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ABSTRACT

Construction firms face challenges in sourcing qualified candidates for enhancing project outcomes through
sensor data analytics. There are limited tools for teaching students from construction-related disciplines how to analyze
sensor data. By harnessing the potential of block-based programming, this study designed a pedagogical tool,
InerSens, to support construction engineering students with no prior programming experience to analyze sensor data
and address real-world construction challenges, such as ergonomic risks. Twenty students participated in an
experiment comparing InerSens and a traditional platform, Excel, for data analytics. Evaluations involved usability,
perceived workload, visual attention, verbal feedback using the System Usability Scale, NASA TLX, eye-tracking
metrics, and interviews respectively. InerSens was rated as 8.89% more user-friendly than the traditional tool, with a
significantly reduced perceived cognitive load by 46.11%, and a more balanced distribution of visual attention during
data analytics tasks. Through the evaluation of cognitive and usability factors, this paper extends the applications of
Learning for Use and Cognitive Load theories, emphasizing their applicability in instructional design, revealing
learner needs, and the potential to advance the development of pedagogical tools for data analytics.
Keywords: Sensor Data Analytics, Sensing Technologies, End-User Programming, Usability Engineering, Eye-

tracking, Ergonomic, Risk Assessment, Construction Education.
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INTRODUCTION

Advancements in sensing technologies in the construction industry have opened avenues for enhancing
project performance. This is placing a demand on the workforce to meet the rising need for skills needed to deal with
sensor data. The construction industry constantly presents a complex and dynamic environment, rich in information
demands. In this domain, traditional and manual data acquisition approaches fall short when attempting to meet the
demands of advanced construction management (Shen and Lu 2012). As a response to this, the construction industry
is increasingly embracing sensing technologies to enhance performance (Mansouri et al. 2020). However, a noticeable
disparity arises between the academic curriculum and the actual requirements of the industry, resulting in an
inadequately prepared workforce (Ogunseiju et al. 2021). An instance of this could be presented with an evident
construction challenge concerning work-related musculoskeletal disorders (WMSDs), causing substantial impacts on
productivity and incurring expenses (Yan et al. 2017). To tackle this problem, researchers have extensively studied
the utilization of affordable sensing technologies, such as Inertial Measurement Units (IMUs), to analyze and minimize
WMSD-related risks (Bangaru et al. 2021; Yan et al. 2017). However, the abundance of data collected by these sensors
necessitates a profound understanding of analytics for extracting valuable insights from the vast datasets
(Krishnamurthi et al. 2020). Effectively managing the intricacies of sensor data analytics requires a comprehensive
understanding of various aspects, including methods for data collection, data preprocessing, feature extraction,
statistical analysis, and data visualization (Ngo et al. 2020). Therefore, analytics skills are necessary to extract
meaningful insights from sensor-generated data, but construction firms struggle to find qualified candidates with these
abilities, which limits their capacity to fully leverage sensor data analytics for enhanced project outcomes (Cheng et
al. 2013; Mansouri et al. 2020). To bridge the gap between academia and industry demands, it is critical to provide
construction students with the affordance to actively engage with these sensor data analytics techniques and use them
in real-world circumstances.

Addressing the imminent data analytics skills shortage requires a viable pedagogical tool that effectively
engages the future workforce in data analytics, utilizing user-friendly, efficient, and manageable technologies. End
User Programming (EUP) or End User Development (EUD) shows effectiveness in acquiring data literacy, especially
when supported by block-based programming environments (BBPEs). Researchers and educators from diverse fields
concur that BBPEs have demonstrated great value in enhancing learners’ domain-specific skills and fostering

computational thinking (CT) in academic and professional settings alike (Glas et al. 2023; Rahaman et al. 2020; Skorik
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2022). Within the domain of EUP, the technique of block-based programming simplifies coding by utilizing visual
blocks (Coronado et al. 2021). With the use of a drag-and-drop interface provided by block-based programming, non-
programmers may quickly and simply design and alter data analysis processes (Bau et al. 2017). To ensure efficacy
and adoption, BBPEs must be customized for various user populations, making content and usability assessments
significantly vital for effective instructional objectives (Glas et al. 2022; Rijo-Garcia et al. 2022). Formative evaluation
holds significant importance in identifying and addressing usability issues within Human-Computer Interaction (HCI)
platforms (van Velsen et al. 2011).

Therefore, this research aims to investigate the design and usability evaluation of InerSens, a BBPE, for
equipping students from construction-related disciplines to perform analysis on sensor data. The efficacy of the
proposed pedagogy is evaluated from the context of ergonomic risk assessment. Formative evaluation is conducted
by comparing the performance of InerSens with a traditional method, using Microsoft Excel, for analyzing sensor data
ergonomic risk assessment. The evaluation includes assessing overall usability, perceived workload, visual attention,
and verbal feedback obtained from users’ experiences with InerSens and the traditional approach. Through this
comprehensive evaluation, the research gained insights into the user experience and effectiveness of the BBPE in the
context of construction sensor data analytics. Results of the evaluation of InerSens advance the underpinning theories:
Learning for Use and Cognitive Load theory. The paper follows a structured format, starting with background
information on relevant concepts in Section 2. Section 3 outlines the methodology, covering environment
development, experimental procedures, and data analysis. Section 4 presents the experiment’s results, and the
conclusion synthesizes the findings, addresses study limitations, and discusses the practical implications of
implementing the pedagogical tool in real-world learning environments.

BACKGROUND
Construction Sensor Data Analytics

The field of sensor data analytics encompasses the utilization of diverse sensor collection technologies,
processing techniques, analysis methodologies, and interpretation approaches to shape and inform the decision-
making perspective of users (Tsai et al. 2015). Mansouri et al. (2020) presented a more precise definition of sensor data
analytics in the context of construction, referring to it as the process of analyzing raw data collected from construction
projects. The objective is to extract useful insights and use them to make informed decisions in a variety of areas, such

as project planning, execution, management, and control. Hence, construction-based sensor data analytics comprises



