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Abstract

In this work, we consider the nonlinear Schrödinger equation (NLSE) in 2+1 dimensions with

arbitrary nonlinearity exponentκ in the presence of an external confining potential. Exact solutions to

the system are constructed, and their stability as we increase the ‘mass’ (i.e., the L2 norm) and the

nonlinearity parameterκ is explored.We observe both theoretically and numerically that the presence

of the confining potential leads towider domains of stability over the parameter space compared to the

unconfined case. Our analysis suggests the existence of a stable regime of solutions for allκ as long as

theirmass is less than a critical valueM*
(κ). Furthermore, we find that there are two different critical

masses, one corresponding towidth perturbations and the other one to translational perturbations.

The results ofDerrick’s theorem are also obtained by studying the small amplitude regime of a four-

parameter collective coordinate (4CC) approximation. A numerical stability analysis of theNLSE

shows that the instability curveM*
(κ) versusκ lies below the two curves found byDerrick’s theorem

and the 4CC approximation. In the absence of the external potential,κ= 1 demarcates the separation

between the blowup regime and the stable regime. In this 4CC approximation, forκ< 1, when the

mass is above the criticalmass for the translational instability, quite complicatedmotions of the

collective coordinates are possible. Energy conservation prevents the blowup of the solution aswell as

confines the center of the solution to a finite spatial domain.We call this regime the ‘frustrated’

blowup regime and give some illustrations. In an appendix, we showhow to extend these results to

arbitrary initial ground state solution data and arbitrary spatial dimension d.

1. Introduction

The nonlinear Schrödinger equation (NLSE) is an importantmodel ofmathematical physics, having

applications in plasma physics [1], nonlinear optics [2], water waves [3, 4] andBose–Einstein condensate physics

[5, 6]. The phenomenon of solitary wave blowup [7] (see also the recent work in [8] and references therein) for

Gaussian initial conditions of theNLSE as a function ofκd (κ is the nonlinearity exponent and d is the number of

spatial dimensions) has been studied in the past both numerically [9] and using a variational approximation

based onDirac’s time dependent variational principle [10–12]with the result that forκd> 2, initial Gaussian

conditions lead to blowup, and atκd= 2, there is a criticalmass for this blowup of initial data to occur. The fact

that there can befinite-time blowup in nonlinear problems such as theNLSE has been known for a long time

using norm inequalities [13].
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Recently it has been shown [14] that if we assume some initial data for theNLSE, one can rig up an external

potential so that the initial data is the t= 0 value of an exact solution. These authors utilized the homotopy

analysismethod [15, 16] to generate the exact time-dependent solution as a Taylor series in the time variable t. In

the examples they give, the series in t sums to give an exponential of the form e− iω t.Whatwe propose here,

which leads to the exact same result as found byAntar and Pamuk butwithout resorting to summing an infinite

series or using homotopy analysis, is to just usewhatwe call ‘reverse engineering’. That is, we assume that there is

an exact solutionψ(x, t) of the (separation of variables) form

( ) ( ) ( )y = w-x t u x e, , 1.1i i
i t

and determine the external potential thatmakes this fact true, by inserting this wave function into the equation

for theNLSE in an external potentialV(x). Explicitly, we have theNLSEwith arbitrary nonlinearity parameterκ

in an external potential that is given by:

( )
( ) ∣ ( )∣ ( ) ( ) ( ) ( )

y
y y y y¶

¶
= - - +kx t

t
x t g x t x t V x x ti

,
, , , , , 1.2

i
i i i i i

2 2
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( )å =
¶
¶x

. 1.3

i

n

i

2
2

2

Inserting our assumed time-dependent solution, we obtain

( ) ( ) ( ) ( ) ( )w = + + kV x u x u x gu x . 1.4i i i i
2 2

Thismethod can be used for arbitrary initial conditions and forfinding these confining potentials in an

arbitrary number of dimensions. In this paperwewould like to revisit the problemof blowup of initial Gaussian

data in the (2+1)-dimensionalNLSE. In this reverse-engineered confining potential, theGaussian initial wave

function is now an exact (confined) solution. This fact allows us to study stability using various exact and

approximatemethodologies. In this paper wewill showhow this particular confining potential, whichmakes the

Gaussian an exact solution, changes the criterion for blowup.

For theNLSEwithout a confining potential, whether initial Gaussian data on thewave functionψ(x, t) leads

to blowup or collapse [17]was controlled bywhetherκd is greater or less than two. At the special caseκd= 2,

blowup only occurs when the conserved L2-normof the initial pulseM= ∫ddx|ψ|2 is greater than a critical value.
Whenwe add the particular confining potential thatmakes theGaussianwave function an exact solution, we

find that the response of thewave function to small perturbations is quite different. Confining ourselves in this

paper to d= 2, we find that although theκ= 1 threshold value separates two regions, i.e., onewhere blowup is

possible and onewhere it is not, the stability is now also controlled by two criticalmasses denoted hereafter as

Mw andMt, and related to the onset of width and translational instabilities, respectively, of thewave function.
Indeed, for k < +1 2 , the translational instability occurs before thewidth instability.Wefind that for

κ< 1, the critical value for blowup to occur, there are several regions.WhenM<Mt,Mw, the solutions are

linearly stable, and one is in the small oscillation regime for thewidth and for the positionwhenwe perturb the

width and position slightly. However, whenM>Mt,Mw, we are now in a new regime of frustrated blowup as a

result of energy conservation. In a 4-collective coordinate (4CC) approximation, the perturbed solution starts

blowing up but then it gets frustrated at a critical time and very complicated behaviors of the collective

coordinates (CCs) are possible. Forκ> 1 andM<Mw,Mt, we again have small oscillations whenwe perturb the

initial conditions. The traditional type of blowup occurs whenM>Mw [18], andwe show this in the 4CC

variational approximation.We plot the energy landscape for bothwidth and translational stability using a

generalization ofDerrick’s theorem [19]. The region of stability obtained from this analysis agrees with the small

oscillation regime found in a 4CC approximation. This agreement between these two approaches was also found

in a previous study of the (1+ 1)-dimensional NLSE in a Pöschl-Teller external potential [19].

