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ABSTRACT

In this work, we discuss an application of the “inverse problem” method to find the external trapping potential, which has particular N
trapped soliton-like solutions of the Gross–Pitaevskii equation (GPE) also known as the cubic nonlinear Schrödinger equation (NLSE). This
inverse method assumes particular forms for the trapped soliton wave function, which then determines the (unique) external (confining)
potential. The latter renders these assumed waveforms exact solutions of the GPE (NLSE) for both attractive (g < 0) and repulsive (g > 0)
self-interactions. For both signs of g, we discuss the stability with respect to self-similar deformations and translations. For g < 0, a critical
mass Mc or equivalently the number of particles for instabilities to arise can often be found analytically. On the other hand, for the case
with g > 0 corresponding to repulsive self-interactions which is often discussed in the atomic physics realm of Bose–Einstein condensates,
the bound solutions are found to be always stable. For g < 0, we also determine the critical mass numerically by using linear stability or
Bogoliubov–de Gennes analysis, and compare these results with our analytic estimates. Various analytic forms for the trapped N-soliton
solutions in one, two, and three spatial dimensions are discussed, including sums of Gaussians or higher-order eigenfunctions of the harmonic
oscillator Hamiltonian.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0183167

Understanding the behavior of trapped atoms in BECs requires
the numerical study of the existence, stability, and spatiotempo-
ral dynamics of solutions to the Gross–Pitaevskii equation (GPE).
Exact solutions of the GPE subject to external potentials offer
a path in which not only numerical simulations can be carried
out for this purpose, but analytical estimates for the stability of

coherent structures can be derived. In this work, we consider the
inverse problem method, which is capable of determining suit-
able external potentials that make specified N-trapped soliton
wave functions exact solutions to the GPE. The stability of these
solutions is studied using Derrick’s theorem and energy land-
scape techniques. Moreover, we discuss potential realizations of
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trapped BECs in 1D, 2D, and 3D. Our theoretical results on stabil-
ity analysis are compared with spectral computations in the realm
of Bogoliubov–de Gennes (BdG) analysis.

I. INTRODUCTION

The nonlinear Schrödinger equation (NLSE)1 has arguably
been the focal point of studies in nonlinear models because its ubiq-
uitous envelope equation arises in diverse physical contexts with a
wide array of physical applications. Those include the description of
the pulse propagation in nonlinear optical fibers,2,3 the evolution of
the envelope of modulated wave groups,4,5 as well as the propaga-
tion of strongly dispersive waves in plasmas,6 among many others.
When the NLSE incorporates an external, i.e., confining potential,
it is often called the Gross–Pitaevskii equation (GPE), which is a
fundamental model for describing the static and dynamical prop-
erties of atomic Bose–Einstein condensates (BEC) in the mean-field
approximation.7–9 Indeed, solutions (either obtained analytically or
numerically) of the related GPE in multiple well potentials are very
useful in understanding the behavior of trapped atoms in BECs.
Both signs of the self-interaction coupling constant can be imple-
mented when studying BECs, by varying the external magnetic
field near the Feshbach resonance.10 Using such methods, attractive
self-interaction solitons have been found in BECs.11

There are various strategies for finding solutions to the GPE
for given external potentials. Indeed, and for a given potential, one
may linearize the GPE (i.e., upon neglecting the nonlinearity term
therein) and obtain an eigenvalue problem for the (discrete) energy
levels (eigenvalues) and quantum states (eigenfunctions) of the sys-
tem. The resulting problem is of a Sturm–Liouville type, i.e., a linear
Schrödinger equation, and may be solved either analytically12 or
numerically, see, e.g., Refs. 13 and 14. Its eigenvalues coincide with
the values of the so-called chemical potential9 at which nonlinear
states bifurcate from. Then, for each eigenvalue (i.e., value of the
chemical potential at the linear limit) and respective linear state, one
can continue the latter toward the nonlinear regime by varying the
chemical potential which itself controls the number of atoms in a
BEC.9 This departure from the linear limit is accomplished by using
numerical continuation methods.15 Another strategy for finding
solutions to the GPE revolves around starting with an approximate
solution and then varying the potential to find a solution.

In the present article, we depart from these strategies and use
the so-called “inverse problem” method. Within this method, one
chooses beforehand a wave function that we wish to be an exact
solution of the GPE, and determines what confining potential makes
this a solution. This way, various external potentials can be con-
structed with an eye toward realizing them experimentally. This
method has previously been used by Malomed and Stepanyants16 in
the standard GPE to determine potentials that have exact Gaussian-
like solutions. It has also been used in Ref. 17 for potentials in the
GPE with arbitrary nonlinearity exponent. Recently, the authors of
the present work have shown how to find confining potentials in
the GPE which lead to constant density, flat-top solitons in one,
two, and three dimensions (denoted hereafter as 1D, 2D, and 3D,
respectively).18 Herein, we consider wave function Ansätze corre-
sponding to N-soliton pulses and identify the respective potentials

that make them exact solutions to the GPE in 1D, 2D, and 3D.
Moreover, and since the inverse problem method gives us exact
solutions, we are able to provide analytic estimates for the critical
mass for attractive self-interaction solitons above which the soliton
becomes unstable. These are obtained by using Derrick’s theorem19

or by studying the energy landscape for translation deformations of
the soliton.17 We compare our analytical findings on stability of the
soliton solutions against linear stability considerations by using the
Bogoliubov–de Gennes20,21 (BdG) method.

The paper is structured as follows. In Sec. II, we present the
main setup of the inverse problem method together with the linear
response equations. Multi-soliton solutions in 1D, 2D, and 3D are
discussed in Sec. III together with their response under self-similar
and translational deformations. In Sec. IV, we study the linear
response equations and compare our findings against numerical
simulations. Finally, we state our conclusions in Sec. V.

