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Abstract

In the present work we revisit the problem of the generalised Korteweg—de
Vries equation parametrically, as a function of the relevant nonlinearity expo-
nent, to examine the emergence of blow-up solutions, as traveling waveforms
lose their stability past a critical point of the relevant parameter p, here at p =5.
We provide a normal form of the associated collapse dynamics, and illustrate
how this captures the collapsing branch bifurcating from the unstable traveling
branch. We also systematically characterise the linearisation spectrum of not
only the traveling states, but importantly of the emergent collapsing waveforms
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in the so-called co-exploding frame where these waveforms are identified as
stationary states. This spectrum, in addition to two positive real eigenvalues
which are shown to be associated with the symmetries of translation and scal-
ing invariance of the original (non-exploding) frame features complex patterns
of negative eigenvalues that we also fully characterise. We show that the phe-
nomenology of the latter is significantly affected by the boundary conditions
and is far more complicated than in the corresponding symmetric Laplacian
case of the nonlinear Schrodinger problem that has recently been explored. In
addition, we explore the dynamics of the unstable solitary waves for p > 5 in
the co-exploding frame.

Keywords: spectral analysis, self-similar blowup, normal form

Mathematics Subject Classification numbers: 35B06, 35B32, 35B44, 35C06,
34E10, 34E20, 47A75, 37G05, 37L10

1. Introduction

This study centres around the investigation of the spectral stability of solutions to the gener-
alised Korteweg—de Vries equation, denoted as gKdV hereafter:

ou Pu O’ :
o ox*  Ox’ M
where the nonlinearity exponent, p > 2, governs the behaviour of solutions that exhibit self-
similar blow-up in finite time. The gKdV equation is a prototypical dispersive nonlinear partial
differential equation (PDE) which possesses solitary waveforms due to the interplay of dis-
persion and nonlinearity [1, 2]. In addition to its central relevance to the description of water
waves [3, 4], it also emerges through the continuum limit approximation [5] of the well-known
Fermi—Pasta—Ulam—Tsingou (FPUT) lattice model [6, 7] in which p specifies the nonlinear
exponent governing the FPUT’s force law [8]. Specifically, for p =2 and p = 3 the gKdV cor-
responds to the classical KAV [9] and the modified KAV (mKdV) models, respectively. Both
KdV and mKdV are integrable [1, 10, 11] in the sense that they have an infinite number of con-
served quantities and can be described as compatibility conditions of suitable Lax pairs [1, 3,
4]. The practical applications of KdV and mKdV span a broad range of fields, including shal-
low water dynamics, optical fibres, plasma physics, ion-acoustic solitons, and electric circuits,
among others [2—4, 12—14].

While the KdV and mKdV equations are integrable, the gKdV equation for other values
of the nonlinearity exponent, p, lacks integrability, to the best of our current understanding.
However, when considering smooth functions that decay suitably fast as |x| — oo, the gKdV
possesses three fundamental conserved quantities:

o0

Ey = ||uly :/ udx, (2a)
e

E, = ||u|\% :/ u? dx, (2b)
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These quantities correspond to the conservation of mass, momentum and energy, respect-
ively [15, 16]. The invariance of the gKdV equation under space and time translations is
responsible, through Noether theory [17], for the second and third among these conservation
laws, while the fundamental form of the gKdV as a conservation law leads to the conservation
of mass. However, in addition to these key conserved quantities, the model also possesses a
scale invariance:

w(x, 1) = A Tu (A A1), A#£0. 3)

It is important to highlight that this transformation preserves the momentum in the critical
case of p =35 that will be further discussed below. This transformation group also leads to the
notable fact that if u(x,7) is a valid solution, then u(—x, —) is also a solution.

Even though the gKdV equation is not known to be integrable for most values of the non-
linearity exponent, p (with the notable exceptions of p =2 and p = 3), it admits traveling wave
(TW) solutions parametrically as a function of p. These TW solutions are characterised by
the following analytically available expression:

u(x,1) = 0Q(€) = (C(”;l)) sech™1 (ﬁ(’;_%) @)

where £ := x — ct, and ¢ denotes the wave speed. In [15], it was shown that the TW solution
of equation (4) with ¢ = 1 is linearly unstable for p > 5. Furthermore, it becomes evident that
blow-up in finite time is possible when p > 5, corresponding to the super-critical case [18].
If p=35, i.e. the critical case, solutions u to the gKdV exhibit global existence and temporal
boundedness, granted that the initial data ug satisfy the condition ||ug |2 < ||Q||2 [19]. This cri-
terion is based on a Gagliardo-Nirenberg inequality argument [20]. Based on the same argu-
ment, it can be shown that solutions also globally exist and remain bounded for the subcritical
case, p < 5. It is relevant to mention here also the work of [21] which showcased the exponen-
tial instability of the solitary wave for p > 5 through the presence of a real eigenvalue pair in
the spectrum (leading to exponential growth), as a result of the change of monotonicity of the
momentum E, of the solution as a function of its speed.

Numerous efforts have been dedicated to numerically investigating blow-up solutions
within the context of the gKdV equation; we briefly mention a few here. In the work of [22],
a comprehensive approach to studying the instability of solitary waves leading to blow-up in
a similarity form was introduced. This involved employing high-order numerical schemes in
both spatial and time dimensions, supplemented with mesh adaptivity. The study centred on
tracking the growth rate of various L*-norms of the solution. The numerical computations car-
ried outin [23] delved deeper into this phenomenon, and discovered how self-similar blow-up
takes place for rapidly decaying solutions at |x| — co. Notably, [23] argued that this blow-up
phenomenon is intricately linked to the instability of TWs, and that the self-similar solutions
inherit the stability that the TW solutions have relinquished. In parallel with the computation
of self-similar profiles in [23], the work presented in [24] approached the self-similar blow-up
problem within the gKdV framework as a bifurcation problem, and constructed an approxim-
ate invariant manifold that encompasses both TW and self-similar blow-up solutions. In [25],
a numerical study of the stability of TWs was carried out by performing direct numerical
simulations using exponential time differencing methods [26]. This was also the first study
that performed computations of the fully dynamically rescaled form of the PDE. A signific-
ant finding in [25] was that TWs are unstable against being radiated away and blowing-up,
thus numerically identifying the blow-up mechanism discussed in detail in [27, 28]. However,
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additional intriguing features were also identified such as the emergence of a dispersive shock
wave (prior to collapse) in the small dispersion regime.

More recently, the research presented in [16] has delved into the supercritical regime, p > 5,
resolving the structure of self-similar blow-up solutions, upon computing these solutions sys-
tematically as stationary ones. Their work involved the implementation of a dynamic rescaling
technique using collocation and finite difference methods [29], and was complemented by a
detailed analysis of the solutions’ asymptotics (in space). Indeed, and alongside the sech-like
shape of the self-similar profile in its core, the authors found that the solution features a slow
algebraic decay to the left of the peak and a rapid (exponentially dominated) decay to the
right [16]. It is important to highlight here the theoretical work of [30] that used modulation
theory in order to derive leading-order dynamics close to collapse for the centre evolution of
the collapsing solution (upon factoring out the relevant translation), its width evolution and the
rescaled time dynamics of the rate of collapse (blow-up rate). For the centre, it is found that
residual motion vanishes, the shrinkage rate of the solution width matches that of the amp-
litude growth. Finally, the rate of blow-up follows its own leading-order dynamics which is
bounded by higher order terms. These results relate to the normal form dynamics identified in
section 3.4 below; we discuss them further there.

In the present paper, we expand upon the above works, and not only focus on the construc-
tion of self-similar blow-up solutions within the gKdV framework, but also study their spectral
stability, as well as obtain the normal form associated with the bifurcation that the TW solu-
tion (4) undergoes at the critical point of p =5, in order to elucidate the onset of collapse. More
specifically, we continue the long-term program of systematically characterizing the emer-
gence of self-similarly collapsing waveforms as a bifurcation problem through the instability
of regular solitary waveforms. This was initiated in the work of [31], which built on the earlier
seminal works of [32—34] for the widely considered case of the nonlinear Schrodinger (NLS)
model. The bifurcation structure of the problem was computed numerically and the spectral
analysis of the emergent collapsing solutions in the self-similar frame was given. This was
subsequently further elucidated in the work of [35] which obtained systematically, leveraging
asymptotics beyond all orders, the normal form dynamics of the NLS model near the bifurc-
ation point giving rise to the emergence of self-similarly collapsing waveforms. Lastly, in the
context of NLS, our recent work of [36] led to a detailed understanding of both the point and
the continuous spectrum of the stationary states in the self-similar frame, attributing the putat-
ive instabilities therein to the breaking (within this co-exploding frame) of original symmetries
of translational and scaling invariance (see, also [37]).