85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

the processing, evaluation, and presentation of data collected via sensing technologies to obtain useful information in
forms that support informed decision-making (Akanmu et al. 2022; Louis and Dunston 2018). The adoption of
advanced sensing technology in the construction sector is transforming how projects are executed, with an essential
emphasis on safety and productivity. Laser scanners, GPS, RFID, IMUs, drones, and cameras are rapidly becoming
indispensable tools for improving safety protocols and facilitating thorough project planning and execution (Akhavian
and Behzadan 2015; Alizadehsalehi and Yitmen 2021; Majrouhi Sardroud 2012; Teizer and Cheng 2015). The
advantages are inherent in the use of sensor data analytics methods, which enable experts to unearth crucial insights
into operational patterns and trends. This leads to improvements in a variety of areas, including increased productivity,
decreased costs, and the adoption of strong safety measures (Abioye et al. 2021). For example, wearable sensing
technology such as IMU, is useful for collecting motion data from construction workers, aiding in occupational health
analysis. Data from IMUs contribute to providing comprehensive information on the amount of physical stress and
strains experienced by a worker while executing a construction task. Insights from analytics can help practitioners
improve construction safety and productivity by early detection of musculoskeletal disorder risk factors and
formulating proactive safety measures (Bangaru et al. 2021; Yu et al. 2019). These opportunities offered by sensor
data analytics inform the need to prepare the future workforce with the skills to implement the technique in the
construction industry. However, the application of wearable sensing technologies like IMUs in construction research
often involves extensive programming constructs for developing analytics workflows. The insufficient emphasis on
programming in civil engineering and related fields, where computing is frequently confined to off-the-shelf software,
leads to a deficiency in exposure and training in programming skills (Talaat et al. 2022). Consequently, individuals in
these disciplines may face challenges as they typically lack the domain knowledge for programming the sensor data
analytics processes. Furthermore, scarce studies have explored pedagogical innovations to overcome the obstacles to
equipping construction-engineering students with the needed skills. As a result, despite the evident importance of
sensor data analytics, the challenge lies in new graduates possessing the skills required for efficiently analyzing the
vast data generated (Khalid et al. 2023). The limited exposure of construction students to data analytics skills
necessitates exploring alternative pedagogical approaches to address this skill gap.
End-User Programming Environment

EUP or EUD techniques have become particularly recognizable for their adaptability and added value in

educational contexts. EUP is a subset of EUD that focuses on the programming process for developing programs.
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Accordingly, installation, configuration, re-design, debugging, scaling, and execution are all included in the larger
variety of techniques that support the whole software development life cycle under the umbrella of EUD (Coronado
etal. 2021). When adopting a programmable platform for instructional purposes, a significant challenge is to minimize
the requirement for users to possess extensive programming knowledge. BBPEs are a notable aspect of EUP, where
the coding process is replaced with a simplified approach that utilizes visual blocks instead of traditional syntactical
text-based coding (Skorik 2022). BBPEs, particularly for users without prior programming expertise, provide a
straightforward and approachable coding experience with a visually driven programming interface. BBPEs provide
users with flexible drag-and-drop capabilities by using interactive blocks that represent codes and programming
notions. These approachable traits make it simple for people to understand and apply complex computational
operations (Rough 2018). BBPEs allow users the ability to dwell on the logic, structure, and functionality of their
algorithms by prioritizing semantics ahead of syntax and other programming language complexities (Bau et al. 2017).
BBPEs have proven to be highly advantageous in bridging knowledge gaps in a variety of academic subjects, including
chemistry, physics, robotics, cybersecurity, and data science, allowing learners to acquire domain-specific knowledge
while improving their CT skills (Glas et al. 2023; Rahaman et al. 2020). Extensive research supports the positive
outcomes resulting from the integration of domain-specific and CT skills using BBPEs (Gupta et al. 2017; Sarmento
et al. 2015; Tawfik et al. 2022). However, with the high degree of customizability, the evaluation of the usability of
the BBPEs stands out as an important procedure for ensuring the development of optimal learning outcomes

(Karakasis and Xinogalos 2020; Rijo-Garcia et al. 2022).

Theoretical Framework

The development and usability evaluation of InerSens, a BBPE, draws its theoretical underpinning from the
Learning for Use (LfU) and can be viewed from the lens of Cognitive load theory (CLT). LfU lays the basis for
technological platforms intended to improve students’ skill development and encourage deep understanding (Edelson
2001). The following four principles form the foundation of this theory: “(1) knowledge construction is incremental;
(2) learning is goal-directed; (3) knowledge is situated; and (4) procedural knowledge needs to support knowledge
construction” (Edelson 2001). The design of InerSens centered on a hierarchical workflow of prevalent data analytics
techniques, promoting a goal-directed problem-solving approach and gradual knowledge acquisition. To offer
researchers a basis for assessing task performance while utilizing authentic construction sensor data, strategic usability

benchmarks were established. These benchmark tasks encompassed: 1) information review, ii) data selection, iii) data
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manipulation, iv) defining activity, v) developing a risk assessment chart, and vi) results or chart evaluation. This way,
the hierarchical arrangement guides learners through tasks, from basic data selection to complex risk analysis, offering
analytics opportunities via block representations. As learners progress in their analytical journey, they utilize both
original data and manipulated structures from earlier stages to move forward to the next step. This aligns with the
principles of gradual and incremental knowledge acquisition highlighted in the first and fourth tenets of LfU theory.
The structured workflow of the InerSens platform is also consistent with the second and third tenets of LfU theory,
emphasizing that knowledge acquisition is goal-oriented and context-dependent. The LfU theory also integrates the
CLT, which aims to optimize learning outcomes by managing cognitive load. CLT suggests considering working
memory limitations to avoid overwhelming learners in instructional design. Therefore, the evaluation of the
environment contributes to CLT by detecting both cognitive and usability factors.
METHODOLOGY

In this section, the methodology adopted for the development and usability of InerSens is described including
the specifics of the experimentation, the participants involved, and the techniques employed for data collection and
analysis (refer to Fig. 1). The evaluation is centered around comparing the usability of InerSens to that of the
conventional platform, Microsoft Excel, which is a commonly used platform for similar data analytics tasks (see Fig.

2 for an overview of the workflow).

Development of InerSens
This section describes the design and development process of InerSens, which adopted the agile User

Experience (UX) lifecycle methodologies (Hartson and Pyla 2012).

User research

In a previous study (Khalid et al. 2023), the authors identified the expectations of end-users and the industry’s
prerequisites concerning the utilization of sensor data analytics in construction education. Based on the results of the
study, user needs were identified to define specific features for the system that align with user-centered design
concepts (Hartson and Pyla 2012). This includes the key sensing technologies (e.g., IMU, laser scanner, GPS, RFID,
drones, cameras) and their applications (e.g., safety, asset and productivity tracking, quality control, inspection, and

verification).
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Creation of design concepts

The development process for the InerSens interface involved an ideation and creation phase based on the
findings from the user research. This phase included brainstorming, sketches, and reviews to generate concepts, which
were then combined into preliminary wireframes (Hartson and Pyla 2012). The objective of the design was to establish
a standard workflow for sensor data analytics aiming to teach students about ergonomic risk assessment (see Fig. 3).

To illustrate the workflow and required activities for executing data analytics tasks, wireframes were created
as part of the design concept generation process. Furthermore, the researchers emphasized the need to create user

personas for construction students, along with defining user classes, roles, workflow modeling, and tasks.

Prototyping

Using custom-designed blocks via Blockly, high-fidelity prototypes were created. In the beginning, blocks
were constructed to carry out analytics tasks relating to risk assessment, such as data selection, manipulation, defining
activity, and development of a risk assessment chart. The blocks underwent testing to identify any potential interaction
design flaws, including the actions users would engage in and the data they would view to successfully proceed with
the risk assessment workflows. The prototypes were made available to researchers for comment, allowing for the early
detection of possible problems and areas for improvement before proceeding with a more intricate design of the high-

fidelity prototype.