The structure of the present paper is as follows. In section 2, we present ourmodel togetherwith the exact

solution and the external potential we consider.We discuss the associated Lagrangian dynamics and conserved

quantities in section 3while section 4 offers a systematic study of the stability of the exact solution underwidth

and translational perturbations in view ofDerrick’s theorem. In sections 5 and 6, we focus on a 4CC ansatz and

present typical evolutions involving it therein. Section 7 discusses the spectral properties of the exact solutions to

theNLSE in the realmof Bogoliubov-deGennes (BdG) analysis. Finally, section 8 presents our conclusions.

2. The confining potential for theNLSEhavingGaussian initial data

The (2+ 1)-dimensional (one temporal and two spatial dimensions), nonlinear Schrödinger equation (NLSE)

in an external potential is given by:

2
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whereψ(r, t) is a complex-valuedwave function (with r= (x, y) and r= |r|), g andκ correspond to the
nonlinearity strength and nonlinearity exponent, respectively, andV(r) is the external potential.

Wewant to focus on the study of the stability of aGaussianwave functionwhen the latter is the exact solution

of theNLSE [cf equation (2.1) ] in a confining potential. Using themethod of ‘reverse engineering’we have that

the confining potential is determined from equation (1.4). Herewe concern ourselves with the particular case of

Gaussian initial data in order to comparewith previous results in the absence of a confining potential.We thus

start with the following ansatz:

( ) ( )( )y = >w- -t A Ar, e , 0, 2.2r G t
0 0

2 i
0

2
0

whereω stands for the phase, r2= x2+ y2 andwe demand that equation (2.2) is a solution to theNLSE in an

external potential. Upon inserting equation (2.2) into the left-hand-side (lhs) of equation (2.1), wefind that the

appropriate potential tomake equation (2.2) an exact solution is

( ) ( ) ( ) ( )w= - + +V x y
G

V r V r,
2

, 2.3
0

1 2

where

( )
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=
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r G
1 0

2

2
2

0
2

2
0

Althoughω is arbitrary, one can chooseω so thatwhen g= 0, we haveV(r= 0)= 0. As a result, this assigns

( )w =
G

2
. 2.5

0

Sincewhenκ= 1 theNLSE is related to theGross–Pitaevskii equation (GPE),ω is related to the chemical

potentialμ, i.e.,ω= μ. The L2-normof the solution corresponds to themassM, that is:

∣ ∣ ( )ò y p= =M dx A G . 2.60
2 2

0

In terms of themassM, we have the following expressions for the potential and density

( ) ( )p= + +k

k

-
- +

V x y g
Me

G

x

G
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G
, , 2.7

0

2
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2
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( )r
p

=
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Me

G
, 2.8

0

x y

G

2 2

0

respectively. A plot of the density ( ) ∣ ( )∣r y=r tr,0
2 and the potentialV(r) for the case whenκ= 1/2 and

M= 175 andG0= g= 1 is shown infigure 1. The confining potential is a two-dimensional harmonic oscillator

potential plus aGaussian that is easy to construct experimentally using lasers. In the appendix A, we discuss how

to determine the potential for arbitrary spherically symmetric (ground state)wave functions for arbitrary d, and

for arbitrary nonlinearityκ.

3. Lagrangian dynamics in two spatial dimensions

TheDirac action [10, 20] that upon variation leads to theNLSE of equation (1.2) for any potentialV(x, y) is given

by

[ ] [ ] { [ ] [ ]} ( )ò òy y y y y y y yG = = -tL t T H, d , d , , , 3.1* * * *

[ ] ( ( ) ( ) ) ( )òy y y y y y= ¶ - ¶
-¥

+¥
T x, d

i

2
, 3.2t t

2 ⎡⎣ ⎤⎦* * *

[ ] ∣ ∣ ( ) ∣ ∣ ( )òy y y
k

y y y=  -
+

+k

-¥

+¥
+H x

g
V, d

1
. 3.32 2 1 2⎡

⎣
⎤
⎦* *

Here d2x = dx dy. For spherically symmetric wave functions, the kinetic part ofH can bewritten in spherical

coordinates as

3
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3.1. Conserved quantities

From the equation ofmotion [cf. equation (2.1)], onefinds that the L2-normof thewave function, called the

massM hereafter, is conserved:

∣ ( )∣ ( )ò y=M x x y td , , , 3.52 2

and for the exact solution of equation (2.2), the conservedmass is

( )òp p
p

= = =
¥

-M A r r G A A
M

G
2 e d , . 3.6r G

0
2

0
0 0

2
0

0

2
0

While studying the stability of the pertinentGaussianwaveforms, wewill keep themass of the initial condition

unchanged (over time t), although its initial widthwill be of the formofG(0)=G0/β= G0+ δG0 (here, we

adopt the notationG(0)B G(t= 0)). The initial height of theGaussian for the perturbed solution is then given

by:

( )
( )

( )
p

=A
M

G
0

0
. 3.7

The (total) energy given by equation (3.3) is also conserved. For our problem, the external potential is given

in terms ofψ0(x). Indeed, we have

∣ ( )∣ ∣ ( )∣
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We see after integrating by parts that this simplifies to