II. INVERSE PROBLEM METHOD FOR THE CONFINING

POTENTIAL AND THE LINEAR STABILITY OF THE

SOLUTIONS

We consider herein a collection of particles with mass m = 1/2
and contact interaction strength g which is described by a classi-
cal action. Upon confining the particles with the introduction of an
external potential denoted as V(r) ∈ R, the nonlinear Schrödinger
or Gross–Pitaevskii equation (NLSE or GPE, respectively) for this
system9 is then given by

{
−∇2 + g |ψ(r, t)|2 + V(r)

}
ψ(r, t) = i∂tψ(r, t), (1)

where ψ(r, t) is a complex-valued function, i.e., ψ(r, t) ∈ C. Here,
we use units such that ~ = 1 (see also Ref. 18). It should be noted
in passing that in the absence of the external potential [i.e., V(r)
≡ 0], soliton solutions exist for both repulsive (g > 0) interactions
(see Ref. 22) and attractive (g < 0) interactions (see Ref. 23). The
case of a non-zero constant potential can be added or even excluded
since it can be removed by introducing a phase.

Suppose that u0(r) ∈ R is the solution to Eq. (1) at t = 0. If we
assume a time-dependent solution forψ(r, t) given by the separation
of variables ansatz

ψ(r, t) = u0(r)e
−iωt, (2)

then Eq. (1) is written as

ω u0(r)+ ∇2u0(r)− g u3
0(r) = V(r) u0(r). (3)

If we are considering the Gross–Pitaevskii equation (GPE)7–9 for
BECs as a particular NLSE, then ω → µ0, where µ0 is the chemical
potential. [The connection between the NLSE and GPE is discussed
among other places in Ref. 18.]

The potential that will make ψ(r, t) = u0(r)e
−iµ0t an exact

solution of the GPE is given by the (inverse) relation:

V(r) = µ0 − gu2
0(r)+

∇2u0(r)

u0(r)
. (4)

It is, therefore, the task of the experimenter to create such a poten-
tial. For the N-soliton solutions we are proposing in this paper, the
Laplacian term in Eq. (4) is the major contribution to the confining
potential. The term related to the density [i.e., u2

0(r)] deepens the
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confining potential for the repulsive case g > 0 and causes relative
maxima to develop in the attractive case g < 0. It is important to
now regard the potential V(r) as so constructed to be external and
is not varied with respect to u0(r). Since the potential is now fixed,
the conserved energy is given by (here d is the number of spatial
dimensions)

E0 =
∫

ddx
{
[∇u0(r)]

2 +
g

2
u4

0(r)+ V(r) u2
0(r)

}
, (5)

and the conserved norm which is related to the number of atoms in
the BEC (see Ref. 18) is given by

M =
∫

ddx|ψ(r, t)|2 =
∫

ddxu2
0(r). (6)

We note that in the attractive case, i.e., g < 0, the development of
relative maxima in the potential affects the stability of the solution
as we increase the norm M. Soliton wave functions in 1D, 2D, and
3D are discussed in Sec. III.

The linear stability of such solutions in the constructed poten-
tial is found by considering a small perturbation of the exact solution
Eq. (2), and seeing if this perturbation grows in time. That is, we
replace ψ(r, t) with a perturbation series expansion in the small
parameter ε(≪ 1),

ψ̃(r, t) = ψ0(r, t)+ ε φ(r, t)+ · · ·

= e−iµ0t u0(r)+ ε φ(r, t)+ · · · , (7)

where µ0 is the chemical potential and u0(r) is the particular solu-
tion of Eq. (2) whose stability is in question. To first order in ε,
φ(r, t) and φ∗(r, t) satisfy

(
[ h(r)+ gu2

0(r) ] gu2
0(r)

−gu2
0(r) −[ h(r)+ gu2

0(r) ]

) (
φ(r, t)
φ∗(r, t)

)

= i ∂t

(
φ(r, t)
φ∗(r, t)

)
, (8)

where h(r) is the Hermitian operator,

h(r) = −∇2 + V0(r), (9)

V0(r) = V(r)+ gu2
0(r) = µ0 +

∇2u0(r)

u0(r)
. (10)

Solutions to the linear response Eq. (8) are discussed in Sec. IV.

III. MULTI-SOLITON SOLUTIONS

A. One dimension

Let us first choose for our two-trapped soliton wave function,
the sum of two Gaussians in 1D. For this case, the solution u0(x) is
given by

u0(x) = A0

[
e−a(x−q)2/2 + e−a(x+q)2/2

]

= 2A0e
−a(q2+x2)/2cosh(aqx). (11)

The conserved mass follows from Eq. (6) and gives

M0 =
∫ ∞

−∞
dx u2

0(x) = 2

√
π

a

(
1 + e−aq2)

A2
0, (12)

with the respective confining potential [cf. Eq. (4)] given by

V(x) = V0(x)− g u2
0(x), (13a)

V0(x) = µ0 + u′′
0(x)/u0(x) (13b)

= a2x ( x − 2qtanh(aqx) ),

where we have chosen µ0 = a(1 − aq2) so that V0(0) = 0. [The
primes in Eq. (13b) stand for differentiation wrt x.] Plots of the den-
sity ρ0(x) = u2

0(x) and the confining potential V(x) are shown in
the top and bottom panels of Fig. 1 as functions of x with param-
eter values a = 1, q = 5, and M0 = 10 for g = ±1. We note that we
have set the chemical potential µ0 = −24 so that V(0) = 0 therein.
It can be discerned from the bottom panel of the figure that for this
two-soliton ansatz, V(x) consists of two near harmonic wells located
at x = ±q when g = 1. On the other hand, and for g = −1, the
potential contains two double-well potentials whose local maxima
are located similarly at x = ±q.

