
AttBind: Memory-efficient Acceleration for
Long-range Attention using Vector-derived Symbolic

Binding

Weihong Xu, Jaeyoung Kang, and Tajana Rosing
University of California San Diego, La Jolla, CA 92093, USA

Email: {wexu, j5kang, tajana}@ucsd.edu

Abstract—Transformer models have achieved a number of
breakthrough results in a variety of complex tasks. Transformer’s
promising performance originates from multi-head attention
(MHA), which can model long-range sequence data dependency.
Better performance has been demonstrated to be obtained by
increasing the sequence length N . However, scaling up the
sequence length is extremely challenging for memory-constrained
hardware because the naive Transformer requires quadratic
O(N2) complexity. In this work, we address this challenge by
leveraging the binding operation in vector symbolic architecture
(VSA). We propose the memory-efficient MHA algorithm to
simplify the MHA computation at the cost of linear complexity.
Then, we present the ASIC hardware architecture with optimized
timing and dataflow to accelerate the proposed algorithm. We
extensively evaluate our design across various long-range attention
tasks. Our experiments show that the accuracy is competitive to
state-of-the-art MHA optimization approaches with lower memory
consumption and inference latency. The proposed algorithm
achieves 7.8× speedup and 4.5× reduction in data movement
over the naive Transformer on ASIC. Meanwhile, our design
supports 8 to 16× sequence lengths compared to existing hardware
accelerators.

Index Terms—Transformer, multi-head attention, vector sym-
bolic architecture, accelerator.

I. INTRODUCTION

Transformer is one of the most important backbones of

deep learning in recent years. There have been various models

built upon Transformer that have achieved significant accuracy

improvements for various important machine learning tasks,

such as natural language processing [1], computer vision [2],

and video analysis. The secret of Transformer’s powerful

performance is the multi-head attention (MHA) mechanism that

can accurately model long-range data dependency. Previous

works [1, 3] show that Transformer performance can be further

enhanced by increasing the input sequence length.
However, MHA turns out to be a major bottleneck when

scaling the sequence length N because of the quadratic

O(N2) memory and computation complexity. This memory

constraint hinders the further improvement of Transformer

to long-sequence tasks. Previous Transformer models and

hardware accelerators [4–6] have mainly been designed for

relatively short sequences <1K. Although previous works, like

SpAttn [4], utilize sorting and sparsity to reduce the memory

footprint during inference, the area constraint and limited on-

chip memory of hardware, such as ASIC, still limit the scaling

of MHA. Therefore, a hardware design that supports long-range

attention >1K length is needed.

On the other hand, various works [3, 7–9] have tried to devise

a more memory-efficient attention mechanism at the algorithm

level. These works present various strategies to avoid the

quadratic computational cost resulting from the MHA module

when processing input sequences. But these works still require

additional overhead to process the MHA module. For example,

Hrrformer [3] requires fast Fourier transform (FFT) while

Nyströmformer [10] requires additional convolution operations,

which both complicate the dataflow. The other drawback of

previous works [7–9] are the inferior accuracy performance on

long-range tasks [10].

In this paper, we address the mentioned challenges by

utilizing the compact data structure and advanced computing

paradigm in emerging vector symbolic architecture (VSA) [11].

The contributions are summarized as follows:

• We propose a software and hardware co-design, AttBind, to

accelerate long-range multi-head attention (MHA) in Trans-

former [1]. By utilizing the VSA binding operation [3, 11],

we first propose the memory-efficient VDS-based MHA

algorithm with only O(ND
√
D) complexity.

• According to our evaluation on the Long Range Arena

benchmark [12], our algorithm provides competitive accuracy

compared to the state-of-the-art MHA variants [3, 10],

but requires less memory consumption and delivers faster

inference speed.

• To further improve inference efficiency, we develop a

reconfigurable ASIC accelerator to implement the proposed

algorithm. Dataflow optimization is developed to maximize

hardware utilization and reduce redundant data movement.

• Experiments show that the AttBind design scales well with

the sequence length, delivering 7.8× speedup and 4.5× data

movement saving over the naive Transformer. Compared

to existing ASICs [4–6], AttBind has comparable hardware

performance and efficiency while supporting 8-16× longer

sequences.

