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ABSTRACT  14 

Construction firms face challenges in sourcing qualified candidates for enhancing project outcomes through 15 

sensor data analytics. There are limited tools for teaching students from construction-related disciplines how to analyze 16 

sensor data. By harnessing the potential of block-based programming, this study designed a pedagogical tool, 17 

InerSens, to support construction engineering students with no prior programming experience to analyze sensor data 18 

and address real-world construction challenges, such as ergonomic risks. Twenty students participated in an 19 

experiment comparing InerSens and a traditional platform, Excel, for data analytics. Evaluations involved usability, 20 

perceived workload, visual attention, verbal feedback using the System Usability Scale, NASA TLX, eye-tracking 21 

metrics, and interviews respectively. InerSens was rated as 8.89% more user-friendly than the traditional tool, with a 22 

significantly reduced perceived cognitive load by 46.11%, and a more balanced distribution of visual attention during 23 

data analytics tasks. Through the evaluation of cognitive and usability factors, this paper extends the applications of 24 

Learning for Use and Cognitive Load theories, emphasizing their applicability in instructional design, revealing 25 

learner needs, and the potential to advance the development of pedagogical tools for data analytics. 26 

Keywords: Sensor Data Analytics, Sensing Technologies, End-User Programming, Usability Engineering, Eye-27 

tracking, Ergonomic, Risk Assessment, Construction Education. 28 
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INTRODUCTION 29 

Advancements in sensing technologies in the construction industry have opened avenues for enhancing 30 

project performance. This is placing a demand on the workforce to meet the rising need for skills needed to deal with 31 

sensor data. The construction industry constantly presents a complex and dynamic environment, rich in information 32 

demands. In this domain, traditional and manual data acquisition approaches fall short when attempting to meet the 33 

demands of advanced construction management (Shen and Lu 2012). As a response to this, the construction industry 34 

is increasingly embracing sensing technologies to enhance performance (Mansouri et al. 2020). However, a noticeable 35 

disparity arises between the academic curriculum and the actual requirements of the industry, resulting in an 36 

inadequately prepared workforce (Ogunseiju et al. 2021). An instance of this could be presented with an evident 37 

construction challenge concerning work-related musculoskeletal disorders (WMSDs), causing substantial impacts on 38 

productivity and incurring expenses (Yan et al. 2017). To tackle this problem, researchers have extensively studied 39 

the utilization of affordable sensing technologies, such as Inertial Measurement Units (IMUs), to analyze and minimize 40 

WMSD-related risks (Bangaru et al. 2021; Yan et al. 2017). However, the abundance of data collected by these sensors 41 

necessitates a profound understanding of analytics for extracting valuable insights from the vast datasets 42 

(Krishnamurthi et al. 2020). Effectively managing the intricacies of sensor data analytics requires a comprehensive 43 

understanding of various aspects, including methods for data collection, data preprocessing, feature extraction, 44 

statistical analysis, and data visualization (Ngo et al. 2020). Therefore, analytics skills are necessary to extract 45 

meaningful insights from sensor-generated data, but construction firms struggle to find qualified candidates with these 46 

abilities, which limits their capacity to fully leverage sensor data analytics for enhanced project outcomes (Cheng et 47 

al. 2013; Mansouri et al. 2020). To bridge the gap between academia and industry demands, it is critical to provide 48 

construction students with the affordance to actively engage with these sensor data analytics techniques and use them 49 

in real-world circumstances.  50 

Addressing the imminent data analytics skills shortage requires a viable pedagogical tool that effectively 51 

engages the future workforce in data analytics, utilizing user-friendly, efficient, and manageable technologies. End 52 

User Programming (EUP) or End User Development (EUD) shows effectiveness in acquiring data literacy, especially 53 

when supported by block-based programming environments (BBPEs). Researchers and educators from diverse fields 54 

concur that BBPEs have demonstrated great value in enhancing learners’ domain-specific skills and fostering 55 

computational thinking (CT) in academic and professional settings alike (Glas et al. 2023; Rahaman et al. 2020; Skorik 56 
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2022).  Within the domain of EUP, the technique of block-based programming simplifies coding by utilizing visual 57 

blocks (Coronado et al. 2021). With the use of a drag-and-drop interface provided by block-based programming, non-58 

programmers may quickly and simply design and alter data analysis processes (Bau et al. 2017). To ensure efficacy 59 

and adoption, BBPEs must be customized for various user populations, making content and usability assessments 60 

significantly vital for effective instructional objectives (Glas et al. 2022; Rijo-García et al. 2022). Formative evaluation 61 

holds significant importance in identifying and addressing usability issues within Human-Computer Interaction (HCI) 62 

platforms (van Velsen et al. 2011). 63 

Therefore, this research aims to investigate the design and usability evaluation of InerSens, a BBPE, for 64 

equipping students from construction-related disciplines to perform analysis on sensor data. The efficacy of the 65 

proposed pedagogy is evaluated from the context of ergonomic risk assessment. Formative evaluation is conducted 66 

by comparing the performance of InerSens with a traditional method, using Microsoft Excel, for analyzing sensor data 67 

ergonomic risk assessment. The evaluation includes assessing overall usability, perceived workload, visual attention, 68 

and verbal feedback obtained from users’ experiences with InerSens and the traditional approach. Through this 69 

comprehensive evaluation, the research gained insights into the user experience and effectiveness of the BBPE in the 70 

context of construction sensor data analytics. Results of the evaluation of InerSens advance the underpinning theories: 71 

Learning for Use and Cognitive Load theory. The paper follows a structured format, starting with background 72 

information on relevant concepts in Section 2. Section 3 outlines the methodology, covering environment 73 

development, experimental procedures, and data analysis. Section 4 presents the experiment’s results, and the 74 

conclusion synthesizes the findings, addresses study limitations, and discusses the practical implications of 75 

implementing the pedagogical tool in real-world learning environments. 76 

BACKGROUND 77 

Construction Sensor Data Analytics  78 

The field of sensor data analytics encompasses the utilization of diverse sensor collection technologies, 79 

processing techniques, analysis methodologies, and interpretation approaches to shape and inform the decision-80 

making perspective of users (Tsai et al. 2015). Mansouri et al. (2020) presented a more precise definition of sensor data 81 

analytics in the context of construction, referring to it as the process of analyzing raw data collected from construction 82 

projects. The objective is to extract useful insights and use them to make informed decisions in a variety of areas, such 83 

as project planning, execution, management, and control. Hence, construction-based sensor data analytics comprises 84 
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the processing, evaluation, and presentation of data collected via sensing technologies to obtain useful information in 85 

forms that support informed decision-making (Akanmu et al. 2022; Louis and Dunston 2018). The adoption of 86 

advanced sensing technology in the construction sector is transforming how projects are executed, with an essential 87 

emphasis on safety and productivity. Laser scanners, GPS, RFID, IMUs, drones, and cameras are rapidly becoming 88 

indispensable tools for improving safety protocols and facilitating thorough project planning and execution (Akhavian 89 

and Behzadan 2015; Alizadehsalehi and Yitmen 2021; Majrouhi Sardroud 2012; Teizer and Cheng 2015). The 90 

advantages are inherent in the use of sensor data analytics methods, which enable experts to unearth crucial insights 91 

into operational patterns and trends. This leads to improvements in a variety of areas, including increased productivity, 92 

decreased costs, and the adoption of strong safety measures (Abioye et al. 2021). For example, wearable sensing 93 

