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STATION: Gesture-Based Authentication
for Voice Interfaces

Sungbin Park , Xueqiang Wang , Kai Chen , Member, IEEE, and Yeonjoon Lee

Abstract—The popularity of smart home devices has led to
an increase in security incidents happening in smart homes.
A key measure to avoid such incidents is to authenticate
users before they can interact with smart devices. However,
current methods often require additional hardware. This article
proposes STATION, a gesture-based authentication system, an
effective gesture-based authentication method built on top of the
voice interfaces already available in these smart home devices,
without adding new hardware. STATION uses a gesture processing
pipeline that identifies Doppler-existing frames and detects the
direction of arrival of Reflection to authenticate users in low SNR
environments and at longer distances. Furthermore, regarding
the nature of gesture-based authentication, this system also
supports detecting user liveness, preventing replay and synthesis
attacks from remote attackers. The evaluation of STATION shows
high accuracy with a false acceptance rate (FAR) of 0.08% and
false rejection rate (FRR) of 3.10% for users within 1.5 m of the
device.

Index Terms—Acoustic sensing, device security, gesture-based
authentication, low cost sensors and devices, security and privacy,
sensor signal processing.

I. INTRODUCTION

THE PROLIFERATION of smart home devices has also
brought more security attacks targeting them. A key

feature to prevent such attacks is always to authenticate users
before they can actually use the devices. Due to the lack of an
authentication-friendly input interface, existing authentication
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solutions for smart home devices are often built on additional
hardware, such as a paired smartphone or a fingerprint sensor,
which presents usability issues when the hardware is not
nearby or runs out of battery, etc.

To address the potential issues, previous studies [1], [2], [3]
have explored the feasibility of using voice interfaces
(e.g., speakers and microphones) in challenge-response-based
authentication, given that voice interfaces are commonly
adopted by smart home devices. For example, W3C working
group [1] and Carlini et al. [2] discussed the concept of
audio CAPTCHAs where the challenge is composed of audio
data that is difficult for machines to understand but can be
easily recognized by humans. Diao et al. [3] proposed a
voice fingerprint-based method based on wake-up commands.
However, as evidenced by prior studies, the above methods are
vulnerable to replay attacks [4], [5], and attacks that are based
upon signal processing [6] and adversarial audio examples [7],
etc.

In this article, we refer to smart home devices that have
voice interfaces as VIF devices, such as smart speakers and
smart cameras. We propose STATION, a new authentication
method for the common VIF devices, through which VIF
device users can enter their authentication credentials using
hand gestures, similar to password- or PIN-based authenti-
cation methods. STATION works at a much further distance
(∼1.5 m) than previous solutions and achieves false accep-
tance rate (FAR) of 0.08% and false rejection rate (FRR) of
3.10% at that distance. It also proves to be robust against
remote attacks because of the challenges for attackers to
mimic the features with a single compromised device, e.g., the
movement and direction of the user’s hand.

Specifically, STATION is based on the ability of micro-
phones to detect human motion by measuring the Doppler
effect from reflected signals. Essentially, we assume that four
virtual buttons are placed in different directions around the
VIF devices, which the device user can push and pull by
hand to complete device authentication, just like she does
on the physical buttons. To implement the virtual buttons
in STATION, we first use the speaker on the smart device
to emit an ultrasound signal. The device user then makes
hand gestures with predefined push-then-pull (PTP) movement
on the virtual buttons. After that, microphones on-device
receive the reflected signal and analyze the Doppler effect.
In this step, we extract the Direction of Arrival (DoA) of
Reflection and Hand Movement from the received signal and
authenticate the users by verifying the sequence of hand
gestures.
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To authenticate device users in a noisy indoor environment,
STATION utilizes several new techniques. First, since the
buttons are located in different directions of the device, we
need to accurately identify the DoA of the reflected signals.
This is done by applying a sound source localization (SSL)
algorithm based upon GCC-PHAT-β, which can localize the
source of sound in a low signal-to-noise ratio (SNR) environ-
ment. Second, in addition to PTP gestures, users may make
redundant gestures and create noises when moving between
different buttons. Therefore, we must robustly separate the
PTP gestures from redundant gestures before we can determine
exactly which buttons are pressed. To address the problem,
we detect the signal frames with a strong Doppler effect (i.e.,
Doppler-existing frames) using a new density-based clustering
method based on the observation that the standard deviation
(STD) of Doppler-existing frames that are distinctive from
other frames.

In particular, STATION enhances security and privacy in
several ways. STATION recognizes the gesture with DoA of
Reflection which is extracted from time Difference of Arrival
(TDoA). This method effectively closes the door for remote
adversaries as it is challenging for the adversaries to mimic
the hand direction information. Even an adversary that can
compromise a smart speaker in the victim’s house and use the
speaker to synthesize adversarial signals would not be able to
mimic the hand movement information because of the presence
of TDoA.

We implemented the prototype of STATION using low-cost
hardware modules, including the Omnidirectional speaker and
MATRIX Voice. Next, we evaluated the effectiveness and
robustness of STATION by addressing three research questions.
First, what are the overall FAR and FRR of STATION (RQ1)?
Second, how robust is STATION to environmental noise and
how does it fare with different characteristics of end users
(RQ2)? Third, how does STATION compare to other authenti-
cation methods for smart home (or IoT) devices in terms of
common criteria such as deployability, usability, accessibility,
and security & privacy (RQ3)? Specifically, we answer the
first two research questions (RQ1 and RQ2) by enrolling
onsite participants to validate their gesture sequences in the
prototype under various settings. We address the third research
question (RQ3) empirically by comparing STATION to other
authentication methods based on a set of well-established
criteria from prior studies. The results indicate that STATION

is highly effective, with a FAR of 0.08% and a FRR of
3.10% in recognizing gesture sequences within a range of
1.5 m. It also demonstrates robustness and is less impacted
by environmental noise and human factors, such as height
and handedness. Moreover, compared to other authentication
methods, STATION potentially offers better deployability and
usability, primarily because it does not require the installation
and carrying of additional hardware. It is also more privacy-
preserving since the hand gestures used are analogous to
passwords rather than biometric data.

In summary, we make the following contributions.
1) We propose a new authentication method, STATION,

for smart home devices with voice interfaces (i.e., VIF
devices). Leveraging the motion detection capabilities

of voice interfaces, STATION generates highly usable
virtual buttons, enabling users to authenticate them-
selves using hand gestures. Also, STATION enhances the
security of smart home devices against known attacks,
including physical and remote attacks.

2) We implement a prototype of STATION on low-cost
and commercial smart devices. The evaluation on this
prototype shows that STATION can achieve a FAR of
0.08% and FRR of 3.10% with over 3,000 samples from
11 real participants, and is robust against environmental
noise and noise caused by human factors.

The remainder of this article is organized as follows.
Section II provides background knowledge of our research.
Appendix presents our online surveys about how users interact
with VIF devices. Section III introduces the system overview
of STATION. Section IV illustrates the system design and
implementation of STATION. Section V reports our evaluation
of STATION. Section VI discusses the limitation and future
work of this research, and Section VIII concludes this article.

II. BACKGROUND

Sound Navigation and Ranging (Sonar): Sonar is a tech-
nique that uses sound propagation to measure distance and
navigate. There are two types of Sonar. One is Active Sonar
which emits pulses of sound and listens and analyzes echoes
of the sound to extract features. The other is Passive Sonar,
which listens to the sound made by the target and analyzes it.
In STATION, we take advantage of Active Sonar: a VIF device
authenticates its users by emitting ultrasound and verifying
user gestures by analyzing reflected signals from the users’
hand (see Section III).

DoA: Acoustic source localization techniques determine the
source location of an acoustic signal, which is essential for
acoustic-based authentication. Since it is hard to measure
the exact location of a moving hand, we measure another
localization factor–the direction of the sound source, i.e., DoA.
There are typically two ways to calculate DoA. The first way
is the Multiple Signal Classification algorithm (MUSIC) [8].
MUSIC is based on the eigenvalue decomposition of the sensor
covariance matrix observed at an array. MUSIC decomposes
the spatial space into signal and noise subspaces with a
covariance matrix. Then, it calculates DoA with orthogonality
between noise and arrival vectors. The second way is the SRP-
PHAT [9]. SRP-PHAT first estimates the TDoA of the signals.
Then, it calculates the largest value of the sum of estimated
cross-correlation score corresponding to TDoA as DoA among
the predefined discrete points around the sensor array. In this
study, we detect the direction of reflected acoustic signals
using an approach based on SRP-PHAT, because it incurs less
computation overhead than MUSIC-based techniques [10] and
works well for wide-band signals.