II. PRELIMINARY

A. Transformer and Multi-head Attention

Transformer. Transformer has been widely applied to different

tasks, including computer vision (CV) and natural language

processing (NLP). Transformer has a feedforward structure

consisting of multiple encoders. Fig. 1 illustrates an example

for the encoder block [1]. The embedding of sentences or other

sequence data are first divided into different fragments with

2024 Design, Automation & Test in Europe Conference (DATE 2024)

 979-8-3503-4859-0/DATE24/© 2024 EDAA
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 20:05:21 UTC from IEEE Xplore. Restrictions apply.

Layer Norm

Layer Norm

Multi-head
Attention

MLP

FC Layers

Q×KT

Q K V

Softmax

S×V

head

Encoder Output
Tr

an
sf

or
m

er
 E

nc
od

er
MHA Output

Complexity

Fruits

Are

D
elicious

Fruits

Are

Delicious

Fig. 1: Transformer and multi-head attention (MHA) module.

the same sequence length N . Then, the input sequence is fed

into the Transformer encoder model chunk by chunk (N = 3
in Fig. 1). Here, each encoder is composed of three subblocks:

layer normalization, multihead attention (MHA), and multilayer

perceptron (MLP) module.

Multi-head Attention (MHA). Transformer’s promising perfor-

mance originates from the MHA module [1] because it provides

long-range attention capablity. In essence, the MHA module

identifies the relations between input sequences. To realize this

mechanism, each MHA module has the fully-connected (FC)

layer as well as a self-attention layer. For an input sequence

with length N , the FC layer receives an embedding matrix of

size N ×H (H is the embedding dimension) and generates

three different matrices: 1. query Q, 2. key K, and 3. value V
using the corresponding weight matrices. The query, key, and

value matrices have identical dimensions of N × D, where

D denotes the intermediate dimension of the encoder. The

encoder block then feeds the Q, K, and V matrices into the

self-attention (SA) layer. The original Transformer model uses

the scaled dot-product attention [1] as follows:

Self-attention(Q,K, V) = Softmax(
QKT

√
D

)V, (1)

where we denote QKT

√
D

as the pairwise correlation matrix

between N input sequences while Softmax(·) is the Softmax

function. The normalized Softmax scores S = Softmax(QKT

√
D

)
are finally multiplied by the value matrix V to generate the

MHA output. Without loss of generality, the Transformer adopts

the multi-head mechanism to further improve the performance.

The difference is that the Q, K and V matrices are uniformly

divided into h segments (heads) before being fed into the SA

module.

Fig. 2: (a) Increased inference latency and (b) Increased data

traffic of MHA as a function of input sequence length.

Challenges. The key factor that determines the performance

of the Transformer is the input sequence length used. However,

the MHA module in the original Transformer model is a

type of memory-intensive workload that imposes several

critical challenges. We profile the original Transformer with

intermediate dimension D =1K and h = 4 heads. Fig. 2

summarizes the profiling results by ranging the input sequence

length N from 128 to 4K. The first challenge is the severely

degraded inference speed for long sequences. Fig. 2-(a) shows

the measured inference latency on the NVIDIA RTX 4090

GPU. We see a growth of nearly quadratic latency when linearly

increasing the input sequence length N . This is mainly because

the MHA module in Eq. (1) requires quadratic O(N2) memory

and computational complexity. The slowness effect is much

more significant for N >1K. For this reason, most models and

accelerators [4–6] are only capable of handling sequences of

up to 1K.

The other challenge of boosting long-sequence MHA is

prohibitive data movement. In Fig. 2-(b), we use the simulator

of proposed ASIC design in Section III-B to estimate the

data traffic resulting from two key modules in the Transformer

encoder: MHA and MLP modules, respectively. The data traffic

of the MHA module contributes most of the overall memory

footprint. This is due to the fact that the limited on-chip buffer

is unable to cache the large N ×N pairwise attention matrix.

Additional data movement between the off-chip memory and

on-chip buffers is needed.