( )w= -
E

M

H

M
, 3.9

2

where

( ) ( )( )òk
y y= -

+
k+H

g
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1
. 3.102
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and for the exact solution, it is explicitly given by:
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( )

k
k p
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+

k
E

M G

g M
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2

1
. 3.11

0
2

0
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⎝
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⎠

Figure 1.The density ρ(r) and confining potentialV(r) as a function of x, y for the case whenκ = 1/2 andM = 175 andG0 = g = 1.
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4.Derrick’s theoremand its generalization

Derrick’s theoremhas been successfully used in the past to estimate a criticalmass for blowup in theNLSE in an

external potential [21]. Derrick’s criterion for an instability to set in is that when one stretches thewave function

x→ βxwhilekeeping M fixed, the energy decreases. Here wewould also like to examine if the energy decreases

whenwe slightly displace thewave function (by keepingfixed). Finally wewould like to look at the energy

landscape for changing both thewidth and the position of thewave function forfixedmass. Since herewe are

perturbing about an exact solution, the first derivative of these perturbations at the exact solution is zero. The

second derivative becoming negative then gives a criterion for an instability in the energy landscape near the

exact solution.Whenwe compare thiss criterion to using a 4 parameter ansatz for the time evolution of a

perturbation, wefind that having the second derivatives with respect to position and stretching becoming zero is

equivalent to the frequencies of the small oscillation of parameters q(t) andβ(t) going to zero. So by just applying

this generalization ofDerrick’s theoremwe obtain the same information as found in a small oscillation treatment

of a variational approximation to the response of thewave function to small perturbations.

4.1.Width stability

First, wewould like to see if the exact solution is stable to changes in thewidthwhile keeping themassfixed. This

is the criterion for stability due toDerrick [18]. It should be noted in passing that for d= 2 and in the absence of

the external potential, the solutions are unstable to changes in thewidthwhenκ> 1. To that end, we set r2→ βr2

(withβ being the rescaling parameter), and take the stretchedwave function as

˜ ( ) ˜ ( )( ) ( )y = b j- -r t A, e , 4.1r G t2 i2
0

and examinewhat this transformation does to theHamiltonian (3.3). Keeping themassfixed, we arrive at

˜ ( )
b
p

b= =A
M

G
A , 4.2

2

0

0
2

and thus, the density for the stretched solution is given by:

˜( ) ∣ ˜ ( )∣ ( )r y
b
p

= = b-r r t
M

G
, e . 4.3r G2

0

2
0

To comparewith previouswork on blowup in theNLSE [19], wewill eventually setG0= g= 1.We have that this

solution contributes to the various components of the energy as follows:
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TheHamiltonian denoted byHw in this case, is then given by
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Taking thefirst derivative ofHwwith respect toβwe obtain
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From equation (4.9), we see that∂H/∂β|β=1= 0, therefore the solutionwe found is a stationary point of the

stretchedHamiltonian. Taking the second derivative ofHwwith respect toβ, evaluating it atβ= 1 and dividing

by themasswe obtain
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Derrick’s theorempredicts that the soliton is stable towidth perturbations (by keepingMfixed), if

equation (4.10) is positive, or

( )
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k k

< =
+
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gG
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, 4.11w 0
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upon settingG0= 1 (and g= 1 as before). The behavior of criticalmass ( )kMw
* is shown in red infigure 2. Since

M*
→ π asκ→∞ , the exact solution is stable for all values ofκ provided thatM< π. In terms of the amplitude

Ã wehave instead stability if

˜ ˜ ( )
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. 4.13w
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4.2. Translational stability

Similar toDerrick’s theorem forwidth stability, we can askwhat happens whenwe shift the position of the

solution away from the origin. For simplicity let us consider x→ x+ a and askwhether the energy of the

solution goes up or down.Wewillfind that x= 0 is an extremumof the potential, and that there is a criticalmass

Mtwhich is dependent onκ, above fromwhich the exact solution becomes amaximumofH(a,κ). Sowe now

consider the shiftedwave function:

˜ ( ) ( )[( ) ] ( ) ( )y
p

= =j- - + -x y t A A
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G
, , e , . 4.14x a y G t

0
2 i

0
2

0

2 2
0

This shift in the position does not affectH1 andH2, and thus we get:
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k

H
g M M
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, 4.162

2
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⎣⎢

⎤
⎦⎥

Figure 2.The critical widthmassMw (red), critical translationalmassMt (blue), and BdG analysis (black) as a function ofκ (see also,
figure 8 in section 7). The red data point in panel (a) corresponds to the simulation shown infigure 7. The dashed vertical line is at the

intersection point k = +1 2 . (a)Mw (red),Mt (blue), and numerical BdG analysis (black). (b)Data points for 4CC simulations (see
table 1).
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Thisway, the displacedHamiltonian denoted byHt(a) reads
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Thefirst derivative of this expressionwith respect to a is
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and gives zero at a= 0, showing that the exact solution is indeed an extremumof the energy. The second

derivative at a= 0 yields

( )

( )
( )

k
k p

¶
¶

= -
+

k

=

H a

a G

g M

G

2 2

1
, 4.21

a

2
t

2
0 0

2 2
0

⎡
⎣⎢

⎤
⎦⎥

and stability with respect to translations a (again, while keepingMfixed), requires that

( )
( )

( )k p
k
k

< =
+

k

M M G
gG

1
, 4.22t 0

2

0

2

1⎡
⎣⎢

⎤
⎦⎥

which reduces into

( )
( )

( )k p
k
k

< =
+ k

M M
1

, 4.23t

2 1⎡
⎣⎢

⎤
⎦⎥

upon settingG0= 1 (and g= 1 again).We see that ( )k p>Mt
* , so that as long asM< π there is no translational

instability. The curve for ( )kMt
* is shown in red infigure 2 and compared to the criticalmass for thewidth

instability. By comparing (4.23)with (4.12), wefind that there is a crossover effect at k = +1 2 . Below
k = +1 2 , the translational instability occurs first. Above this value thewidth instability occurs first. It is

worth pointing out again that whenM< π, there is neither translational norwidth instability regardless of the

value ofκ.