The odd two-Gaussian soliton is defined by

u1(x) = A1

[
e−a(x−q)2/2 − e−a(x+q)2/2

]

= 2A1 e−a(q2+x2)/2 sinh(aqx),

with conserved mass

M1 =
∫ ∞

−∞
dxu2

1(x) = 2

√
π

a

(
1 − e−aq2)

A2
1, (14)

and confining potential given by

V(x) = V1(x)− g u2
1(x), (15a)

V1(x) = µ0 + u′′
1(x)/u1(x)

= a2x ( x − 2q coth(aqx) ), (15b)

has nearly the same soliton density distribution for these param-
eters, and only a slightly different confining potential. Indeed, we
compare V0(x) (even soliton) and V1(x) (odd soliton) in Fig. 2
[see, also, Eqs. (13b) and (15b)], which showcases that the only
difference between them is the behavior near the origin. An experi-
menter would be hard pressed to construct potentials, which would
distinguish between even and odd solitons. Similar results can be
obtained by using sech[a(q ± x)] functions rather than Gaussian
ones to construct two soliton densities.

Stability of these solutions with regard to width stretching can
be studied using Derrick’s theorem.19 This theorem states that if the
energy is a minimum under the transformation x → βx, i.e., dila-
tion, keeping the mass constant, the soliton is stable. The stretched

Chaos 34, 043138 (2024); doi: 10.1063/5.0183167 34, 043138-3

Published under an exclusive license by AIP Publishing

 1
5
 A

p
ril 2

0
2
4
 1

9
:3

9
:1

3



Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 1. Plot of the density ρ0(x) (top) and confining potential V(x) (bottom) both
as functions of x for g = ±1, and for the case when a = 1, q = 5, andM0 = 10.
The chemical potential is µ0 = a(1 − aq2) = −24. (a) ρ0(x), (b) V(x).

wave function for the Gaussian case u0(x) then becomes

us(x) = 2As e−a[q2+(βx)2]/2 cosh(aqβx), (16)

where now the mass is given by

M0 =
∫ ∞

−∞
dxu2

s (x) =
2

β

√
π

a

(
1 + e−aq2)

A2
s . (17)

Defining ei(β) := Ei(β)/M0, the energy (5) is then the sum of three
terms: e(β) = e1(β)+ e2(β)+ e3(β), where

e1(β) =
1

M0

∫
dx u′ 2

s (x) =
aβ2

2

[
1 −

2aq2

1 + eaq2

]
, (18a)

FIG. 2. Plots of V0(x) and V1(x) both as functions of x for the even and odd
solitons that are given by Eqs. (13b) and (15b), respectively.

e2(β) =
g

2M0

∫
dx u4

s (x)

=
gM0 β

√
a

4
√

2π

(4eaq2/2 + e2aq2 + 3)

(1 + eaq2
)

2
, (18b)

e3(β) =
1

M0

∫
dx V(x) u2

s (x)

=
1

M0

∫
dx[ V0(x)− g u2

0(x) ] u2
s (x), (18c)

with V0(x) being given by (13b). We note in passing that unlike the
integrals in Eqs. (18a) and (18b) which are evaluated explicitly, the
integral in Eq. (18c) must be evaluated numerically. The top and
bottom panels of Fig. 3 depict the energy e(β) as a function of β
for g = 1 (top panel) and g = −1 (bottom panel), respectively, with
parameter values a = 1 and q = 5 and for several values of M0. It
can be discerned from the top panel corresponding to the repulsive
case (i.e., g = 1) that at β = 1, the soliton is always stable for all val-
ues of M0, however, for the attractive case (i.e., g = −1), the soliton
becomes unstable for M0 ≈ 10.

Translational stability can be studied by displacing the soliton
solution u0(x) through the use of the transformation: x → x ± δ. In
this case, the trial wave function takes the form

ut(x) = At

[
e−a[x−δ−q]2/2 + e−a(x+δ+q)2/2

]

= 2Ate
−a[(q+δ)2+x2]/2cosh[a(q + δ)x], (19)

where the mass is now given by

M0 =
∫ ∞

−∞
dx u2

t (x) = 2

√
π

a

(
1 + e−a(q+δ)2) A2

t . (20)
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FIG. 3. Plots of energy e(β) vs β for g = ±1 for the case when a = 1 and
q = 5. Note that the soliton for g = 1 is always stable whereas for g = −1, it
becomes unstable for M0 ≈ 10. (a) g = +1, (b) g = −1.

Similarly, the energy is the sum of the following terms:

e1(δ) =
1

M0

∫
dx u′ 2

t (x) =
a

2

[
1 −

2a(q + δ)2

1 + ea(q+δ)2

]
, (21a)

e2(δ) =
g

2M0

∫
dx u4

t (x)

=
gM0

√
a

4
√

2π

(4ea(q+δ)2/2 + e2a(q+δ)2 + 3)

(1 + ea(q+δ)2)
2

, (21b)

e3(δ) =
1

M0

∫
dx V(x) u2

t (x)

=
1

M0

∫
dx[ V0(x)− g u2

0(x) ] u2
t (x), (21c)

FIG. 4. Same as Fig. 3 but for translational stability. Plots e(δ) vs δ for g = 1 (top
panel) and g = −1 (bottom panel) for the cases when a = 1 and q = 5. Note
again that the soliton for g = 1 is always stable whereas for g = −1, it becomes
unstable for M0 ≈ 10. (a) g = +1, (b) g = −1.

where V0(x) is given by (13b). Again, this last integral must be evalu-
ated numerically. We note in passing that the energy components of
Eqs. (21a)–(21c) can be respectively, obtained from Eqs. (18a)–(18c)
upon setting β = 1 and replacing q 7→ q + δ. We plot the energy
e(δ) as a function of δ in Fig. 4 for the case with a = 1 and q = 5,
and for several values of M0 (again, for both g = 1 and g = −1). At
δ = 0, and for the repulsive case (g = 1), the soliton is always sta-
ble for all values of M0, however for the attractive case (g = −1), the
soliton again becomes unstable for M0 ≈ 10.