technology such as IMU, is useful for collecting motion data from construction workers, aiding in occupational health 94 

analysis. Data from IMUs contribute to providing comprehensive information on the amount of physical stress and 95 

strains experienced by a worker while executing a construction task. Insights from analytics can help practitioners 96 

improve construction safety and productivity by early detection of musculoskeletal disorder risk factors and 97 

formulating proactive safety measures (Bangaru et al. 2021; Yu et al. 2019). These opportunities offered by sensor 98 

data analytics inform the need to prepare the future workforce with the skills to implement the technique in the 99 

construction industry. However, the application of wearable sensing technologies like IMUs in construction research 100 

often involves extensive programming constructs for developing analytics workflows. The insufficient emphasis on 101 

programming in civil engineering and related fields, where computing is frequently confined to off-the-shelf software, 102 

leads to a deficiency in exposure and training in programming skills (Talaat et al. 2022). Consequently, individuals in 103 

these disciplines may face challenges as they typically lack the domain knowledge for programming the sensor data 104 

analytics processes.  Furthermore, scarce studies have explored pedagogical innovations to overcome the obstacles to 105 

equipping construction-engineering students with the needed skills. As a result, despite the evident importance of 106 

sensor data analytics, the challenge lies in new graduates possessing the skills required for efficiently analyzing the 107 

vast data generated (Khalid et al. 2023). The limited exposure of construction students to data analytics skills 108 

necessitates exploring alternative pedagogical approaches to address this skill gap. 109 

End-User Programming Environment 110 

EUP or EUD techniques have become particularly recognizable for their adaptability and added value in 111 

educational contexts. EUP is a subset of EUD that focuses on the programming process for developing programs. 112 
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Accordingly, installation, configuration, re-design, debugging, scaling, and execution are all included in the larger 113 

variety of techniques that support the whole software development life cycle under the umbrella of EUD (Coronado 114 

et al. 2021). When adopting a programmable platform for instructional purposes, a significant challenge is to minimize 115 

the requirement for users to possess extensive programming knowledge. BBPEs are a notable aspect of EUP, where 116 

the coding process is replaced with a simplified approach that utilizes visual blocks instead of traditional syntactical 117 

text-based coding (Skorik 2022). BBPEs, particularly for users without prior programming expertise, provide a 118 

straightforward and approachable coding experience with a visually driven programming interface. BBPEs provide 119 

users with flexible drag-and-drop capabilities by using interactive blocks that represent codes and programming 120 

notions. These approachable traits make it simple for people to understand and apply complex computational 121 

operations (Rough 2018). BBPEs allow users the ability to dwell on the logic, structure, and functionality of their 122 

algorithms by prioritizing semantics ahead of syntax and other programming language complexities (Bau et al. 2017). 123 

BBPEs have proven to be highly advantageous in bridging knowledge gaps in a variety of academic subjects, including 124 

chemistry, physics, robotics, cybersecurity, and data science, allowing learners to acquire domain-specific knowledge 125 

while improving their CT skills (Glas et al. 2023; Rahaman et al. 2020). Extensive research supports the positive 126 

outcomes resulting from the integration of domain-specific and CT skills using BBPEs (Gupta et al. 2017; Sarmento 127 

et al. 2015; Tawfik et al. 2022). However, with the high degree of customizability, the evaluation of the usability of 128 

the BBPEs stands out as an important procedure for ensuring the development of optimal learning outcomes 129 

(Karakasis and Xinogalos 2020; Rijo-García et al. 2022). 130 

Theoretical Framework 131 

The development and usability evaluation of InerSens, a BBPE, draws its theoretical underpinning from the 132 

Learning for Use (LfU) and can be viewed from the lens of Cognitive load theory (CLT). LfU lays the basis for 133 

technological platforms intended to improve students’ skill development and encourage deep understanding (Edelson 134 

2001). The following four principles form the foundation of this theory: “(1) knowledge construction is incremental; 135 

(2) learning is goal-directed; (3) knowledge is situated; and (4) procedural knowledge needs to support knowledge 136 

construction” (Edelson 2001). The design of InerSens centered on a hierarchical workflow of prevalent data analytics 137 

techniques, promoting a goal-directed problem-solving approach and gradual knowledge acquisition. To offer 138 

researchers a basis for assessing task performance while utilizing authentic construction sensor data, strategic usability 139 

benchmarks were established. These benchmark tasks encompassed: i) information review, ii) data selection, iii) data 140 
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manipulation, iv) defining activity, v) developing a risk assessment chart, and vi) results or chart evaluation. This way, 141 

the hierarchical arrangement guides learners through tasks, from basic data selection to complex risk analysis, offering 142 

analytics opportunities via block representations. As learners progress in their analytical journey, they utilize both 143 

original data and manipulated structures from earlier stages to move forward to the next step. This aligns with the 144 

principles of gradual and incremental knowledge acquisition highlighted in the first and fourth tenets of LfU theory. 145 

The structured workflow of the InerSens platform is also consistent with the second and third tenets of LfU theory, 146 

emphasizing that knowledge acquisition is goal-oriented and context-dependent. The LfU theory also integrates the 147 

CLT, which aims to optimize learning outcomes by managing cognitive load. CLT suggests considering working 148 

memory limitations to avoid overwhelming learners in instructional design. Therefore, the evaluation of the 149 

environment contributes to CLT by detecting both cognitive and usability factors. 150 

METHODOLOGY 151 

In this section, the methodology adopted for the development and usability of InerSens is described including 152 

the specifics of the experimentation, the participants involved, and the techniques employed for data collection and 153 

analysis (refer to Fig. 1). The evaluation is centered around comparing the usability of InerSens to that of the 154 

conventional platform, Microsoft Excel, which is a commonly used platform for similar data analytics tasks (see Fig. 155 

2 for an overview of the workflow).  156 

Development of InerSens 157 

This section describes the design and development process of InerSens, which adopted the agile User 158 

Experience (UX) lifecycle methodologies (Hartson and Pyla 2012). 159 

User research 160 

In a previous study (Khalid et al. 2023), the authors identified the expectations of end-users and the industry’s 161 

prerequisites concerning the utilization of sensor data analytics in construction education. Based on the results of the 162 

study, user needs were identified to define specific features for the system that align with user-centered design 163 

concepts (Hartson and Pyla 2012). This includes the key sensing technologies (e.g., IMU, laser scanner, GPS, RFID, 164 

drones, cameras) and their applications (e.g., safety, asset and productivity tracking, quality control, inspection, and 165 

verification). 166 
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Creation of design concepts 167 

The development process for the InerSens interface involved an ideation and creation phase based on the 168 

findings from the user research. This phase included brainstorming, sketches, and reviews to generate concepts, which 169 

were then combined into preliminary wireframes (Hartson and Pyla 2012). The objective of the design was to establish 170 

a standard workflow for sensor data analytics aiming to teach students about ergonomic risk assessment (see Fig. 3).  171 

To illustrate the workflow and required activities for executing data analytics tasks, wireframes were created 172 

as part of the design concept generation process. Furthermore, the researchers emphasized the need to create user 173 

personas for construction students, along with defining user classes, roles, workflow modeling, and tasks.  174 