Here, we accomplish both of the following goals for the gKdV model. We extract the asso-
ciated normal form and showcase its pitchfork-like structure similarly to NLS, although we
illustrate that, differently from the NLS case, exponentially small terms do not arise in the
present gKdV setting. In the normal form identified, linear terms—emerging with an abso-
lute value— and quadratic ones (in the blow-up rate G) are found to dominate the right hand
side and the associated phenomenology near the bifurcation point. The symmetry of the nor-
mal form reflects the existence of solutions with both G and —G # 0 (i.e. the ‘pitchfork-like’
feature of the normal form), yet the linear and quadratic terms are also reminiscent of a tran-
scritical normal form.

At the same time, we provide a detailed analysis of the linearisation spectrum not only
around the simpler solitonic waveforms, but also around the self-similarly collapsing states
emerging past the critical bifurcation point of p =5. The latter states are found to feature a
particularly complicated spectrum (especially as concerns the continuous spectrum), driven
by the third derivative operator of the gKdV problem and the associated boundary conditions
that we use for the collapsing waveforms. That turns out to be fundamentally different once
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again from the simpler case of the NLS problem, although the two cases share the same type of
apparent (yet dynamically innocuous) instabilities, stemming from the invariance with respect
to translation and the invariance with respect to scaling of the original frame (as viewed in the
co-exploding frame where the collapsing solution is stationary).

Our presentation is structured as follows. In the next section, we provide the overarching
scaling formulation, connecting the TWs of the original frame and the self-similar solutions
upon dynamic rescaling. We set up the associated stationary problems and boundary conditions
thereof, and also illustrate how to formulate the corresponding linearisation problem. Then, the
core of our findings is presented in section 3, which starts with the simpler (and well-known)
spectral analysis of the traveling waveforms, and then proceeds to extend considerations to the
self-similar structures. Both the point and the continuous spectrum of the latter is examined
and, subsequently, the normal form of the associated collapse dynamics is elucidated. Finally,
in section 4, we summarise our findings and present our conclusions, as well as a number of
directions for further study.

2. Mathematical setup

We now set the stage for our forthcoming discussions within this work. Our approach fol-
lows the dynamic renormalisation technique described in [36] (and references therein). This
approach allows us to rewrite the problem in the co-exploding frame through the ansatz:

X

u(x,t):=A(r)w(1), &:= B +K(1), T:=7(1). 5)

Here, A and B represent the solution’s amplitude and width, and alongside the function K,
all depend on the renormalised time, 7. Upon inserting equation (5) into equation (1) and
employing the chain rule, we arrive at:

10A 10Adw OKOow Ow) Ot 1 [Pw ow’
= K- - 22222227 20 ) 2 (D pqpig2
(AaTWH Daarae tor ag*z—%) ot B3(8§3 ATB ag) ©

after dividing both sides by A (where A # 0). We balance the terms on the right-hand-side
(RHS) of equation (6) by imposing the condition, A?~!B?> = 1, or equivalently:

A=B2/P=1), (7)

which leads to:

10A 2 10B_ 2G 108

Aor = p_iBor p1 970 ®

“Bor

where G represents the rate of change of the solution’s width, B. Additionally, if we demand
time independence of the effective dynamics in the renormalised frame, it is relevant to use:

or 1

ek 9

or B 2
Then, equation (6) simplifies to the renormalised gKdV equation:

ow Pw  ow’ 2w ow 0K\ ow
5 =56 a9 mree) (ko) e o
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To reduce the dynamics to the case of a TW with speed ¢ = 1, we require:

ko+ K _ 4, (11)
or

Notice that this is in line with the formulation of [24] (see equation (6) therein). Importantly,
and in order to unify the relevant formulations in different recent works, we remind the reader
that the transformation discussed therein (in particular, using W(y) = G=%/GPlw(G~1/3y —
G~ 1)) provides a matching of the problem considered with the setup of [16].

Consequently, equation (10) transforms, according to equation (11), into:

ow Pw  owP 2w ow
5 =58 e +o (e ) Yo (42

As per the definition of G in equation (8), and the monotonic growth of 7 from equation (9), the
solution’s width, B, diminishes, signifying a contraction in its spatial extent—effectively, B, <
0. Accordingly, self-similar blow-up solutions in forward time with respect to equation (1)
correspond to steady-state solutions of equation (12) characterised by G < 0. To elaborate, as
t — t* with #* > 0 representing the blow-up time in the original frame, then 7 — oo resulting in
w(&, ) — w(§), i.e., reaching a stationary self-similar profile for which G(7) — const.(<0).
Furthermore, the transformation 7 +— —7, G — —G, and £ — —¢ leaves equation (12) invari-
ant thereby permitting the existence of a self-similar solution that blows up in backward
time. In other words, this solution appears to be ‘coming back from infinity’ characterised
by G — const.(>0). [The latter will be important towards attributing a pitchfork-like form to
the relevant bifurcation diagram. However, it is important to keep in mind that the stability of
this solution is also reversed in comparison to the one with G < 0. Moreover, the linear and
quadratic terms that we will encounter below within the system’s reduced dynamics will also
be reminiscent of a transcritical normal form].

Returning to the stationary problem, when |7| — oo, equation (12) simplifies into the sta-
tionary ordinary differential equation (ODE):

dw
+§d€> +E 0. (13)

dEw  dw? 2w
g3 d¢

For our numerical computations throughout this work, we consider a symmetric and finite spa-

tial domain [—L, L], where L >> 1. The bounded nature of the computational domain necessit-

ates the implementation of boundary conditions (BCs) which in this work are:

2
ﬂ +Ge+1) 2 —0, (14a)
1 o€
€l=L
0w
e =0. (14b)
£=L

Itis important to highlight here that these BCs bear similarities to the ones employed in [16],
yet incorporate the role of the blow-up rate G explicitly. Our subsequent analysis will illustrate
that they accurately encapsulate the asymptotic behaviours of the self-similar profiles that we
compute in this work. It is noteworthy that based on the aforementioned BCs, and considering
G < 0, the solution’s slow algebraic decay manifests to the left of its peak, while the more rapid
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exponential decay transpires on its right side (consistent with the profiles in [16]). If we per-
form the transformation G — —G and £ — —¢& in equations (13) (which retains its invariance)
and (14a)—(14b), these decaying behaviours interchange, aligning with the numerical findings
reported in [24].

It has been reported that G is a dynamic variable, gradually approaching a constant value
as |7| — oo, which needs to be determined in a self-consistent manner for a given value of p.
To achieve this, following the methodologies outlined in the works of [31, 35, 36] (and ref-
erences therein), we ‘close’ the systems of equations (12) and (13) (both subject to the BCs
of equations (14a)—(14b)) by introducing a pinning condition. This lifts the degeneracy of the
one-parameter infinity of available (self-similarly rescaled) solutions and selects a unique one
among them, while at the same time providing the appropriate value of G. In our subsequent
analysis and computations detailed in the forthcoming sections, and without any loss of gen-
erality, we enforce a ‘pinning condition’ in the form of an internal BC:

ow

e (15)

This condition facilitates the unique determination of a self-similar solution characterised by a
constant value of G. By constraining the wave’s value (or its derivatives) at a specific point, as
exemplified in equation (15), one can effectively compute the pertinent unique solution which
in this case is prescribed to be peaked (i.e. features a maximum) at the origin.

We conclude this section by outlining the primary framework of the gKdV spectral stability
problem. We investigate the linear stability of a self-similar solution w(&) (characterised by
G #0), which remains stationary in the self-similar frame. This study involves considering the
ansatz:

W) =w(&)+ov(§e, <1, (16)

where (\,v(€)) denotes the eigenvalue-eigenvector pair. Upon inserting equation (16) into
equation (12), we arrive at order O(J) at the eigenvalue problem:

Av =Ly, 17)
where the operator £ (-) is defined as:

d hd &
L(-) izpfl—P(P_l)Wp 2£+(G€+1_PWF l)dig_digw (18)

representing the linearisation operator whose eigenvalues we compute. Notably, the stability
characteristics of TWs (over p) can also be explored using equation (18), albeit with G =0.
For all cases, i.e. G=0 or G # 0, the eigenvalues A = ), 4 i); of the linear operator presented
in (18) provide information about the stability of the computed waveforms. The presence of
a non-zero positive real part in an eigenvalue, i.e., A, > 0, indicates linear instability in the
computed solution. Conversely, the absence of eigenvalues with a positive real part suggests
(linear) stability. It is also important to appreciate the ‘dual’ character of the relevant linearisa-
tion setting, similarly to what was discussed in the NLS case in [31, 36]. Namely, the relevant
problem is a Hamiltonian one for G =0, featuring the corresponding eigenvalue symmetries
(i.e., for each complex A, each of —\, the complex conjugate \* and —\* are all eigenval-
ues). On the other hand, for G # 0, the problem is genuinely non-conservative, and only the
symmetry of A — \* will be present in the corresponding spectra. This renders the relevant

7
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bifurcation problem especially interesting from a mathematical point of view, given its mixed
Hamiltonian-dissipative type.

In the upcoming section on our numerical findings, we will delve into the challenges posed
by the eigenvalue problem in equation (17) addressing them as we compute both the point and
the continuous spectrum of the operator £ (as defined in equation (18)).