Based on the above two variational studies, we conclude
that most likely the two soliton solutions are always stable for
repulsive case (g = 1) but become unstable for the attractive case
(g = −1). We have also studied a two-soliton wave function of the
form: u0(x, y) = A[sech(q − x)+ sech(q + x)], which gives a simi-
lar density distribution as the Gaussian case. Numerical results for
stretching and translational stability for this ansatz are similar to the

Chaos 34, 043138 (2024); doi: 10.1063/5.0183167 34, 043138-5

Published under an exclusive license by AIP Publishing

 1
5
 A

p
ril 2

0
2
4
 1

9
:3

9
:1

3



Chaos ARTICLE pubs.aip.org/aip/cha

Gaussian case discussed above and indicate stability for the repul-
sive case and instability for M & 10 for the attractive case. We will
not present those results here.

B. Two dimensions

1. Case 1

We proceed next with the construction of a 2D wave func-
tion consisting of two Gaussian functions. In particular, we assume
a Gaussian in the x direction centered at x = ±q, and one in the
y direction centered at y = 0. The ansatz we consider is given
explicitly by

u0(x, y) = A0

{
e−[a(x−q)2+by2]/2 + e−[a(x+q)2+by2]/2

}

= 2A0 e−[a(x2+q2)+by2]/2 cosh(aqx). (22)

For this case, the conserved mass is given by

M0 =
2π
√

ab
(1 + e−aq2

)A2
0, (23)

and the confining potential by

V(x, y) = V0(x, y)− g u2
0(x, y), (24a)

V0(x, y) = µ0 +
{

[∂2
x + ∂2

y ]u0(x, y)
}
/u0(x, y)

= a2x2 + b2y2 − 2a2qx tanh(aqx), (24b)

where we have chosen µ0 = a + b − (aq)2 so that V0(0, 0) = 0.
Plots of the density ρ0(x, y) = u2

0(x, y) and the potential V0(x, y)
(both as functions of x and y) for the case when a = b = 1, q = 5,
and M0 = 10 are shown in Fig. 5.

To study stability with respect to a stretching of the coordinates
x → βx and y → βy, we use a trial wave function of the form

us(x, y) = 2As e−[a((βx)2+q2)+b(βy)2]/2 cosh(aqβx), (25)

where now the mass is given by

M0 =
∫

d2xu2
s (x, y) =

2π

β2
√

ab

(
1 + e−aq2)

A2
s . (26)

Again computing components of the energy under stretching, we
find

e1(β) =
β2

2

[
a + b −

2a2q2

1 + eaq2

]
, (27a)

e2(β) =
gM0 β

2
√

ab

16π

(8eaq2/2 + 2e2aq2 + 6)

(1 + eaq2
)

2
, (27b)

e3(β) =
1

M0

∫
d2x V(x, y) u2

s (x, y)

=
1

M0

∫
d2x[ V0(x, y)− g u2

0(x, y) ] u2
s (x, y), (27c)

where the integral in Eq. (27c) has to be evaluated numerically. The
total energy e(β) = e1(β)+ e2(β)+ e3(β) is presented in Fig. 6 as

FIG. 5. (a) Plots of the density ρ0(x, y) and (b) confining potential V0(x, y) as
functions of x and y for the case when a = b = 1, q = 5, and M0 = 10. The

chemical potential is µ0 = b + 2sech2(a)− 1 = 0.000 363.

a function of β for g = ±1 for the case when a = b = 1 and q = 5
and for various values of the mass M0.

It can be discerned from the figure that at β = 1, the soliton for
the repulsive case (i.e., g = 1) is always stable for all values of M0,
whereas for the attractive case (g = −1), the soliton remains stable
for values of M0 . 30 but becomes unstable for larger values of M0.

Translational stability is studied by making the replacement
q → q + δ and computing the energy as a function of δ. The trial
wave function in this case is given by

ut(x, y) = 2Ate
−[a(x2+(q+δ)2)+by2]/2 cosh[a(q + δ)x], (28)

where the total mass reads

M0 =
∫

d2xu2
t (x, y) =

2π
√

ab

(
1 + e−a(q+δ)2) A2

t . (29)

Same as before, the energy terms in this case, i.e., for translational
stability are obtained from Eq. (27) by setting β = 1 followed by
the replacement q 7→ q + δ. The results for this case are shown in
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FIG. 6. Plots of the total energy e(β) vs β for g = 1 (top panel) and g =
−1 (bottom panel) and for case 1 when a = b = 1 and q = 5. (a) g = +1,
(b) g = −1.

Fig. 7 where the energy e(δ) is plotted against δ for g = 1 and g = −1
(see the top and bottom panels, respectively). The soliton solutions
for g = 1 solitons are always stable whereas the ones with g = −1
are stable for values of mass M0 . 30 and become unstable for
larger values of the mass, in agreement with the results of Derrick’s
theorem in Fig. 6.

2. Case 2

In this case, we construct a 2D wave function consisting of two
sech(x ± q) functions centered at x = ±q, and a Gaussian in the y
direction centered at y = 0. Explicitly we choose

u0(x, y) = A0[sech(x + q)+ sech(x − q)]e−by2/2. (30)

FIG. 7. Same as Fig. 6 but for translational stability. Plots e(δ) vs δ for g = 1
(top panel) and g = −1 (bottom panel) for case 1 when a = b = 1 and q = 5.
(a) g = +1, (b) g = −1.