Prototyping 175 

Using custom-designed blocks via Blockly, high-fidelity prototypes were created. In the beginning, blocks 176 

were constructed to carry out analytics tasks relating to risk assessment, such as data selection, manipulation, defining 177 

activity, and development of a risk assessment chart. The blocks underwent testing to identify any potential interaction 178 

design flaws, including the actions users would engage in and the data they would view to successfully proceed with 179 

the risk assessment workflows. The prototypes were made available to researchers for comment, allowing for the early 180 

detection of possible problems and areas for improvement before proceeding with a more intricate design of the high-181 

fidelity prototype.  182 

Overview of the InerSens platform 183 

In the design of InerSens, the Model-View-Controller (MVC) architectural pattern was adopted which is 184 

widely employed in the development of web-based applications. The MVC architecture encompasses three essential 185 

layers: the model, the view, and the controller. Each layer has distinct responsibilities, as elaborated upon in the 186 

following sections (see Fig. 4). 187 

The view component is responsible for rendering information from the model onto the Graphical User 188 

Interface or GUI, designed specifically for learner presentation. Beyond displaying data, it actively manages learner 189 

inputs and actions on the GUI, including sensor data and video recording uploads, block clicks, and block relocations. 190 

The View records user activities and forwards the inputs and events to the controller for further processing. Moreover, 191 

it presents various results, such as structured data, videos, and risk assessment charts, and also facilitates import-export 192 

functionalities. Within the view, various components, including the block menu, block workspace, code generator, and 193 

analytics visualizer, have been implemented using Cascading Style Sheets (CSS). Additionally, video playback is 194 
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integrated using the HTML Video tag, with JavaScript employed to capture and exhibit video timestamps. The model 195 

undergoes updates based on modifications made by the controller, reflecting corresponding changes in the information 196 

presented within the view. The controller acts as the intermediary between the model and the view. It responds to 197 

learner requests presented by the view in the GUI, such as selecting blocks, relocating blocks, and executing and 198 

recycling blocks. It utilizes Node.js libraries, namely Blockly and Data-Driven Documents (D3), to implement these 199 

functionalities. Blockly libraries contain blocks for performing various coding functions, while D3, a JavaScript 200 

toolkit, provides methods and modules for manipulating and displaying data using web standards like CSS, HTML, 201 

and SVG. The controller applies logic to execute essential operations, effectively translating user actions into 202 

meaningful processes. The model is tasked with storing user data in the MariaDB Server, a relational database 203 

management system. The Sequelize API facilitates interaction with the database, acting as a cross-platform JavaScript 204 

runtime environment mapper, simplifying the connection with databases such as MariaDB, MySQL, and SQLite.  205 

Interaction with Inersens and Connections with CT Skills 206 

Utilizing design frameworks to create block-based environments can lead to a significantly enhanced user 207 

experience (Karakasis and Xinogalos 2020). Consequently, an EUD-focused design framework was embraced, 208 

aligning with the requirements of risk assessment data analytics workflow. The researchers added the basic 209 

components that make up a web-based block environment based on the EUD design framework, which detailed the 210 

features to increase end-users CT skills within the EUD activity (Barricelli et al. 2023) (see Fig. 5) The framework 211 

was chosen for its dual benefits: improving students’ CT skills and aiding in sensor data analytics tasks on the platform. 212 

This section outlines InerSens’ key features for interaction and the relevance of CT skills to the platform’s dimensions. 213 

Block selection  214 

The ability to select the necessary blocks from a menu comprised of numerous blocks is connected with the 215 

abstraction CT skill, which is the cognitive process of selecting the most important information about a system or 216 

situation while ignoring or simplifying the less important information (Calderon et al. 2022). For example, after 217 

dragging and dropping ‘Read File’ into the block workspace to import applicable raw sensor data into the interface, 218 

users can clean up the raw dataset using the ‘Data Selection’ block to preserve the important data required for the 219 

analytics while discarding the data that is unnecessary. As the process progresses, the user may pick the relevant 220 

blocks from the menu for each instance as the flow of the data analytics task demands (Fig. 6). At the outset, the 221 

concreteness of information enables users to effectively view the information, confidently select the necessary blocks, 222 
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and carry out intended actions. The concreteness dimension in EUD environments refers to the ability of the 223 

environment to present domain-specific concepts tangibly, such as concrete events and conditions (Berti et al. 2006).                      224 

Block construction 225 

The ability to assemble interlocking or container blocks in the block workspace, that store unit function 226 

blocks, enables users to leverage CT’s decomposition skills to break down complex problems into attainable sub-227 

problems (D’Alba and Huett 2017). The modularity dimension of the environment refers to the presence of diverse 228 

elements, blocks, or modules that assist end-users in decomposing problems and identifying the constituent pieces that 229 

contribute to their solutions (Barricelli et al. 2023). 230 

Block structuring 231 

The feature of structuring blocks allows the user to develop an analytics workflow of action sequences by 232 

creating logical links between the building blocks to generate solutions to targeted computational challenges. This 233 

occurs within the block workspace. A broad sequence of block structuring may include, for example, reading data, 234 

manipulating data, analyzing data, and viewing data. This characteristic is related to CT skill’s algorithmic thinking, 235 

which is the way of creating and running algorithms to solve problems or carry out tasks (Shute et al. 2017). The 236 

structuredness component of EUD may be highlighted here since it relates to the environment’s capacity to structure 237 

a solution in a step-by-step way, which also facilitates the process of linking the input and output of multiple processes 238 

(Barricelli et al. 2023). 239 

Analytics results 240 

The ability to view and examine analytics outcomes directly through the interface is associated with the 241 

evaluation skill of CT and the testability dimension of EUD. This functionality is facilitated by the ‘Analytics 242 

Visualizer’ panel (see Fig. 6) on InerSens, a dedicated workspace screen that offers visual feedback on the user’s 243 

work. Users can analyze and examine the results in a separate panel, allowing them to scroll through the entire dataset 244 

and compare it with the original problem formulation and solving strategies. Moreover, the results can be simulated 245 

and visually presented, such as through a risk assessment chart, allowing users to assess the details of the risks that 246 

occurred at different stages of the activity in the chart per the construction activity video playback. The testability 247 

dimension involves assessing the results of activities within the EUD environment to determine the accuracy of a 248 
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solution and compare it with other alternatives to optimize it, considering the available resources (Barricelli et al. 249 

2023).  250 

Export results 251 

By providing the capacity to export findings in a variety of formats appropriate for specific purposes, users 252 

may efficiently interact and work with other stakeholders. The reusability component of EUD allows for the 253 

application of activity outputs in diverse contexts and simplifies sharing among end-users (Barricelli et al. 2023). This 254 

corresponds to CT’s generalization skills, in which users detect patterns in previous solutions and apply comparable 255 

(potentially altered) techniques to distinct future challenges (Shute et al. 2017). 256 

User Experience Evaluation 257 

Participants  258 

20 undergraduate students including 10 females and 10 males were recruited for the usability experiment. 259 

This sample size is similar to other learning environment-based usability studies utilizing eye-tracking analysis 260 

(Conley et al. 2020; Oyekunle et al. 2020; Zardari et al. 2021). The individuals are from civil engineering, building 261 

construction, and construction engineering management programs, and are at least 18 years old. 262 