3. Computational and theoretical results

We begin our discussion with a brief presentation of the spectra of the better-known case of
the TWs, i.e. for G =0 across various nonlinearity exponents, p, as we consider the relevant
bifurcation problem. Subsequently, we delve into a comprehensive analysis of the existence
and spectral properties of self-similar solutions, characterised by G # 0, and their asymptotic
behaviour (for |£| > 1) within the co-exploding frame. We also present the normal form that
describes the bifurcating branch of self-similar solutions from the solitary wave branch, at
p=>5.

3.1. The TW case and spectra: G=0

Let us first focus on the soliton case corresponding to G =0 in equations (13) and (17). While
the analytical expression of the TW solution is available (see equation (4)), we numerically
compute the solution to equation (13) subject to the BCs given by equations (14a)-(14D).
Notice that for the present branch of G =0, the latter amount to a homogeneous Neumann
BC pair plus the vanishing of the second derivative on one of the sides (given the need for
three such conditions). This approach is taken to ensure that the computation of the TW’s
spectrum is conducted on the same computational grid and with the same spatial discretisation
as used for solving the root-finding problem of equation (13). This strategy eliminates local
truncation errors (LTEs) that could arise if we had directly plugged the TW solution into the
eigenvalue problem of equation (17), which might have led to potential perturbations of the
eigenvalues. In this study, we adopt a finite volume discretisation approach. For discretizing
the computational domain £ € [—L, L], we have chosen equidistant nodes with a spacing of
6& =0.001. We compare the results for different values of L as discussed below.

We use the TW solution from equation (4) as an initial guess within a Newton algorithm
for p =2, progressively conducting continuation steps across varying values of pup to p =5.8.
At each continuation step, we compute the spectrum of the operator £ (cf equation (18)) asso-
ciated with the eigenvalue problem defined by equation (17) for G =0, corresponding to the
solitonic branch. We compute our numerical spectra using MATLAB’s eigs function. During
this computation, we pay particular attention to the dominant unstable (real) eigenvalue. In
figure 1, we present the variation of this eigenvalue with respect to p, showcasing the res-
ults from p =4.2 to 5.8. The depicted figure clearly illustrates that the TW remains stable
until p =35, as evidenced by the absence of an unstable eigenmode with a positive real part.
However, as we push beyond the threshold of p =5, instability sets in, accompanied by the
emergence of a positive real eigenmode. This observation corroborates the findings in [15] for
the gKdV equation.

We finalise our discussion on the spectra of TW solutions to the gKdV by presenting their
full spectra A = A\, 4 i)\; for two distinct values of p, considering various domain half-widths,
L, as depicted in figure 2 (refer to the corresponding legends). The left panel corresponds
to the subcritical case of p=4.9, while the right panel pertains to the supercritical case of
p=>5.1, where the TW solution is unstable. Some observations can be made based on the
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Figure 1. (left panel) The variation of the largest real, i.e. dominant eigenvalue of the
TW solution (cf equation (4)) over the nonlinearity exponent p. The TW becomes spec-
trally unstable for p > 5. The right panel shows the corresponding eigenvector, v, for the
dominant eigenvalue (A\; = 0.0983) of the TW solution for p =5.2.
p=49 p=5.1
. . - « L=40
H L=80
06" 0.6+ 2 < L=160
i « L=320
04F 04+ 503 L =640
- L - 1 L =1280
5 02- Lo 5 02" HR
g 02 : g 02 <
> = ¥
£ 0 ; g0 i
£ 02 F £-02 i
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0.6F i 0.6 ;
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05 -04 03 02 -0 0 0.1 05 04 03 02 -0 0 0.1
Real Part Real Part

Figure 2. Spectra of £ (cf equation (18)) associated with the TW branch of figure 1.
The left and right panels of the figure showcase the full spectra of TWs for p =4.9
(subcritical case) and p = 5.1 (supercritical case), and for various values of the domains’
half-width L. We have performed a convergence test of the spectrum by starting from
L =40 and doubling it each time up to L = 1280 (see the legends therein in both panels).
As the infinite domain case is progressively approached, the wedge-like spectrum in both
panels starts aligning with an almost vertical spectrum that is proximal to the imaginary
axis.

information presented in figure 2. In both panels, the continuous spectrum is notably influenced
by the size of the domain. For relatively modest L values, such as L =40 and L= 80, the
continuous spectrum appears to take on a wedge-like shape. However, as the domain size
increases, particularly for L =640 and L = 1280, this shape transforms into a nearly vertical
(for the scale of the graph) distribution approaching the imaginary axis and thus suggesting the
asymptotic form thereof. In addition, the symmetry mode, accounting for spatial translations,
becomes increasingly distinguishable and well-resolved with larger L values in our numerical
computations, aligning with the expected behaviour. It is worth noting that the unstable mode
that emerges for p > 5 (also observed in figure 1) remains unaffected by changes in L. Note that
the wedge-like spectra that we find here for the TWs are because of the imposition of BCs of
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Figure 3. Self-similar dynamics of equation (12) for p=35.2. The TW solution of
equation (4) was used as an initial condition in the simulation. Panel (a) depicts the
evolution of the TW solution towards the self-similar profile. In panel (b), the temporal
evolution of the blow-up rate G(7) is monitored. Note that the self-similar dynamics
converges to a ‘steady-state’ solution of the co-exploding frame when 7 > 100.

equations (14a)—(14b) being themselves consonant with those of the self-similar solutions that
follow. If we were to impose, e.g., periodic BCs, the spectra of the TWs would be respecting
the Hamiltonian symmetry and structure of the model. As a result, the spectrum would be fully
on the imaginary axis for p <5 and featuring only a real pair (in addition to encompassing the
entire imaginary axis) for p > 5.

3.2. Existence of self-similar solutions: G # 0

The observed instability of the TW as shown in figure 1 for p > 5 is consistent with the sub-
sequent self-similar blow-up of the TW, a phenomenon already discussed in section 2. We
now proceed with the computation of self-similar solutions for the gKdV (equation (1)). As
previously reported in section 2, solutions that exhibit self-similarity in the renormalised / co-
exploding frame translate to stationary solutions of equation (12). By directly simulating the
initial-boundary value problem (IBVP) of equations (12) and (14a)—(14b) along with the pin-
ning condition specified by equation (15), w(&,7) — w(§) as 7 — co. Here, w(€) is a solution
satisfying equation (13).

This way, the self-similar profile can be determined by utilizing the TW solution as an
initial condition, specifically for a value of p where the TW exhibits instability. We integrate
equation (12) in (the renormalised) time using a backward Euler method [38]. We have also
tested our time integration algorithm by comparing its outcomes with those obtained from
MATLAB?’s ode23t function, showing a high degree of agreement. Throughout the time integ-
ration process, we consistently impose the pinning condition defined in equation (15) at each
time step. This permits the computation of the rate of width change, G (or blow-up rate) as
a function of 7, as illustrated in equation (8). The results of this simulation are depicted in
figure 3, specifically for p =5.2. The left panel of the figure illustrates the spatio-temporal
evolution of w(&,7) within the renormalised frame, while the right panel tracks the variation
of the blow-up rate, G, with 7. As evident from the panels, once a transient time window
~(0,100] elapses, the self-similar dynamics tends towards a stationary profile (as observed

10
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Figure 4. Existence results of self-similar solutions to the gKdV obtained numerically.
In the left panel, the solid grey line corresponds to the dependence of the blow-up rate
G on p for the self-similar branch. The black line with rectangles corresponds to the
results obtained from the normal form (steady state solutions of equation (65)). The
solitonic branch with G =0 is overlaid in the panel, and shown with a solid black line
(for its stable portion), with the dashed part corresponding to the unstable segment of the
solitonic branch. The right panel presents a few self-similar profiles for different values
of p (and G). For their values, see the legend therein.

in the left panel). Simultaneously, the blow-up rate, G, reaches a constant, negative value (as
indicated in the right panel). This stationary nature of the self-similar dynamics permits the
accurate computation of the self-similar profile in accordance with equation (13). In particu-
lar, we extract the terminal solution at 7 =300 from the dynamics and employ it, in conjunc-
tion with the asymptotic value of G, as an initial guess for a Newton method, which rapidly
converges. It is also important to highlight here that the relaxational nature of the dynamics
predisposes us towards the expected dynamical stability of such a self-similarly collapsing
state.

The alternative, more computationally accurate approach adopted in our work for the
numerical computation of self-similar solutions is by directly tackling the boundary value
problem equation (13) with BCs of equations (14a)—(14b) and the pinning condition described
in equation (15). Upon using either the above mentioned initial guess or a slightly perturbed
TW for p > 5, along the most unstable eigenvector (as described in equation (16)—see also
right panel of figure 1), we obtain the corresponding self-similar waveform for the respect-
ive p. Upon achieving convergence through the Newton’s method (either by employing this
approach or the one mentioned earlier), we proceed with parametric continuation [39] across
the nonlinearity exponent, p. This step enables the full tracing of the branch of self-similar
solutions.