4.3. The potential energy landscape

Stability for both translations and stretches can be studied through thewave function of the formof

˜ ( ) ( )[( ) ] ( )y
b
p

b= = =b j- - + -x y t A A
M

A, , e , , 4.24x a y t2 i 2
0
22 2

whose total energy is given by

( )

( )
( )( )b

b
b p

b
k

b
k b

= + + -
+

-
+

k k
kb k b- +E a

M
a

M, 1

1
e . 4.25a2

2

2⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

There are two criticalmasses for translational andwidth instabilities, given respectively by

[( ) ] ( )p k k= + kM 1 , 4.26t
2 1

[ ( ) ( ( ))] ( )p k k k= + + kM 2 1 1 . 4.27w
3 2 1

For the exact energy,α= 0 andβ= 1,

( )

( )
( )

k
k p

= +
+

kE

M

M0, 1
2

1
, 4.28

2
⎡⎣ ⎤⎦

7

Phys. Scr. 98 (2023) 015011 FCooper et al



which is in agreementwith equation (3.11). To showhow intricate the energy landscape can be, we display two

cases forκ= 1/2 infigure 3. If we are in the regimewhere themass is less than both criticalmasses, then by

choosingM= (4/5)Mt, we get the results shown infigure 3(a). If insteadwe chooseM= (11/10)Mw, thenwe are

in the unstable regime as shown infigure 3(b).

4.4.Derrick’s theorem in the absence of a potential

In contrast, whenV(r)≡ 0,Derrick’s theorem forwidth stability does not provide onewith a criticalmass.

Instead, from equation (4.8) (and for g=G0= 1), we directly obtain

( )

( )
( )

b
b

k
b
p

= -
+

kH

M

M1

1
, 4.29

2
⎡⎣ ⎤⎦

whosefirst derivative yields

( )
( )

b
kb
k p

¶
¶

= -
+

k k-

M

H M1
1

1
. 4.30

1

2
⎡⎣ ⎤⎦

ChoosingM=M1, where

( )
( )p

k
k

=
+ k

M
1

, 4.311

2 1⎡
⎣⎢

⎤
⎦⎥

then equation (4.30) vanishes atβ= 1 showing that this is an extremum. The condition for this to be aminimum

is that

( )

( )
( )

b
k k
k p

k
¶
¶

= -
-
+

= - >
b

k

=M

H M1 1

1
1 0, 4.32

2

2
1

2

1⎡⎣ ⎤⎦
so that for the 2DNLSE, stability is guaranteed as long asκ< 1. In arbitrary dimensions d a similar calculation

yields stability forκd< 2.

5. Collective coordinatemethod

The collective coordinate (CC)method uses a variational ansatz to solve for the dynamics from the action given

in equation (3.1) for theNLSE in an external potential. In this paperwewill employ a 4CC ansatz so thatwe can

explore the response of the solutionwhenwe perturb the initial wave function both in thewidth as well as in the

position. Themethodwe use here is similar to themethod introduced in a previous paper, and authored by some

of the current authors [19].We restrict our calculation here to 4CCs, which allows us to recover the results of

Derrick’s theorem.However, by comparing thesewith numerical results of theNLSE in the unstable regime, we

find that translations in the y direction, whichwere not included here, get excited. Also, once instabilities

manifest themselves, the shape of thewave function starts deviating fromour assumedGaussian shape.

Figure 3.Plots of the energy landscapes E(a,β)/M (yellow) and the exact energy E(0, 1)/M (blue) forκ = 1/2 for two values ofM. (a)
Stable case:M = (4/5)Mt. (b)Unstable case:M = (11/10)Mw.
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5.1. Two collective coordinate (2CC) ansatz

If we are just interested in the dynamics of thewidth of self-similar solutions, we can assume that thewave

function can be parametrized by twoCCs, and thus choose

˜ [ ( )] ˜ ( )

∣ ˜ [ ( )]∣ ( ) ˜ ( )

( ) { ( ) ( )} ( )

[ ( )] ( ) ( )

ò
y

y p

=

= =

= L

j- + L -r Q t A t

M x r Q t G t A t

Q t G t t

, e ,

d , ,

, . 5.1

r G t t r t2 i i

2 2 2

2 2

Here ˜( )A t isfixed byM andG(t) soj(t) is irrelevant to the dynamics. This Gaussian ansatz (5.1) agrees with the

results of Perez-Garcia [22], who showed that if one has a self-similar solution of theNLSE of the form

˜ [ ( ) ( )] ˜ ( )
( )

( )( )y f r= fr w t r t A t
r

w t
, , , e , 5.2r ti ,⎡

⎣⎢
⎤
⎦⎥

then the phase isfixed to be quadratic and of the form

( ) ( )f =r t
w

w
r,

2
. 5.32



FromLagrange’s equations for theCCs (see below)wewillfind

( ) ( )L = G G8 . 5.4

5.2. Four collective coordinate (4CC) ansatz

To comparewith our energy landscape static calculation above, it is sufficient to consider the response of the

wave function to translations in one spatial direction, whichwewill choose to be the x direction. Indeed, we can

study the response of thewave function to small perturbations inwidth and position through a suitable 4CC

ansatz in a variational approach by replacing

¯ ( ) ¯ ( ) ( ) ( )+  + = -x y x t y x t x q t, . 5.5x
2 2 2 2

The conjugate coordinate to qx(t) is themomentum px(t) as a collective coordinate. For simplicity, wewill

suppress the subindex x on q, p, and choose for our 4CC variational wave function:

