBind incurs
near-linear inference latency increase (Fig. 6-(a)). It should be
noted that though AttBind has O(ND+/D) MHA complexity,
the resulting computation complexity is still small as compared
to the overall complexity. In contrast, Transformer’s MHA
module requires quadratic attention complexity and contributes
to a more significant overhead for the sequence length > 4K.
As a result, AttBind achieves 1.1x to 7.8x speedup over naive
Transformer.

The reduced memory consumption of AttBind algorithm

helps the ASIC accelerator reduce the off-chip data movement,
which dissipates expensive energy consumption. As shown in
Fig. 6-(b), increasing the sequence length increases the data
traffic gap between the naive Transformer and AttBind. AttBind
attains up to 4.5x data traffic saving at 8K sequence. This
is because AttBind skips the computation for the quadratic
attention matrix and the bound K and V' matrices can be fully
cached on-chip.
Comparison with other ASIC designs. AttBind ASIC
accelerator consumes 1.84mm? area and 415mW power. We
compare it with three existing ASIC accelerators for MHA,
including SpAtten [4], DTQAtten [6], and RAWALtten [5]. The
performance of AttBind is simulated based on a Transformer
model with intermediate dimension D =1K and 4 heads.
Table II summarizes the key hardware metrics of the four
ASIC accelerators. The throughput of AttBind ASIC is between
SpAtten and RAWAtten while the energy efficiency is slightly
lower than the most efficient DTQAtten. In particular, AttBind
supports 8x to 16x maximum sequence length compared to
SpAtten and DTQAtten. The advantages of AttBind come from:
1. VSD-based MHA algorithm reduces off-chip data movement
as well as MHA complexity, and 2. The proposed reconfigurable
architecture guarantees a high hardware utilization. AttBind is
more suitable for tasks that require long-range attention.

V. CONCLUSION

This work presents software and hardware co-design, At-
tBind, to accelerate long-range multi-head attention (MHA)
in Transformer [1]. By utilizing the VSA binding opera-
tion [3, 11], we first propose the memory-efficient VDS-
based MHA algorithm with only O(ND+/D) complexity.
Our algorithm yields competitive accuracy to the state-of-
the-art MHA variants on the LRA benchmark [12], but
requires less memory consumption and delivers faster inference
speed. We also develop a reconfigurable ASIC accelerator to

implement the proposed algorithm. The experiments show
that the AttBind design scales well with the sequence length,
providing 7.8 x speedup and 4.5 data movement saving over
the naive Transformer. Compared to existing ASICs, AttBind
has comparable hardware performance and efficiency while
supporting 8-16x longer sequences.
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