For this case, the conserved mass is given by

M0 = 4

√
π

b
[ 1 + qcsch(q)sech(q)]A2

0, (31)

and the confining potential by

V(x, y) = V0(x, y)− g u2
0(x, y), (32a)

V0(x, y) = µ0 +
{
[∂2

x + ∂2
y ]u0(x, y)

}
/u0(x, y)

= b2y2 + 2sech2
(q)− 2[sech2

(q − x)

− sech(q − x)sech(q + x)+ sech2
(q + x)], (32b)

where we have chosen µ0 = b + 2sech2
(q)− 1 so that V0(0, 0) = 0.

Plots of the density ρ0(x, y) = u2
0(x, y) and the potential V0(x, y) as

functions of x and y for the case when b = 1, q = 5, and M0 = 10
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FIG. 8. (a) Plots of the density ρ0(x, y) and (b) the confining potential V0(x, y)
(again, as functions of x and y) for the case when b = 1, q = 5, and M0 = 10.

The chemical potential is µ0 = b + 2sech2(q)− 1 = 0.000 363.

are shown in Fig. 8. Note that the trapping potential is quite subtle
in shape in the x direction and might be difficult to produce exper-
imentally (similar argument applies for the potentials of Figs. 18
and 17, respectively).

The stability with respect to a stretching of the coordinates
x → βx and y → βy is carried out by assuming the trial wave
function,

us(x, y) = As[sech(βx + q)+ sech(βx − q)]e−bβ2y2/2, (33)

where now the mass is given by

M0 =
4

β2

√
π

b
[1 + qcsch(q)sech(q)]A2

0. (34)

Upon computing the energy components in this case, we find

e1(β) =
β2

6[1 + qcsch(q)sech(q)]

×
{
2 + 3b + 12 coth(2q)csch(2q)

− 3q[6 + b + (2 − b)cosh(4q)csch3
(2q)]

}
, (35a)

e2(β) =
gMβ2

96

√
b

2π

csch(q)sech(q)

[2q + sinh(2q)]2

×
{
−48q + 72qcosh(2q)− 39 sinh(2q)

+ 12 sinh(4q)+ sinh(6q)
}
, (35b)

e3(β) =
1

M0

∫
d2x V(x, y) u2

s (x, y)

=
1

M0

∫
d2x[ V0(x, y)− g u2

0(x, y) ] u2
s (x, y), (35c)

where the integral in Eq. (35c) has to be evaluated numerically. The
total energy e(β) = e1(β)+ e2(β)+ e3(β) is presented in Fig. 9 as
a function of β for g = ±1 for the case when a = b = 1 and q = 5
and for various values of the mass M0.

It can be discerned from the figure that at β = 1, the soliton for
the repulsive case (i.e., g = 1) is always stable for all values of M0,
whereas for the attractive case (g = −1), the soliton remains stable
for values of M0 . 20 but becomes unstable for larger values of M0.

Translational stability is studied by making the replacement
q → q + δ and computing the energy as a function of δ. The trial
wave function in this case is given by

ut(x, y) = At[sech(x + q + δ)+ sech(x − q − δ)]e−by2/2, (36)

where the total mass is now given by

M0 = 4

√
π

b
[1 + (q + δ)csch(q + δ)sech(q + δ)]A2

t . (37)

Again, the energy terms for translational instability are obtained
from the expressions (35) by setting initially β = 1 and making the
replacement q → q + δ afterwards. The results in this case for the
energy e(δ) as a function of δ are shown in Fig. 10. The g = 1 solitons
are always stable whereas the g = −1 solitons are stable for values of
mass M0 . 20 and become unstable for larger values of the mass, in
agreement with the results of Derrick’s theorem in Fig. 9.

C. Three dimensions

Two spheroidal BEC solitons have been studied for a variety
of reasons in the literature, the most intriguing being to determine
whether modifications of quantum mechanics due to general relativ-
ity can be seen in this type of system. In most of these problems, an
approximate confining potential is used so that questions of stability
of the BEC as one increases the number of atoms can be addressed.
Indeed, we can first reverse engineer the exact potential needed to
make the sum of two Gaussians an exact solution. Then, we can
determine the stability criteria for soliton solutions using Derrick’s
theorem as well as linear response theory.
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FIG. 9. Plots of the total energy e(β) vs β for g = 1 (top panel) and g = −1
(bottom panel) and for case 2 when b = 1 and q = 5. (a) g = +1, (b) g = −1.

1. Two solitons

We start by constructing a 3D Gaussian, two-soliton solution
of the form

u0(x, y, z) = A0e
−a(x2+y2)/2

[
e−b(q+z)2/2 + e−b(q−z)2/2

]

= 2A0e
−[a(x2+y2)+b(z2+q2)]/2cosh(bqz). (38)

Here, we chose the center of the soliton at x = y = 0 and z = ±q for
simplicity. The mass is now given by

M0 =
2π 3/2

a
√

b
(1 + e−bq2

)A2
0, (39)

and the confining potential by

V(x, y, z) = V0(x, y, z)− g u2
0(x, y, z),

V0(x, y, z) = a2(x2 + y2)+ b2z2 − 2b2qz tanh(bqz),
(40)

FIG. 10. Same as Fig. 9 but for translational stability. Plots of e(δ) vs δ for g = 1
(top panel) and g = −1 (bottom panel) for case 2 when b = 1 and q = 5. (a)
g = +1, (b) g = −1.

where we have chosen µ0 = b + 2a − b2q2 so that V0(0, 0, 0) = 0.
Plots of the density ρ0(x, y, z) and potential V0(x, y, z) as functions
of x, y, and z are shown in Fig. 11.