˜ [ ( )] ( ) ( ) ( )

[ ( )]
¯ ( )

( )
[ ( ) ¯ ( ) ( )( ¯ ( ) ) ( )] ( )

( )y p p

f j

= = =

=-
+

+ + L + +

fx y Q t A t M G t A t G A

x y Q t
x t y

G t
p t x t t x t y t

, , e , ,

, ,
2

i . 5.6

x y t, , 2
0 0

2

2 2
2 2

Here againA(t) isfixed byM andG(t) and is not a dynamic variable. Thismeans thatj(t) is not dynamic either,

andwe ignore it in the following, so then the four generalized coordinates are:Q(t)= {q(t), p(t),G(t),Λ(t)}. The

x-displacement q(t) andwidthG(t) are then given by the integrals:

( ) ∣ ˜ [ ( )] ∣ ( )ò ò y=
-¥

¥

-¥

¥
q t

M
x y x y Q t x

1
d d , , , 5.72

( ) ∣ ˜ [ ( )] ∣ [ ¯ ( ) ] ( )ò ò y= +
-¥

¥

-¥

¥
G t

M
x y x y Q t x t y

1
d d , , . 5.82 2 2

Using equations (5.7) and (5.8), it is easy to extract the variational parameters from simulations by calculating

thefirst twomoments of the density.Whenwe insert the variational wave function into the complete action of

equation (3.1) and integrate over the spatial degrees of freedom,we get an effective action for the variational

parameters. In this process, we keep the parameters of the potential fixed by the exact solution.Writing the

external potential in terms of the conservedmassMwithV(r)= V1(r)+ V2(r), from equation (2.4), we have

( ) ( ) ( )
p

= =
k

k-V r g
M

G
V r

r

G
e , . 5.9r G

1

0

2

0

2
2

0⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

The action then takes the form

[ ] [ ] ( )òG =Q tL Q Qd , , 5.10

where the Lagrangian is given by

[ ] [ ( ) ( ) ( ) ( )] [ ] ( )= + L -L Q Q M p t q t t G t H Q, . 5.11  

TheHamiltonian is a sumof four terms

( ) ( ) ( ) ( ) ( ) ( )= + + +H Q H Q H Q H Q H Q , 5.121 2 3 4
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where

( ) [∣ ˜ ( )∣ ∣ ˜ ( )∣ ]

[∣ ¯ ¯∣ ∣ ∣ ]∣ ˜ ∣

( ¯ )
¯

( ) ( )

( ¯ )

ò ò
ò ò

ò ò

y y

y

p

= ¶ + ¶
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+
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- +
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M
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G

M p G G

d d , , ,

d d i 2i 2i ,

d d e 4

4 1 , 5.13

x y

x y G

1
2 2

2 2 2

2 2 2 2
2 2

2

2 2

2 2 ⎡
⎣⎢

⎤
⎦⎥

( ) ∣ ˜ ( )∣

( )
( )

( )( ¯ )

ò ò

ò ò
k

y

k p

k p
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+
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+
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+

k

k
k

k
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¥
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¥
+

+

-¥

¥

-¥

¥
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g

x y x y

g M

G
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gM M

G

1
d d ,

1
d d e

1
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x y G

2
2 2

1
1

2

2 2⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( ) ∣ ˜ ( )∣ ( )

( )

( ) ( ¯ )

( )

ò ò

ò ò

y
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k p

=

=

=
+

k
k

k
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¥

-¥

¥
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¥
- + - +

- +
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g
M

G

M

G
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g
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M

G
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q G G

3
2

1
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0
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2 2
0
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2
0

⎡
⎣⎢

⎤
⎦⎥
⎡⎣ ⎤⎦
⎡
⎣⎢
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( )
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ò ò
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=

= +

= +
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¥
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¥
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¥
- +
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G

M

G
x y x y

M

G
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d d , ,

1
d d e

. 5.16

x y G

4
2

2

0
2

2 2

0
2

2

2 2⎡⎣ ⎤⎦

Adding these terms, the totalHamiltonian is given by

( )

( )

( )( )

k p

k p

= + + + + L -
+

+
+

k

k
k k- +

H Q

M
p

q

G

G

G G
G

g M

G

gG

G G

M

G

1
4

1

e . 5.17q G G

2
2

0
2

0
2

2

2

0

0 0

2
0

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

Note that equation (5.17) agrees with equation (3.11)when q= p=Λ= 0. The Lagrangian for the 4CC ansatz is

then given by:

[ ]

( )

( )( )

k p

k p

= + L - - - - - L +
+

-
+

k

k
k k- +

L Q Q

M
pq G p

q

G

G

G G
G

g M

G

gG

G G

M

G

, 1
4

1

e . 5.18q G G

2
2

0
2

0
2

2

2

0

0 0

2
0


  ⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥

From equation (5.18), the equations ofmotion are

( )=q p2 , 5.19

( )
( )( )

k
k p

= - +
+

k
k k- +p

q

G

g G q

G G

M

G

2 2
e , 5.20q G G

0
2

0

0
2

0

2
0 ⎡

⎣⎢
⎤
⎦⎥

( )= LG G8 , 5.21

( )