B. Binding in Vector Symbolic Architecture

Vector symbolic architecture (VSA) is proposed to perform

brain-like symbolic processing in cognitive tasks [11]. Two

key operations in VSA are binding and unbinding. The binding

operation B combines abstract concepts into a single numerical

vector. This can be expressed by the following equation:

B : Rd ◦ Rd → R
d, (2)

where the abstract concepts are presented by two high-

dimensional vectors R
d. Unbinding is the inverse process of

binding but performs the similar operation: B−1 : Rd ◦ Rd →
R

d.

Binding and unbind operations in VSA need to be discrimina-

tive for most given vectors x, y, which means that the following

condition should satisfy:

B−1(B(x, y), y) ≈ x. (3)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 20:05:21 UTC from IEEE Xplore. Restrictions apply.

The binding and unbinding in VSA allow us to construct com-

pact data presentation by binding multiple high-dimensional

vectors to a limited number of vectors, thus significantly

reducing memory consumption. The key problem boils down

to choosing binding and unbinding methods that can accurately

retrieve the bound vectors as in Eq. (3). Previous work [3]

adopts circular convolution-based binding, called holographic

reduced representations (HRR).

III. PROPOSED ATTBIND DESIGN

In this section, we propose a software and hardware co-

design by leveraging the vector-derived symbolic (VDS)

binding approach in VSA [11]. Section III-A presents the

VDS-based attention algorithm with compact data structure

and high memory efficiency. In Section III-B, we develop

an ASIC accelerator to efficiently implement the proposed

VDS-based attention.

A. Memory-efficient Attention using VSA Binding

The previous work [3] uses circular convolution-based

binding and unbinding to reduce the memory footprint and

speed up MHA. However, this method exhibits several draw-

backs: The previous binding based on circular convolution is

computationally intensive. Although the fast Fourier transform

(FFT) is utilized to realize efficient convolution, FFT and

inverse FFT still require additional overhead and memory for

conversion.

The selection of VSA binding and unbinding methods should

take into account both computing efficiency and retrieval

accuracy. We leverage the vector-derived symbolic (VDS)

binding and unbinding [11] to alleviate the overhead of FFT

while achieving promising accuracy. According to [11], the

VDS-based method shows competitive retrieval performance

after unbinding. Moreover, the VDS only requires general

matrix multiply (GEMM) operations, which are especially

hardware-friendly. The VDS-based binding is given by:

B(x, y) = x ◦ y =
1√
d
(I ⊗ mat(x)) · y, (4)

where ⊗ denotes the Kronecker product operator while I is

the identity matrix. mat(·) denotes the reshape operation to

convert a d2-dimensional vector into the square-shape matrix

with size d× d. According to [11], the VDS-based unbinding

follows a similar computation as in Eq. 4.

Fig. 3 shows the dataflow comparison for computing the

naive attention [1] and the proposed VDS-based attention. The

overall flow of the proposed VDS-based attention is similar to

that of Hrrformer [3]. The main differences lie in two factors:

1. We use more efficient VDS-based binding and unbinding. 2.

The inner product is adopted as the metric instead of Cosine

similarity. The first step is to bind the K and V matrices to

one KV matrix. Without loss of generality, we extend the

binding definition in Eq. 4 from two vectors to two matrices

as given by:

KV = B(K,V) =
∑

i

Ki ◦ Vi, (5)

Fig. 3: Comparison for (a) naive attention [1] and (b) VDS-

based attention.

where the VDS-based binding is applied to each pair of row

vectors when the inputs are two matrices, and then summation

is performed along the row dimension. In this way, we can

generate the compact vector KV.

The second step is to use the query Q to retrieve the

bound KV based on the unbind operation as B−1(Qj ,KV).
Unbinding results are measured against the original query Q
using the inner product (IP) similarity metric in the 3rd step.

As a result, the similarity simj for j-th row vector of matrix

Q is given by:

simj = B−1(Qj ,KV) ·Qj . (6)

In the 4th step, the generated IP similarity vector from Eq. 6

passes through a one-dimensional (1-D) Softmax function to

normalize the similarities. The encoder output is generated

by weighting the value matrix V using the Softmax output.