TDoA: TDoA measures the difference between the time-of-
arrival (ToA) of signals, which is commonly used in real-time
locating systems. Given that it is challenging to accurately
calculate TDoA because of the spatial ambiguity [11], different
techniques have been proposed to estimate the TDoA. A
commonly used technique is generalized cross-correlation
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Fig. 1. Overview of STATION.

phase transform (GCC-PHAT) [12], which estimates the time
delay between a signal and a reference signal by identifying
the peak location of the cross-correlation between the signals.
The disadvantage of GCC-PHAT is that it whitens the impact
of the magnitude for each frequency bin and only focuses
on the phase information of the signals, which limits its
use to relatively low-noise environments [13]. To make the
technique work in high-noise (i.e., low SNR) environments,
GCC-PHAT-β [14] introduces a weighting factor to GCC-
PHAT to account for the magnitude for each frequency
bin.

III. STATION OVERVIEW

Stages of STATION: STATION is essentially a password-
like authentication method for VIF devices. It allows users to
input an authentication password by clicking a sequence of
virtual buttons in the form of hand gestures. Therefore, similar
to password-based authentication, STATION has two stages:
1) enrollment and 2) verification. Fig. 1 provides an overview
of these stages.

To begin using STATION, users must enroll in the hand
gestures during the out-of-box experience (OOBE) of their
VIF device or on the first boot after system flashing. Once
the user’s gestures are received, the VIF device will process
the gestures to extract the sequence of virtual buttons, which
is then encrypted and stored in the device’s internal storage.
Additionally, STATION supports the ability to change the
sequence. To do so, users simply need to enter their current
sequence by gesture and input the new sequence in the device’s
settings, similar to changing a password or pattern on a mobile
device [15].

In the verification stage, the user may authenticate himself to
the VIF device by entering the same sequence as the enrolled
one through his hand gestures. As shown in Fig. 1, the VIF
device may ask the user to authenticate under various situa-
tions according to its security needs, e.g., before performing
sensitive operations such as opening a smart lock or making
online purchases, after device restart, or if the device hasn’t
authenticated the user for more than 48 h [15], [16]. For such
cases, the VIF device may notify the user of the start of
the authentication process by blinking LEDs, or playing a
notification message via its speakers, e.g., “start authentication
by making gestures.”

Note that manufacturers can set the minimum length of
button sequence with their security policies, similar to forcing

the minimum length of the password [17]. Additionally, during
enrollment, STATION records the total time it takes for users
to press the virtual buttons. This information is used to set the
timeout criterion. If users make a mistake while entering their
authentication sequence during the verification stage, they will
need to wait until the timeout and press the whole buttons
again.

Challenges: There are several challenges that can affect the
accuracy, usability, and robustness of STATION.

1) Sensing Doppler Effect Reflected by Hand Gestures:
STATION distinguishes between different hand gestures
by evaluating the Doppler effect of the reflected signals
from the user’s hand. However, accurate sensing of
the Doppler effect from a distance is challenging due
to signal attenuation, which reduces the magnitude
of the shifted frequency. Also, the ultrasound emitted
by the embedded speakers has inconsistent frequency
magnitudes, leading to variations in the magnitude of
reflected signals. In addition, gestures made by different
users will also result in varying frequency shifts and
magnitudes. Therefore, existing methods [18], [19] that
rely on a static threshold to detect the Doppler effect
are not effective, and new methods need to be designed
to ensure accurate sensing of the Doppler effect (and
gesture identification).

2) Designing a Gesture That Balances Usability and
Accuracy: Slow and small hand movements cause
minor signal reflections, which reduces the accu-
racy of gesture identification of STATION. Fast and
big gestures result in more significant signal reflec-
tions, but users are difficult to make these kinds of
gestures. Therefore, it is important to design hand
gestures that can balance the accuracy and usability of
STATION.

3) Identifying Hand Gestures From Low SNR Signals: The
reflected signals that deliver hand gesture information
are of low SNR, e.g., mixed with emitted ultrasound and
noises from reverberation, etc. This will greatly affect
the accuracy of hand gesture identification, because a
high noise floor makes it difficult to differentiate the
gesture signals from noises. Therefore, more robust
methods are required to improve the handling of low
SNR signals.

Gestures, and Gesture Processing Pipeline: Similar to
password-based authentication that allows users to verify
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Algorithm 1 STATION Procedure Algorithm
Input: PTP Gestures
Output: Authentication State

procedure STATION

Signal sensing start
Emit acoustic signal
Record raw signal reflected by PTP gestures

Signal sensing end
Pre-processing start

Transforming the raw signal into frequency domain
Distinguishing Doppler-existing frame
Environment noise reduction
Signal emphasis

Pre-processing end
Button extraction start

Calculate DoA of Reflection
Filter PTP gestures
Button recognition

Button extraction end
if Phase is Enrollment then

Button Sequence DB ← Inputted sequence
Authentication State = Enrolled

else
if Inputted sequence == Enrolled sequence then

Authentication State = Pass
else

Authentication State = Reject
end if

end if
return Authentication State
end procedure

themselves by clicking a few keys (buttons) on screen, we
design a set of unique hand gestures using the concept of
virtual buttons. Essentially, we label different areas as virtual
buttons according to their relative positions (e.g., direction)
to the VIF devices, and hand gestures made in these areas
are considered pushing the corresponding virtual buttons. We
further define how to push virtual buttons using human-
friendly [20] and easily-detectable hand gestures–PTP gestures
(Section IV-A). For each enrollment and verification session,
we ask the user to make a PTP gesture to indicate the
base position of his hand (B-PTP), followed by gestures
for authentication (A-PTP). Leveraging the virtual button
concept and PTP gestures, the user can enter the password-
like sequence (i.e., the button sequence) into the VIF device,
and the sequence can be enrolled or verified in the VIF device
like a password.

As shown in Fig. 1 and Algorithm 1, supporting the
enrollment and verification of the above PTP gestures is a
pipeline that captures, analyzes, and identifies the gestures
from reflected signals of the user’s hand. Specifically, the
pipeline has three phases. The first phase is signal-sensing
phase. After the VIF device notifies the user to start the
authentication process, the embedded speaker on the VIF
device will actively and continuously send out acoustic signals

(until the authentication process is completed). The user will
make a sequence of PTP gestures (i.e., gestures to be enrolled
and for authentication) toward the VIF device. In this phase,
the microphone array in the VIF device will record the signals
reflected from the PTP gestures. An important decision made
in this phase is about the acoustic signals sent by the speaker:
we select a specific frequency range of inaudible sound to
minimize the impact on the user and design signals with low-
crest factor to make the signal resistant to environment noise
(Section IV-B).

The next signal preprocessing phase takes as input the
recorded signals and removes the noise irrelevant to hand
gestures using a series of techniques. A key observation is that
signals reflected from hand gestures usually have a frequency
shift (i.e., Doppler effect) compared to the signal emitted by
the embedded speaker. Therefore, we can first transform the
recorded signals into the frequency domain [using short time
Fourier transform (STFT)]. Then, for each frame, we can
determine whether it has the Doppler effect by distinguishing
the frequency shift patterns (Section IV-C). Those frames that
do not have the Doppler effect are considered noise frames.
Finally, we reduce the environmental noise by performing
spectral subtraction on the frequency domain signal, and
then we emphasize the signal. The outputs of the signal
preprocessing phase are Doppler signals with low noise. A
key challenge for previous studies [18], [19] that use static
threshold for identifying Doppler shift is that, from a relatively
further distance (e.g., 1.5 m), the magnitude of the Doppler
signals are much smaller than the noise signals (including the
emitted signals). To solve this problem, we design a new and
more robust method for identifying Doppler shift by clustering
the variation of frequency magnitudes for all signal frames
(Section IV-C).

The last phase of the pipeline is the button extraction phase.
In this phase, we first identify the signals that represent PTP
gestures by identifying pairs of the higher frequency shift (i.e.,
the shift caused by pushing toward the VIF device) and the
lower frequency shift (i.e., the shift caused by pulling from
the VIF device). The first identified PTP gesture is taken as
B-PTP, which indicates the base position (e.g., direction) of
the user’s hand. Next, the following A-PTP gestures are used
to determine which virtual buttons were pressed by calculating
their relative positions to the base position. The output of this
phase is a series of hand gestures represented by virtual button
presses.