Data collection 263 

This section describes the data collected during the experiment including demographic information, 264 

subjective data (e.g., system usability scale and perceived workload, verbal feedback), and objective data using visual 265 

attention. 266 

Demographic data 267 

Before commencing the experiment, demographic information, such as gender, and academic program, was 268 

collected from the participants via a pre-survey.  269 

Overall System Usability Score (SUS)  270 

In order to obtain subjective measurements to evaluate and compare the overall usability of InerSens in 271 

comparison to Excel for sensor data analytics, the study employed the SUS questionnaires. Participants used a 5-point 272 

scale, from strongly disagree to strongly agree, to score the 10 items consisting of 5 positive (odd-numbered) and 5 273 

negative (even-numbered) statements, all centered on users' perceived system usability. Odd-numbered SUS items 274 

assess user inclination for frequent usage and evaluate ease of use, function integration, rapid learning, and confidence 275 
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in system use. Conversely, even-numbered items gauge perceived complexity and measure self-sufficiency in 276 

technical support, consistency, and the learning curve. Within the context of evaluating sensor data analytics interfaces, 277 

these elements collectively offer evidence of user preferences, efficiency, and the comprehensive usability of the 278 

interfaces examined in this study. Following each round of tasks (with and without InerSens), participants were asked 279 

to complete the SUS questionnaire to gauge their perception of usability.  280 

Perceived workload 281 

The NASA-TLX questionnaire was employed to assess the perceived workload during task performance. 282 

The TLX consists of six subscales representing sources of workload namely: Mental Demand, Physical Demand, 283 

Temporal Demand, Performance, Effort, and Frustration Level. These subscales are typically used to measure 284 

cognitive load in learning environments (Gerjets et al. 2004). Mental demand measures how much brain activity such 285 

as looking, thinking, and remembering is needed while using a learning environment. Physical demand measures the 286 

level of physical effort. Temporal demand measures time-related pressure from the task. Performance measures the 287 

effectiveness of task completion. Effort, on the other hand, measures how difficult learners must work to seek and 288 

understand the contents of a learning environment, and frustration measures how irritated discouraged, or stressed 289 

learners feel when interacting with a learning environment.  290 

Visual attentional resources 291 

Eye-tracking was used to assess the participants’ visual attention while interacting with the platforms. Eye 292 

tracking data were collected using the Tobii Pro Glasses 3 eye tracker. The device has a sampling frequency of 50 Hz. 293 

Fixation duration and fixation counts were collected. Longer fixations relate to difficulty in extracting information or 294 

it means the media is more engaging (Wang et al. 2014). A higher fixation count relates to less efficiency in search 295 

(Wang et al. 2014). 296 

Verbal feedback 297 

Semi-structured interviews were conducted with the participants to obtain their feedback about their 298 

experience with using InerSens and Excel for the analytics task. The questions were structured to capture the 299 

challenges they encountered while interacting with the platforms and the features of the platforms that influenced their 300 

user experience.  301 
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Experimental Procedures 302 

Participants were assigned to both the Microsoft Excel condition and the InerSens condition for performing 303 

data analytics tasks allowing users to reach comparable conclusions across conditions. The experiment employed a 304 

repeated measure within-participant design for comparisons where the evaluation of a new block-based tool (InerSens) 305 

was compared to Excel, considering Excel's common use among students in academic programs, whereas users of 306 

other software may have diverse levels of experience or no experience at all. Given that construction-related students 307 

commonly employ established practices in data analysis and workflows using Excel, benchmarking against Excel aids 308 

in evaluating how well the new block-based tool integrates into these existing practices in terms of usability. This 309 

strategy gains support from related usability studies where block-based tools were developed with Excel workflows 310 

as their benchmark and for the purpose of comparison. Previous research on BBPEs has benchmarked data analytics 311 

tasks resembling Excel workflows, assessing their usability in comparison to Excel. Jansen and Hermans (2019) 312 

established Excel as a benchmark for usability comparison with XLBlocks, a block-based tool. While writing formulas 313 

in Excel often involves challenges such as misplacing parentheses, quotes, and commas, the study posited that a block-314 

based formula editor, like XLBlocks, could aid spreadsheet users by minimizing syntax errors. XLBlocks revealed an 315 

advantage over Excel as it offers a fully equipped integrated development environment (IDE) for improving formula 316 

readability and facilitating structure recognition surpassing Excel's limited formula bar. Schaathun (2022) employed 317 

a comparable strategy, using Excel as a standard, to introduce a block-based visual programming environment. This 318 

add-in enabled end-users without programming backgrounds to establish variables and constraints, explicitly defining 319 

the data flow between spreadsheets. The objective, similar to InerSens' primary goal, was to focus on Excel end-users 320 

and introduce visual programming to improve the usability of data analysis. Each participant’s involvement in the 321 

experiment lasted approximately two hours, with a designated break of 20-30 minutes between tasks to allow for rest 322 

and refreshment. 323 

Tutorial 324 

Before the experiment began, participants received accessible tutorial materials and underwent a 15-minute 325 

practical demonstration to familiarize themselves with the task workflows and platform components (Ramoğlu et al. 326 

2017). The tutorial and demonstration covered analytics tasks for both Excel and InerSens conditions. Following the 327 

approved Institutional Review Board (IRB) protocol, participants were initially presented with the informed consent 328 

form, and their pre-survey responses were documented. 329 
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Apparatus 330 

To ensure uninterrupted operations, computer systems were configured accordingly. Participants used a high-331 

performance desktop computer for task performance, while additional hardware and software (such as eye tracking) 332 

were employed on a separate laptop for data capture. Participants were situated in a controlled environment to 333 

maximize comfort and minimize distractions. Detailed instructions were provided to participants regarding the eye 334 

tracking procedures utilizing Tobii Pro Glasses 3. Calibration was conducted to ensure accurate measurements, and 335 

data recording commenced once satisfactory calibration was achieved. To set up the experiment, computer systems 336 

were configured to run the evaluated platforms. Hardware requirements and software versions were thoroughly tested 337 

beforehand to ensure consistent and uninterrupted operations for all participants. Participants performed the tasks on 338 

desktop computers equipped with high configurations, while a separate laptop with eye-tracking software and 339 

connected hardware was utilized for continuous monitoring of data recording. This setup allowed for the display of 340 

eye movements overlaid on the screen for real-time monitoring. Participants were positioned in a controlled setting to 341 

assure comfort, uniformity, and the elimination of unwanted distractions or discomfort. A briefing on collecting eye-342 

tracking data using Tobii Pro Glasses 3 was provided to participants. The trackers had been cleaned and adjusted with 343 

different nasal bridges before use to ensure an appropriate fit for each participant. Calibration procedures were carried 344 

out before the assessment to ensure reliable eye-tracking readings, and recording began only once acceptable 345 

calibration was achieved. 346 

Tasks 347 

The tasks in this study involved interacting with pre-recorded construction activity information, including 348 

video recordings and raw IMU sensor data in both Excel and InerSens. Participants processed the sensor data and 349 

developed risk assessment charts from the construction activity information. An overview of the performed list of 350 

tasks on both platforms can be found in Table 1. 351 

The tasks specified in Table 1 were derived from a methodology rooted in the principles of ergonomic 352 

construction risk assessment. This method employs posture angles to assess ranges of motion, enabling the calculation 353 

of ergonomic risk levels (i.e., low, medium, high) for identifying awkward postures in construction using IMU sensor 354 

data (Akanmu et al. 2020; Gonsalves et al. 2021). The employed methodology focused on tasks involving repetitive 355 

subtasks and dynamic postures, based on the postural ergonomic risk assessment classification by Chander and 356 