Displayed in figure 4 are our numerical findings regarding the existence of self-similar
solutions to the gKdV equation (as defined in equation (13)). In the left panel of the figure,
the dependence of G on p for the self-similar branch (G < 0) is illustrated by the grey line,
while the solid black line represents the soliton (TW) branch. The dashed black line segment
signifies the unstable nature of the solitary wave solutions for p > 5. On the right panel, the
numerically obtained self-similar profiles for various p values are presented, along with the
corresponding blow-up rates, G, indicated in the legend. Notably, the profiles presented in
this panel exhibit identical characteristics to those reported in [16]. Specifically, the solutions
display a power-law decay on the left side and a rapid (exponential) decay on the right side,
with respect to the peak located at the origin. Through the application of the transformation
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Figure 5. The dependence of the 2 unstable eigenvalues as a function of p. Note that
those are precisely located at A\j = —3G and A\, = —G.

G — —G and £ — —£, we observe that the regions capturing the asymptotic behaviours of the
solutions are indeed exchanged (results not displayed). The resulting profiles align with those
presented in [24] under this transformation.

3.3. Spectral analysis of self-similar solutions: G < 0

We now shift our focus to the spectral analysis of the self-similar solutions within the context of
the gKdV equation. In this pursuit, we recall the eigenvalue problem outlined in equation (17),
along with its corresponding operator, £, as presented in equation (18). During each step of
the continuation method, which we have employed to trace the self-similar branch (G < 0),
we compute the spectrum of the operator, £. Our ensuing analysis will be divided into two
components: one centred around the point spectrum, and the other concerning the continuous
spectrum. Regarding the point spectrum, our findings reveal the existence of four real eigenval-
ues that can be systematically traced. Among these four, two eigenvalues are positive, denoted
as \; and \,, with A\; > \,. The remaining two eigenvalues are negative, designated as A_
and A_,, with A_{ > A_,.

Let us begin our analysis with the two positive eigenvalues that pertain to apparent instabil-
ities in the co-exploding frame. We find that these eigenvalues are precisely situated at
A1 = —3G and )\, = —G, a fact readily observed in figure 5. This is true up to exponentially
small corrections in the size of the domain which are imperceptible over the scales shown and
for the choices of L made herein. Accompanying these eigenvalues, we also present the expli-
cit forms of their associated eigenfunctions (for the infinite domain problem). Specifically, the
eigenvector associated with A\; = —3G is:

2 1
v(§):liw+§w5+aw§, (19)
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Figure 6. Comparison of (the practically identical) exact and numerically obtained
eigenvectors shown with a black solid line and grey dots, respectively, for p =5.2. The
left panel presents the eigenvector associated with \; = —3G and the scaling invariance
(cf equation (19)) whereas the right panel depicts the one associated with A\, = —G and
translational invariance (cf equation (20)).

where the subscript indicates differentiation with respect to . Similarly, when considering
Ay = —G the (exact, in the infinite domain limit) eigenvector takes the form:

v(E) =we. (20)

This latter eigenvector is associated with the translational invariance of the problem, while the
former is connected with the scaling symmetry and the associated invariance. Figure 6 presents
a comparison between the exact eigenvectors derived from equations (19) and (20) (depicted as
solid black lines) and the numerically computed counterparts (depicted as gray dots). For the
sake of illustration, we choose a specific value for the nonlinearity exponent, namely p =5.2.
It is evident from the panels of the figure that the two sets of eigenvectors exhibit a remarkable
agreement with their corresponding theoretical prediction for the choices of L depicted herein.

Let us now delve into the discussion concerning the two aforementioned negative real eigen-
values, namely A_; and A_,, which we systematically trace during our computations. The
eigenvalue, A_1, aligns fairly closely with G/2, while A_, displays oscillations centred around
2G. The left panel of figure 7 illustrates these behaviours, depicting the dependence of these
negative real eigenvalues on the nonlinear exponent, p with solid blue (accompanied by open
circles) and red (with open squares) lines, respectively. In the same panel, dashed-dotted red
and blue lines correspond to the values of G/2 and 2G as functions of p, included for compar-
ison. Examining the left panel, we observe that while the eigenvalue, A_ |, remains consistently
proximal to the prediction of G/2 (see also details below) starting from its emergence at p =5,
it does exhibit small oscillations that gradually increase in amplitude as p grows. Similarly, the
eigenvalue, A_,, displays more vigorous oscillatory behaviour around 2G (indicated by the
solid red line with open squares). Furthermore, the panel showcases the behaviour of the third
and fourth largest negative eigenvalues, denoted as A_; and A\_4, depicted with solid orange
(with open triangles) and purple (with stars) lines, respectively. Similar to A_;, these eigen-
values also experience oscillations around 2G, which get amplified as p increases. It is worth
noting that these oscillations are a consequence of the finite domain size employed in our ana-
lysis, and we will delve into a systematic analysis of these oscillations later. Illustrating the
effect of the domain size, the right panel of figure 7 compares the dependence of A_4 on p for

13
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Figure 7. Continuation of figure 5 but now for the largest negative real eigenvalues.
The left panel presents the variation of the 4 largest negative real eigenvalues, A_; >
A_2 > A_3 > A_4 over p (see the legends therein), and for (domain half-width) L = 160.
In particular, A_; oscillates around G/2 (red dashed-dotted line) whereas A_p _3 _4
around 2G (depicted with blue dashed-dotted line). The right panel highlights the finite-
size domain effect by showcasing the variation of A_4 over p, and for L =40 (solid blue
line with open squares), and L = 160 (solid orange line with open triangles).

two different domain half-widths, specifically L =40 and L = 160. The solid blue line (with
open squares) and orange line (with open triangles) represent A_4 for L =40 and L= 160,
respectively. This comparison highlights that as the domain half-width increases from 40 to
160, the real part of A_4 decreases (in terms of its absolute value) from its initial value at
p =1>5. Additionally, the oscillations in the eigenvalue are discernible at lower values of p for
the larger domain size (L = 160), though A_4 continues to oscillate around 2G in both cases.

The finite-size effects, whose influence we have already seen in part, leave their imprint
on the continuous spectrum of self-similar solutions as well. The left panel of figure 8 depicts
the spectrum of the operator £ (cf equation (18)) for a specific value of p=5.1, as it varies
with the domain’s half-width, L (again, by doubling L each time as we performed in figure 2).
However, the continuous spectrum in this context presents distinctive attributes compared to
the TW case. The continuous spectrum can be split into two segments: an almost-vertical por-
tion situated close to G =~ —0.022, and a wedge-like portion, reminiscent of the one observed
in the TW case. Upon increasing L, we note that the nearly-vertical segment of the continuous
spectrum remains relatively consistent, gradually converging toward a real part of the relevant
spectrum equal to G. It is relevant to note here that this feature is reminiscent of the continuous
spectrum in the NLS case [36]. Concurrently, the wedge angle associated with the other por-
tion of the continuous spectrum widens, leading to a transformation of the wedge-like section
into an almost-vertical line parallel to the imaginary axis. Meanwhile, the distance between
this almost-vertical section of the spectrum and the imaginary axis expands as p increases.
This is illustrated in the right panel of figure 8, where a comparison of the spectra between
p=>5.1and p=5.5 is presented using blue and red crosses, respectively. Nevertheless, as will
be discussed below, this portion of the spectrum is not well-resolved. More specifically, we
will argue that this segment is extremely ill-conditioned and, in reality, it is supposed to lie on
the negative real axis. It is noted that, similarly to the p =5.1 case, the vertical section of the
spectrum at p = 5.5 aligns precisely with G ~ —0.0922.