The system in the VIF device is responsible for managing
the behaviors in both the enrollment and verification stages,
after extracting the button sequence. During the enrollment
stage, the VIF device saves the button sequence in its internal
storage. On the other hand, during the verification stage, the
VIF device verifies the identity of the user by comparing the
button sequence to the enrolled sequence. It is important to
note that while designing STATION, we primarily focused on
gesture processing pipelines rather than storing and verifying
the sequence. This is because the sequence used in STATION

is similar to a password, which can be addressed using
the common standards and practices that exist well in the
industry [15], [16], [21].
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Scope and Threat Model: This study aims to introduce
device authentication to common VIF devices available in user
households. These devices include voice assistants (VAs) such
as Alexa and Google Home, but also other devices that have
embedded speakers and microphone arrays, such as a smart
home robot.

1) Threats Taken Down by STATION: Many VIF devices
do not support user authentication due to them being
headless and thus difficult to apply authentication [22],
or the assumption that VIF devices in the households
are always used by trusted parties [23], [24]. However,
lack of authentication can create security and privacy
concerns given that burglars, which are in millions
each year [25], and other short-term visitors can freely
interact with the devices without notifying device own-
ers, e.g., asking the devices for sensitive information
and set up unwanted device schedules. STATION pro-
vides an effective solution for device owners to block
such unauthorized accesses. Some VIF devices have
started providing weak authentication, such as Voice
ID [26], which are reported to be vulnerable to remote
attacks that replay recorded or synthesized signals from
other compromised VIF devices [27], [28]. We propose
STATION to tackle this problem. On the one hand,
STATION allows users to “press” a set of virtual but-
tons using carefully designed hand gestures and uses
such button presses to verify the identity of the users.
This practice is similar to password- and pattern-based
authentication methods that require the user to enter
his credentials. We rely on the confidentiality of the
credentials (i.e., virtual button presses) rather than the
unique gesture signatures for authentication. On the
other hand, the inherent design of STATION also makes it
capable of determining the liveness of users: it is difficult
for remote attackers to spoof STATION, considering that
it is challenging to imitate hand position/movement and
direction information by signal synthesis without physi-
cal presence. STATION, with these advantages, becomes
effective in protecting the device even if it is stolen by
an adversary. Upon attempting to use the device, the
adversary (i.e., thief) must guess the correct sequence of
enrolled gestures, much like guessing a correct password
for device unlock. For example, a gesture sequence with
a length of n will have a “password space” of size
4n. This large space poses a significant challenge for
the adversary to guess, not to mention the other tactics
we can deploy to thwart guesses, such as limiting the
number or frequency of attempts like using exponential
backoff [15].

2) Other Assumptions: We assume that STATION is oper-
ating in indoor environments, and adversaries do not
have visibility to authentication gestures. We assume
that adversaries have enough knowledge and technical
capability to synthesize signals in order to target VIF
devices with remote attacks. In addition, we assume that
the devices are placed in houses following the common
placement guideline [29], e.g., at least 8 In from the
wall and not near the corner or beside noisy appliances

(which can block the signals that are emitted by or flow
into the smart home devices).

IV. STATION SYSTEM DESIGN

In this section, we elaborate on the design of STATION,
including the selection of hand gestures, signals, and the
pipeline to analyze reflected signals and identify hand gestures
from them.

A. Gesture Design

An authentication solution should provide easy ways for
device users to enter input and for devices to capture the
input. This requirement can easily be met by traditional
authentication solutions such as password and PIN but is
challenging for hand gestures, e.g., users may make hand
gestures that trigger very minor signal reflections, which
complicates gesture capturing for VIF devices. Therefore, we
need to design hand gestures that are not only easy for users
to make but also can be effectively captured by VIF devices.

To meet the above needs, we choose the common push-the-
pull (PTP) gestures. These gestures are human-friendly [20],
and commonly used in daily life, such as opening/closing
doors, using a gas pump, etc. Therefore, such gestures are easy
for users to make and require less effort to learn. Also, the
PTP gestures can introduce strong signal reflection, because,
according to (1), the faster the users’ hand moves toward VIF
devices, the larger the frequency shift in the reflected signals
(i.e., Doppler effect). Fig. 2(a)–(d) show a PTP gesture.

In this study, once the VIF devices indicate the start of
authentication (by playing a command or LED), the users
need to make a series of PTP gestures: a PTP gesture that
is used to tell the base position of his hand (B-PTP), and
followed by other gestures for authentication (A-PTP). The A-
PTP gestures can be made in different areas according to their
relative positions (e.g., direction) to the B-PTP gesture. We
call such areas the virtual buttons. As shown in Fig. 2(e)–(h),
there are four virtual buttons defined in STATION: Left-Top,
Left-Bottom, Right-Top, and Right-Bottom, which are located
in four distinctive directions from the B-PTP gesture.

B. Signal Design

During both gesture enrollment and verification, STATION

uses the embedded speakers of VIF devices to emit signals.
Then, the devices capture and analyze the reflected signals
for identifying hand gestures (i.e., active sonar). The signals
emitted are essential to the above steps and require careful
consideration. We need to ensure that the signals (and their
reflections) do not interfere with users’ normal use of VIF
devices and can be produced and recorded by common
speakers and microphones. Therefore, we select a frequency
range that represents inaudible sound to humans, i.e., from
17200 to 20200 Hz, similar to prior studies [30], [31].

We also apply a gap of 500 Hz between the peaks of the
signals. This is motivated by the maximum Doppler shift one
can make using his hand: according to the Doppler effect
equation (1), a 500 Hz gap is able to handle gestures with a
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Fig. 2. PTP gestures. (a) Push movement (profile view). (b) Pull movement (profile view). (c) Push movement (front view). (d) Pull movement (front view).
(e) Left-top. (f) Right-top. (g) Left-bottom. (h) Right-bottom.

maximum speed of over 4 m/s, which is the maximum speed
of most users’ gestures [32].

Further, we use wideband signals to handle the spatial ambi-
guity problem [33], and therefore improve the performance
of gesture localization. Also, we design the signals to have
low-crest factors. This is because a high-crest factor signal
makes more distortion (e.g., phase distortion and harmonics
distortion) than a low one, leading to a low SNR signal that
is hard to distinguish the gesture with noise [34]

�f = forigin − fDoppler = 2vobject

vsound − vobject
forigin. (1)

C. Gesture Processing Pipeline

As described in Section III, the microphone array of the VIF
devices will capture reflected signals from users’ hand gestures
(such as B-PTP and A-PTP gestures), and then the devices
analyze the signals to determine which gestures they represent.
These tasks require a gesture processing pipeline with multiple
phases: Preprocessing, Feature extraction, and Hand gesture
recognition. The Preprocessing phase transforms the signals
into the frequency domain, sets the adaptive threshold value
for sensing the Doppler signal with a B-PTP gesture, besides

extracts the Doppler signal when the user pushes-then-pulls the
virtual buttons. Then, the Feature extraction module extracts
DoA of Reflection and Hand Movement information from the
extracted Doppler signal. Finally, the Hand gesture recognition
module removes the noise from DoA of Reflection information
and identifies the gesture type while checking the validity with
Hand Movement information, and authenticates the user by
comparing the gesture sequence to the enrolled one.

Preprocessing: Detecting the hand gesture with the raw
reflected signal is challenging because of the noise made by
humans and other environmental factors, the signal emitted
by speakers of the VIF devices, and the reflections from
other stationary objects in the household, etc. Hence, we need
to process the signal to minimize the noise and emphasize
the Doppler signal reflected from the hand gestures. In this
section, we describe the preprocessing phase with three steps:
1) transforming the raw signal into the frequency domain;
2) distinguishing the Doppler-existing frame; and 3) environ-
ment noise reduction and signal emphasis.

1) Transforming the Raw Signal Into Frequency Domain:
In STATION, we leverage the frequency domain information
to analyze the Doppler signals. Specifically, we transform the
raw signals into the frequency domain information using the
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Fig. 3. Signal preprocessing. (a) Noise spectrum. (b) Doppler spectrum. (c) Doppler spectrum with noise. (d) Enhanced Doppler-bin.

STFT. Our sampling rate is set at 48 000 Hz, with a frame size
of 4096 and a hop size of 1024 - parameters that are commonly
used in other studies [30], [35] due to their suitability for
analyzing Doppler shifts made by human gesture. To detect
the frequency shifts more accurately, we utilize the Blackman
window as our window function as it minimizes the side-
lobe effect [36], thereby making the shifts more obvious. Note
that the processing is done frame by frame and is generic to
different types of VIF devices.