Overview of the InerSens platform

In the design of InerSens, the Model-View-Controller (MVC) architectural pattern was adopted which is
widely employed in the development of web-based applications. The MVC architecture encompasses three essential
layers: the model, the view, and the controller. Each layer has distinct responsibilities, as elaborated upon in the
following sections (see Fig. 4).

The view component is responsible for rendering information from the model onto the Graphical User
Interface or GUI, designed specifically for learner presentation. Beyond displaying data, it actively manages learner
inputs and actions on the GUI, including sensor data and video recording uploads, block clicks, and block relocations.
The View records user activities and forwards the inputs and events to the controller for further processing. Moreover,
it presents various results, such as structured data, videos, and risk assessment charts, and also facilitates import-export
functionalities. Within the view, various components, including the block menu, block workspace, code generator, and

analytics visualizer, have been implemented using Cascading Style Sheets (CSS). Additionally, video playback is
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integrated using the HTML Video tag, with JavaScript employed to capture and exhibit video timestamps. The model
undergoes updates based on modifications made by the controller, reflecting corresponding changes in the information
presented within the view. The controller acts as the intermediary between the model and the view. It responds to
learner requests presented by the view in the GUI, such as selecting blocks, relocating blocks, and executing and
recycling blocks. It utilizes Node.js libraries, namely Blockly and Data-Driven Documents (D3), to implement these
functionalities. Blockly libraries contain blocks for performing various coding functions, while D3, a JavaScript
toolkit, provides methods and modules for manipulating and displaying data using web standards like CSS, HTML,
and SVG. The controller applies logic to execute essential operations, effectively translating user actions into
meaningful processes. The model is tasked with storing user data in the MariaDB Server, a relational database
management system. The Sequelize API facilitates interaction with the database, acting as a cross-platform JavaScript

runtime environment mapper, simplifying the connection with databases such as MariaDB, MySQL, and SQLite.

Interaction with Inersens and Connections with CT SKkills

Utilizing design frameworks to create block-based environments can lead to a significantly enhanced user
experience (Karakasis and Xinogalos 2020). Consequently, an EUD-focused design framework was embraced,
aligning with the requirements of risk assessment data analytics workflow. The researchers added the basic
components that make up a web-based block environment based on the EUD design framework, which detailed the
features to increase end-users CT skills within the EUD activity (Barricelli et al. 2023) (see Fig. 5) The framework
was chosen for its dual benefits: improving students’ CT skills and aiding in sensor data analytics tasks on the platform.
This section outlines InerSens’ key features for interaction and the relevance of CT skills to the platform’s dimensions.
Block selection

The ability to select the necessary blocks from a menu comprised of numerous blocks is connected with the
abstraction CT skill, which is the cognitive process of selecting the most important information about a system or
situation while ignoring or simplifying the less important information (Calderon et al. 2022). For example, after
dragging and dropping ‘Read File’ into the block workspace to import applicable raw sensor data into the interface,
users can clean up the raw dataset using the ‘Data Selection’ block to preserve the important data required for the
analytics while discarding the data that is unnecessary. As the process progresses, the user may pick the relevant
blocks from the menu for each instance as the flow of the data analytics task demands (Fig. 6). At the outset, the

concreteness of information enables users to effectively view the information, confidently select the necessary blocks,
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and carry out intended actions. The concreteness dimension in EUD environments refers to the ability of the

environment to present domain-specific concepts tangibly, such as concrete events and conditions (Berti et al. 2006).

Block construction

The ability to assemble interlocking or container blocks in the block workspace, that store unit function
blocks, enables users to leverage CT’s decomposition skills to break down complex problems into attainable sub-
problems (D’Alba and Huett 2017). The modularity dimension of the environment refers to the presence of diverse
elements, blocks, or modules that assist end-users in decomposing problems and identifying the constituent pieces that

contribute to their solutions (Barricelli et al. 2023).

Block structuring

The feature of structuring blocks allows the user to develop an analytics workflow of action sequences by
creating logical links between the building blocks to generate solutions to targeted computational challenges. This
occurs within the block workspace. A broad sequence of block structuring may include, for example, reading data,
manipulating data, analyzing data, and viewing data. This characteristic is related to CT skill’s algorithmic thinking,
which is the way of creating and running algorithms to solve problems or carry out tasks (Shute et al. 2017). The
structuredness component of EUD may be highlighted here since it relates to the environment’s capacity to structure
a solution in a step-by-step way, which also facilitates the process of linking the input and output of multiple processes

(Barricelli et al. 2023).

Analytics results

The ability to view and examine analytics outcomes directly through the interface is associated with the
evaluation skill of CT and the testability dimension of EUD. This functionality is facilitated by the ‘Analytics
Visualizer’ panel (see Fig. 6) on InerSens, a dedicated workspace screen that offers visual feedback on the user’s
work. Users can analyze and examine the results in a separate panel, allowing them to scroll through the entire dataset
and compare it with the original problem formulation and solving strategies. Moreover, the results can be simulated
and visually presented, such as through a risk assessment chart, allowing users to assess the details of the risks that
occurred at different stages of the activity in the chart per the construction activity video playback. The testability

dimension involves assessing the results of activities within the EUD environment to determine the accuracy of a
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solution and compare it with other alternatives to optimize it, considering the available resources (Barricelli et al.
2023).
Export results

By providing the capacity to export findings in a variety of formats appropriate for specific purposes, users
may efficiently interact and work with other stakeholders. The reusability component of EUD allows for the
application of activity outputs in diverse contexts and simplifies sharing among end-users (Barricelli et al. 2023). This
corresponds to CT’s generalization skills, in which users detect patterns in previous solutions and apply comparable

(potentially altered) techniques to distinct future challenges (Shute et al. 2017).

User Experience Evaluation

Participants

20 undergraduate students including 10 females and 10 males were recruited for the usability experiment.
This sample size is similar to other learning environment-based usability studies utilizing eye-tracking analysis
(Conley et al. 2020; Oyekunle et al. 2020; Zardari et al. 2021). The individuals are from civil engineering, building

construction, and construction engineering management programs, and are at least 18 years old.

Data collection
This section describes the data collected during the experiment including demographic information,
subjective data (e.g., system usability scale and perceived workload, verbal feedback), and objective data using visual

attention.

Demographic data
Before commencing the experiment, demographic information, such as gender, and academic program, was

collected from the participants via a pre-survey.