We now proceed with the analytical approximation of both the continuous and point spec-
trum of the operator, £, by using the Wentzel-Kramers—Brillouin (WKB) method [40]. We

14
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Figure 8. Same as figure 2 but for the self-similar branch. In the left panel, we present
spectra of L (cf equation (18)) with p=5.1 as functions of the domain size L (see the
legend therein). We employ a similar convergence analysis over L as we performed
in figure 2. Interestingly, the spectrum involves two parts: a vertical part that lands
exactly on G = —0.022 (see also the dashed-dotted line, representative of this value),
and a wedge-like one that is morphed into a vertical spectrum as L increases, i.e. as we
approach the infinite domain case; yet this portion of the spectrum will be argued to
not be well-resolved in what follows. The right panel of the figure, considers L = 1280,
and compares the spectrum of two self-similar solutions with p = 5.1 (blue crosses) and
p=15.5 (red crosses). The dashed-dotted black and purple lines are introduced to high-
light the location of the vertical parts of the spectrum at Re(\) & G (see the legend).

suppose that we are close to the bifurcation point, so that p is close to 5 and G is close to zero.
We will see in section 3.4 that the steady self-similar solution comprises an inner region in
which & = O(1), and an outer region in which & = O(1/¢), where ¢ = —G > 0 measures the
distance from the bifurcation point, so that p — 5 is proportional to €. This inner-outer struc-
ture is inherited by the eigenvalue problem. However, we will find that the spectral properties
are mainly determined by the outer region. Thus we adopt a rescaling into the outer region by
introducing the transformations:

y=¢& G=-—¢, >0 20

After substituting equations (21) into equations (17) and (18), we obtain

3
iv:_gﬂ_ d(va—l)_< 2v + dv)+dv (22)

p—1 Yay) T ay

Since w’~! is exponentially small in the outer region it may be neglected. Expanding p as
p=po+ep)+--- (with pyg =5), we obtain:

Sytel— - — Sy— |+ (23)

A ,d3y L Ep1V
€ dy dy  \2 “dy 8

Subsequently, we introduce the WKB ansatz:

v~ Ae?s 210, (24)
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where ¢(y) represents the phase and A(y) corresponds to the slowly varying amplitude.
Equating coefficients of powers of ¢ at orders O(e~!) and O(1) gives, respectively,

A () +(—1)¢" =0, (25a)

A
3A(¢/) 340" —A' = — 2 A/, (25b)

the latter of which can be further rearranged as

A/ 1 6¢/¢”+1

_ —) 26
A 2360 —14y =

and subsequently integrated with respect to y, yielding

A= ! 27)

(3(¢’)2—1+y)1/27

where we have set the constant of integration to unity. Since equation (25a) is a cubic, there are
three distinct WKB solutions, which we denote by v; ~ A; e?/¢ with i = 1,2,3. We choose
these so that for real y, the phase functions have asymptotic behaviour

A
o~ (=)' gy~ — (=), i~ =l asyoooon (29)

We find that there are turning points at

3\ 2/3
y:1_3(2) . (29)

Because of the third root, there are three turning points, which we label as y4, yz and y¢.

Naively we might now try to approximate an eigenfunction as a linear combination of vy,
v, and v3. However, in doing so it is crucial to understand both (i) how the WKB solutions
are permuted when circling a turning point because of the Riemann surface associated with
the function ¢ (turning points are branch points of ¢), and, (ii) how the coefficients in such a
linear combination will change discontinuously across the Stokes lines associated with each
of the turning points [41-43]. The following analysis of the eigenvalue problem uses a similar
approach to that in [44].

A typical Stokes line picture is shown in figure 9. When the turning point y, is encircled,
the phase ¢; becomes ¢3 and vice versa. Similarly, as the turning point yg is encircled, ¢,
becomes ¢3, and vice versa, while when the turning point y¢ is encircled, ¢; switches places
with ¢,. For definiteness we introduce branch cuts across which these interchanges in labels
take place (see figure 9). Stokes lines in figure 9 are indicated by solid lines. Across each of the
lines a dominant WKB solution will switch on a subdominant WKB solution (i.e. there will be
a change in the coefficient of the subdominant solution proportional to the coefficient of the
dominant solution). The relevant dominant/subdominant WKB solutions depend on the turning
point at which the Stokes lines originate. Also shown in figure 9 are anti-Stokes lines (dashed)
across which the dominance of two WKB solutions switches. Finally, the spirals around each
turning point illustrate one of the possible local branch point/Stokes switching structures.

Let us explain these by considering the diagram in the vicinity of the turning point y¢, for
example, with a solution in which only the WKB solution v, is present to the left of the turning
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Figure 9. Stokes lines (solid) and anti-Stokes lines (dashed) when A =~ —0.02537 —
0.401i. Solid black lines are branch-cuts of the phase function ¢. Three turning points
va, yB and yc are indicated. Each is a square root branch point of ¢. The local Riemann
surface structure in the vicinity of each branch point is indicated by the spirals, which
shows which branches of ¢ are turned on/off across the Stokes lines.

point. There is a possible Stokes line close to the negative real axis but it is not active because
¢, is subdominant to ¢, there. As the turning point is encircled clockwise we first cross the
anti-Stokes line at which ¢; becomes the dominant exponential, followed by another Stokes
line. Since ¢; is now dominant, a multiple of ¢, is turned on. Proceeding clockwise we cross
another anti-Stokes line close to the positive real axis across which ¢; and ¢, again exchange
dominance. We then meet another Stokes line, at which ¢, is the dominant exponential. At
this Stokes line there is a change in the coefficient of v;—in fact the change is such that the
coefficient is zero after the Stokes line is crossed, so that only ¢, remains. We then cross the
branch cut, so that ¢, becomes ¢; and we return to where we started.

The approximate eigenvalue condition stipulates that the anti-Stokes line emanating from
one of the turning points intersects the right-hand boundary (see figure 9, for which the anti-
Stokes line from y¢ passes through the right-hand boundary). This gives three branches of
eigenvalues (one for each turning point), which are roughly (A) Re(A) = G, Im(\) > 0; (B)
Re(\) < G, Im(A) =0; and (C) Re(\) =~ G, Im(\) < 0.

To see why this should be the case we first observe that, as we move into the domain from the
left-hand boundary, the WKB approximations v3 and v, decay exponentially, while v; grows
exponentially. Let us start by describing branch (C). We proceed to construct an eigenfunction
as follows: The left-hand BC can be satisfied by adding a multiple of v3 and v,. Since v,
exhibits a stronger decay, it can be safely disregarded at the right-hand boundary. To satisfy
the conditions at the right-hand boundary we need some more degrees of freedom. We can add
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a multiple of v; without affecting the left-hand boundary—since v, is exponentially larger on
the right than the left. We choose our normalisation of the eigenfunction to fix this multiple of
v1 to unity (choosing ¢ (yc) = 0). Let us now determine the form of the eigenfunction at the
right-hand boundary, taking into account the Stokes switchings. The solution v; will turn on a
multiple of v, due to the turning point yc. The Stokes multiplier is —1 (if we set ¢2(yc) = 0).
There are also Stokes switchings associated with y,4 and yp, but we can see from figure 9 that
the functions switched on are exponentially subdominant up to the boundary (since the anti-
Stokes line has not been crossed). As a result, the eigenfunction takes the following form near
the right-hand boundary:

y = aA3e¢3/E _A2e¢2/6 +A|e¢‘/6, (30)

where ¢, and ¢, are both zero at y = y¢ (the zero of ¢3 can be chosen arbitrarily since changing
it simply changes the coefficient a). Subsequently, using equation (30), we can express the first-
and second-order derivatives of v with respect to y near the right-hand boundary as:

1

v = g (a¢3’A3e¢3/5 — Aypye®?/e +A1¢1’e¢'/5) o (31a)
1

V=5 (a(@9)?Ase™/ — Az (6)% e/ 4 A1 (6])°e/<) 4. (1)

Now imposing (14a) at y = €L, the coefficient a can be determined at leading-order as

A / (j)z/s _ / ¢|/E
o= 20,€ Ajpie (32)
PjAze® /e ’

which reduces equation (31b) at y = €L to

1 /A '¢2/67A Iabi/e
R e N R I B

T2 ¢3{A3e¢3/8
1

From the above expression, we observe that v/ =0 when the exponential terms in
equation (33) are of comparable magnitude, requiring the following condition:

Re (¢ +clog (A2, (¢, — ¢3))) =Re(¢1 +elog(Aig) (o1 — ¢3))), (34

so that the anti-Stokes line from y¢ must pass through the boundary y = €L (to leading order—
equation (34) includes an O(e) perturbation).

Setting (33) to zero produces complex eigenvalues with negative imaginary part and real
part around G. If we instead require that the anti-Stokes line from y4 passes through €L, then
we produce the complex conjugate of these eigenvalues, characterised by a positive imaginary
part and real part around G.

Note that the calculation above does not consider any potential alterations in the coefficients
of the WKB solutions as we pass through the inner region near y = 0. Nevertheless, since the
key to determining the eigenvalue lies in understanding the behaviour on the right side of the
turning points, which lie in the right half-plane, and in the vicinity of the right-hand bound-
ary, any adjustments in these coefficients do not impact the determination of the eigenvalue.
This conclusion is evident from the representation presented in figure 10, where we illustrate
the asymptotic and numerical approximation to one eigenfunction. The asymptotic calculation
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Figure 10. The (a) real part and (b) absolute value of the eigenfunction with eigenvalue
A~ —0.0243 — 0.1294i and G = —0.022, L = 120. The numerical solution is shown in
blue, the asymptotic approximation in red. The asymptotic approximation does not take
into account the change in amplitude and phase of the WKB approximations across the
inner region near the origin, but this does not affect the eigenvalue or the approximation
of the eigenfunction in y > 0.

predicts the eigenfunction well for y > 0, but does not take into account the jump in the coef-
ficients of the WKB solution as we pass through the inner region near y = 0; nevertheless this
does not affect the eigenvalue calculation.