2) Distinguishing Doppler-Existing Frame: Sensing the
Doppler effect precisely is challenging as the magnitude of
the shifted frequency can vary with many factors, such as
signal attenuation, signal fluctuation, and the difference in
human body shape. Previous studies [18], [19] have addressed
this challenge by using static thresholds. However, such an
approach is less adaptive to the aforementioned factors and is
less effective in dealing with variations in distance or body
shape during gesture recognition.

To enhance the adaptiveness of STATION, we employ three
techniques: normalizing the frequency magnitudes, incorpo-
rating the STD of frequency magnitudes around the pilot
tone, and detecting the frames with Doppler shift with
DBSCAN [37]. Specifically, for each frame, we gather the
frequency magnitudes around the pilot tone and normalize
them using the pilot tone. From the normalized values, we
calculate the STD. We can then differentiate between frames
with and without a Doppler shift based on the differences in
their STD values since frames with a Doppler shift exhibit
higher STD values compared to those without a Doppler
shift. However, simply using the STD with a static threshold
is insufficient for STATION to be adaptive. Thus, we use
DBSCAN to cluster the frames based on the STD values.
Since DBSCAN identifies low-density samples as noise, we
can differentiate the frames with Doppler shift by identifying
the frames with STD values labeled as noise. For optimal
performance, we carefully select the minimum samples, taking
into account the size of the data (i.e., number of frames),
and set the epsilon value based on the k-distance average
method [38].

3) Environment Noise Reduction and Signal Emphasis: For
the identified D-frames, we need to remove noise further for
the purpose of accurate gesture recognition. Specifically, we
apply the spectral subtraction method to the signal–a common
method for removing noise in the frequency domain. We take
the non-Doppler spectrum as the environment noise spectrum
[Fig. 3(a)], and then subtract the noise spectrum from the
Doppler-existing spectrum [Fig. 3(c)]. If the result of the

above subtraction is negative, we set it to be the value of the
original spectrum multiplied by 0.005 (a treatment also used
in [39]). The Doppler signal after subtracting noise is shown in
Fig. 3(b). In the last step, we emphasize the Doppler spectrum
throughout the frame to make the Doppler signal more visible
to STATION [Fig. 3(d)].

Button Extraction: To determine the type of a gesture (i.e.,
which virtual button is pushed), we need to know the direction
of the gesture toward the VIF device and whether the gesture is
a PTP gesture or not. For this purpose, we need to extract two
pieces of information from the emphasized Doppler spectrum:
DoA of Reflection and Hand Movement. Below we elaborate
on how STATION extracts the information.

4) DoA of Reflection: In this study, we collect the direc-
tion of a user’s hand toward his VIF device in the
form of 〈elevation, azimuth〉 tuples, using sound localization
algorithms.

We calculate the DoA from the sum of the cross-correlation
score corresponding to fixed discrete points’ TDoA for
the microphone’s position. Discrete points embedded in the
virtual 3-D sphere around the VIF device represent the
direction vector that has x, y, and z-axis components in
radians from the sensing device. TDoA at the discrete point
x to microphones m1, m2 is calculated with τm1,m2(x) =
�fs([‖x− xm1‖ − |x− xm2‖]/c)	, where fs is the sampling
frequency of the system, c is the sound propagation speed, xm

is the position of mth microphone [9]

X̂s = arg max
x∈g

P(x). (2)

After calculating the TDoA of each discrete point, we
calculate the cross-correlation score corresponding to TDoA
from Doppler signals. A commonly adopted algorithm for
calculating the score is the GCC-PHAT algorithm, which
calculates the score from the spectral information between two
microphones [40]. However, this algorithm is not applicable to
our use case: it is designed to handle speech/sound in audible
frequencies with high SNR, while we use inaudible sound and
expect low SNR. To overcome the challenge, we adopt a new
algorithm proposed in [14] – GCC-PHAT-β that introduces a
weight factor in the PHAT filter to adjust the impact of spectral
magnitude information. In the implementation of STATION,
we set β to 0.5 since our experiments show that the β value
achieves a more accurate cross-correlation score from the
Doppler signals.

After getting the cross-correlation score, we run SRP-PHAT
to calculate the DoA from the sum of the scores for each
discrete point. As shown in (2), the algorithm calculates the
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Fig. 4. DoA of reflections. (a) Azimuth. (b) Elevation.

direction point corresponding to the max value of sums of the
cross-correlation, where P(x) is the result of the sum of the
cross-correlation of each microphone pair for the discrete point
X, g represents the set of all discrete points in the sphere, and
X̂s is the point of the sphere that corresponds to the maximum
value.

The above results in the x, y, and z-axis represent the
locations of the user’s hand over the virtual 3-D space
around the VIF device. It is relatively difficult to convert
them to specific gesture types. Therefore, we further translate
the above results into 〈elevation, azimuth〉 tuples. An issue
for determining hand directions is that due to the noise
and variance of human gestures, there are many outliers in
the elevation of azimuth even for the same signal frame
[as shown in Fig. 4]. Therefore, for each frame, we gather
all the tuples of elevation and azimuth data and use the
median value (which is more resistant to outliers than aver-
age) to represent the actual elevation and azimuth of the
frame.

5) Hand Movement: Given our gesture design, the only
valid gesture is the gesture with a PTP movement. Therefore,
we need to identify the PTP movement from the Doppler
signal. Specifically, the hand that approaches the VIF device
causes the frequency to increase (i.e., red-shift), while moving
away from the devices causes the frequency to decrease (i.e.,
blue-shift). Therefore, we can extract the PTP gestures by
calculating the number of changes in the sign (i.e., increase,
decrease) of the Doppler effect, and save the order of frames
with push movement and frames with pull movement, respec-
tively. For example, if the sign is changed from plus to minus,
we record this as PTP pair.

6) Button Recognition: For each pair of push-and-pull
frames, we extract the median data of elevation and azimuth
points (with the same method as above). Afterward, the
recognition of virtual buttons becomes trivial. In this study, we
first identify the elevation and azimuth of the B-PTP gesture
(the first PTP gesture in an authentication session), which is
represented using 〈Eb, Ab〉. Then, for the following A-PTP, we
extract the same direction information, noted as 〈Ea, Aa〉. We
compare both tuples to decide which virtual button is pressed.
For example, condition {Ea < Eb, Aa > Ab} indicates the Left-
Top button is pressed.

Fig. 5. Laboratory setup.

Fig. 6. Virtual buttons.

V. EVALUATION

In this section, we evaluate the prototype implementation
of STATION. Specifically, we aim to answer the following
research questions.

1) RQ1: What is the overall FAR and FRR of STATION?
2) RQ2: How robust is STATION to environmental noise

and to different characteristics of end users?
3) RQ3: How does STATION compare to other authentica-

tion methods for smart home (or IoT) devices in terms
of common criteria?

A. Evaluation Setup

Hardware: STATION requires two essential hardware mod-
ules to function, i.e., a speaker that emits inaudible sounds and
a microphone array with at least four microphones to capture
reflected signals for calculating DoA. To evaluate STATION,
we implemented a prototype using an Omnidirectional
speaker [41], a MATRIX Voice board (a radial array of seven
microphones), and a Raspberry Pi 4 [42] for processing signals
(see Fig. 6). In total, the modules cost us $185. It is worth
noting that the cost is for setting up the evaluation environment
and does not represent the additional cost that STATION

introduces to VIF devices since STATION leverages the speaker
and microphone array that are already present in the VIF
devices, i.e., Amazon echo has a far-field 7-microphone array.

We made the signal file by adding sine waves whose
frequencies correspond to the distance between peaks in our
signal (Section IV, Fig. 3). In addition, we played the signal
file using the Music application in the macOS Monterey after
connecting the speaker to Macbook.

Room Setup: To mimic the room settings of regular users,
we conduct all the experiments in a laboratory with a desk,
a table, three bookshelves, and several chairs (see Fig. 5).
We place the speaker on the table and ensure no objects are
blocking the signals of the speaker within 1m.
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Fig. 7. LED guidance. (a) Left-bottom guidance. (b) Left-top guidance. (c) Right-bottom guidance. (d) Right-top guidance.