Overall System Usability Score (SUS)

In order to obtain subjective measurements to evaluate and compare the overall usability of InerSens in
comparison to Excel for sensor data analytics, the study employed the SUS questionnaires. Participants used a 5-point
scale, from strongly disagree to strongly agree, to score the 10 items consisting of 5 positive (odd-numbered) and 5
negative (even-numbered) statements, all centered on users' perceived system usability. Odd-numbered SUS items

assess user inclination for frequent usage and evaluate ease of use, function integration, rapid learning, and confidence

10
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in system use. Conversely, even-numbered items gauge perceived complexity and measure self-sufficiency in
technical support, consistency, and the learning curve. Within the context of evaluating sensor data analytics interfaces,
these elements collectively offer evidence of user preferences, efficiency, and the comprehensive usability of the
interfaces examined in this study. Following each round of tasks (with and without InerSens), participants were asked
to complete the SUS questionnaire to gauge their perception of usability.
Perceived workload

The NASA-TLX questionnaire was employed to assess the perceived workload during task performance.
The TLX consists of six subscales representing sources of workload namely: Mental Demand, Physical Demand,
Temporal Demand, Performance, Effort, and Frustration Level. These subscales are typically used to measure
cognitive load in learning environments (Gerjets et al. 2004). Mental demand measures how much brain activity such
as looking, thinking, and remembering is needed while using a learning environment. Physical demand measures the
level of physical effort. Temporal demand measures time-related pressure from the task. Performance measures the
effectiveness of task completion. Effort, on the other hand, measures how difficult learners must work to seek and
understand the contents of a learning environment, and frustration measures how irritated discouraged, or stressed
learners feel when interacting with a learning environment.
Visual attentional resources

Eye-tracking was used to assess the participants’ visual attention while interacting with the platforms. Eye
tracking data were collected using the Tobii Pro Glasses 3 eye tracker. The device has a sampling frequency of 50 Hz.
Fixation duration and fixation counts were collected. Longer fixations relate to difficulty in extracting information or
it means the media is more engaging (Wang et al. 2014). A higher fixation count relates to less efficiency in search

(Wang et al. 2014).

Verbal feedback

Semi-structured interviews were conducted with the participants to obtain their feedback about their
experience with using InerSens and Excel for the analytics task. The questions were structured to capture the
challenges they encountered while interacting with the platforms and the features of the platforms that influenced their

user experience.
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Experimental Procedures

Participants were assigned to both the Microsoft Excel condition and the InerSens condition for performing
data analytics tasks allowing users to reach comparable conclusions across conditions. The experiment employed a
repeated measure within-participant design for comparisons where the evaluation of a new block-based tool (InerSens)
was compared to Excel, considering Excel's common use among students in academic programs, whereas users of
other software may have diverse levels of experience or no experience at all. Given that construction-related students
commonly employ established practices in data analysis and workflows using Excel, benchmarking against Excel aids
in evaluating how well the new block-based tool integrates into these existing practices in terms of usability. This
strategy gains support from related usability studies where block-based tools were developed with Excel workflows
as their benchmark and for the purpose of comparison. Previous research on BBPEs has benchmarked data analytics
tasks resembling Excel workflows, assessing their usability in comparison to Excel. Jansen and Hermans (2019)
established Excel as a benchmark for usability comparison with XLBlocks, a block-based tool. While writing formulas
in Excel often involves challenges such as misplacing parentheses, quotes, and commas, the study posited that a block-
based formula editor, like XLBlocks, could aid spreadsheet users by minimizing syntax errors. XLBlocks revealed an
advantage over Excel as it offers a fully equipped integrated development environment (IDE) for improving formula
readability and facilitating structure recognition surpassing Excel's limited formula bar. Schaathun (2022) employed
a comparable strategy, using Excel as a standard, to introduce a block-based visual programming environment. This
add-in enabled end-users without programming backgrounds to establish variables and constraints, explicitly defining
the data flow between spreadsheets. The objective, similar to InerSens' primary goal, was to focus on Excel end-users
and introduce visual programming to improve the usability of data analysis. Each participant’s involvement in the
experiment lasted approximately two hours, with a designated break of 20-30 minutes between tasks to allow for rest
and refreshment.
Tutorial

Before the experiment began, participants received accessible tutorial materials and underwent a 15-minute
practical demonstration to familiarize themselves with the task workflows and platform components (Ramoglu et al.
2017). The tutorial and demonstration covered analytics tasks for both Excel and InerSens conditions. Following the
approved Institutional Review Board (IRB) protocol, participants were initially presented with the informed consent

form, and their pre-survey responses were documented.
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Apparatus

To ensure uninterrupted operations, computer systems were configured accordingly. Participants used a high-
performance desktop computer for task performance, while additional hardware and software (such as eye tracking)
were employed on a separate laptop for data capture. Participants were situated in a controlled environment to
maximize comfort and minimize distractions. Detailed instructions were provided to participants regarding the eye
tracking procedures utilizing Tobii Pro Glasses 3. Calibration was conducted to ensure accurate measurements, and
data recording commenced once satisfactory calibration was achieved. To set up the experiment, computer systems
were configured to run the evaluated platforms. Hardware requirements and software versions were thoroughly tested
beforehand to ensure consistent and uninterrupted operations for all participants. Participants performed the tasks on
desktop computers equipped with high configurations, while a separate laptop with eye-tracking software and
connected hardware was utilized for continuous monitoring of data recording. This setup allowed for the display of
eye movements overlaid on the screen for real-time monitoring. Participants were positioned in a controlled setting to
assure comfort, uniformity, and the elimination of unwanted distractions or discomfort. A briefing on collecting eye-
tracking data using Tobii Pro Glasses 3 was provided to participants. The trackers had been cleaned and adjusted with
different nasal bridges before use to ensure an appropriate fit for each participant. Calibration procedures were carried
out before the assessment to ensure reliable eye-tracking readings, and recording began only once acceptable
calibration was achieved.

Tasks

The tasks in this study involved interacting with pre-recorded construction activity information, including
video recordings and raw IMU sensor data in both Excel and InerSens. Participants processed the sensor data and
developed risk assessment charts from the construction activity information. An overview of the performed list of
tasks on both platforms can be found in Table 1.