2. Three solitons

There are many possibilities for obtaining N-soliton solutions
in 3D. The simplest three soliton case is given by

u0(x, y, z) = A0e
−[a(x2+y2)/2+bz2]/2 Hn(

√
b z), (41)

where Hn(ζ ) is a Hermite polynomial of order n. In this case, the
conserved mass is given by

M0 =
π 3/222n!

a
√

b
A2

0, (42)
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FIG. 11. (a) Plots of the density ρ0(x, y, z) and (b) the confining poten-
tial V0(x, y, z) (both as functions of x, y, and z) for the case when a = 2,

b = 4, q = 2, and M0 = 10. The chemical potential is µ0 = b + 2a − (bq)
2

= −56.

and the confining potential by

V(x, y, z) = V0(x, y, z)− g u2
0(x, y, z),

(43)

V0(x, y, z) = 2bn + a2(x2 + y2)+ b2z2

−
4b3/2 nz Hn−1(

√
b z)− 4b n(n − 1)Hn−2(

√
b z)

Hn(
√

b z)
,

where we have chosen µ0 = 2a + (2n + 1) b so that V0(0, 0, 0) = 0.
Plots of the density ρ0(x, y, z) and potential V0(x, y, z) (both as func-
tions of x, y, and z) are shown in Fig. 12 for the three soliton case with
parameter values n = 2, a = 1, b = 2, and M0 = 10. One can analyt-
ically determine the energy of the stretched soliton in this case with
xi → βxi (i = 1, 2, 3) keeping the mass M fixed. The total energy in
this case is

e(β) = e1(β)+ e2(β)+ e3(β), (44)

with

e1(β) =
1

2
β2(2a + 5b), (45a)

e2(β) =
41a

√
bβ3gM

256
√

2π 3/2
, (45b)

e3(β) =
2a + 5b

2β2

−
a
√

b
(
2β8 − 16β6 + 69β4 − 16β2 − 2

)
β3gM

4π 3/2 (β2 + 1)11/2
. (45c)

One easily verifies that β = 1 is a stationary point. Setting the
second derivative to zero at β = 1 gives the criterion for instability
of the g < 0 soliton to set in, that is,

Mc = −g
2048

√
2π 3/2(2a + 5b)

1527a
√

b
. (46)

For g = −1, a = 2, b = 2 we find Mc = 89.62.

IV. LINEAR RESPONSE EQUATIONS

Solutions of the linear response equations (8) are obtained by
consideration of an eigenvalue equation. Let the pair ( a(r), b(r) )
∈ C2 satisfy the skew-symmetric eigenvalue equation
(

[ h(r)+ gu2
0(r) ] gu2

0(r)

−gu2
0(r) −[ h(r)+ gu2

0(r) ]

) (
a(r)
b(r)

)
= λ

(
a(r)
b(r)

)
, (47)

where λ = λr + iλi ∈ C is the eigenvalue (or, frequency of
oscillations9) with λr and λi representing its real and imaginary
parts, respectively. Here, h(r) is given by (9),

h(r) = −∇2 + V0(r), (48)

and is independent of the mass M0. Equation (47) is sometimes called
the Bogoliubov–de Gennes (BdG) equation.20,21

By taking the complex conjugate of (47), interchanging top and
bottom lines, and multiplying by −1, we see that if (a(r), b(r)) is a
pair of solutions with eigenvalue λ, then (b∗(r), a∗(r)) is a pair of
solutions of (47) with eigenvalue −λ∗. In other words, the eigenval-
ues come as pairs, λ and −λ∗. Multiplying the bottom line of (47)
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FIG. 12. (a) Plots of the density ρ0(x, y, z) and (b) the confining potential
V0(x, y, z) (both as functions of x, y, and z) for the three-soliton Hermite case
when n = 2, a = 1, b = 2, and M0 = 10. The chemical potential is µ0 = 2a
+ 5b = 12.

by −1 and making use of the Hermitian property of the operator on
the left-hand-side yields an orthogonality relation

(λ∗
l − λm)

∫
d3x[ a∗

l (r)am(r)− b∗
l (r)bm(r)] = 0. (49)

The system is deemed stable if ℑ(λl) = 0 for all l. The pres-
ence of a complex eigenvalue with positive imaginary part renders
the solution to be unstable. If such an eigenvalue has zero real
part, it will correspond to an exponential instability (i.e., exponen-
tial growth). The presence of a pure complex eigenvalue in the
spectrum would correspond to an oscillatory instability (i.e., oscil-
lations with growing amplitude). For real eigenvalues, the states are
normalized by

∫
d3x[a∗

l (r)am(r)− b∗
l (r)bm(r)] = δl,m. (50)

The general solution to (8) is then given by the sum over all
eigenstates of (47),

8(r, t) =
(
φ(r, t)
φ∗(r, t)

)
=

∑

alln

8n

(
cn(r)

d∗
n(r)

)
e−iλn t

=
∑

n>0

8n

{(
an(r)

bn(r)

)
e−iλn t +

(
b∗

n(r)

a∗
n(r)

)
e+iλ∗n t

}
,

(51)

the last sum now going over the unique eigenvalues only. At t = 0,
(
φ(r, 0)
φ∗(r, 0)

)
=

∑

n

8n

(
ci(r)

d∗
i (r)

)
. (52)

Inverting this relation using (50)
∫

d3x
(

c∗
m(r), dm(r)

) (
1 0
0 −1

) (
φ(r, 0)
φ∗(r, 0)

)

=
∑

l

8l

(
c∗

m(r), dm(r)
) (

1 0
0 −1

) (
cl(r)

d∗
l (r)

)
= 8m (53)

gives

8l =
∫

d3x[ c∗
l (r)φ(r, 0)− dl(r)φ

∗(r, 0)]. (54)

Solutions of the NLSE to first order are then given by

9̃(r, t) = 90(r, t)+ ε 8(r, t)+ · · · (55)

where

90(r, t) =
(

u0(r) e−iµ0t

u0(r) e+iµ0t

)
. (56)

We must also require that

9
†

0 (r, t)M8(r, t) = 0, M =
(

1 0
0 −1

)
, (57)

since the unperturbed state is included in90(r, t). This requirement
is usually applied by omitting the n = 0 state in the sum appearing
in Eq. (51), as discussed in Sec. IV A 1.
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FIG. 13. (a) Plots of the potential U(x) in Eq. (62) and (b) the wave functions
χn(x) in Eq. (64) as functions of x for the case when a = 1 and q = 5.