TABLE I
INFORMATION OF THE PARTICIPANTS

Participants: To demonstrate the effectiveness of our
approach, we recruited 11 participants (labeled U1-U11) to
test STATION. We recorded the demographic information of
the participants, e.g., height, handedness, and gender, for
the purpose of evaluating the impact of such information
on STATION. Overall, the participants are in a height range
from 1.60 to 1.77 m. 10 participants (U1-U7, U9-U11) are
right-handed, and one participant (U8) is left-handed. Also, 3
participants (U9-U11) are female, and the other participants
are male. Lastly, the age of participants is from 16 to 27
(Table I).

To reduce unattended noises from each participant, we pro-
vided detailed guidance about how the participants can make
hand gestures. Specifically, before conducting the experiment,
we asked all the participants to view a tutorial video (similar
to the training videos that are commonly seen on new devices
and software) that shows how one may make gestures for
authentication, e.g., how to PTP the virtual buttons. Then,
we showed four sequences of gestures (labeled GS1-GS4)
and displayed them to the participants via the LED on the
MATRIX Voice board (see Fig. 7). The first sequence (GS1)
consists of three gestures (i.e., Left-Bottom, Left-Bottom,
Right-Bottom). The second sequence (GS2) consists of three
gestures (i.e., Right-Top, Right-Top, Right-Bottom). The third
sequence (GS3) consists of three gestures (i.e., Left-Bottom,
Left-Bottom, Right-Top). The last sequence (GS4) consists of
three gestures (i.e., Left-Top, Right-Top, Right-Top). A B-PTP
gesture should be made first when the participant is asked to
make a gesture sequence.

Our institute granted an IRB exemption for this evaluation
since we did not collect or record any sensitive or personally
identifiable information from the participants.

Fig. 8. FAR and FRR over various conditions. (a) Overall. (b) Over genders.
(c) Over height ranges. (d) Over handedness groups.

B. RQ1: Overall FAR and FRR

We used two metrics to evaluate the accuracy of STATION:
1) FAR and 2) FRR. Specifically, FAR measures how likely
can STATION accidentally take an incorrect gesture sequence
as the enrolled sequence, and FRR measures how often
a correct gesture sequence is classified as different to the
enrolled sequence.

Specifically, we asked the participants to make hand ges-
tures at different distances to the VIF device, i.e., 0.5, 1.0, 1.5,
and 2.0 m. The participants make each enrolled gesture (GS1-
GS4) 10 times, which leads to 440 authentication attempts
for each distance (i.e., 4 gestures * 10 times * 11 partic-
ipants). In selecting the number of authentication attempts
and participants, we refer to other gesture-based authentication
research [43] and gesture recognition research [44]. We count
the number of successful authentication attempts and report
the FRR of each distance as 1 - # success attempts / 440.
As shown in Fig. 8(a), STATION can process correct gesture
sequences at pretty low rejection rates, with a 0.45, 0.91, and
7.93% FRR at the distance of 0.5, 1.0, and 1.5 m, respectively.

To measure FAR, we randomly sampled the other gesture
sequences with three gestures other than the enrolled gesture.
We asked the participants to make 10 incorrect gestures for
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Fig. 9. Setting to test impact of reverberation. (a) 10 cm apart from the wall. (b) Overall setting. (c) STATION with small objects. (d) Different furniture
density room.

each enrolled gesture, which also leads to 440 authentication
attempts for each distance. We count the number of successful
authentication attempts and report the FAR as # success
attempts / 440 for each distance. The evaluation results indi-
cate that STATION achieves a rather low FAR when provided
with random and incorrect gesture sequences. For example,
the FAR at a distance of 0.5 m is 0.00%, the FAR at a distance
of 1.0 m is 0.23%, and the FAR at a distance of 1.5 m is
0.00%.

In the evaluation, we did not notice significant differences
of FAR or FRR among different enrolled gestures and par-
ticipants. Also, the FRR of STATION increases significantly
to as high as 80.00%. This is due to the incapability to
capture far-field signals using the microphone array available
on the MATRIX Voice board. Interestingly, the FRR does not
increase significantly at 1.5, which is the distance the users feel
comfortable interacting with smart speakers (see our survey in
Section A).

C. RQ2: Robustness of STATION

Robustness to Environmental Noises: To evaluate whether
our approach is robust to environmental noises, we measured
the FAR and FRR of STATION under several noisy settings, in
the presence of reverberation and small objects, with different
furniture densities and external noise levels. Specifically, we
measured 80 authentication trials (i.e., 20 times for each
gesture sequence with 10 correct sequences and 10 incorrect
sequences) at 1∼1.5 m, the comfortable distance, which users
can take tradeoff for authentication, to users in our survey
(Section A).

1) Impact of Reverberation From Walls: To test the impact
of reverberation, we placed the speaker 20, 10 cm from
the wall [Fig. 9(a)] and evaluated the FRR of STATION

by making gestures at 1 m from the speaker [Fig. 9(b)].
We noticed that the FRR increases significantly from
1.25% for the normal use case to 72.50% for the 10
cm reverberation setting. However, at the manufacturer’s
minimal recommendation distance [29], 20 cm reverber-
ation setting, the FRR did not increase much, i.e., from
1.25% to 2.5%.

2) Impact of Reverberation From Small Objects: In addition
to walls, reverberation can also be caused by small
objects. Therefore, we placed small objects of different
sizes and textures at 0.3 m from the speaker [Fig. 9(c)],

and evaluated the FAR and FRR of STATION by making
gestures at 1m from the speaker. The result suggests
that the impact of small objects is minimal, with only a
3.75% of increase FRR and 0.31% of decrease FAR.

3) Impact of Different Furniture Density: To measure how
different furniture density impacts STATION, we repeat
the evaluation with a 1m distance with objects such as a
sofa, TV, recliner, and air purifier in a room [Fig. 9(d)].
It’s worth noting that we did not place large objects
that are larger than the smart speaker in between the
smart speaker and the user, as it is obvious that the
system would not work without line-of-sight. Then, we
conducted the experiment sitting on the sofa at 1m from
the speaker. The FRR does not increase even if there
were many furniture and appliances. The result suggests
that there is no impact on furniture density.

4) Impact of Noise: To evaluate how noise impacts the
system, we design the experiment referring to compara-
tive noise level [45]. we repeat the evaluation of correct
and incorrect gestures with a 1m distance with three
noise levels; 50 dB without music (only environmental
noise), and 70 dB with music (environmental noise+
music) within 0.3 m. The result indicates that STATION

achieves satisfying results on different noise levels, with
a 1.25 and 5.00% FRR for noise levels 50 and 70 dB.

Robustness to User Characteristics: We grouped partici-
pants by sex, height, and handedness. Then, we analyze the
result by comparing the FAR and FRR between groups. We
used the same data collected for evaluating robustness to
noises here.

1) Impact of Height: To check the impact of height, we
divide the users into two groups: a) from 160 to 170 cm
and b) from 170 to 177 cm. There were five participants
in the first group and six in the second group. The result
is shown in Fig. 8(c). The differences in the average
FRR of all gesture sequences are 0.08, 0.75, 2.89, and
10.08% at 0.5, 1.0, 1.5, and 2.0 m. The result shows that
height does not have a significant impact on the FAR
and FRR of gestures ∼1.5 m, at least in the range of
160 to 177 cm.

2) Impact of Gender: To check the impact of gender, we
divide the users into the male group and the female
group. Given that there are three participants in the
female group, we chose three male participants ran-
domly to make the number of participants in each group
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similar. The differences in the average FRR of all gesture
sequences are 0.83, 1.67, 0.83, and 21.66% at 0.5, 1.0,
1.5, and 2.0 m. So, there is no significant impact on the
average FRR of all gesture sequences ∼1.5 m.

3) Impact of Handedness: To check the impact of hand-
edness, we divide the users into the right-handed group
and the left-handed group. Given that there is only one
participant in the left-handed group, we choose two
right-handed participants randomly to make the number
of participants in each group similar. The differences
in the average FRR of all gesture sequences are 0.00,
1.25, 3.75, and 6.25% at 0.5, 1.0, 1.5, and 2.0 m.
So, there is no significant impact on average FRR of
all gesture sequences ∼1.5 m. The result shows that
handedness does not have a significant impact on the
FRR of gestures.

D. RQ3: Comparing STATION With Other Methods

In this section, we first select several recently proposed
authentication methods designed for VIF devices and compare
STATION to them based on a series of criteria proposed
by prior research studies. Then, we compare the entropy
of STATION with a set of general-purpose authentication
factors to establish the strength of STATION relative to these
authentication factors.