There is one final scenario that we need to consider, namely when the anti-Stokes line ori-
ginating from yg intersects the right-hand boundary y = L. This occurs when the eigenvalue,
A, is real, with the corresponding Stokes line configuration illustrated in figure 11. In this con-
figuration, the phases ¢3 and ¢, are approximately of the same magnitude along the real axis,
leading to the expression:

v=A3e%/5 — A/ 1 aA e/ (35)

Similar to the previous analysis, we derive the following leading-order expressions for the
derivative of w with respect to y:

1

v = . ( 1A3e?/E — Ayphe??/® +aA1¢,’e¢l/€) +o (36a)
1

V= <(¢3’)2A3e¢3/5 — Ay (85)7e®/° 1 aA, (¢{)Ze¢‘/e) 4o (36b)

Imposing (14a) at y = L we determine the coefficient a to leading-order as

Yy _A3¢53/e¢3/s —A2¢£e¢2/s 3
BlAe/e .

This way, equation (36b) simplifies to:

A3¢3/e¢3/€ 7A2¢2/e¢2/€
l’Ale¢l/5

1
= 5 (M (p7e e — asog e -

(61 A1e7) -

1
=3 (A3¢3/ (95— 1) e/ — Argp) () — ¢{)e¢2/5> e, (38)
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Figure 11. Stokes lines (solid) and anti-Stokes lines (dashed) when A ~ —0.3. Solid
black lines are branch-cuts of the phase function ¢. Three turning points ys, yg and
yc are indicated. Each is a square root branch point of ¢. The local Riemann surface
structure in the vicinity of each branch point is indicated by the spirals, which shows
which branches of ¢ are turned on/off across the Stokes lines.

As previously, in order for this expression to be zero, the two exponentials must be of com-
parable size. Specifically, we derive:

Re (¢35 + elog (Asds (03 — ¢1))) =Re (¢ +elog(Ax; (d; — ¢1))).  (39)

When A is real, for real y, ¢{ and yg are real, and ¢, = ¢3 (with the overbar standing for
complex conjugation). Consequently, w'’(eL) = 0 if
/2

_ _ N2 !
Q2im(3) /e _ 1 (03— ¢1) (3 (¢5)" -1+ EL) — i®
(3 (#)° 1 +5L)1/2 93 (05— 1)

say, i.e.

Im () = <n7r +q2’>. (40)

An illustrative example is presented in figure 12, which compares the numerically obtained
eigenfunction with the asymptotic approximation for a real eigenvalue A\ ~ —0.0434.

In figure 13 we show a comparison of the asymptotic predictions for the eigenvalues along
with the numerically-determined spectrum for p =5.1 and a domain of length L =120. We
see that there is excellent agreement for the complex eigenvalues in branches (A) and (C), and
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Figure 12. The (a) real part and (b) absolute value of the eigenfunction with eigenvalue
A~ —0.0434 for G = —0.022, L = 120. The numerical solution is shown in blue, and
the asymptotic approximation in red. Again the approximation does not take into account
a jump in the coefficient of the WKB solution near the origin, but this does not affect
the eigenfunction for positive y.

. i
0.5 . # 1
. . = (A)
5 . .
x =
[al} x B
b ., (B) @
< H o % 0 oF e 6 Hx = * J
g © . !
g - =
g - =
- - = (C)
-05¢ * ® g
z = numerical eigenvalues
* o asymptotics
. o asymptotics: real eigenvalues
-1 ! T i T
-0.2 -0.1 0 0.1
Real Part

Figure 13. Comparison between asymptotic approximation (rectangles and diamonds)
and numerical eigenvalues (blue crosses) for domain length, L =120, and parameter,
p=15.1(G = —0.022). Labels (A), (B) and (C) correspond to the different branches of
the asymptotic approximation.

for the first few real eigenvalues in branch (B). However, moving to the left the numerically
determined eigenvalues do not stay on the real line, but diverge into a wedge in the complex
plane. We believe that this is numerical error, and is caused by the extreme ill-conditioning of
the eigenvalue problem. The origin of this can be seen in figure 12—these eigenfunctions are
exponentially small near the right-hand boundary by comparison to the left-hand boundary
(a factor of 107 in figure 12 where A = —0.0434 and G = —0.022), and yet the eigenvalue
condition is determined by the behaviour at the right-hand boundary.

The previous calculation of real eigenvalues disregards Stokes switching due to the turning
points at ya and yc, which remain exponentially subdominant until A reaches the region in the
complex plane where the first two branches of eigenvalues (A) and (C) intersect the real axis,
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i.e. around )\ ~ G. Thus the approximations we have found are good at describing each branch
of eigenvalues away from the point of intersection of the branches. To get a good approximation
near the intersection point we need to incorporate the effects of all the Stokes lines. Doing so
we arrive at the following expression

V= Aze®/e — A/ 4 a <A1e¢‘/5 — Aye($100)=d30n))/e /e _ Aze(dh(Y(?)—¢z(yc))/5e¢2/5)
— (1 _aewl(mf@(y,o)/e)A3e¢3/s _ (1 +ae<¢1<yc>f¢z(yc>>/s) Ae®/ aAe® /e, (41)

Differentiating equation (41) with respect to y, and considering the leading order, we obtain:

1 .
V= - ((1 _ ae(@(,vn—m(yn)/s) dlAe?/e — (1 +ae<¢l<yc>—¢z(yc>>/s)Az%em/s

+apfe?/F) + -, (42q)
1 . ,
V= = ((1 — qe P10 =800)/e) ()2 43693/ — (1 + qel® ) =220e)/2) A, (1) 2?2/
(42b)

+ aA (8] 4o

The value of a in equation (42a) can be determined using (14a) as usual, giving

Axdle?3/s — A pled2/c
0 3¢5¢ 293¢ @3)

B {Ajed1/e —ele10n)=¢30n))/e plAseds/e — e(A1(ic) =2 (v)) /e Ay pledr/e
By substituting equation (43) into equation (42b), we derive:

1

1 A35e®/5 — Ayple??/*
T2 PlAed1/e — e(r0m—=ds(m)/e plAzeb3/e — e(9100) 620D/ Ay et/

y { (6124169175 — B10m =600 /2 (3117 Ages/e _ (9100092000 e g, (¢>g)2e¢2/a}

1
+3 <A3 (p) e/ —Az(¢2/)ze¢2/5) e

Consequently, after rearranging terms, the eigenvalue condition can be expressed as

A (81)e/° — Ay (8}) e/
A3¢3’e¢3/5 —A2¢£e¢2/5
(¢1’)2Ale¢1/5 — (0100 =B30m)/e (p1)? Aze®3/e — e(@100)=4200)) /24, (¢2/)ze¢z/s
¢)1’A1e¢1/6 — e(¢l(YA)*¢3(yA))/5¢:§A3e¢3/€ — e(¢1(VC)*¢2(}‘C))/€A2¢£e¢2/€

(44)

In figure 14, we illustrate the accuracy of (44) in predicting the complicated behaviour of the
negative real eigenvalues associated with the spectrum of self-similar solutions to the gKdV
equation as G is varied. The red dots in the plot correspond to the eigenvalues obtained through
numerical computation, as visualised previously in figure 7. The solid gray line, on the other
hand, represents the asymptotic approximation provided by equation (44). The asymptotic
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Figure 14. Negative real eigenvalues of the operator £ given by equation (18), branch
(B), near the intersection with branches (A) and (C). The real eigenvalues as a func-
tion of G are shown with red dots and solid grey line corresponding to the numerical
solution of the eigenvalue problem (cf equation (17)) and asymptotic approximation of
equation (44), respectively. Note that although the formula captures the slight oscilla-
tion of the eigenvalue located near G/2, there is a discrete eigenvalue near 2G which is
missing.

~0.08 "

formula accurately captures the vast majority of negative eigenvalues, with the exception of a
discrete eigenvalue located at 2G.

Ignoring for the moment the eigenvalue near A = G/2, as G is reduced all other negative
eigenvalues move towards the origin. The leading eigenvalue is then ‘reflected’ near A ~ G
and returns to collide with its neighbour (at which point they become complex and add to the
eigenvalue branches (A) and (C)).

This eigenvalue dance induces a subtle oscillatory behaviour in the eigenvalue near G/2
(that was also illustrated in the right panel of figure 7, indicated by the solid line and blue open
circles), which is also captured well by equation (44).

Finally we note that the leading-order outer equation (cf equation (23)) and BCs are satisfied
by v =1 when A = —¢/2, which explains why there is an eigenvalue near A = G/2. However,
the eigenfunction predicted by equation (41) is not quite constant in y > 0, as illustrated by the
solid red line in figure 15; the approximation effectively captures the small oscillations present
in the eigenfunction to the right of the turning point at yg.