The tasks specified in Table 1 were derived from a methodology rooted in the principles of ergonomic
construction risk assessment. This method employs posture angles to assess ranges of motion, enabling the calculation
of ergonomic risk levels (i.e., low, medium, high) for identifying awkward postures in construction using IMU sensor
data (Akanmu et al. 2020; Gonsalves et al. 2021). The employed methodology focused on tasks involving repetitive
subtasks and dynamic postures, based on the postural ergonomic risk assessment classification by Chander and

Cavatorta (2017). For data collection, the smartphone's built-in IMU sensor was attached to the target body part (i.e.,

13



358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

trunk). Collected data included time-stamped acceleration, angular rotation, pitch data, and an external video recording
of the activity (with a secondary device). For validation and the extraction of observational details regarding subtask
timing and cycle count, the time-stamped data could be cross-referenced with video-recorded activity to ensure
accuracy. A segment of a manual lifting activity, which encompassed three subtasks (lifting, walking, placing)
spanning over two repetitive cycles was selected for the participants’ analytics performance. For subsequent analysis,
the pitch data and its corresponding timestamps were extracted. Pitch data, initially in Radians and later converted to
Degrees, facilitated the computation of body segment orientation from the neutral plane. When defining the activity,
participants were instructed to label subtasks based on their observations while reviewing the recorded video.
Following defining each sub-task categorized for its corresponding data portions, risk impositions on body segments
during each subtask were computed using frequency distribution as a percentage of the task duration resulting in task-
specific histograms. Bin values were defined as thresholds for ergonomic risks, with corresponding angles classified
into low, medium, and high-risk categories (see Table 1: Development of risk assessment). Examples of awkward
postures could be when the target body part registered data points inside of the medium or high-risk thresholds. This
resulted in the compilation of data from all subtasks into a unified chart, forming stacked bar columns to visually
illustrate unique risk levels associated with specific tasks. For end-user evaluation purposes, plotting each subtask
against duration as a percentage of the total cycle time served as a reference for comparing the risks posed by different
subtasks in the final output, aligning with the actual activity. While the abovementioned methodology was adopted
for Excel, the integration of similar tasks into InerSens involved an additional considering CT skills. For details of
workflow integration and interaction design considerations within InerSens, refer to the 'Interaction with InerSens and
Connections with CT Skills' section.
Data Analysis

To analyze the data collected from the SUS and NASA TLX questionnaires, both conditions (Excel and
InerSens) were treated as ordinal variables. On the other hand, the eye-tracking data was considered as continuous.
Shapiro-Wilk test was employed to assess the distribution of the data, revealing a departure from normal distribution
in the majority of cases. Therefore, Wilcoxon Signed-Ranks Tests (WSRT) were utilized to examine the presence of
statistically significant differences between paired observations. The pair-wise comparison of dependent variables
included SUS, NASA, and eye-tracking measures as these were the measurements being compared between the two

conditions. The independent variables are the conditions themselves, which refer to the two repeated conditions under
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which the measurements were taken. Significance was determined at a p-value of less than 0.05. Descriptive statistics
such as mean, median, and standard deviations were considered.
System Usability Scale

The SUS scoring procedure consists of two steps: assessing each participant’s responses and determining the
mean score for all participants. Individual Scoring: For odd-numbered questions, subtraction of 1 from the user score.
For even-numbered questions, subtraction of the user score from 5. The final SUS score for each participant was
obtained by multiplying the sum of these scores by 2.5. (Sauro 2011). To calculate the mean SUS score for multiple
participants: The total SUS scores of each participant were added up. Then, the sum was divided by the number of
participants (Derisma 2020).
NASA-TLX

The NASA-TLX survey data comprises subscales for mental, physical, and temporal demands, along with
performance, effort, and frustration (Hart and Staveland 1988). The overall TLX or workload score was computed
using the unweighted average of the sub-scores, as it was discovered to offer higher sensitivity and reliability in
comparison to the weighted average (Ikuma et al. 2009). Consequently, no attribute weights were allocated to the sub-
scales and the raw scores were utilized.
Eye-tracking

To gather eye-tracking measurements, dynamic Area of Interest (AOI) and metrics tools were utilized. The
AOIs in eye-tracking, represent specific areas of the user interface that are pre-defined by the researchers for focused
metrics extraction (i.e., fixation) and analysis. AOIs can be used to examine participants’ gaze behavior and understand
visual attention dynamics in user engagement with digital interfaces (Lei et al. 2023). Six benchmark activities,
identified as essential stages in both task performance scenarios (i.e., task workflows in Table 1), served as a
comparable basis for mapping AOIs. Fixation-related metrics were recorded for each task step by activating AOIs at
specific times. The dynamic AOI functionality ensured precise gaze data recording even when AOIs moved out of
range due to head movement. Total fixation duration and total fixation counts in the AOIs were extracted from Tobii
ProLab to understand the participants’ visual attention to specific AOIs. These metrics also served as indicators of

cognitive load and the platform’s usability during task performance (Borys and Plechawska-Woéjcik 2017).
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Verbal feedback

After de-identification through random number assignment, NVIVO 14 software was utilized for qualitative
data analysis. Open coding was employed to identify themes from relevant comments in the participants’ responses,
following guidelines by Saldafia (2009). Common themes were clustered and coded based on context alignment (Hsich
and Shannon 2005). To ensure consistency, common themes were cross-referenced with the original transcripts.
Researchers achieved credibility through consensus on code interpretation (Miles et al. 2018; Robson and McCartan
2016). Inter-rater agreement for codes and themes was confirmed independently through two researchers based on a
Cohen-Kappa score of Excel: 0.8125 and InerSens: 0.966, both showing substantial agreement.
RESULTS

The sections present a breakdown of the participants and results of the comparison of the SUS score,

cognitive load and eye-tracking, and verbal feedback for InerSens and Excel:

Demographics
The demographics of the participants are shown in Table 2. The study had an equal proportion of male and

female participants. More than half of the participants were in the civil engineering program.

Usability

According to the SUS score, Excel achieved 75.25, indicating a grade B in perceived usability, while InerSens
surpassed expectations with a score of 82.25, obtaining a grade A. The grading scale places A above 80.3, B in the
range of 68 to 80.3, C at 68, D between 51 to 68, and F below 51 (Sauro 2011). Using the mean scores, all
measurements for each SUS subscale were compared between the InerSens and Excel conditions (see Fig. 7). ‘]*’ is
used to indicate the statistically significant different (p < 0.05) groups.

Cognitive Workload

Fig. 8 illustrates the comparison of calculated means for all subscales and the overall averaged TLX score
for both conditions. The WSRT indicates a statistically significant difference in the mental demand and the overall
TLX score for the two conditions. InerSens resulted in lower mental demand and overall TLX score compared with
the Excel platform.

Eye-tracking
Fig. 9 illustrates the comparison of calculated means and the WSRT of the overall fixation duration (in

seconds) for both experimental conditions, averaged across all individuals. The participants’ cumulative time spent
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fixating on the designated AOIs is represented by the total fixation duration. The X-axis indicates the AOIs, while the
Y-axis represents the fixation time expressed in seconds. The WSRT test shows that there was a statistically significant
difference in the total fixation duration at the data selection, developing risk assessment, and chart evaluation in the

two conditions.

Fig. 10 showcases the mean of the total fixation count and the WSRT test of participants on each AOI to
compare the average number of times participants fixated on specific AOIs. The statistical results for the total fixation
count show there was no statistically significant difference at the information review and defined activity AOlIs.
InerSens resulted in higher fixation counts in the rest of the AOIs except in the AOI related to the development of risk

assessment.

The amount of time spent doing analytics tasks as a percentage of the entire task completion time or total

visit duration to examine the allocation of attention is presented in Fig. 11.