After putting Steps 1 to 4 in Fig. 3-(b) together, the proposed

VSD-based attention can be expressed as:

VSD-attention(Q,K, V) = Softmax
(B−1(Q,KV) ·Q) · V.

(7)

The proposed VSD-based AttBind attention benefits from

the advantages of low memory and computational complexity

of VSA. This can be seen from the dataflow comparison in

Fig. 3. AttBind and Hrrformer [3] do not directly compute

the pairwise attention matrix with O(N2) complexity as naive

attention [1]. Instead, the key K and value V are first bound

together for lower memory complexity. Then the query Q
retrieves the corresponding similarities from the bound KV.

The required memory and computation complexity of AttBind

attention is reduced from original Transformer’s O(N2D)
to only O(ND

√
D), where N and D denote the sequence

length and encoder intermediate dimension, respectively. This

property allows us to efficiently scale the model size as well

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 20:05:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: (a) AttBind dataflow and partial encoding scheme, (b)

data organization in PU.

as the sequence length used. It should be noted that although

Hrrformer’s O(ND logD) complexity is theoretically lower

than AttBind, the actual performance of Hrrformer is worse

than AttBind. This is because AttBind only needs GEMM

operations which are more efficient than Hrrformer’s FFT (see

details in Fig. 5).

B. Hardware Architecture

The optimized VDS-based AttBind attention is memory-

efficient and allows us to realize more efficient MHA using

limited on-chip buffers. For better efficiency, we choose to

implement AttBind on ASIC.

Overview. Previous work [4] demonstrates that Transformer

is a memory-intensive workload that requires high memory

bandwidth. Hence, we adopt the high-bandwidth memory

(HBM) [13] as the external memory. HBM is able to provide

over 128GB/s bandwidth for the ASIC accelerator. Fig. 4-(a)

shows the overall architecture of AttBind accelerator connected

to the off-chip HBM with the HBM interface. The AttBind

accelerator is composed of routing buses and NPU processing

units (PUs), which are extensible.

Processing unit (PU). The data transfer from the external

HBM is distributed to different PUs through the global and PU

routing buses. Inside each PU, the PU routing bus connects a

reconfigurable MAC unit, a 128KB weight buffer (W-Buffer),

a 128kB data buffer(D-Buffer), layer norm (LN), and Softmax

module. W-Buffer is used to store the weight matrices for FC or

MLP layer while D-Buffer is used to store the input sequence

or intermediate data. Different instructions can be loaded into

each PU to realize different computation functionalities. The

reconfigurable MAC unit consists of two 12×12 systolic arrays

with GeLU activation gates. These two systolic arrays can either

independently receive two matrix inputs in 2× 12× 12 mode

or process GEMM for the same matrix in 24× 12 cooperative

mode. The details are introduced in the following sections.

Softmax approximation. The exact Softmax calculation incurs

a large overhead for Transformer inference [4]. To simplify the

calculation, we adopt the 2-based Softmax approximation [14]

to reduce the circuit complexity. The basic idea is to replace

the original exponential function with the two-based function.

Given a vector x ∈ R
d, the approximate Softmax function

becomes:

Softmax(xi) =
2xi

∑d
j=1 2

xj

, (8)

where the approximation allows us to easily implement the

Softmax function using floating-point (FP) adders and dividers,

giving better area and timing performance.

Timing and dataflow. Similar to naive Transformer, the VDS-

based MHA algorithm has a data dependency between Q, K,

and V , as shown in Fig. 3-(b), where K and V will be bound

to form the compact KV and then Q is used to retrieve from

KV. Ideally, we need to optimize the data flow to reduce the

overhead to cache Q, K, and V . Previous MHA accelerators [4,

5] realize this goal by pipelining the attention calculation.

However, this requires a large number of MACs. Based on the

VDS-based MHA algorithm, Fig. 4-(b) shows the optimized

timing diagram of AttBind ASIC. We use two systolic arrays

in the reconfigurable MAC unit to compute the K and K
branches in parallel. Then the bound KV is stored in the

D-Buffer. The remaining calculations required for Q and MLP

layer are sequential without branches. Hence, we configure

the two systolic arrays in 24× 12 mode to process the same

matrix. The optimized timing is helpful to maintain high MAC

utilization while reducing redundant data movement.