Cavatorta (2017). For data collection, the smartphone's built-in IMU sensor was attached to the target body part (i.e., 357 
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trunk). Collected data included time-stamped acceleration, angular rotation, pitch data, and an external video recording 358 

of the activity (with a secondary device). For validation and the extraction of observational details regarding subtask 359 

timing and cycle count, the time-stamped data could be cross-referenced with video-recorded activity to ensure 360 

accuracy. A segment of a manual lifting activity, which encompassed three subtasks (lifting, walking, placing) 361 

spanning over two repetitive cycles was selected for the participants’ analytics performance. For subsequent analysis, 362 

the pitch data and its corresponding timestamps were extracted. Pitch data, initially in Radians and later converted to 363 

Degrees, facilitated the computation of body segment orientation from the neutral plane. When defining the activity, 364 

participants were instructed to label subtasks based on their observations while reviewing the recorded video. 365 

Following defining each sub-task categorized for its corresponding data portions, risk impositions on body segments 366 

during each subtask were computed using frequency distribution as a percentage of the task duration resulting in task-367 

specific histograms. Bin values were defined as thresholds for ergonomic risks, with corresponding angles classified 368 

into low, medium, and high-risk categories (see Table 1: Development of risk assessment). Examples of awkward 369 

postures could be when the target body part registered data points inside of the medium or high-risk thresholds. This 370 

resulted in the compilation of data from all subtasks into a unified chart, forming stacked bar columns to visually 371 

illustrate unique risk levels associated with specific tasks. For end-user evaluation purposes, plotting each subtask 372 

against duration as a percentage of the total cycle time served as a reference for comparing the risks posed by different 373 

subtasks in the final output, aligning with the actual activity. While the abovementioned methodology was adopted 374 

for Excel, the integration of similar tasks into InerSens involved an additional considering CT skills. For details of 375 

workflow integration and interaction design considerations within InerSens, refer to the 'Interaction with InerSens and 376 

Connections with CT Skills' section. 377 

Data Analysis 378 

To analyze the data collected from the SUS and NASA TLX questionnaires, both conditions (Excel and 379 

InerSens) were treated as ordinal variables. On the other hand, the eye-tracking data was considered as continuous. 380 

Shapiro-Wilk test was employed to assess the distribution of the data, revealing a departure from normal distribution 381 

in the majority of cases. Therefore, Wilcoxon Signed-Ranks Tests (WSRT) were utilized to examine the presence of 382 

statistically significant differences between paired observations. The pair-wise comparison of dependent variables 383 

included SUS, NASA, and eye-tracking measures as these were the measurements being compared between the two 384 

conditions. The independent variables are the conditions themselves, which refer to the two repeated conditions under 385 
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which the measurements were taken. Significance was determined at a p-value of less than 0.05. Descriptive statistics 386 

such as mean, median, and standard deviations were considered. 387 

System Usability Scale 388 

The SUS scoring procedure consists of two steps: assessing each participant’s responses and determining the 389 

mean score for all participants. Individual Scoring: For odd-numbered questions, subtraction of 1 from the user score. 390 

For even-numbered questions, subtraction of the user score from 5. The final SUS score for each participant was 391 

obtained by multiplying the sum of these scores by 2.5. (Sauro 2011). To calculate the mean SUS score for multiple 392 

participants: The total SUS scores of each participant were added up. Then, the sum was divided by the number of 393 

participants (Derisma 2020). 394 

NASA-TLX 395 

The NASA-TLX survey data comprises subscales for mental, physical, and temporal demands, along with 396 

performance, effort, and frustration (Hart and Staveland 1988). The overall TLX or workload score was computed 397 

using the unweighted average of the sub-scores, as it was discovered to offer higher sensitivity and reliability in 398 

comparison to the weighted average (Ikuma et al. 2009). Consequently, no attribute weights were allocated to the sub-399 

scales and the raw scores were utilized. 400 

Eye-tracking 401 

To gather eye-tracking measurements, dynamic Area of Interest (AOI) and metrics tools were utilized. The 402 

AOIs in eye-tracking, represent specific areas of the user interface that are pre-defined by the researchers for focused 403 

metrics extraction (i.e., fixation) and analysis. AOIs can be used to examine participants’ gaze behavior and understand 404 

visual attention dynamics in user engagement with digital interfaces (Lei et al. 2023). Six benchmark activities, 405 

identified as essential stages in both task performance scenarios (i.e., task workflows in Table 1), served as a 406 

comparable basis for mapping AOIs. Fixation-related metrics were recorded for each task step by activating AOIs at 407 

specific times. The dynamic AOI functionality ensured precise gaze data recording even when AOIs moved out of 408 

range due to head movement. Total fixation duration and total fixation counts in the AOIs were extracted from Tobii 409 

ProLab to understand the participants’ visual attention to specific AOIs. These metrics also served as indicators of 410 

cognitive load and the platform’s usability during task performance (Borys and Plechawska-Wójcik 2017).  411 
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Verbal feedback 412 

After de-identification through random number assignment, NVIVO 14 software was utilized for qualitative 413 

data analysis. Open coding was employed to identify themes from relevant comments in the participants’ responses, 414 

following guidelines by Saldaña (2009). Common themes were clustered and coded based on context alignment (Hsieh 415 

and Shannon 2005). To ensure consistency, common themes were cross-referenced with the original transcripts. 416 

Researchers achieved credibility through consensus on code interpretation (Miles et al. 2018; Robson and McCartan 417 

2016). Inter-rater agreement for codes and themes was confirmed independently through two researchers based on a 418 

Cohen-Kappa score of Excel: 0.8125 and InerSens: 0.966, both showing substantial agreement. 419 

RESULTS  420 

The sections present a breakdown of the participants and results of the comparison of the SUS score, 421 

cognitive load and eye-tracking, and verbal feedback for InerSens and Excel: 422 

Demographics 423 

The demographics of the participants are shown in Table 2. The study had an equal proportion of male and 424 

female participants. More than half of the participants were in the civil engineering program. 425 

Usability 426 

According to the SUS score, Excel achieved 75.25, indicating a grade B in perceived usability, while InerSens 427 

surpassed expectations with a score of 82.25, obtaining a grade A. The grading scale places A above 80.3, B in the 428 

range of 68 to 80.3, C at 68, D between 51 to 68, and F below 51 (Sauro 2011). Using the mean scores, all 429 

measurements for each SUS subscale were compared between the InerSens and Excel conditions (see Fig. 7). ‘]*’ is 430 

used to indicate the statistically significant different (p < 0.05) groups.  431 

Cognitive Workload 432 

Fig. 8 illustrates the comparison of calculated means for all subscales and the overall averaged TLX score 433 

for both conditions. The WSRT indicates a statistically significant difference in the mental demand and the overall 434 

TLX score for the two conditions. InerSens resulted in lower mental demand and overall TLX score compared with 435 

the Excel platform. 436 

Eye-tracking 437 

Fig. 9 illustrates the comparison of calculated means and the WSRT of the overall fixation duration (in 438 

seconds) for both experimental conditions, averaged across all individuals. The participants’ cumulative time spent 439 
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fixating on the designated AOIs is represented by the total fixation duration. The X-axis indicates the AOIs, while the 440 

Y-axis represents the fixation time expressed in seconds. The WSRT test shows that there was a statistically significant 441 

difference in the total fixation duration at the data selection, developing risk assessment, and chart evaluation in the 442 

two conditions. 443 

Fig. 10 showcases the mean of the total fixation count and the WSRT test of participants on each AOI to 444 

compare the average number of times participants fixated on specific AOIs. The statistical results for the total fixation 445 

count show there was no statistically significant difference at the information review and defined activity AOIs. 446 