Verbal Feedback

Following their participation in both data analytics conditions, participants were questioned about the
challenges they encountered while interacting with the interface components and workflow of the analytics platform.
Additionally, they were prompted to highlight salient features of the environment that influenced their user experience.
Furthermore, participants were asked to provide suggestions for enhancing the two (2) learning environments. Figs.

12, 13, and 14 present the codes, themes, and frequencies of each code.

Advantages

Based on the notion of advantages, participants highlighted more instances for InerSens than Excel. Some
examples of comments provided by participants for InerSens were as follows: ‘7 was thinking it would be really useful,
especially for visual learners because you could actually see what’s happening,” ‘Yeah, I really enjoyed the video
being able to get the data straight from the video,” and ‘I like that it has different categories of what you 're trying to
accomplish. I think if you gave someone who had never done Excel or this, gave them both things, I think they would
be able to figure out what they’re supposed to do based on this versus Excel.’ Additionally, participants also
acknowledged the advantages of Excel, stating, ‘I think that the built-in functions that you can use are helpful. They

make it quicker,” and ‘I have always enjoyed about Excel is just it seems very organized.’
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Challenges

Regarding challenges faced in using InerSens’ new interface, participants mentioned the following: ‘Learning
how to do it basically cause it’s my first time using it,” ‘I was a little confused between the defined activity versus
defining individual tasks,” and Probably just trying to learn the new interface. Because I’ve never used anything like
that before. So just figuring out where things are and it’s not like Excel, I have experience with, but with this one, 1
didn’t know how to get from A to B.” Furthermore, some challenges encountered in Excel were noted by participants,
including: ‘I think the part that maybe frustrated me the most was when we were going down and finding the different
times I had to scroll,” ‘continuously having to scroll all the way and like times, well, if it was only 20 seconds, if you 're
doing 20 minutes, it would take a lot more scrolling,” and ‘one thing in Excel that’s always bothered me is the copy

and pasting thing. I wish it was a little bit easier to copy and paste the same thing multiple times.’

Suggestions

When asked about user-experience-related suggestions concerning data analytics task performance on Excel,
participants provided the following responses: ‘It should be integrated into one cohesive system, instead of having to
switch back and forth between Excel and the video,’ and ‘Especially when dealing with graphs and switching between
tabs, it would be beneficial if the system updated periodically to keep the user engaged and motivated during the
activity.” Following their usage of InerSens, participants expressed a desire for user customization of panel sizes and
positions. One participant remarked, ‘Like trying to scroll down there way they can make it like so that people can
choose whether they want it to be bigger or smaller.” Another participant suggested a feature similar to Blue Beam
software, stating, ‘So you know, how Blue Beam has like, you can hide stuff on the sides, bottom, and top. Maybe you
have like a tab that slid up, but it started off just the full left side of the screen being the block selection menu. If you
wanted, you could slide it up as far as you want.” Both Excel and InerSens had favorable usability attributes, yet
participants’ preferences seemed to gravitate toward some of InerSens’ distinctive features. Participants particularly
expressed enjoying InerSens’ aesthetic elements and user-friendly interface while experiencing a variety of interface-
featured advantages. Participants eventually acclimated to the new interface despite early difficulties in navigating
through InerSens due to unfamiliarity. In Excel, despite being straightforward, some tasks were repetitive (i.e., copying

and pasting values, and scrolling through data), leading to frustration among the participants.
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DISCUSSION
Usability

The SUS scores show that InerSens has a higher level of usability compared with Excel. This suggests that the
majority of participants perceived InerSens to be more usable than Excel. The typical difference in the usability of the
two systems was subjected to granular analysis on the effects of InerSens and Excel on each sub-dimension of usability
to understand where they differed. The analysis showed statistical significance (p<0.05) in only two usability
subscales. First, the participants strongly agreed that the InerSens platform has more well-integrated functions, and
task performance in Excel was perceived as more unnecessarily complex. InerSens was perceived to be slightly better
or similar in other subscales that considered anticipated usage frequency, ease of use, support requirement, system
inconstancy, quick learnability, cumbersomeness, confidence in the system, and requirement of pre-learning. This
highlights a favorable inclination toward the block-based platform over Excel, particularly with regard to alleviating
specific usability issues and user requirements associated with implementing such platforms in context. The sensor
data's proprietary formats demand Application Programming Interfaces (APIs) for accessing semantic relationships
and the lack of convenient dataset controls can make inferences challenging while necessitating repetitive Excel
procedures. These perceptions of Excel could have made it more challenging for users to understand and navigate the
system effectively and also to acquire the necessary knowledge and skills to use it efficiently for sensor data analytics.
This is why construction sensor data is analyzed using block representations of specific actions which makes InerSens
for analyzing sensor data significantly more user-friendly than the traditional tool. This can be attributed to the flexible
nature of block-based environments which makes it simpler to use for construction students. Similar results from
research studies have repeatedly shown that BBPEs have fair user-friendliness, which has produced favorable
assessments in terms of usability (Dawoud et al. 2021), usefulness, user satisfaction (Calderon et al. 2022), and quick
learnability (Rough 2018). This signifies that the learning platform was efficient and effective enough to achieve the
study's goal in terms of usability.
Cognitive Load

The subjective cognitive load of both platforms indicated that overall InerSens was perceived to be 46.11%

less cognitively demanding compared to traditional Excel, which is consistent with research showing that block-based
platforms typically lead to lower cognitive load compared to traditional text-based languages, as measured by the

NASA-TLX questionnaire (Glas et al. 2023; Pratidhina et al. 2021). Although not statistically significant, InerSens
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has lesser demand in all other sub-dimensions, including performance, temporal demand, physical demand, effort, and
frustration.

The code generation within InerSens was perceived as somewhat confusing by construction students who
visited it and attempted to understand it. Nevertheless, the block-based programming feature ultimately conferred its
prime advantage, as it obviated the need for manual code script modifications to accomplish students’ data analytics
tasks. This approach contrasts with traditional programming, which typically tends to impose a higher cognitive load
sourcing from increased complexity (Unal and Topu 2021). However, some participants reported that they did not
notice the lines of code in InerSens. Instead, they found it more efficient to streamline their workflow by visually
organizing representative blocks, thereby diminishing cognitive demands. This can be attributed to construction
students' limited proficiency in independently programming large volumes of sensor data. The positive outcomes can
be seen as an indicator of the effectiveness of BBPE, suggesting that programming was no longer perceived as the
challenging aspect of programmable artifacts (Weintrop et al. 2017).

Visual Attention and Impact on Overall User Experience

The eye-tracking data was employed to examine objective metrics when utilizing both platforms. The results
show that four out of the six tasks of the InerSens workflow (i.e., information review, data selection, manipulation,
and chart evaluation) in the total fixation duration were higher compared to Excel. Among these four tasks, data
selection (p-value<0.0020%*) and chart evaluation (p-value<0.0001%*) were found to be statistically significant. Despite
the differences, the total fixation duration averaged across all participants remained lower for InerSens than those
observed in Excel throughout the entire workflow. A similar trend was observed in the comparison of the mean of
total fixation counts.