IV. EVALUATION

A. Methodology

Hardware modeling. The proposed hardware architecture is

implemented using Verilog HDL and synthesized on TSMC

40nm CMOS library with clock frequency at 1GHz. NPU =
1 is implemented with a total of 256KB on-chip buffers.

CACTI [15] is used to estimate the area and power consumption

of on-chip buffers. We assume an HBM bandwidth of 128GB/s,

and the off-chip energy is extracted from [13].

Workloads. We use the Long Range Arena (LRA) bench-

mark [12] to evaluate the performance of the MHA algorithms.

The tasks span across four workloads and sequence lengths:

1. Image (1K) - image classification on CIFAR-10 dataset with

1K sequence length. 2. ListOps (2K) - modeling capability test

for hierarchically structured data [16] with 2K sequence length.

3. Retrieval (4K) - byte-level document retrieval [17] with 4K

sequence length. 4. Text (4K) - byte-level text classification

using IMDb reviews [18] with 4K sequence length.

Baselines. We compare AttBind with six state-of-the-art

counterparts: 1. The naive Transformer [1], 2. Reformer [8],

3. Linformer [7], 4. Performer [9], 5. Nyströmformer [10],

and 6. Hrrformer [3]. The Transformer structure used follows

the setting in [10], where a 2-layer Transformer model with

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 20:05:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: GPU performance comparison using sequence lengths from 256 to 8K for MHA algorithms (Transformer [1], Reformer [8],

Linformer [7], Performer [9], Nyströmformer [10], Hrrformer [3], and AttBind).

TABLE I: Accuracy results for various MHA algorithms on

the Long Range Arena (LRA) benchmark [12].
MHA Algorithm Image (1K) ListOps (2K) Retrieval (4K) Text (4K) Avg.

Transformer [1] 38.2 37.1 79.4 65.0 54.9

Reformer [8] 43.3 19.1 78.6 64.9 51.5

Linformer [7] 37.8 37.2 79.4 55.9 52.6

Performer [9] 37.1 18.8 78.6 63.8 49.6

Nyströmformer [10] 41.6 37.1 79.6 65.5 55.9

Hrrformer [3] 42.5 37.0 79.2 65.5 56.0
This work 42.6 37.2 78.5 65.3 55.9

embedding dimension of 64, hidden dimension of 128, 4

attention heads. Mean pooling is used for all tasks. The

number of hashes for Reformer is 2, the projection dimension

for Linformer is 256, and the random feature dimension for

Performer is 256. AttBind algorithms are implemented using

PyTorch on a system with an 8-core Intel i7-11700K CPU and

NVIDIA RTX 4090 GPU.

B. Algorithm and Software Evaluation

Comparison to other MHA algorithms. We first evaluate the

accuracy of different MHA algorithms in four workloads of the

LRA [12] benchmark. Table I compares the accuracy of AttBind

to six state-of-the-art MHA algorithms: Transformer [1], Re-

former [8], Linformer [7], Performer [9], Nyströmformer [10],

and Hrrformer [3]. Our proposed AttBind achieves the best

accuracy on Image (1K) and ListOps (2K) tasks. Mean-

while, AttBind also produces competitive performance with

Nyströmformer [10] and Hrrformer [3] on the other two

tasks. In general, AttBind achieves the second highest average

accuracy 55.9% in all tasks, which is comparable (< 0.1% gap)

to Nyströmformer and Hrrformer. The experiment demonstrates

that AttBind can provide satisfactory performance on different

types of sequence data and at different sequence lengths.

Inference performance on GPU. As pointed out in Section II,

the key challenge of accelerating long-range MHA is prohibitive

memory consumption due to the quadratic self-attention layer.

The other aspect that we focus on is how AttBind can

help improve inference efficiency of the Transformer. We

implement the six baselines as well as AttBind on Pytorch.