Comparing STATION to Other Authentication Methods for
VIF Devices: We conducted a comparison of STATION with
other authentication methods, using a set of criteria (C1–
C20) inspired by Stephenson et al. [46]. These criteria cover
various dimensions, including usability, deployability, security
& privacy, and accessibility. In this comparison, we also
followed the criteria of satisfaction (e.g., Full, Quasi, and
No) in Stephenson et al. [46], by empirically evaluating these
authentication methods.

Specifically, we compared STATION to voice-based methods
(e.g., VocalPrint [47] and 2MA [48]), gesture-based methods
(e.g., Shen et al. [43], TwistIn [49], and HandLock [35]). We
also compared STATION to PIN since STATION was designed
to support virtual buttons similar to PIN. Our comparative
study, as shown in Table III, highlights the main strengths of
STATION stemming from the fact that it does not necessitate
additional hardware and its flexibility to support re-enrollment
in new hand gesture sequences. For instance, STATION can be
readily implemented on VIF devices (C2) without the need
for any additional hardware, and users do not have to carry
authentication hardware around (C9). Moreover, STATION

eliminates the necessity of storing users’ biometric data and
offers the flexibility to easily change authentication credentials
(C19). Additionally, STATION does not frequently cause errors
as demonstrated by its low FAR and FRR (C10, as evaluated
in Section V-B).

Comparison of Entropy to General-Purpose Authentication
Methods: Entropy analysis is a common method used to esti-
mate the strength of an authentication method. In this study, we
compared the entropy of STATION to that of both knowledge-
based authentication methods, including password [50] and

TABLE II
ENTROPY OF VARIOUS AUTHENTICATION METHODS

PIN [51], as well as biometric-based authentication meth-
ods, including methods using keystroke [52], iris [53], [54],
face [55], finger vein [56], fingerprint [57], and pupillom-
etry [58].1 The entropy of knowledge-based authentication
methods is determined using Shannon entropy, expressed
as H(x) = −�iP(xi) log2 P(xi), where P(x) represents the
distribution of a variable x. We determine the entropy of
STATION using this entropy as well, since STATION is essen-
tially a variant of password-based authentication. Since users
of STATION can choose any sequence of the four virtual
buttons as a password, STATION provides an entropy of
2 ∗ n bits, given that a sequence of length n is used. The
Shannon entropy cannot be applied to biometric-based authen-
tication methods, as it disregards intrauser variability and tends
to overestimate biometric information [58]. Therefore, the
entropy of biometric-based authentication methods is based
on relative entropy, which quantifies the extent to which
the distribution of a single user’s biometric features differs
from that of the population. This relative entropy is measured
using Kullback-Leibler Divergence (KLD), where K(x) =
�iP(xi) log2 (P(xi)/Q(xi)), with P(x), Q(x), and x representing
the feature distribution of the target user, that of the reference
set, and the feature space, respectively.

Table II shows the entropy comparison of STATION with
other authentication methods. Specifically, when n = 6, the
entropy of STATION is lower than that of some biometric-
based authentication methods, as demonstrated in [54], [55],
[57], and [58]. However, the advantage of STATION is that
it reuses the common voice interfaces within VIF devices,
rather than relying on extra hardware such as iris or fingerprint
sensors. Additionally, when n = 6, the entropy of STATION

authentication falls between that of a 4-digit and a 6-digit
PIN, which are commonly supported authentication methods
in devices with a display [59], [60], [61], [62], [63]. Therefore,
STATION has the potential to attain comparable security on
VIF devices to these real-world authentication methods used
by commercial headful devices.

E. System Performance

To assess the performance of STATION, we conducted two
measurements. First, we measured the time taken for prepro-
cessing, and second, we analyzed the time taken for button

1We could not compare STATION‘s entropy with the authentication methods
in Table III because calculating entropy for those methods requires access to
their code and models, which are not publicly available.
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TABLE III
COMPARISON BETWEEN STATION AND OTHER METHODS

extraction. To evaluate the system, we gathered 20 samples
and measured the time taken in each phase. The average time
for preprocessing was 1.06 ms, while the average time for
button extraction was 43.54 ms. Therefore, the average total
latency was 44.60 ms. These results were calculated using a
Raspberry Pi 4, which has specifications similar to those of
common VIF devices.

VI. DISCUSSION

There are two typical types of security threats targeting
VIF devices: 1) adversaries performing unauthorized physical
accesses to VIF devices or 2) remote attacks conducted by
adversaries via other compromised devices using techniques
such as signal replay and synthesis. Previous studies [30], [64]
have proposed methods for checking users’ physical presence
at VIF devices using liveness detection. While these methods
help mitigate the second threat, they are unable to address the
first. In this study, we utilize sequences of hand gestures (or
virtual button clicks) as authentication passwords. As long as
these passwords remain confidential and unknown to attackers,
STATION helps mitigate both security threats.

STATION recognizes hand gestures by measuring the hand
direction and movement features from the Doppler signal. This
approach is limited in cases where the gestures are compli-
cated, and the direction features are subtle. To complement
this, we only allow hand gestures that are composed of a
predefined set of pushing-then-pulling virtual buttons (Fig. 2).
Additionally, while we have demonstrated the effectiveness of
STATION across various environmental noises and user char-
acteristics, we acknowledge that the evaluation may not cover
all potential noises and may not be entirely representative of
all user groups. To evaluate the capability of STATION in real-
world and large-scale applications, we may need to perform an
evaluation with a more diverse and larger set of participants.

VII. RELATED WORK

In this section, we discuss the authentication methods
applicable to voice interfaces, i.e., voice- and gesture-based
authentication. We further introduce related acoustic-based
hand gesture recognition methods.

Voice-Based Authentication: Voice-based authentication has
drawn attention from both academia [2], [3], [47], [48] and
industry [65], [66]. For example, Carlini et al. [2] described
the use of audio CAPTCHA system as a challenge-response
authentication method. Diao et al. [3] proposed to authenti-
cate users of Google Search app with voice fingerprinting.
VocalPrint [47] supports user authentication by analyzing the
vocal vibrations of voice commands. 2MA [48] develops a
more secure authentication method with two microphones
using DoA techniques. Compared to these studies that process
voice data, STATION authenticates users by analyzing the
Doppler signal reflected from the users’ live hand gestures,
which is more resistant to replay attacks, and hidden/inaudible
voice attacks, etc.

Gesture-Based Authentication: Prior studies discussed
gesture-based authentication systems for different devices,
e.g., smartphones [67], [68], smart speakers [35], and smart-
watches [43], [49], [69]. For example, Hong et al. [67]
proposed to implement a motion gesture authentication system
using the accelerometer of smartphones. TwistIn [49] presents
to authenticate users by analyzing the motion data captured
by the device (which the users authenticate to) and a smart-
watch. Lewis et al. [69] developed a real-time authentication
system with the accelerometer and gyroscope of smartwatches.
Similarly, Shen et al. [43] implemented a hand-waving-based
unlocking system using accelerometer data.

Most closely related to our research is HandLock [35],
which also leverages hand gestures to authenticate device users
with built-in microphones. However, HandLock applies its
analysis to acoustic signals to extract gesture fingerprints. As
a result, it is highly sensitive to SNR and only functions
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effectively within a very short range (approximately 30 cm).
In this study, we do not extract gesture fingerprints, but rather
identify hand gestures representing a predefined set of virtual
buttons (or password) using algorithms that are more robust
to low SNR settings, such as GCC-PHAT-β and SRP-PHAT.
This enables STATION to capture hand gestures over a greater
distance (up to 1.5 m, as detailed in Section V). Additionally,
HandLock utilizes arm acceleration from reflected signals
but does not determine the signal’s origin (i.e., hand direc-
tion). Therefore, compared to STATION, HandLock is unable
to detect remote attacks that exploit signal replay and
synthesis.

Acoustic-Based Gesture Recognition: The problem of recog-
nizing hand gestures from acoustic signals has been discussed
on different fronts. First, prior studies [44], [70], [71] explored
methods to track fingers or gestures using the orthogo-
nal frequency divison multiplexing (OFDM) signal. Second,
some studies [72], [73], [74], [75], [76] proposed to use
the frequency modulated continuous wave (FMCW)-based
methods to recognize hand gestures. Additionally, other stud-
ies [18], [19], [32], [77] collected a variety of features
corresponding to the Doppler effect for the purpose of rec-
ognizing user gestures. Especially, there were studies that
achieved room-scale sensing [70], [76], they are 2-D-based
approaches. Given that STATION utilizes the 3-D information
to determine the pressed virtual button, these works are not
fit our interest. Furthermore, while our study is also built
upon the Doppler effect, we utilize several algorithms (e.g.,
sound localization, and density-based clustering on Doppler-
existing frames) to achieve robust hand gesture detection even
in the low SNR settings and at a further distance to the
devices.