3.4. The normal form

After delving into the spectrum of self-similar solutions in section 3.3, our focus now shifts
towards the derivation of the normal form, a pivotal model equation characterizing the
emergent bifurcation of the self-similar branch from the soliton branch at p =5. The final
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Figure 15. The numerically obtained and asymptotically constructed (from
equation (41)) eigenfunction with eigenvalue A~ G/2 is shown with a solid
blue and red lines, respectively. The outer solution breaks down near the turning point
at yp, but captures well the oscillations to the right of this.

expression of this normal form is provided in equation (65) for convenient reference. In the
previous section we defined € = —G, expanding p = po +¢€p; + - - -. In this section we find it
convenient to set p = pg + £p;, and expand G in powers of . We could of course set p; =1,
but since we would like to maintain € > 0 while considering both p > py and p < py we find it
more convenient to leave p; arbitrary. This approach also helps us clearly identify the origin
of the terms within the expansion.

We transition to a slower time scale by introducing the transformation ¢ =e7. Then
equation (12) takes the form

8w FPw  Owr 2 ow
B =7 e () Yo @)

and we note that the blow-up rate, G, continues to be uniquely determined by the pinning
condition described in equation (15). Much of the analysis in this section mirrors that in [16]
for the steady problem. We expand the solution w and the (constant) blow-up rate G in powers
of € as

(oo} (oo}
w= ZE"W,,, G= ZE"GH. (46)
n=0 n=1
Substituting equation (46) into equation (45), we obtain at order O(1):
d3W0 d dW()
B 7 sty ) 47

This equation is just that describing steady travelling waves to equation (1), with solution
(cf equation (4))

wo = (" "; 1)mlsechvo21 <(p0 o) e fo)) (48)
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Note that the offset &y in equation (48) is determined by the pinning condition specified in
equation (15), which in this case results in £, =0.
Atorder O(¢), considering that 9wy /9t = 0 and integrating once with respect to &, we find:

£ 02 dwo
LWy, :—p]wg(’logwo+G]/ wo+s— ds+c
0o \wo—1 Os
—piwy logwy +Gig +c, (49)
where
82 € 2 aW()
£ Wl :/ MW 4 50
() 862 +p0 7 8 o p0_1W0+S Os S, ( )

and c is an arbitrary constant of integration. Note that since wy (cf equation (48)) is an even
function, g (cf equation (50)) is odd. Additionally, we note that since Owy/O¢ satisfies the
homogeneous version of equation (49), a solvability condition arises due to the Fredholm
alternative. This condition is expressed as follows:

[ ow [ 2 Owo
O—GI/_WaT 0 <po—1W°“a)d“f

- _Gllwwo <p02 W0+§3V20> .

_ /2, w _Gi(po=5) [ ,
= Gl/oo<p0_1w0 2>d§ 20 —1) /700w0d§, 51)
due to the relations
Owg Owo
w”°1 dé =0 d 0.
| Gtogmas =0, [ Svac—

From equation (51), it follows that py = 5 when G # 0 [45]. Furthermore, the complement-
ary functions can be expressed as:

~ sinh(2¢) - cosh(4¢) —3
 cosh?? (2¢) 27 cosh? (26)

and they satisfy

vi(0)=0, v5(0)=0, vi =0, vy —ooasl|f|— 0
while also having a Wronskian

W= vlvz/ fvzv]' =4,

As aresult, we can express w; as:
¢ V2 0 > V1 0
w1 = Z(plwg logwp — G1g —¢) ds + vy Z(plwg logwg — G1g — ¢) ds. (52)
0 13
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With reference to [46]

31/4F 1/4
wiy ~—c—Gg (oo :—c+—/ wo (€) d§ = — 8(\/%) as £ — oo,
(53a)
1/4
wi~—c—Gg(—00)=—c— 3 F(1/4) as £ — —oo. (53b)

8V 2w

To determine the constant, ¢, we delve into a more detailed analysis of the far-field region, as
discussed in section 3.4.1. First, though, we proceed to one more order in this inner expansion.
At order O (52), upon integrating once with respect to £ and rearranging, the result is:

8 2
LDy, = —/ % ds — IOWSW% —plwéwl — 5p1wgw1 logwy — %wg log2 wo

¢ wi ow, 14 £ wo Owp
G — —_— d G — | d
v (e m)arare [ (55 )e

where ¢ is an arbitrary constant of integration,
In this case, the solvability condition is given by

o0& ot
2 €
14 Wi awl D1
_ Elwolog wo + G /_00 (2 +s§ - 8w0> ds) d¢
[ee]
= / % ( 10w0w1 plwowl — 5p1w0w1 logwo) d¢

+G1/ W0(2+§ 0)d€+W07+G1/ f Wldf

Note that there is a p; term in wy, so this equation is actually quadratic in p;. We can explicitly
express the dependence of wy on p|, Gy, and ¢ by writing w; = p; W| 4+ G{Wodq + CWeyen Where

9 )
0:/ o (—/ ﬂds lOwgw%—plwgwl —5p1w3w1 logwy

3 V2 ° V1 5
W, = vl/ T (wp logwy) ds—i—vz/ T (wglogwo) ds,
13

Wodd —V1/ 7(1 — 2/ VIg dS
Weven = vl/ ds—vz/ —lds.
o 4 13

The only time dependence in w; arises from G| and c. Consequently, the solvability condition
simplifies to
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 Ow . . . .
G / 8750 (—10w32 (P1 W1 + cWeven) Wodd — P1wg (Wodd) — SP1w (Wodd) logwo) d€

d o0 o0 W ~ ven
4 de W8+ Gy / wo (P H Ceven)  PL e
dr - 2 8
0 a .
16, / o (p1W1 1+ Civeyen) d€ = 0. (54)

Notably, all quadratic terms in p; cancel out (the Authors in [16] get away with omitting
these terms). Refining the solvability condition, we arrive at

dc
g G (Bp1 +7c), (55)
where
= _/ WoWeven df (56)
5= / 8W0 20w(3JW1 — wg — 5w3 logwo) Wodd + Wo (V;l + éwo) +€aa£ W, d€,
(57)
. > 8 wo 8W0 R
Y= [m ( 20— 85 W(]Wodd"‘ "‘f 6f )Wevend§~ (58)

Numerically, the coefficients evaluate to:
a~0.862705, 8~ 0.340087, v~ 1.72541.

Thus, the steady state [47] of equation (55) becomes

p1= —c% ~ —5.07c.

It remains to determine c. To do so we need to consider the outer region in which £ is large.

3.4.1. Outer region.  'We now consider the far-field region where |£| > 1. In this case, w?” is
negligible since w is exponentially small. Writing y = €£ as in (21) gives

263 @: 1 <w+y8w> 76G1p1w+52p%w61 B (59)
dy> Oy 2 7y 8 32
As in section 3.3, WKB solutions are sought by using the ansatz
w~ Ae?/e, elO, (60)
and this way, from equation (59), we obtain:
(¢") —¢' =Giyo', (61a)
3 (6') 3406 — A = Gi'3 + Gy, (61b)

2
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at orders O(e~!) and O(1), respectively. From equation (61a), we find

¢ =+(1+Giy)'"”?, (62)
after which equation (61b) can be integrated to give

A = const. (1+ Gyy) /2. (63)

Since ¢’ = 0 s also a solution to (61a) there is also a non-WKB solution. Setting € = 0 in (59)
we find that at leading order this solution is

w ~ const. (14 Gyy) /2.
Putting everything together, we have
w1 : (611 + et R1+6 s +a3€gfa'(1+cls>‘“ds)7 (64)
(1+Gy)'”?
for some constants ay, a; and a3. Note the existence of a turning point at y = —1/Gj. This will

be crucial in the analysis to follow.
We next proceed by separating the cases with G; < 0 and G; > 0. We begin first with the
case G| < 0.

3.4.2. G1<0. For y<0 we need a, =0 in equation (64) otherwise we have exponential
growth. So, equation (64) reduces to

M B e (e )
1+Gy)'* (1+Gy)'?

W ~

Now, in terms of the inner variable, we have:

a as 2_((1+Gie€)*?-1)

W~ + eXie
2 (14Gieg) '

Na1+0335+...’
(1+G1€£)

and matching with equation (48), equation (53b) gives

VAT (1/4)?
a = —c— M E, a3 = 12174
8v2mw

On the other hand, and for 0 <y < —1/G, we have

W (b1 + bae B (401 s (1400-1))

(1 +G1)’)l/2

for some new constants b;. Matching with equation (48), equation (53a) gives b3 =0, as well
as

3141 (1/4)° G,
by=12"4  b=|—c+—LL )¢
? : ( 8v/2r
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For y past the turning point, i.e. y > —1/Gy, the WKB solution assumes the form

1 0 (v 1)3/2 3/2
" ( )1/2 (C1 + ce = (~Gv=1) +c3 ewlg( b )
—G1y—1

for some new constants c¢;. The behaviour at infinity means that ¢, = ¢3 = 0.
Finally, we need to connect the coefficients b; with ¢; by matching with a solution in the
vicinity of the turning point. Near the turning point, we rescale y in equation (59) according

toy=—-1/G; + (25)2/31/Gi/3, to give, at leading order,

Pw ow
FEl —2w-i—4za )

with solution given in terms of Airy functions:
w = ay Ai(z)” + oy Ai (2) Bi(z) + a3 Bi(2)°.