Then, the average GPU memory consumption and latency per

instance using 256 to 8K sequence lengths are measured and

summarized in Fig. 5. We use different batch sizes (from

4 to 256) depending on the sequence length to saturate the

GPU performance. For memory consumption in Fig. 5-(a),

AttBind consistently consumes less memory footprint than the

Fig. 6: (a) Inference latency and (b) Off-chip data traffic on

ASIC for various input sequence lengths.

other benchmarked models. As a result, AttBind yields 6.7×
memory efficiency on 8K length over the naive MHA [1].

Compared to Hrrformer [3], AttBind reduces 15% to 50%
memory consumption because AttBind avoids using FFT and

IFFT functions for binding and unbinding operations. Instead,

only GEMM is required for AttBind, suggesting that our design

gains better memory efficiency.

The inference speed comparison is given in Fig. 5-(b).

The speedup of AttBind over naive Transformer [1] is more

significant for long sequences (up to 6.5× at 8K). AttBind

achieves comparable latency to Linformer [7] which uses a

low-dimensional projection to speed up the MHA module.

However, AttBind has 3.3% accuracy improvement compared

to Linformer. Compared to the most accurate Nyströmformer

and Hrrformer models, AttBind generates 1.1× to 1.3×
speedup over Nyströmformer. > 20% runtime reduction over

Hrrformer is observed in different sequence lengths due to

AttBind’s lower binding and unbinding overhead. In summary,

AttBind provides a good balance between memory efficiency

and inference speed among all baselines.

C. Hardware Performance Comparison

Effectiveness of AttBind algorithm on ASIC. AttBind is

memory-efficient due to its compact data structure after VDS-

based binding operation. This is especially effective for an

ASIC accelerator that has limited on-chip buffers. We evaluate

the benefits of implementing AttBind’s VDS-based MHA

algorithm on the proposed ASIC design. The latency and

data movement estimations are illustrated in Fig. 6, where

the naive Transformer [1] is regarded as the baseline. We

use the same configurations as the experiment in Fig. 5

while the sequence length ranges from 512 to 8K. The naive

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 20:05:21 UTC from IEEE Xplore. Restrictions apply.

TABLE II: AttBind vs. existing ASICs in 40nm node.
Design SpAtten [4] DTQAtten [6] RAWAtten [5] AttBind

Clk. Freq. (GHz) 1.0 1.0 1.0 1.0

Area (mm2) 1.55 1.41 1.64 1.84

Throughput (GOP/s) 360 953 768 489

Energy Efficiency
382 1298 1170 1178

(GOP/J)
Area Efficiency

238 678 469 266
(GOP/mm2)
Supported ≤1K ≤512 – ≤8K
seq. length

Transformer’s attention matrix is assumed to offload to off-chip

HBM. As the input sequence length scales up, AttBind incurs

near-linear inference latency increase (Fig. 6-(a)). It should be

noted that though AttBind has O(ND
√
D) MHA complexity,

the resulting computation complexity is still small as compared

to the overall complexity. In contrast, Transformer’s MHA

module requires quadratic attention complexity and contributes

to a more significant overhead for the sequence length > 4K.

As a result, AttBind achieves 1.1× to 7.8× speedup over naive

Transformer.

The reduced memory consumption of AttBind algorithm

helps the ASIC accelerator reduce the off-chip data movement,

which dissipates expensive energy consumption. As shown in

Fig. 6-(b), increasing the sequence length increases the data

traffic gap between the naive Transformer and AttBind. AttBind

attains up to 4.5× data traffic saving at 8K sequence. This

is because AttBind skips the computation for the quadratic

attention matrix and the bound K and V matrices can be fully

cached on-chip.

Comparison with other ASIC designs. AttBind ASIC

accelerator consumes 1.84mm2 area and 415mW power. We

compare it with three existing ASIC accelerators for MHA,

including SpAtten [4], DTQAtten [6], and RAWAtten [5]. The

performance of AttBind is simulated based on a Transformer

model with intermediate dimension D =1K and 4 heads.

Table II summarizes the key hardware metrics of the four

ASIC accelerators. The throughput of AttBind ASIC is between

SpAtten and RAWAtten while the energy efficiency is slightly

lower than the most efficient DTQAtten. In particular, AttBind

supports 8× to 16× maximum sequence length compared to

SpAtten and DTQAtten. The advantages of AttBind come from:

1. VSD-based MHA algorithm reduces off-chip data movement

as well as MHA complexity, and 2. The proposed reconfigurable

architecture guarantees a high hardware utilization. AttBind is

more suitable for tasks that require long-range attention.