InerSens resulted in higher fixation counts in the rest of the AOIs except in the AOI related to the development of risk 447 

assessment. 448 

The amount of time spent doing analytics tasks as a percentage of the entire task completion time or total 449 

visit duration to examine the allocation of attention is presented in Fig. 11. 450 

Verbal Feedback  451 

Following their participation in both data analytics conditions, participants were questioned about the 452 

challenges they encountered while interacting with the interface components and workflow of the analytics platform. 453 

Additionally, they were prompted to highlight salient features of the environment that influenced their user experience. 454 

Furthermore, participants were asked to provide suggestions for enhancing the two (2) learning environments. Figs. 455 

12, 13, and 14 present the codes, themes, and frequencies of each code. 456 

Advantages 457 

Based on the notion of advantages, participants highlighted more instances for InerSens than Excel. Some 458 

examples of comments provided by participants for InerSens were as follows: ‘I was thinking it would be really useful, 459 

especially for visual learners because you could actually see what’s happening,’ ‘Yeah, I really enjoyed the video 460 

being able to get the data straight from the video,’ and ‘I like that it has different categories of what you’re trying to 461 

accomplish. I think if you gave someone who had never done Excel or this, gave them both things, I think they would 462 

be able to figure out what they’re supposed to do based on this versus Excel.’ Additionally, participants also 463 

acknowledged the advantages of Excel, stating, ‘I think that the built-in functions that you can use are helpful. They 464 

make it quicker,’ and ‘I have always enjoyed about Excel is just it seems very organized.’ 465 
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Challenges 466 

Regarding challenges faced in using InerSens’ new interface, participants mentioned the following: ‘Learning 467 

how to do it basically cause it’s my first time using it,’ ‘I was a little confused between the defined activity versus 468 

defining individual tasks,’ and ‘Probably just trying to learn the new interface. Because I’ve never used anything like 469 

that before. So just figuring out where things are and it’s not like Excel, I have experience with, but with this one, I 470 

didn’t know how to get from A to B.’ Furthermore, some challenges encountered in Excel were noted by participants, 471 

including: ‘I think the part that maybe frustrated me the most was when we were going down and finding the different 472 

times I had to scroll,’ ‘continuously having to scroll all the way and like times, well, if it was only 20 seconds, if you’re 473 

doing 20 minutes, it would take a lot more scrolling,’ and ‘one thing in Excel that’s always bothered me is the copy 474 

and pasting thing. I wish it was a little bit easier to copy and paste the same thing multiple times.’ 475 

Suggestions 476 

When asked about user-experience-related suggestions concerning data analytics task performance on Excel, 477 

participants provided the following responses: ‘It should be integrated into one cohesive system, instead of having to 478 

switch back and forth between Excel and the video,’ and ‘Especially when dealing with graphs and switching between 479 

tabs, it would be beneficial if the system updated periodically to keep the user engaged and motivated during the 480 

activity.’ Following their usage of InerSens, participants expressed a desire for user customization of panel sizes and 481 

positions. One participant remarked, ‘Like trying to scroll down there way they can make it like so that people can 482 

choose whether they want it to be bigger or smaller.’ Another participant suggested a feature similar to Blue Beam 483 

software, stating, ‘So you know, how Blue Beam has like, you can hide stuff on the sides, bottom, and top. Maybe you 484 

have like a tab that slid up, but it started off just the full left side of the screen being the block selection menu. If you 485 

wanted, you could slide it up as far as you want.’ Both Excel and InerSens had favorable usability attributes, yet 486 

participants’ preferences seemed to gravitate toward some of InerSens’ distinctive features. Participants particularly 487 

expressed enjoying InerSens’ aesthetic elements and user-friendly interface while experiencing a variety of interface-488 

featured advantages. Participants eventually acclimated to the new interface despite early difficulties in navigating 489 

through InerSens due to unfamiliarity. In Excel, despite being straightforward, some tasks were repetitive (i.e., copying 490 

and pasting values, and scrolling through data), leading to frustration among the participants. 491 

 492 

 493 
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DISCUSSION 494 

Usability 495 

The SUS scores show that InerSens has a higher level of usability compared with Excel. This suggests that the 496 

majority of participants perceived InerSens to be more usable than Excel. The typical difference in the usability of the 497 

two systems was subjected to granular analysis on the effects of InerSens and Excel on each sub-dimension of usability 498 

to understand where they differed. The analysis showed statistical significance (p<0.05) in only two usability 499 

subscales. First, the participants strongly agreed that the InerSens platform has more well-integrated functions, and 500 

task performance in Excel was perceived as more unnecessarily complex. InerSens was perceived to be slightly better 501 

or similar in other subscales that considered anticipated usage frequency, ease of use, support requirement, system 502 

inconstancy, quick learnability, cumbersomeness, confidence in the system, and requirement of pre-learning. This 503 

highlights a favorable inclination toward the block-based platform over Excel, particularly with regard to alleviating 504 

specific usability issues and user requirements associated with implementing such platforms in context. The sensor 505 

data's proprietary formats demand Application Programming Interfaces (APIs) for accessing semantic relationships 506 

and the lack of convenient dataset controls can make inferences challenging while necessitating repetitive Excel 507 

procedures. These perceptions of Excel could have made it more challenging for users to understand and navigate the 508 

system effectively and also to acquire the necessary knowledge and skills to use it efficiently for sensor data analytics. 509 

This is why construction sensor data is analyzed using block representations of specific actions which makes InerSens 510 

for analyzing sensor data significantly more user-friendly than the traditional tool. This can be attributed to the flexible 511 

nature of block-based environments which makes it simpler to use for construction students. Similar results from 512 

research studies have repeatedly shown that BBPEs have fair user-friendliness, which has produced favorable 513 

assessments in terms of usability (Dawoud et al. 2021), usefulness, user satisfaction (Calderon et al. 2022), and quick 514 

learnability (Rough 2018). This signifies that the learning platform was efficient and effective enough to achieve the 515 

study's goal in terms of usability. 516 

Cognitive Load 517 

The subjective cognitive load of both platforms indicated that overall InerSens was perceived to be 46.11% 518 

less cognitively demanding compared to traditional Excel, which is consistent with research showing that block-based 519 

platforms typically lead to lower cognitive load compared to traditional text-based languages, as measured by the 520 

NASA-TLX questionnaire (Glas et al. 2023; Pratidhina et al. 2021). Although not statistically significant, InerSens 521 
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has lesser demand in all other sub-dimensions, including performance, temporal demand, physical demand, effort, and 522 

frustration.  523 

The code generation within InerSens was perceived as somewhat confusing by construction students who 524 

visited it and attempted to understand it. Nevertheless, the block-based programming feature ultimately conferred its 525 

prime advantage, as it obviated the need for manual code script modifications to accomplish students’ data analytics 526 

tasks. This approach contrasts with traditional programming, which typically tends to impose a higher cognitive load 527 

sourcing from increased complexity (Unal and Topu 2021). However, some participants reported that they did not 528 

notice the lines of code in InerSens. Instead, they found it more efficient to streamline their workflow by visually 529 

organizing representative blocks, thereby diminishing cognitive demands. This can be attributed to construction 530 

students' limited proficiency in independently programming large volumes of sensor data. The positive outcomes can 531 

be seen as an indicator of the effectiveness of BBPE, suggesting that programming was no longer perceived as the 532 

challenging aspect of programmable artifacts (Weintrop et al. 2017).  533 

Visual Attention and Impact on Overall User Experience 534 

The eye-tracking data was employed to examine objective metrics when utilizing both platforms. The results 535 

show that four out of the six tasks of the InerSens workflow (i.e., information review, data selection, manipulation, 536 

and chart evaluation) in the total fixation duration were higher compared to Excel. Among these four tasks, data 537 

selection (p-value<0.0020*) and chart evaluation (p-value<0.0001*) were found to be statistically significant. Despite 538 

the differences, the total fixation duration averaged across all participants remained lower for InerSens than those 539 

observed in Excel throughout the entire workflow. A similar trend was observed in the comparison of the mean of 540 

total fixation counts.  541 

For instance, in the ‘Information Review’ step, participants were tasked to access local files containing raw 542 