VIII. CONCLUSION

In this article, we present STATION, a gesture-based user
authentication system, which recognizes the gesture by ana-
lyzing the Doppler signal reflected from the user’s hand. We
design and apply new techniques, such as density-based clus-
tering and DoA of Reflection, to analyze the reflected signals
and extract hand gestures from the signals. Using STATION,
device users can prevent unauthorized accesses to their devices
from both local and remote adversaries (e.g., signal replay and
synthesis attacks). We implemented a prototype of STATION

using low-cost voice interfaces and evaluated its effectiveness
through onsite participants. The evaluation results show that
STATION is resistant to changes of human factors, works well
in the low SNR environment, and is highly accurate (i.e., FAR
of 0.08% and FRR of 3.10% for ∼1.5-m distance between the
users and devices).

APPENDIX

USER PERCEPTIONS TO STATION

We also conducted the surveys to understand VIF
device users’ concern about the security in using it and
design STATION closer to real-world requirements (e.g., using
distance). So, we asked the participants about the user habits,
recognition of security, enhancement of security of the smart

home devices, and convenience of STATION. We gathered
229 participants’ responses from SurveyMonkey [78] with
carefully designed questions (in the Appendix). The survey
result provided us that 72.0% of online survey participants feel
STATION is convenient and willing to take a tradeoff coming
within 1.0∼1.5 m for authentication.

We conducted a user study with a group of online par-
ticipants to understand VIF device users’ security concerns
and design STATION that meets real-world requirements.
Specifically, the user study mainly focuses on three aspects:
1) The types of smart home devices used by users and the
number of devices with voice interfaces; 2) How users interact
with voice interfaces; 3) Whether users feel comfortable using
gesture-based authentication solutions, and their perceptions of
STATION. Results collected from the user study confirmed that
users have smart devices with voice interfaces, feel it necessary
to authenticate such devices for security, and STATION meets
their expectations for usability and security.

Design of User Study: The study contains 13 questions
grouped into four categories. In the first category, we asked
users what types of smart devices they have (Q1), e.g., smart
speakers and cameras, how many devices they have in total
(Q2), and how many devices have voice interfaces (Q3), i.e.,
speaker and microphone.

The second category of questions focuses on collecting
users’ habits of interacting with the voice interfaces, such as
how long they have owned and used the devices with voice
interfaces (Q4), where they usually use the devices (Q5), and
how far away (e.g., <0.5, 0.5–1.0 m, 1.0–1.5 m, 1.5–2.0 m,
>2.0 m) they interact with the voice interfaces (Q6), etc.

We design the third category of questions to under-
stand users’ security expectations of smart devices and their
perceptions of gesture-based authentication like STATION.
Specifically, we first ask users that own smart devices whether
they are concerned about device security, using a 0-10 score
where ten means strongly concerned and 0 means not con-
cerned at all (Q7). We then present STATION to users via
text descriptions and screenshots. We ask whether the virtual
buttons design of STATION is difficult to learn, using a score
between 0-10 where 10 means very difficult and 0 means
not difficult at all (Q8). We also ask users whether STATION

provides a convenient method for device authentication (a
10 score means extremely convenient, and 0 means very
difficult to use) (Q9). Afterward, we ask users whether they
would like to come within 1.0 to 1.5 m of the smart devices
for device authentication (Q10). In the end, we ask users, if
STATION is deployed to their devices, how often they would
like to use it.

Finally, we collect the demographic information of the
participants, such as their age, gender, and highest education
(Q11-Q13). Such information allows us to evaluate the
overall perceptions of the general public. Note that we
do not collect any personally identifiable information from
the questions. A detailed list of questions is shown in
Table IV.

To ensure the reliability of the survey, we carefully designed
the questions and conducted a pilot study to enhance the clarity
of the questions and assess the consistency of participants’
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TABLE IV
ONLINE SURVEY QUESTIONS

responses. One of the major challenges we encountered
in designing the questions was social desirability bias. To
mitigate this bias, we employed indirect questioning [79].
Specifically, we used indirect questions when inquiring about
preferences or feelings (e.g., Q7, Q8, Q9, Q10).

In the pilot study, we conducted a survey with a group of
10 participants recruited through social media postings. All
participants were graduate students and faculty members aged
between 22 and 37. Our objective was to assess the clarity
of each question, so we asked participants to provide feed-
back on the clarity of each question through text responses.
Additionally, we provided two survey versions, with the order
of the questions shuffled, to evaluate response consistency.
Based on our findings, we reflected on areas for improvement
in the questions, such as the use of ambiguous pronouns and
excessive reliance on professional terms. We did not observe
any notable differences in responses between the two shuffled
versions.

Then, we anonymously conducted the massive user study
on Survey Monkey [78] using the finalized questions from
December 1, 2022, to December 8, 2022. We target partici-
pants that are of age 18 or above, in the United States, and have
at least one smart home device. We awarded each participant
4.87 USD for completing the study.

Results and Findings: We received a total of 229 valid
responses, with 118 from female participants and the rest
from male participants. Most participants are between 21
to 59 in age (74.7%) and have a high school or higher
degree (96.1%). From the valid responses, we summarize the
following findings.

1) Almost all participants have at least one smart home
device with voice interfaces. According to Q1, smart
speakers are among the most popular smart home
devices that support voice interfaces (i.e., speakers and
microphones), with 88.2% (202 out of 228) of partic-
ipants owning at least one smart speaker. In addition,

39.9% of the participants own other smart home devices,
such as smart cameras, smart locks, etc. On average,
each participant has 1.62 smart speakers installed in
his/her home.

2) Users typically interact with voice interfaces at close
range (<2 m) in their private space. In practice, most
participants issue commands to voice interfaces at close
range, likely due to the short-range supported by the
hardware: 71.8% of smart speaker users (0–50 cm,
5.45%, 50 cm–1 m, 21.29%, 1–1.5 m, 25.25%, 1.5–
2 m, 19.80%) interact with their devices within 2 m.
Additionally, almost all (88.6% in smart speakers, 83.7%
other devices) participants use their devices in private
spaces (such as bedrooms) rather than public spaces.
This aligns with our assumption that STATION can be
applied to most devices without being physically com-
promised, assuming that other members of the family
are benign.

3) A significant portion of participants are concerned
about the security of their smart home devices, and
most participants feel that STATION (i.e., gesture-based
authentication) is a convenient method to secure their
devices. The answers to Q7 indicate that many partic-
ipants are concerned about the security of their smart
home devices, with an average score of 5.5. After
showing them STATION, most of the participants feel
that the gestures designed in STATION are convenient to
users (with an average score of 6.8, Q9). Additionally,
76.0% of participants are willing to come within 1.0 to
1.5m of their devices in order to get the security feature
– device authentication using STATION.
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[42] “Tech specs: Elérhető,” Raspberry pi. 2024. [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-4-model-
b/specifications

[43] C. Shen, Z. Wang, C. Si, Y. Chen, and X. Su, “Waving gesture analysis
for user authentication in the mobile environment,” IEEE Netw., vol. 34,
no. 2, pp. 57–63, Mar./Apr. 2020.

[44] R. Nandakumar, V. Iyer, D. Tan, and S. Gollakota, “FingerIO: Using
active sonar for fine-grained finger tracking,” in Proc. CHI Conf. Human
Factors Comput. Syst., 2016, pp. 1515–1525.

[45] “Comparative examples of noise levels.” IAC Acoustics. 2017. [Online].
Available: https://www.iacacoustics.com/blog-full/comparative-
examples-of-noise-levels

[46] S. Stephenson, B. Pal, S. Fan, E. Fernandes, Y. Zhao, and R. Chatterjee,
“SOK: Authentication in augmented and virtual reality,” in Proc. IEEE
Symp. Security Privacy (SP), 2022, pp. 267–284.

[47] H. Li et al., “VocalPrint: Exploring a resilient and secure voice
authentication via mmWave biometric interrogation,” in Proc. 18th Conf.
Embedded Netw. Sens. Syst., 2020, pp. 312–325.

[48] L. Blue, H. Abdullah, L. Vargas, and P. Traynor, “2MA: Verifying voice
commands via two microphone authentication,” in Proc. Asia Conf.
Comput. Commun. Security, 2018, pp. 89–100.