A. One dimension

In 1D, the eigenvalue equation (47) becomes
(

[ h(x)+ gu2
0(x) ] gu2

0(x)
−gu2

0(x) −[ h(x)+ gu2
0(x) ]

) (
a(x)
b(x)

)
= λ

(
a(x)
b(x)

)
,

(58)
where u0(x) is given by Eq. (11), and

h(x) = −∂2
x + U(x), (59)

U(x) = −a(1 − aq2)+ a2x ( x − 2q tanh(aqx) ). (60)

Here, we have set µ = µ0 + λ and defined a potential U(x) so that
now U(0) = µ0 = a(1 − aq2). A plot of this potential as a function
of x is shown in Fig. 13 for the case when a = 1 and q = 5. Zero

FIG. 14. Real (in blue) and imaginary (in red) parts of the eigenvalues λ in
Eq. (58) as functions of M0 for the one-dimensional case with a = 1 and q = 5.

eigenvalues (λ = 0) now correspond to the soliton solution a(x)
= −b(x) = u0(x).

1. Bogoliubov approximation

Moreover, the eigenvalue problem (58) can be written in terms
of eigenvectors of the Hermitian operator h(x) in 1D. To that effect,
we define

h(x) χn(x) = ǫn χn(x), χn(x) ∈ R, (61)
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FIG. 15. Comparison of the real part of the g = −1 numerically (exact) eigen-
values λ (in blue) with the Bogoliubov formula (in dashed black) of Eq. (68). The
red lines correspond to the imaginary part of λ.

where ǫn ∈ R and χn(x) obey the orthonormality relation

∫
dxχn(x)χn′(x) =

{
δn,n′ , for n and n′ 6= 0,

M0, for n = n′ = 0.
(62)

For our case when a = 1 and q = 5, the eigenvalues are very close to
being doubly degenerate and are given by ǫn = 0, 2, 4, 6, . . . with a
small splitting of each state due to tunneling between the two wells.
The low-lying spectrum is that of a quantum harmonic oscillator
with frequency ω = 2, as might be expected from the shape of the
double well. A plot of the first few wave functions χn(x) (as func-
tions of x) is shown in Fig. 13. Note that the zero eigenvalue λ = 0
corresponds to the translational mode a(x) = −b(x) = u0(x).

Expanding the solutions of (58) by setting

(
a(x)
b(x)

)
=

∞∑

n=0

(
An(x)
Bn(x)

)
χn(x), (63)

and using the orthonormality condition, we obtain the eigenvalue
problem

∞∑

n′=0

(
(ǫn − λ)δn,n′ + g1n,n′ g1n,n′

−g1n,n′ −(ǫn + λ)δn,n′ − g1n,n′

)

×
(

An′(x)
Bn′(x)

)
= 0, (64)

where

1n,n′ =
∫

dxu2
0(x) un(x)un′(x). (65)

The eigenvalues λ are then found by solving the determinant,
∣∣∣∣
(ǫn − λ)δn,n′ + g1n,n′ g1n,n′

−g1n,n′ −(ǫn + λ)δn,n′ − g1n,n′

∣∣∣∣ = 0. (66)

FIG. 16. The real part (in blue) and imaginary part (in red) of the eigenvalues for
the two-dimensional soliton of Eq. (30) as functions of M0 for the g = ±1 cases,
with a = b = 1 and q = 5. (a) g = +1, (b) g = −1.

Numerical calculations for the case when a = 1 and q = 5 give
11,1 ≈ 0.2 M0 and 12,2 ≈ 0.1 M0, whereas 11,2 = 10−9 M0 and
10,3 = −0.705 M0. So a reasonable approximation for the low-lying
eigenvalues is to include only diagonal terms, 1n,n′ ≈ 1n δn,n′ , in
which case (66) becomes

∣∣∣∣
ǫn − λ+ g1n g1n

−g1n −ǫn − λ− g1n

∣∣∣∣ = 0, (67)

which gives

λn = ±
√
ǫn(ǫn + 2g1n), (68)
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which is the Bogoliubov spectrum. One can see here that for g = +1
the system is always stable whereas for g = −1 there is a small region
of stability as long as

ǫn ≥ 2g1n, (69)

for any n. For n = 1 in our case, this means that 2 > 0.4 M0, or M0

< 5. For n = 2, we find M0 < 20, which is a higher bound.

2. Direct solution of the BdG equation

The eigenvalue equation of Eq. (58) is solved numerically in
MATLAB by employing a computational grid in coordinate space
and using a fourth-order accurate, finite difference approxima-
tion for the Laplacian operator. We corroborated our numerical
results by using P3 finite elements in the computational software
FreeFEM++24 that utilizes the ARPACK eigenvalue solver25 and
obtained similar results.

In 1D, numerical results for the eigenvalues λ of this calculation
are plotted in Fig. 14 as functions of M0 for g = ±1 and parameter
values a = 1 and q = 5. The real part of the eigenvalues is shown
in blue whereas their imaginary part is shown in red. The top panel
of the figure corresponding to the repulsive (g = 1) case suggests
that the solution is linearly stable. On the other hand, when we con-
sider attractive interactions, i.e., g = −1, the solution is (linearly)
stable but becomes unstable past M0 & 8, in approximate agree-
ment with the Bogoliubov approximation and Derrick’s theorem
(see Sec. III A). At M0 = 0, the low-lying eigenvalues are all real and
given by λn ≈ 0, 2, 4, 6, . . . .