IMU data and activity video recordings. InerSens interface combined video and data on one screen, encouraging 543 

participants to interact with various elements throughout the step (i.e., play the video, scroll through the imported data, 544 

and reposition the blocks to see actions). In Excel condition, participants chose to quickly move on to the next task 545 

after a brief tutorial, possibly due to their familiarity with Excel. On the other hand, given that this is the first time 546 

most of the participants encountered the block-based tool, InerSens, the verbal feedback revealed that learning the 547 

new interface was a recurring challenge. This challenge aligns with a study on teaching learners how to program robot 548 

movements with block-based programming, where participants spent considerable time on the task due to their 549 
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unfamiliarity with the block interface (Weintrop et al. 2017). A consistent trend was observed in the data selection, 550 

data manipulation, defining activity, and chart evaluation AOIs, where InerSens also exhibited longer fixation 551 

durations and higher fixation counts. Experiencing challenges in the initial stages of using InerSens may contribute to 552 

potential interaction and engagement issues. Hence, streamlining the onboarding process for BBPEs like InerSens can 553 

enhance users' efficiency in task execution. Potential improvements can be achieved by implementing more detailed 554 

tutorials and training, integrating interactive guides within the interface, and refining user controls aiming to assist 555 

users in comprehending the tool's functionality and navigation more effectively. Additionally, implementing real-time 556 

feedback mechanisms on user interactions, such as tooltips and visual cues, can guide users through the InerSens 557 

interface, fostering a more supportive learning environment. 558 

However, as participants gained familiarity with the InerSens interface over time, they started to view it as 559 

intuitive. This corresponds with the findings from Mountapmbeme et al. (2022) where users initially faced challenges 560 

but eventually found the blocks and connections intuitive as they worked along the subsequent tasks. However, the 561 

increased number of fixations in InerSens during the ‘Chart Evaluation’ step should be attributed to its interactive 562 

interface rather than to participants still learning the new interface. Since this was the final step of the analytics process, 563 

participants can be assumed to have already gained some familiarity with the InerSens platform. Participants 564 

voluntarily spent more time evaluating the chart and construction activity video as InerSens facilitated real-time chart 565 

visualization synchronized with videos, where chart elements changed colors as the subject's range of motion altered. 566 

This indicates that engagement is boosted when students interact with their own analytics artifacts through interactive 567 

visualization. This aligns with the findings of Ruiperez-Valiente et al. (2022) suggesting that learning is enhanced 568 

when sensor data is graphed in real-time as opposed to analyzing the same physical phenomenon (motion) 569 

asynchronously. While in Excel, users could only evaluate static charts.  570 

In InerSens, a significant reduction in both fixation durations (p-value<0.0001) and fixation count (p-571 

value<0.0001) only occurred during the 'Develop Risk Assessment' step, where participants utilized their prepared 572 

sensor data to create the final charts. Participants spent only 9% of their visual attention span in InerSens on this 573 

specific step, compared to 45% in the corresponding Excel condition (see Fig. 11). This supports InerSens' efficiency 574 

in achieving comparable or better outcomes than Excel with shorter fixation durations or task completion times which 575 

are regarded as a key metric indicating the overall information processing time in user interactions (Cowen et al. 576 

2002). This was expected because InerSens streamlined chart development with block functions, eliminating the need 577 
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for users to switch between spreadsheets and optimizing repetitive steps in histogram creation. Similarly, Punchoojit 578 

and Hongwarittorrn (2017) reported that reduced task completion time, as an indicator of usability may signify 579 

enhanced work efficiency and ease of learning, leading to overall improved productivity. The observed pattern can 580 

also be seen as an indication of lower cognitive load and an increase in efficiency in the InerSens condition since there 581 

is minimal temporal and spatial segregation of information, implying a smoother and more efficient cognitive process 582 

(Aryadoust et al. 2022; Sweller 1988). On the other hand, the repetitive transitional efforts observed in the 583 

corresponding Excel condition made task completion time prolonged due to such repetition of steps which can alter 584 

perceived fatigue (Käthner et al. 2014). Furthermore, the findings of Tzafilkou and Protogeros (2017), also support 585 

that significantly higher fixation duration on a specific point may lead to doubts about the predicted outcome or 586 

performance of a completed action, potentially affecting the perception of the system’s usefulness. Di Stasi et al. 587 

(2011) also indicated that frequent transitions between different windows and platforms, coupled with a greater 588 

number of task steps, can result in fluctuations in the attentional state which may increase cognitive load and 589 

attentional processing demands.  590 

In terms of average time spent per step, InerSens had a fixation duration of 119.63 seconds. Excel, on the 591 

other hand, had a 26.43% higher fixation duration, averaging 162.6 seconds per step. Additionally, Excel had an 592 

average of 21.82% more fixation counts per step than InerSens, indicating that participants spent more time fixating 593 

on elements within Excel for each step compared to InerSens. This increased fixation count suggests that users might 594 

have had a less efficient search for information strategy with Excel in comparison with InerSens (Wang et al. 2014). 595 

Cowen et al. (2002) indicated that fixations are highly sensitive to usability, with the potential for a 46% to 67% 596 

increase in fixations from the 'best' interface to the 'poorest' interface. This highlights a strong connection between 597 

fixation frequency and interface usability which elucidates the lower usability rating and the higher cognitive load 598 

rating by participants in the Excel condition. 599 

This finding underscores the importance of considering the time allocated to each step in BBPE design, as it 600 

directly affects end-users' attention demands, usability, and cognitive load perspectives. Construction students, as the 601 

end-users, favor a balanced approach over heavily emphasizing attentional efforts on a single analytics step. As a 602 

guideline, BBPE should aim for an even distribution of attention demands across key steps to enhance usability, 603 

manage cognitive load, and improve learning outcomes for the construction workforce, who can apply their knowledge 604 

of sensor data analytics in the practical field. 605 
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CONCLUSIONS  606 

This paper presents an experimental study focused on developing a block-based programming platform for 607 

learning sensor data analytics in construction engineering programs. The research assesses the tool’s effectiveness in 608 

supporting sensor data analytics by evaluating users’ subjective feedback and objective behavioral metrics. Both Excel 609 

and InerSens were acknowledged for their user-friendliness and advantages; however, certain unique features in 610 