For instance, in the ‘Information Review’ step, participants were tasked to access local files containing raw
IMU data and activity video recordings. InerSens interface combined video and data on one screen, encouraging
participants to interact with various elements throughout the step (i.e., play the video, scroll through the imported data,
and reposition the blocks to see actions). In Excel condition, participants chose to quickly move on to the next task
after a brief tutorial, possibly due to their familiarity with Excel. On the other hand, given that this is the first time
most of the participants encountered the block-based tool, InerSens, the verbal feedback revealed that learning the
new interface was a recurring challenge. This challenge aligns with a study on teaching learners how to program robot

movements with block-based programming, where participants spent considerable time on the task due to their
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unfamiliarity with the block interface (Weintrop et al. 2017). A consistent trend was observed in the data selection,
data manipulation, defining activity, and chart evaluation AOIs, where InerSens also exhibited longer fixation
durations and higher fixation counts. Experiencing challenges in the initial stages of using InerSens may contribute to
potential interaction and engagement issues. Hence, streamlining the onboarding process for BBPEs like InerSens can
enhance users' efficiency in task execution. Potential improvements can be achieved by implementing more detailed
tutorials and training, integrating interactive guides within the interface, and refining user controls aiming to assist
users in comprehending the tool's functionality and navigation more effectively. Additionally, implementing real-time
feedback mechanisms on user interactions, such as tooltips and visual cues, can guide users through the InerSens
interface, fostering a more supportive learning environment.

However, as participants gained familiarity with the InerSens interface over time, they started to view it as
intuitive. This corresponds with the findings from Mountapmbeme et al. (2022) where users initially faced challenges
but eventually found the blocks and connections intuitive as they worked along the subsequent tasks. However, the
increased number of fixations in InerSens during the ‘Chart Evaluation’ step should be attributed to its interactive
interface rather than to participants still learning the new interface. Since this was the final step of the analytics process,
participants can be assumed to have already gained some familiarity with the InerSens platform. Participants
voluntarily spent more time evaluating the chart and construction activity video as InerSens facilitated real-time chart
visualization synchronized with videos, where chart elements changed colors as the subject's range of motion altered.
This indicates that engagement is boosted when students interact with their own analytics artifacts through interactive
visualization. This aligns with the findings of Ruiperez-Valiente et al. (2022) suggesting that learning is enhanced
when sensor data is graphed in real-time as opposed to analyzing the same physical phenomenon (motion)
asynchronously. While in Excel, users could only evaluate static charts.

In InerSens, a significant reduction in both fixation durations (p-value<(0.0001) and fixation count (p-
value<0.0001) only occurred during the 'Develop Risk Assessment' step, where participants utilized their prepared
sensor data to create the final charts. Participants spent only 9% of their visual attention span in InerSens on this
specific step, compared to 45% in the corresponding Excel condition (see Fig. 11). This supports InerSens' efficiency
in achieving comparable or better outcomes than Excel with shorter fixation durations or task completion times which
are regarded as a key metric indicating the overall information processing time in user interactions (Cowen et al.

2002). This was expected because InerSens streamlined chart development with block functions, eliminating the need
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for users to switch between spreadsheets and optimizing repetitive steps in histogram creation. Similarly, Punchoojit
and Hongwarittorrn (2017) reported that reduced task completion time, as an indicator of usability may signify
enhanced work efficiency and ease of learning, leading to overall improved productivity. The observed pattern can
also be seen as an indication of lower cognitive load and an increase in efficiency in the InerSens condition since there
is minimal temporal and spatial segregation of information, implying a smoother and more efficient cognitive process
(Aryadoust et al. 2022; Sweller 1988). On the other hand, the repetitive transitional efforts observed in the
corresponding Excel condition made task completion time prolonged due to such repetition of steps which can alter
perceived fatigue (Kéthner et al. 2014). Furthermore, the findings of Tzafilkou and Protogeros (2017), also support
that significantly higher fixation duration on a specific point may lead to doubts about the predicted outcome or
performance of a completed action, potentially affecting the perception of the system’s usefulness. Di Stasi et al.
(2011) also indicated that frequent transitions between different windows and platforms, coupled with a greater
number of task steps, can result in fluctuations in the attentional state which may increase cognitive load and
attentional processing demands.

In terms of average time spent per step, InerSens had a fixation duration of 119.63 seconds. Excel, on the
other hand, had a 26.43% higher fixation duration, averaging 162.6 seconds per step. Additionally, Excel had an
average of 21.82% more fixation counts per step than InerSens, indicating that participants spent more time fixating
on elements within Excel for each step compared to InerSens. This increased fixation count suggests that users might
have had a less efficient search for information strategy with Excel in comparison with InerSens (Wang et al. 2014).
Cowen et al. (2002) indicated that fixations are highly sensitive to usability, with the potential for a 46% to 67%
increase in fixations from the 'best' interface to the 'poorest’ interface. This highlights a strong connection between
fixation frequency and interface usability which elucidates the lower usability rating and the higher cognitive load
rating by participants in the Excel condition.

This finding underscores the importance of considering the time allocated to each step in BBPE design, as it
directly affects end-users' attention demands, usability, and cognitive load perspectives. Construction students, as the
end-users, favor a balanced approach over heavily emphasizing attentional efforts on a single analytics step. As a
guideline, BBPE should aim for an even distribution of attention demands across key steps to enhance usability,
manage cognitive load, and improve learning outcomes for the construction workforce, who can apply their knowledge

of sensor data analytics in the practical field.
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CONCLUSIONS