( )
( )( )

k
k p

k
k

k
k p

L =- L - + -
+

+
+

-
+

k

k
k k- +

G G

g

G

M

G

gG

G G

q

G G

M

G

4
1 1

1

1 e . 5.22q G G

2

0
2 2 2
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0
2

2
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2
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 ⎡⎣ ⎤⎦
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⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥
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5.3. Blowup time
Using the equation ofmotion for G , and settingG0= 1, we can rewrite the energy as

( )

( )

( )( )

k p

k p

= + + + + -
+

+
+

k

k
k k- +

E Q

M
p q

G

G
G

G

g M

G

g

G

M

16

1

1

1
e . 5.23q G

2 2

2

2

12

 ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

Wewill see below fromour simulations that one can have blowup (G→ 0), as long asκ� 2 andM>M*. The

energy is conserved, and constrains the range ofG and q. The initial energy of the perturbed solution is given by
equation (5.23)with ( ) ( ) ( ) ( )= = = = = = = =q q t p p t G G t G G t0 , 0 , 0 , 0  , which for our simula-

tionswill be close to the energy of the exact solutionE= E0, and is given by equation (3.11), or

( )
( )

k
k p

= +
+

kE

M

g M
2

1
. 5.24

0

2
⎡⎣ ⎤⎦

WhenG→ 0, from the leading terms (thatmust cancel), we obtain

( )

( ) ( ) ( )
( ) ( )( )

k p p k
= -

+
= -

+

k k

k
k-G

G t M

G t

M
G t

16

1

4

1
, 5.25

2

2

2

1 2 ⎡
⎣⎢

⎤
⎦⎥

which can be integrated, thus yielding (near the blowup time t*with t< t*)

( )
( )

( ) ( )( )

p k
=

+
-

k

k
k+G t

M
t t

4

1
. 5.26

2

2 2

2 1*

References to blowup times can be found in [13, 23].

5.4. Small amplitude approximation for the 4CCdynamics

From equations (5.19)–(5.22), we can obtain small oscillation equations by settingG0= 1, letting

( ) ( )d d d d d d d d= = = + L = L Lq q p p G G q p G, , 1 , , , , , 1 , 5.27

and keeping only the linear termswe obtain:

( )d d=q p2 , 5.28

( )
( )d

k
k p

d= - -
+

k
p

g M
q2 1

1
, 5.29

2
 ⎧⎨⎩

⎡⎣ ⎤⎦
⎫⎬⎭

( )d d= LG 8 , 5.30

( )

( )
( )d

k k
k p

dL = - -
+

+

kg M
G2

1

1
. 5.31

2

3

 ⎧⎨⎩
⎡⎣ ⎤⎦

⎫⎬⎭
Weobserve from the above that the (δq, δp)dynamics decouple from the (δG, δΛ) dynamics, and thuswe find

the small oscillations are governed by the equations

̈ ̈ ( )d w d d w d+ = + =q q G G0, 0, 5.32q G
2 2

with

( )
( )w

k
k p

= -
+

= -
k k

g M M

M
4 1

1
4 1 , 5.33q

2

2
t

⎧⎨⎩
⎡⎣ ⎤⎦

⎫⎬⎭
⎧
⎨⎩

⎡
⎣⎢

⎤
⎦⎥
⎫
⎬⎭

( )

( )
( )w

k k
k p

= -
+

+
= -

k k
g M M

M
8 2

1

1
16 1 , 5.34G

2
2

3
w

⎧⎨⎩
⎡⎣ ⎤⎦

⎫⎬⎭
⎧
⎨⎩

⎡
⎣⎢

⎤
⎦⎥
⎫
⎬⎭

whereMt andMw are given in equations (4.26)–(4.27). For the δq dynamics (translational) to be stable, wemust

haveM<Mt, and for the δG dynamics (width) to be stable, wemust haveM<Mw.

6. Typical evolutions in the 4CCapproximation

Herewe explore the behavior of the 4CC ansatz forκ in the range 1/2� κ� 3/2which surrounds the critical

value ofκ= 1 for blowup in the absence of a potential.We consider three cases,κ= 1/2,κ= 1, andκ= 3/2.

For these three cases we choosemasses in three regimes:

Case (a)M<Mt,Mw,

Case (b)Mt<M<Mw,
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Case (c)Mt,Mw<M.

For illustrative purposes for the 4CC simulations, wewill take for the exact solution: g=G0= 1, and the initial

values ofG(t= 0)= 0.99,Λ(t= 0)= 0, q(t= 0)= 0.01, and p(t= 0)= 0. The values ofM, initial values ofA0

and the energy E(t= 0) for the initial trial wave function of equation (5.6) are given in table 1.

6.1.κ= 1/2

Case (a): Using the data of table 1, the solutions for q(t) andG(t)never go unstable in the absence of an external

potential.With an external potential we get the results shown infigure 4(a). The oscillation frequencies here

match the prediction of the 4CC small amplitude approximation.

Case (b): Here q(t) tries to escape the potential well, andG tries to go to zero (blowup) or infinity (collapse).

However, energy conservation prevents both blowup and escape of the initial wave function, andwe get the

semi-oscillating behavior shown infigure 4(c).

Case (c): Similarly, blowup ofG(t) is stalled because of energy conservation. The ( )q t growth also stalls, and

( )q t switches frombeing greater than zero to being less than zero. This is seen infigure 4(e).

6.2.κ= 1

Case (a): In this case,κ= 1 is the critical value for blowup in the absence of a confining potential.Moreover,

blowup occurs in this casewhen for the initial conditionsM�Mwholds. The 4CC results offigure 5(a) show

that q(t) andG(t) oscillate, and are in the small amplitude regime. The period forG(t) from the small amplitude

approximation isTG= 2.118 and the period for q(t) isTq= 9.934.