Moreover, we compare the 1D numerical results of Eq. (58)
for g = −1 (see the bottom panel of Fig. 14) with the approxi-
mate Bogoliubov result from Eq. (68) in Fig. 15. The shape of the
Bogoliubov curve shown with a dashed black line is proximal to the
numerically computed eigenvalues although the point in the param-
eter space where the solution is predicted to be unstable is at lower
values of M0. This is somewhat expected because not enough terms
were included in Eq. (66), which itself would allow otherwise a better
agreement between the two approaches.

Similar conclusions are drawn in the 2D case (see Sec. III B).
To that end, we briefly discuss our findings in Fig. 16, which depicts
numerical results for the eigenvalues λ (see also Sec. III B) when
a = b = 1 and q = 5. Again, the system is stable when g = −1 for all
values of M0, whereas when g = +1 there is a region of stability for
M0 . 7.5. We note in passing that we have checked the stability and
instability (over the respective parameter regime) of the solutions
that we have presented so far by performing direct numerical simu-
lations of the GPE [cf. Eq. (1)] although we omit the presentation of
the respective results herein.

V. CONCLUSIONS

In this paper, we considered the Gross–Pitaevskii equation
(GPE) also known as the nonlinear Schrödinger equation (NLSE)
and employed the “inverse problem” method for determining con-
fining potentials that will support particular confined N-soliton
solutions. We discussed several such external confining potentials
that one obtains by assuming various wave functions for the solu-
tion. The solutions to the GPE (NLSE) that we studied possessed an
arbitrary number of “soliton-like” maxima, i.e., N-soliton solutions.

These solutions were always linearly stable when the self-interaction
was repulsive. The use of analytic methods, i.e., Derrick’s theorem
allowed us to obtain analytic estimates in the attractive setting for the
values of the L2 norm of the solution or, equivalently, the number of
atoms in the trap above which these solutions are unstable to width
perturbations. We further solved numerically the underlying eigen-
value (Bogoliubov–de Gennes or BdG) problem emanating from the
linearization of the GPE whose results are in line (in terms of stabil-
ity characteristics) with the theoretical predictions from Derrick’s
theorem. However, in all cases that we have studied in this work that
turned out to be unstable (i.e., attractive interactions), the BdG anal-
ysis gives a lower value for the critical value of the norm of the wave
function than Derrick’s theorem or the translational instability. To
the extent that we can identify these distinct entities as separate BEC
solutions of the GPE, we have given a prescription for what external
confining potentials will allow various configurations of BECs that
are stable in 1D and higher spatial dimensions.
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APPENDIX: SOME OTHER N -SOLITON SOLUTIONS

IN 2D

It is clear that there are infinite possibilities for exact N-soliton
solutions in 2D and 3D. Here, we will give two examples not
included in the main text. For the sum of Gaussians, it is easy to
generalize to N soliton exact solutions. As an example of this, con-
sider the case where the solitons are centered at the ends of an
equilateral triangle. That is, we take for the initial condition,

u(x, y) = A
{
e−a(y−

√
3q)

2
/2−ax2/2

+ e−ay2/2
[

e−a(x−q)2/2 + e−a(q+x)2/2
]}

, (A1)

and obtain from the inverse method,

µ0 = 2a − a2q2 −
a2q2

eaq2 + 1/2
, (A2)

together with V(x, y) = V1(x, y)+ V2(x, y) where

V1(x, y) = −A2ge−a(3q2+2qx+x2+y2)

×
[
eaq2 + eaq(x+

√
3y) + eaq(q+2x)

]2

, (A3)

and

V2(x, y) =
a2

(
2eaq2 + 1

)(
eaq2 + eaq(x+

√
3y) + eaq(q+2x)

)

×
{
eaq(q+2x)(−2q2 − 2qx + x2 + y2)

+ 2e2aq2
(2qx + x2 + y2)

+ eaq2
(−2q2 + 2qx + x2 + y2)

+ 2(2q2 − 2
√

3qy + x2 + y2) eaq(q+x+
√

3y)

+ 2e2aq(q+x)(−2qx + x2 + y2)

+ (−2
√

3qy + x2 + y2)eaq(x+
√

3y)
}
. (A4)

For the choice of parameter values g = −1, A = 1, a = 1, and
q = 3, we depict the density ρ(x, y) and potential V(x, y) in Fig. 17.

One can also have solitons along both the x- and y-axes by
choosing

u0(x, y) = AHn(
√

ax)Hm(
√

by)e−ax2/2−by2/2, (A5)

for which one has n + 1 solitons in x-direction and m + 1 solitons
in y-direction where

V(x, y) = a2x2 + b2y2

− gA2 H2
n(

√
ax)H2

m(
√

by)e−ax2/2−by2/2, (A6)

FIG. 17. The density ρ(x, y) and the confining potential V(x, y) both as functions
of x and y for the three soliton case, when g = −1, a = 1, q = 3, and A = 1.

with µ0 = (2n + 1)a + (2m + 1)b. When m = n = 2, the trapped
solution has nine peaks. For that case, we obtain

M0 = 64πA2/
√

ab, (A7a)

ρ(x, y) = A2(2 − 4ax2)
2
(2 − 4by2)

2
e−ax2−by2

, (A7b)

V(x, y) = a2x2 + b2y2

− 16 A2g(1 − 2ax2)
2
(1 − 2by2)

2
e−ax2−by2

, (A7c)
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FIG. 18. The density ρ(x, y) and the confining potential V(x, y) both as func-
tions of x and y, for the nine soliton case, whenm = n = 2 and g = −1, A = 1,
a = 1, and b = 2.

and with µ0 = 5(a + b). An example of this for m = n = 2 and
A = 1, a = 1, b = 2, and with g = −1 is shown in Fig. 18.

Derrick’s theorem in this case allows us to determine the critical
mass for instability, which is given by

Mc =
81 920π(a + b)

11 029
√

ab
. (A8)

For a = 1, b = 2, and g = −1, we find

Mc =
122 880

√
2π

11 029
≈ 49.5. (A9)
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