InerSens led to a preference shift as the medium for this particular type of data analytics task. Three characteristics of 611 

the block-based approach, in particular, emerge as potential reasons for this outcome. These are dynamic chart 612 

visualization (AOI- chart evaluation), optimized analytics tools (i.e., 4 panels of information feed for the user on one 613 

screen), and aesthetics of blocks (i.e., shapes and colors). The dynamic graphical chart in the blocks-based interface 614 

offers a compelling explanation for some observed differences in user behavior. The findings indicate that InerSens 615 

was slightly preferred over Excel, providing a more user-friendly experience with a lower cognitive burden and 616 

balanced visual attentional demands for sensor data analytical tasks. However, it did not show a significantly distinct 617 

competitive advantage compared to Excel. In some tasks, Excel allowed for faster performance, but the total fixation 618 

duration surpassed InerSens. Although four tasks in InerSens resulted in increased information processing or task 619 

completion time, it still resulted in an overall lesser fixation duration and counts as revealed through eye-tracking 620 

fixation analysis, and they did not lead to an overall negative perception of usability or cognitive load. Moreover, 621 

participants in InerSens were more easily focused on key information, leading to better efficiency in task performance 622 

compared to the use of Excel for sensor data analytics. The essential difference in usability stems from the system 623 

architecture and interaction design philosophy employed by these two platform types. Excel, functioning as a 624 

conventional spreadsheet software, adheres to a cell-based paradigm. On the other hand, block-coding-based 625 

platforms, exemplified by tools like InerSens, employ a visual and modular approach to data analytics. This involves 626 

assembling blocks that represent different task execution constructs, allowing users to advance by arranging these 627 

blocks in a logical sequence. Furthermore, as block-based tools support a high degree of customizability to meet 628 

domain-specific user demand, these tools can be embellished with separate panels (i.e., block workspace, visualizer, 629 

codes, and video playback) as needed to streamline the analytics tasks. The advantages of this approach become 630 

evident in terms of improved readability, reduced syntax errors and repetitions, and enhanced visual representation of 631 

the analytics structure. 632 

  633 
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LIMITATIONS AND FUTURE WORK 634 

Certain limitations exist within this study, and these should be regarded as potential points for consideration 635 

in future research efforts. While the sample size (N=20) may suffice for identifying usability issues of the interactive 636 

interface, it could constrain the achievement of robust representativeness and the generalizability of findings to a wider 637 

construction population. For instance, the small sample size and the fact the data were collected in a single university 638 

may limit the generalization of findings specifically to a demographic or knowledge subgroup. In addition, the sample 639 

size presents a limitation for inferential analysis, potentially reducing statistical power and the detection of true effects 640 

or differences between conditions. Moreover, demographic factors such as the academic year of participants may not 641 

comprehensively capture all academic levels, particularly freshmen. Subsequent academic years could exhibit 642 

advanced exposure to introductory programming or data analysis courses, resulting in potential variations in 643 

interactions. These differences may influence the perception of usability and cognitive load. Consequently, future 644 

research endeavors will incorporate a balanced representation of participants from all academic years to ensure a more 645 

comprehensive understanding and a larger sample size to enhance generalizability across diverse demographics.  In 646 

addition, although this research emphasizes the importance of well-defined scopes due to the EUP platform’s 647 

customization for specific construction activity analysis, however, the findings may not be universally applicable to 648 

diverse data analytic tasks. Therefore, task-specific usability analysis is recommended for extracting a more accurate 649 

representation of the data to inform the design and development process. Future research will also explore alternative 650 

data analysis techniques, such as learning curve analysis, interaction analytics through mouse-tracking data, and 651 

utilizing objective indicators of cognitive load, such as electroencephalogram (EEG), to examine variations in brain 652 

activity related to cognitive load during analytics tasks associated with both conditions. 653 
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Table 1. Data analytics tasks completed by participants. 821 

Task Workflow Excel  InerSens 

Sensor data and activity 

video review 

 Open and review raw IMU data 

 Play and review video recording 

of the mimicked construction 

activity 

 Import, open, and review raw IMU 

data from the local drive on view or 

analytics visualizer  

 Import, play, and review video 

recording of the mimicked 

construction activity into video 

playback display  

Data selection  Delete and only retain required data 

columns (i.e., retain timestamp and 

pitch data columns) 

 Delete and only retain required data 

columns (similar) 

Data manipulation  Modify timestamp format using 

Excel formula (i.e., the difference 

between 41mm:27.6ss 41mm:28.1ss 

is 00mm:00mm.5s which matches 

with video recording timestamp 

format  

 Convert angle unit (from Radian to 

Degrees) 

 Adjust the orientation of the angle 

reference 

 Convert angle unit (from Radian to 

Degrees) 

 Adjust the orientation of the angle 

reference 

Defining activity  Define data based on construction 

activity information (i.e., video 

recording, different tasks, 

timestamps, and cycles)  

 Define data based on construction 

activity information (similar) 
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Development of risk 

assessment  

 Define bin values as thresholds for 

different levels of ergonomic risks 

(i.e., <20°: Low risk, 20-60°: Medium 

risk; >60°: High risk) 

 Create histogram outputs based on 

the number of defined tasks within 

the activity (i.e., number of 

tasks*cycles = number of histograms) 

 Modify histogram’s output with 

Excel formula (i.e., frequency to 

percentage) 

 Gather all histogram data into one 

Excel tab to develop stacked bar 

columns showing different risk levels 

associated with the corresponding 

tasks 

 Select the body part affected 

 Define bin values as thresholds for 

different levels of ergonomic risks 

(similar) 

 Develop stacked bar columns showing 

different risk levels associated with the 

corresponding tasks 

Chart evaluation  Evaluate the chart and contributing 

data sources to conclude  

 Evaluate the risk assessment chart 

 Select a specific task to view the dynamic 

visualization of the chart simultaneously 

with the video 

 822 
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 824 

Table 2. Participants’ demographic information. 825 

Category Demographics Group (N=20) 

Gender Male  10 (50%) 

Female 10 (50%) 

Academic Program Building Construction 4 (20%) 

Civil Engineering 9 (45%) 

Construction Engineering and Management 7 (35%) 

Academic Year Freshmen 0 (0%) 

 Sophomore 2 (10%) 

 Junior 9 (45%) 

 Senior 9 (45%) 

Programming familiriaty Not at all familiar 10 (50%) 

 Slightly familiar 5 (25%) 

 Moderately familiar 5 (25%) 

 826 



 

Fig. 14. Suggestions for InerSens and Excel learning environments. 

 



 

Fig. 1. Overview of research methodology. 

 

 

 

 

 

 

 



 

 

Fig. 2. Overview of data analytics workflow. 

 



 

Fig. 3. Basic workflow for ergonomic risk assessment using IMU sensors. 

 



 

Fig. 4. System architecture of InerSens. 

 



 

Fig. 5. Connections between EUD features and computational thinking.  

 



 

Fig. 6. InerSens interface. 

 



 

Fig. 7. Comparison of SUS sub-scales between the two conditions (rating: 1 = strongly disagree; 5= Strongly agree). 

 



 

Fig. 8. Comparison of perceived workload (raw NASA-TLX) between the two conditions. 

 



 

Fig. 9. Comparison of total fixation duration in specific AOIs for both conditions. 

 



 

Fig. 10. Comparison of total fixation count mean in specific AOIs for both conditions. 

 



 

Fig. 11. Comparison of proportions of visit duration means of AOIs for both conditions. 

 



 

Fig. 12. Advantages of InerSens and Excel learning environments. 

 



 

Fig. 13. Disadvantages of InerSens and Excel learning environments.  

 