Case (b): If we are in the in-between case, then after one oscillation of theG(t) variable, thewave function

blows up as a result of the q(t) instability. This is seen in figure 5(c) forG(t) and q(t).

Case (c):Whenwe are above the criticalmass, the solution blows upmuch quicker. For this case, the blowup

time is shortened to about tf= 2.3, which is seen infigure 5(e).

6.3.κ= 3/2

Case (a): In the absence of a confining potential, whenκ= 3/2we are always in a blowup regime.Howeverwith

a confining potential, the 4CC results shown in figure 6(a) indicate that we are in a small amplitude regime. The

two periods predicted from the small amplitude approximation areTq= 8.21 andTG= 2.35, which agree quite

well with simulations.

Case (b): The results of the 4CC simulation forG(t) and q(t) are shown infigure 6(c), wherewefind that q(t)

is unstable butG(t) is initially stable for one period and then thewave function blows up at t≈ 4 as a result of the

translation instability.

Case (c): For this case, we see from figures 6(e) and 6(f) that both q(t) andG(t) blow up quicker, and the

blowup happens at t≈ 3.5.

6.4.κ= 2, stable regime

Infigure 7we show the results for q(t) andG(t) in the stability regionwhereκ= 2 andM= 4. The twomethods

give very similar results in this stable oscillatory region.

Table 1.Values ofκ, mass (M), and energy (E0) used
in the simulations in section 6. In this section, we
used initial values ofG0 = 0.99,Λ0 = 0, q0 = 0.01,
and p0 = 0.

κ case M A0 E0

1/2 (a) 50 4.0095 2.8866

(b) 175 7.5011 3.6585

(c) 419 11.6069 4.5662

1 (a) 11 1.8806 2.8754

(b) 17 2.3379 3.3528

(c) 28 3.0005 4.2280

3/2 (a) 7 1.5002 2.7983

(b) 9.4 1.7385 3.2422

(c) 12 1.9642 3.7916
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7.Numerical stability analysis

Wenow turn our focus on the spectral stability analysis of stationary solutions to theNLSE of equation (2.1). In

doing so, we consider first the separation of variables ansatz

( ) ( ) ( )y f w= =w-t Gr r, e , 2 , 7.1ti
0

withG0= 1, and upon substituting equation (7.1) into equation (2.1), we arrive at the steady-state problem:

∣ ∣ [ ( ) ] ( )f f f w f- - + - =kg V r 0 7.22 2

supplementedwith zeroDirichlet boundary conditions (BCs), i.e.,f= 0 at infinity. It should be noted that the

physical domain 2 is truncated into afinite one, i.e., [ ]W = -L L, 2 with L= 15 at which the zeroDirichlet BCs

Figure 4.Plots of q(t) andG(t) for the 4CC results (blue) and numerical NLSE results (red), forκ = 1/2. See table 1 formass
parameters.
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are imposed on∂Ω. Then, the computational domainΩ is discretized homogeneously (i.e., withΔx=Δy)

usingN= 301 points along each direction, and the Laplacian appearing in equation (7.2) is replaced by a fourth-

order accurate, centered finite-difference scheme. The resulting (large) systemof nonlinear equations emanating

from the above discretizationmethod is solved bymeans ofNewton’smethodwith tolerances (on both the

iterates and nonlinear residual) of 10−13. The initial seed forNewton’smethod is provided by the exact solution

of equation (2.2) for givenκ, g, andA. Although the exact solution is available in our setup, we compute the

numerically exact solution on the computational grid we employ since the former does not satisfy exactly the

discrete equations we obtain per the discretization scheme considered herein due to local truncation error.

Having identified a steady-state solution, we perform a two-parameter continuation on the (κ,A)-plane, and

compute branches of solutions.We perform a spectral stability analysis, i.e., Bogoliubov de-Gennes (BdG)

analysis [24], of the pertinent states at each continuation step by considering the perturbation ansatz around a

steady-statef(0)
(r) of the form

Figure 5.Plots of q(t) andG(t) for the 4CC results (blue) and numerical NLSE results (red), forκ = 1. See table 1 formass parameters.
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˜ ( ) [ ( ( ) ( ) )] ( )( )y f e e= + +w l l-t a br r r, e e e , 1. 7.3t t ti 0 * *

Upon plugging equation (7.3) into equation (1.2), we arrive (at order( )e ) at the eigenvalue problem:

( ) ( ) ( )l
- -

=
A A

A A

a
b

a
b

i , 7.4
11 12

12 11

⎜ ⎟⎛
⎝

⎞
⎠* *

whosematrix elements are given by:

( ) ∣ ∣ ( )( )k f w= - - + + -kA g V1 , 7.511
2 0 2

∣ ∣ ( ) ( )( ) ( )k f f= - k-A g . 7.612
0 2 2 0 2

A solution is deemed linearly stable if all the eigenvaluesλ= λr+ iλi lie on the imaginary axis (i.e.,λr≡ 0). On

the other hand, if an eigenvalueλ has a non-zero real part, that signals an instability and thus the solution is

deemed (linearly) unstable.

Figure 6.Plots of q(t) andG(t) for the 4CC results (blue) and numerical NLSE results (red), forκ = 3/2. See table 1 formass
parameters.
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Wehave performed a systematic spectral stability analysis on the (κ,A)-planewhence at the points at which

the solution is spectrally unstable, we calculated the totalmass given by equation (3.5). Our numerical results (M

vsκ) are shownwith the green curve infigure 8wherewe also graphed the two criticalmass curves for

comparison (see the legend therein).Whatwe find is that the onset of instability lies on a curve below the two

criticalmass curves found byDerrick’s theorem. This is quite different from the result found for the (1+ 1)-

dimensionalNLSE in a Pöschl-Teller external potential [19]where the numerical curve lies above the curve

found byDerrick’s theorem.