Those have the asymptotic behaviours

L \2 N2
Ai(z)" ~ Tz ‘1/2 sin (2/3\z|3/2+7r/4) Bi(z)" ~ g ‘l/zcos (2/3|Z|3/2+71’/4>
as z — —oo, and also
Ai(z)* ~ L ey Bi(z)* ~ L gaser
4 z1/? ’ mz!/2 ’
as z — 0o. The inner limit of the outer is
_ by by 2/3Gie ,4/37/?
YT 26, 13 1 + |2G1|1/3z1/251/3e e z>0,
Cl
= z<0.
12G,|1/3 (_Z)l/2€1/3
To match as z — —oo requires
_ o c|m -0
al_a3_|2G1|l/3€l/37 042— )
whereas, to match as z — oo requires:
_ b 2/3Gye _
a3 = We s b] =0.
Thus we finally see that
340 (1/4)° G
8V2m
along with
124,
—y = = T a2/3Gie _ 191/4,2/3Ge
a3 = |2G1|1/3€]/36 , c;=12""¢ .
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Note that there is an exponentially decaying solution reflected back from the turning point, as
there was in a previous work on the NLS equation [35], but that the corresponding contribution
to the normal form is an exponentially small correction to an algebraic series this time, rather
than being the dominant term.

In summary, for |y| — oo and G < 0, we have:

W~ 121/4672/3|G1|e;12
(1Gily—1)"
1/4,.-2/3|G
— 121/4e—2/3IG] 1 12 /4e=2/3IG| w5t 5o
(Gl -1)'*  la|gz ’
w 3147 (1/4)° |Gule 1
wow o (1-1Gily)'
3147 (1/4)%|G 1 34T (1/4)2 |GI1/2

War (-6 (g7

which agrees with [16] after correcting the missing factor of 2 in their expression for C.

3.4.3. Gi >0. For y>0 we need a3 =0 in equation (64) otherwise we have exponential
growth. This way, we have:

ap 72 + ap 1/2e_ﬁ<(l+Gly)m_l),

W ~

and in terms of the inner variable

ap a —ﬁ((l+Gla£)3/2—])

" +(1 G 5)1/2e ~aptaet
+Gie

(1 +G1€§)1/2

Matching now with equation (48), equation (53a) gives

31/47(1/4)?
. <+</>G> 5

8V2m
ar = 12174,
For —1/G; <y < 0 we have
e 1 - (b] +bzefﬁ((1+61)’)3/271) +b%eﬁ((l+Gl}')3/zfl))7
(1+Gry) )

while for y < —1/G, we have

1

LB (_Gly—1)? 2 Gy—1)3/?
w= <C1+Cze %= (~Ow—1) +C3e301€( Giy=1) )

The behaviour at infinity means that ¢, = c3 =0. Again, matching with equation (48),
equation (53b) gives b, =0, and

2
b3:121/4 by = _c_w c
’ 8v2m
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This time, the inner limit of the outer near the turning point is

b by —2/3Ge ,4/35/>
w= 73 2+ VERTTRT AS z>0,
(2Gy) P el/3z1/2 0 (2Gy) /7 712! /3
w= ° z<0.

(2G1) (=2)" 113
To match as 7 — —oo requires
T

) =03 = ———7>——, a; =0,
(2G1)1/3€1/3

whereas as z — oo requires

b3'/T 672/30167 b, =0.
(2G1)1/351/3

Thus we finally see that

34T (1/4)° Gy
8vV2r
along with
1/4
m=or=r 12)1//37T1/3 TRGE o =120
G1 g

3.4.4. Compatrison of normal form against numerics. ~ Combining the results for G, positive
and negative, we finally have

3141 (1/4)°
c=—cla|, c=> UM
8v 27
Thus the normal form (cf equation (55)) becomes
dG
aC=J+ = ~[GilBpi +7CG. (65)

In figure 16, we provide a comparative analysis of the blow-up rate computed using the
self-similar dynamics (cf equation (12)) (represented by the dashed-dotted black line) and the
normal form (indicated by red dots). The left panel shows the case for p =5.01, which is in
close proximity to the bifurcation point. Conversely, the right panel illustrates the case for
p=>5.1. In the left panel, one can observe a very good agreement between the self-similar
dynamics and the normal form. However, as we move away from p =5 (as seen in the right
panel), a disparity emerges between the two approaches. (See also the left panel in figure 4
which shows the growing disparity between numerics and normal form as we move away
from p =15.) Notably, both curves still maintain a consistent qualitative trend, indicating a
comparable rate of asymptotic convergence towards a self-similar profile.

Itis interesting to compare (65) with the modulation equations given by Lan [30]. For G <0
we may write (65) as

G B(p-5)

Y2 7
G+-G"=-G(G-G,), 66
dr aC +a « ( ) (66)
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Figure 16. The evolution of the blow-up rate G as a function of 7 computed by the self-
similar dynamics of equation (12) and normal form of equation (65) are shown with a
dashed-dotted black line and red dots, respectively, for values of p =5.01 (left panel)
and p = 5.1 (right panel).
say, where
G - Bp=5)
C 'yC

is the steady-state solution (corresponding to self-similar blow-up). Lan considers dynamics
only close to blow-up, i.e. in the limit in which |G — G.| < G,. There are three evolution
equations given in [30] (equations (3.6)—(3.8) there), for the width of the collapsing profile, its
centre, and an auxilliary parameter b, which is —G in our notation. Translated to our notation,
the first of these equations is G =~ G,, while the second is our equation (11). The third gives

dG

i G (G—-G,.),

which is the linearisation of (66) about G = G, if we identify Lan’s parameter ¢, with v/c.
Curiously Lan shows ¢, =2+ O(|p — 5|), which means v/« = 2, a result which we find to be
true numerically, but which is not obvious from the definitions (56) and (58).

4. Conclusions and future challenges

In the present work we have revisited the gKdV equation, by considering the bifurcation of its
solitary waves into instability, as the exponent of the generalised nonlinearity crossed the value
of p=>5. Building on the work of [16, 24], upon exploring the stability of the solitary wave
solutions with blow-up rate G =0, we retrieved the self-similar solutions with non-vanishing
blow-up rate G # 0 which were found both dynamically, as well as statically as stationary
states in the so-called co-exploding frame. One of the key contributions of the present work
involves the elucidation of the bifurcation associated with the emergence of this self-similar
branch of solutions past the critical point of p =5; we found this bifurcation to bear features
of a pitchfork (through the presence of two mirror symmetric blow-up solutions), as well as to
encompass linear (in absolute value) and quadratic terms in its normal form (a feature some-
what reminiscent of a transcritical normal form). We have discussed both the similarities and
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the differences of the relevant phenomenology from that of the other prototypical dispersive
nonlinear PDE, namely the NLS which features a similar bifurcation, but an exponentially
deviating branch past the corresponding critical point.

The second key contribution of the present work concerns the spectral stability analysis of
the emerging self-similar branch. In connection with the latter, we elucidate both the trajectory
of the eigenvalues of the point spectrum, such as the ones at —3G (due to the former scaling
invariance in the original frame) or at —G (due to the former translational invariance at the
original frame), or the one at (nearly) G/2, but also those of the continuous spectrum. The
latter consists of two main bands, one of which aligns (as it is better resolved) with the vertical
line A = G, while the other we argued to be extremely ill-conditioned and cannot be resolved.
If they could be resolved, these eigenvalues would move to the negative real axis. Instead, what
we find is that we can only resolve the first few of them. Moreover, the rest becomes harder to
resolve as the domain size L gets larger, leading the corresponding eigenvalue wedge to become
more vertical rather than more horizontal. This is rather telling as regards the complexity of
the corresponding spectrum and the difficulty to numerically pin it down.

The addressing of the above challenges paves the way for the further consideration of a
number of interesting problems in this context of self-similar dynamics. As concerns the case
of the gKdV, having addressed the existence and stability of the self-similar states, it would be
useful to understand better the fully nonlinear dynamics in both the original (non-exploding)
and the presently considered (co-exploding) frame in line with important earlier dynamical
observations, such as those of, e.g. [25]. In particular, the dynamical reshaping of the struc-
ture (for different initial conditions) into a self-similarly collapsing waveform constitutes an
intriguing dynamical question. It is also interesting to extend relevant existence/stability/-
dynamical considerations beyond conservative cases such as the generalised NLS and KdV,
where it seems that the emergent instabilities in the co-exploding frame are only apparent/fic-
titious ones related to symmetries of the original frame, but not true dynamical instabilities.
In that vein, a particularly intriguing example to consider concerns the non-conservative case
of the complex Ginzburg-Landau equation earlier considered in the work of [48]. There, there
exist both branches that stem from the NLS and ones that do not (in the limit of small dissip-
ation) and both branches that are stable and ones that are unstable in the co-exploding frame.
Hence, it will be quite interesting to expand existence/stability, but also importantly dynamics
considerations to such states in future works.
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