V. CONCLUSION

This work presents software and hardware co-design, At-

tBind, to accelerate long-range multi-head attention (MHA)

in Transformer [1]. By utilizing the VSA binding opera-

tion [3, 11], we first propose the memory-efficient VDS-

based MHA algorithm with only O(ND
√
D) complexity.

Our algorithm yields competitive accuracy to the state-of-

the-art MHA variants on the LRA benchmark [12], but

requires less memory consumption and delivers faster inference

speed. We also develop a reconfigurable ASIC accelerator to

implement the proposed algorithm. The experiments show

that the AttBind design scales well with the sequence length,

providing 7.8× speedup and 4.5× data movement saving over

the naive Transformer. Compared to existing ASICs, AttBind

has comparable hardware performance and efficiency while

supporting 8-16× longer sequences.

ACKNOWLEDGEMENTS

This work was supported in part by the Center for Processing

with Intelligent Storage and Memory (PRISM) SRC grant

number 2023-JU-3135, CoCoSys, centers in JUMP 2.0, an

SRC program sponsored by DARPA, and TILOS AI Research

Institute (NSF CCF-2112665).

REFERENCES

[1] A. Vaswani et al., “Attention is all you need,” arXiv preprint
arXiv:1706.03762, 2017.

[2] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European Conference on Computer Vision (ECCV), 2020, pp. 213–229.

[3] M. M. Alam et al., “Recasting self-attention with holographic reduced
representations,” in International Conference on Machine Learning, 2023.

[4] H. Wang, Z. Zhang, and S. Han, “Spatten: Efficient sparse attention archi-
tecture with cascade token and head pruning,” ArXiv, vol. abs/2012.09852,
2020.

[5] W. Li et al., “Rawatten: Reconfigurable accelerator for window attention
in hierarchical vision transformers,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2023, pp. 1–6.

[6] T. Yang et al., “Dtqatten: Leveraging dynamic token-based quantization
for efficient attention architecture,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2022, pp. 700–705.

[7] S. Wang et al., “Linformer: Self-attention with linear complexity,” arXiv
preprint arXiv:2006.04768, 2020.

[8] N. Kitaev et al., “Reformer: The efficient transformer,” in International
Conference on Learning Representations, 2020.

[9] K. M. Choromanski et al., “Rethinking attention with performers,” in
International Conference on Learning Representations, 2020.

[10] Y. Xiong et al., “Nyströmformer: A nyström-based algorithm for
approximating self-attention,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 35, no. 16, 2021, pp. 14 138–14 148.

[11] J. Gosmann and C. Eliasmith, “Vector-derived transformation binding:
An improved binding operation for deep symbol-like processing in neural
networks,” Neural computation, vol. 31, no. 5, pp. 849–869, 2019.

[12] Y. Tay et al., “Long range arena: A benchmark for efficient transformers,”
in International Conference on Learning Representations, 2020.

[13] M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W. Keckler,
and W. J. Dally, “Fine-grained dram: Energy-efficient dram for extreme
bandwidth systems,” in 2017 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2017, pp. 41–54.

[14] G. C. Cardarilli et al., “A pseudo-softmax function for hardware-based
high speed image classification,” Scientific reports, vol. 11, no. 1, p.
15307, 2021.

[15] K. Chen et al., “Cacti-3dd: Architecture-level modeling for 3d die-stacked
dram main memory,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2012, pp. 33–38.

[16] N. Nangia and S. Bowman, “Listops: A diagnostic dataset for latent
tree learning,” in Conference of the North American Chapter of the
Association for Computational Linguistics: Student Research Workshop,
2018, pp. 92–99.

[17] D. R. Radev et al., “The acl anthology network corpus,” Language
Resources and Evaluation, vol. 47, pp. 919–944, 2013.

[18] A. Maas et al., “Learning word vectors for sentiment analysis,” in
Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, 2011, pp. 142–150.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 20:05:21 UTC from IEEE Xplore. Restrictions apply.