8. Conclusions

In this paper we have revisited the problemof blowup in the nonlinear Schrödinger equationwith arbitrary

nonlinearity exponentκ. In particular, we used the result that an arbitrary initial ground state wave function can

be converted into an exact solution if we place it in awell-determined external potential.Wefind that in this

confining potential thewave function can become unstable to bothwidth and translation perturbations. There

are two different onsetmasses at which this happens, with the translational instability occurring at a lower/higher

mass than thewidth instability depending onwhetherκ is less than or greater than +1 2 . The numerical BdG

analysis gives a curve for the criticalmass that lies slightly below both these curves although it follows a similar

Figure 7.Plots of q(t) andG(t) for the 4CC results (blue) and numerical NLSE results (red), forκ = 2.HereM = 4.0withA0 = 1.341.

Figure 8.M* versusκ. The two curves fromDerrick’s theorem lie above the numerically determined curve for instability to set in. See
also,figure 2(a).
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trend. In the 4CC variational approximation, there are now several regimeswith quite different behavior.When

there is no confining potential,κd� 2 defines the regimewhere there can be a blowup.

The case we study in detail here is d= 2, so thatκ= 1 is the critical value ofκ.Whatwefind for the case when

we are in the confining potential, whenκ< 1, one can not have blowup (or collapse) because of energy

conservation, but there are now three distinct regimes.Whenwe are below both criticalmasses, there is a regime

of small oscillation response to small perturbations of the initial conditions. Aswe cross the threshold for q

instability, thenwe can have ‘frustrated’ blowupwhereGfirst oscillates and then the growth of q causes thewave

function to start spiking. However energy conservation prevents blowup from completing. Then one gets a sort

of repetition of this pattern.When one crosses the second instability, there is a combination of oscillatory

regions at lowG combinedwith peaking and collapsing.

Thewave function can also oscillate about different values of q both positive and negative. Onceκ� 1, we

havemainly two regimes.Whenwe are below the two criticalmasses, we have oscillatory response to small

perturbations. Once the q instability is present, it then triggers blowup of thewave function.When one is below

the second criticalmass, thewidthmakes one oscillation before one starts the blowup regime, as q increases

exponentially in time.We expect these types of behavior to exist irrespective of the exact choice of the initial

approximate wave function used to describe the soliton in the absence of the external potential. In the stable

regime, which is the small oscillation regime of the variational approximation, agreement with numerical

simulation of theNLSE is quite good.However, and in the unstable regime, once the values of thefirst and

secondmoments of thewave function start deviating in a substantial way from their initial values, other degrees

of freedom get excited and our simple 4CC ansatz does not capture the behavior of thewave function verywell.
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AppendixA. Extension to arbitrary dimension

In an arbitrary number of spatial dimensions d, one can assume arbitrary finite norm initial data and again find

the potential that will lead to this initial data being an exact solution. If we take the initial data to be of the form

( ) ( ) ( )y =r Au r, 0 , A.1

whereA is the amplitude, and then assume that the time-dependent solution is of the form:

( ) ( ) ( )y = w-r t Au r, e , A.2ti

then since the Laplacian in d dimensions for radial solutions is

( )
( ) ( ) ( )

( )y
y y

 =
¶
¶

+
- ¶

¶
r t

r t

r

d

r

r t

r
,

, 1 ,
, A.32

2

2

wefind from (1.2) that u(r) satisfies

( )
( ) ( )w +


+

- ¢
+ =k ku

u

d

r

u

u
gA u V r

1
. A.42 2

By choosing

( )
( )w +


+

- ¢
=

=

u

u

d

r

u

u

1
0, A.5

r 0

⎡
⎣

⎤
⎦

we are able to remove the constant term from the potential when g= 0. This way, upon solving equation (A.5)

forω and substituting this back into equation (A.4), it gives an equation for the potential
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( )
( )

( )=

+

- ¢
+ k kV r

u

u

d

r

u

u
gA u

1
, A.6

sub

2 2⎡
⎣

⎤
⎦

wherewe have subtracted the derivative terms at r= 0. It will be useful when discussing stability to rewrite the

amplitudeA of the exact solution in terms of themassM. In general the formofA2 isA2
=M/[C1(d)Ω(d)], as we

will demonstrate below. Thenwe can rewriteV(r) in the form.

( )
( )

( )=

+

- ¢
+

W

k
kV r

u

u

d

r

u

u
g

M

C
u

1
. A.7

sub 1

2⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

As an example, forGaussian initial data

( ) ( )y = a w- -r t A, e , A.8r t2 i2

wefind that the potential is now given by

( ) ( )a a w= - + +k ka-V r gA d re . A.9r2 2 22

Thus, if we choose

( )w a= d, A.10

wefind that theGaussian is an exact solution provided that

( ) ( )a= +k ka-V r gA e r . A.11r2 2 22

Wecan rewrite this in terms of themass of the solution.We have

( ) ( )r = a-r t A, e , A.12r2 2

and

( ) ( ) ( ) ( )ò r
p
a

= W = W
¥

-M d rr r t A dd , , A.13d
d

0

1 2
2⎛⎝ ⎞⎠

whereΩ(d)= 2π d/2/Γ(d/2), so that

( ) ( )
a
p

a= +k
k

ka-V r gM re . A.14
d

r
2

2 22⎛⎝ ⎞⎠
This external potentialmakes theGaussian an exact solution of the d-dimensional NLSEwith arbitrary

nonlinearity exponentκ.
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