[49] H.-M. C. Leung, C.-W. Fu, and P.-A. Heng, “TwisTin: Tangible authenti-
cation of smart devices via motion co-analysis with a smartwatch,” Proc.
ACM Interact., Mobile, Wearable Ubiquitous Technol., vol. 2, no. 2,
pp. 1–24, 2018.

[50] D. Wang, H. Cheng, P. Wang, X. Huang, and G. Jian, “Zipf’s law in
passwords,” IEEE Trans. Inf. Forensics Security, vol. 12, pp. 2776–2791,
2017.

[51] D. Wang, Q. Gu, X. Huang, and P. Wang, “Understanding human-chosen
pins: Characteristics, distribution and security,” in Proc. ACM Asia Conf.
Comput. Commun. Security, 2017, pp. 372–385.

[52] N. Sae-Bae and N. Memon, “Distinguishability of keystroke dynamic
template,” PLoS ONE, vol. 17, no. 1, 2022, Art. no. e0261291.

[53] Y. Sutcu, E. Tabassi, H. T. Sencar, and N. Memon, “What is biometric
information and how to measure it?” in Proc. IEEE Int. Conf. Technol.
Homeland Security (HST), 2013, pp. 67–72.

Authorized licensed use limited to: University of Central Florida. Downloaded on August 21,2024 at 22:23:31 UTC from IEEE Xplore.  Restrictions apply. 



PARK et al.: STATION: GESTURE-BASED AUTHENTICATION FOR VOICE INTERFACES 22683

[54] R. Youmaran and A. Adler, “Measuring biometric sample quality in
terms of biometric feature information in iris images,” J. Electr. Comput.
Eng., vol. 2012, p. 22, Jul. 2012.

[55] A. Adler, R. Youmaran, and S. Loyka, “Towards a measure of biometric
feature information,” Pattern Anal. Appl., vol. 12, no. 3, pp. 261–270,
2009.

[56] V. Krivokuca, M. Gomez-Barrero, S. Marcel, C. Rathgeb, and
C. Busch, “Towards measuring the amount of discriminatory information
in finger vein biometric characteristics using a relative entropy estima-
tor,” in Handbook of Vascular Biometrics. Cham, Switzerland: Springer,
2020, p. 507.

[57] K. Takahashi and T. Murakami, “A measure of information gained
through biometric systems,” Image Vis. Comput., vol. 32, no. 12,
pp. 1194–1203, 2014.

[58] H. Zhu, M. Xiao, D. Sherman, and M. Li, “SoundLock: A novel
user authentication scheme for VR devices using auditory-pupillary
response,” in Proc. NDSS, 2023, pp. –18.

[59] “How to find your pin code.” 2022. [Online]. Available:
https://www.samsung.com/sg/support/tv-audio-video/how-to-find-your-
pin-code/

[60] “How to set a screen lock on my device?” 2023. [Online]. Available:
https://www.sony-asia.com/electronics/support/articles/SX671401

[61] “Reset your meta quest pin.” 2023. [Online]. Available:
https://www.meta.com/en-us/help/quest/articles/accounts/account-
settings-and-management/reset-oculus-pin/

[62] “Use a passcode with your iPhone, iPad, or iPod touch.” 2024. [Online].
Available: https://support.apple.com/en-us/HT204060

[63] “Set screen lock on an android device.” 2024. [Online]. Available:
https://support.google.com/android/answer/9079129

[64] Y. Meng et al., “Your microphone array retains your identity: A robust
voice liveness detection system for smart speakers,” in Proc. 31st
USENIX Security Symp. (USENIX Security), 2022, pp. 1077–1094.

[65] “Teach Google assistant to recognize your voice with voice match.”
2024. [Online]. Available: http://surl.li/hrczg

[66] “Aware voice authentication.” 2024. [Online]. Available:
https://www.aware.com/voice-authentication/

[67] F. Hong, M. Wei, S. You, Y. Feng, and Z. Guo, “Waving authentication:
Your smartphone authenticate you on motion gesture,” in Proc. 33rd
Annu. ACM Conf. Extended Abstracts Human Factors Comput. Syst.,
2015, pp. 263–266.

[68] Y. Song and Z. Cai, “Integrating handcrafted features with deep
representations for smartphone authentication,” Proc. ACM Interact.,
Mobile, Wearable Ubiquitous Technol., vol. 6, no. 1, pp. 1–27, 2022.

[69] A. Lewis, Y. Li, and M. Xie, “Real time motion-based authentication
for smartwatch,” in Proc. IEEE Conf. Commun. Netw. Security (CNS),
2016, pp. 380–381.

[70] W. Mao, M. Wang, W. Sun, L. Qiu, S. Pradhan, and Y.-C. Chen, “RNN-
based room scale hand motion tracking,” in Proc. 25th Annu. Int. Conf.
Mobile Comput. Netw., Oct. 2019, pp. 1–16.

[71] N. Zhu, H. Chen, and Z. Yang, “Fine-grained multi-user device-free
gesture tracking on today’s smart speakers,” in Proc. IEEE 18th Int.
Conf. Mobile Ad Hoc Smart Syst. (MASS), Oct. 2021, pp. 99–107.

[72] H. Chen, F. Li, and Y. Wang, “EchoTrack: Acoustic device-free hand
tracking on smart phones,” in Proc. IEEE INFOCOM Conf. Comput.
Commun., May 2017, pp. 1–9.

[73] A. Wang and S. Gollakota, “MilliSonic: Pushing the limits of acoustic
motion tracking,” in Proc. CHI Conf. Human Factors Comput. Syst.,
May 2019, pp. 1–11.

[74] D. Li, J. Liu, S. I. Lee, and J. Xiong, “FM-track: Pushing the limits of
contactless multi-target tracking using acoustic signals,” in Proc. 18th
Conf. Embedded Netw. Sens. Syst., Nov. 2020, pp. 150–163.

[75] D. Li, J. Liu, S. I. Lee, and J. Xiong, “LaSense: Pushing the limits
of fine-grained activity sensing using acoustic signals,” Proc. ACM
Interact., Mobile, Wearable Ubiquitous Technol., vol. 6, no. 1, pp. 1–27,
2022.

[76] D. Li, J. Liu, S. I. Lee, and J. Xiong, “Room-scale hand gesture
recognition using smart speakers,” in Proc. SenSys, 2022, pp. 462–475.

[77] E. A. Ibrahim, M. Geilen, J. Huisken, M. Li, and J. P. de Gyvez, “Low
complexity multi-directional in-air ultrasonic gesture recognition using
a TCN,” in Proc. Design, Autom. Test Europe Conf. Exhibition (DATE),
2020, pp. 1259–1264.

[78] “Surveymonkey.” 2023. [Online]. Available: https://www.surveymonkey.
com

[79] D. T. Campbell, “The indirect assessment of social attitudes,” Psychol.
Bull., vol. 47, no. 1, p. 15, 1950.

Sungbin Park received the B.S. degree from
Hanyang University, Ansan, Republic of Korea, in
2022. He is currently pursuing the Ph.D. degree with
Hanyang University, Ansan, Republic of Korea.

His research interests include IoT security, usable
security, and cybercrime.

Xueqiang Wang received the Ph.D. degree from
Indiana University Bloomington, Bloomington, IN,
USA, in 2021.

He was a Security Engineer with Amazon Lab126,
Sunnyvale, CA, USA, and joined the University of
Central Florida, Orlando, FL, USA as an Assistant
Professor in October 2022. His research interests
include software supply chain security, mobile/IoT
security, and privacy analysis.

Kai Chen (Member, IEEE) received the Ph.D.
degree from the University of Chinese Academy of
Sciences, Beijing, China, in 2010.

He joined Chinese Academy of Sciences, Beijing,
in January 2010, where he became an Associate
Professor in September 2012 and became a Full
Professor in October 2015. His research interests
include software analysis and testing, smartphones,
and privacy.

Yeonjoon Lee received the B.S. degree from
Hanyang University, Seoul, Republic of Korea, in
2012, and the Ph.D. degree in security informatics
from Indiana University Bloomington, Bloomington,
IN, USA, in 2019.

He is currently an Assistant Professor with the
College of Computing, Hanyang University, Ansan,
Republic of Korea. His research interests include
mobile security, usable security, cybercrime, and AI
security.

Authorized licensed use limited to: University of Central Florida. Downloaded on August 21,2024 at 22:23:31 UTC from IEEE Xplore.  Restrictions apply. 