This paper presents an experimental study focused on developing a block-based programming platform for
learning sensor data analytics in construction engineering programs. The research assesses the tool’s effectiveness in
supporting sensor data analytics by evaluating users’ subjective feedback and objective behavioral metrics. Both Excel
and InerSens were acknowledged for their user-friendliness and advantages; however, certain unique features in
InerSens led to a preference shift as the medium for this particular type of data analytics task. Three characteristics of
the block-based approach, in particular, emerge as potential reasons for this outcome. These are dynamic chart
visualization (AOI- chart evaluation), optimized analytics tools (i.e., 4 panels of information feed for the user on one
screen), and aesthetics of blocks (i.e., shapes and colors). The dynamic graphical chart in the blocks-based interface
offers a compelling explanation for some observed differences in user behavior. The findings indicate that InerSens
was slightly preferred over Excel, providing a more user-friendly experience with a lower cognitive burden and
balanced visual attentional demands for sensor data analytical tasks. However, it did not show a significantly distinct
competitive advantage compared to Excel. In some tasks, Excel allowed for faster performance, but the total fixation
duration surpassed InerSens. Although four tasks in InerSens resulted in increased information processing or task
completion time, it still resulted in an overall lesser fixation duration and counts as revealed through eye-tracking
fixation analysis, and they did not lead to an overall negative perception of usability or cognitive load. Moreover,
participants in InerSens were more easily focused on key information, leading to better efficiency in task performance
compared to the use of Excel for sensor data analytics. The essential difference in usability stems from the system
architecture and interaction design philosophy employed by these two platform types. Excel, functioning as a
conventional spreadsheet software, adheres to a cell-based paradigm. On the other hand, block-coding-based
platforms, exemplified by tools like InerSens, employ a visual and modular approach to data analytics. This involves
assembling blocks that represent different task execution constructs, allowing users to advance by arranging these
blocks in a logical sequence. Furthermore, as block-based tools support a high degree of customizability to meet
domain-specific user demand, these tools can be embellished with separate panels (i.e., block workspace, visualizer,
codes, and video playback) as needed to streamline the analytics tasks. The advantages of this approach become
evident in terms of improved readability, reduced syntax errors and repetitions, and enhanced visual representation of

the analytics structure.
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LIMITATIONS AND FUTURE WORK

Certain limitations exist within this study, and these should be regarded as potential points for consideration
in future research efforts. While the sample size (N=20) may suffice for identifying usability issues of the interactive
interface, it could constrain the achievement of robust representativeness and the generalizability of findings to a wider
construction population. For instance, the small sample size and the fact the data were collected in a single university
may limit the generalization of findings specifically to a demographic or knowledge subgroup. In addition, the sample
size presents a limitation for inferential analysis, potentially reducing statistical power and the detection of true effects
or differences between conditions. Moreover, demographic factors such as the academic year of participants may not
comprehensively capture all academic levels, particularly freshmen. Subsequent academic years could exhibit
advanced exposure to introductory programming or data analysis courses, resulting in potential variations in
interactions. These differences may influence the perception of usability and cognitive load. Consequently, future
research endeavors will incorporate a balanced representation of participants from all academic years to ensure a more
comprehensive understanding and a larger sample size to enhance generalizability across diverse demographics. In
addition, although this research emphasizes the importance of well-defined scopes due to the EUP platform’s
customization for specific construction activity analysis, however, the findings may not be universally applicable to
diverse data analytic tasks. Therefore, task-specific usability analysis is recommended for extracting a more accurate
representation of the data to inform the design and development process. Future research will also explore alternative
data analysis techniques, such as learning curve analysis, interaction analytics through mouse-tracking data, and
utilizing objective indicators of cognitive load, such as electroencephalogram (EEG), to examine variations in brain
activity related to cognitive load during analytics tasks associated with both conditions.
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821 Table 1. Data analytics tasks completed by participants.

Task Workflow Excel InerSens

Sensor data and activity e  Open and review raw IMU data e  Import, open, and review raw IMU

video review e Play and review video recording data from the local drive on view or
of the mimicked construction analytics visualizer
activity e Import, play, and review video

recording  of the  mimicked
construction activity into video

playback display

Data selection ¢ Delete and only retain required data e Delete and only retain required data
columns (i.e., retain timestamp and columns (similar)

pitch data columns)

Data manipulation e Modify timestamp format using e Convert angle unit (from Radian to

Excel formula (i.e., the difference  Degrees)
between 41mm:27.6ss 41lmm:28.1ss e Adjust the orientation of the angle
is 00mm:00mm.5s which matches  reference
with video recording timestamp
format

e Convert angle unit (from Radian to
Degrees)

e Adjust the orientation of the angle

reference

Defining activity e Define data based on construction e Define data based on construction
activity information (i.e., video  activity information (similar)
recording, different tasks,

timestamps, and cycles)
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Development  of

assessment

risk e Define bin values as thresholds for e Select the body part affected

different levels of ergonomic risks e Define bin values as thresholds for

(i.e., <20°: Low risk, 20-60°: Medium
risk; >60°: High risk)

e Create histogram outputs based on
the number of defined tasks within
the activity (i.e., number of
tasks*cycles = number of histograms)

e Modify histogram’s output with
Excel formula (i.e., frequency to
percentage)

e Gather all histogram data into one
Excel tab to develop stacked bar
columns showing different risk levels

associated with the corresponding

tasks

different levels of ergonomic risks

(similar)

e Develop stacked bar columns showing

different risk levels associated with the

corresponding tasks

Chart evaluation

e Evaluate the chart and contributing e Evaluate the risk assessment chart

data sources to conclude

e Select a specific task to view the dynamic

visualization of the chart simultaneously

with the video
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824

825 Table 2. Participants’ demographic information.
Category Demographics Group (N=20)
Gender Male 10 (50%)
Female 10 (50%)
Academic Program Building Construction 4 (20%)
Civil Engineering 9 (45%)
Construction Engineering and Management 7 (35%)
Academic Year Freshmen 0 (0%)
Sophomore 2 (10%)
Junior 9 (45%)
Senior 9 (45%)
Programming familiriaty Not at all familiar 10 (50%)
Slightly familiar 5 (25%)
Moderately familiar 5(25%)
826

33



Fig. 14 Click here to access/download;Figure;Fig. 14.pdf =

Codes are not necessary (16)
User-customization of panel
positions (16)

- More advanced features needed (12)

- Condensation of multiple information
on a single screen (6)

- Simplification of formula (5)

- Easier transition between Excel tabs

Undocking or resizing of code
visualization pane (11)
Help tab (2) 1)

More user input options (2) - Formula sheet (1)

Fig. 14. Suggestions for InerSens and Excel learning environments.



Fig. 1 Click here to access/download;Figure;Fig. 1.pdf =

InerSens
User Needs Design Solutions Prototyping
Development
Participants
Tutorial Demonstration Consent Pre-survey Eye Calibration
Usability
Experiment

Without InerSens With InerSens

Collection } 2 FedDach

Data [ Descriptive ]
Analysis

Normality Test l [ Non-Parametric Test ] [ ANOVA ] [Themtic Coding]

Fig. 1. Overview of research methodology.



Click here to access/download;Figure;Fig. 2.pdf %

Fig. 2

Analytics —

—
Framework for Ergonomic Risk Assessment
= 3
. - ]»[ Develop ])[ Evaluate
|
|

Data Data

Review Selection Manipula Activities

-
> . Define
. Chart
tion

[rye——
[N}

Task 1

SEEEEEERE]

Task2

Y //\r/‘/ //f}/_[

N’

Al Kt
Task3

Raw IMU Data

IMU Sensor Attachment for Ergonomic Task

Fig. 2. Overview of data analytics workflow.



Fig. 3

Click here to access/download;Figure;Fig. 3.pdf %

Employment
* of sensing
technology

‘chnologlcal
mpetency
sor selection
’hcduliﬂg
.umam.\g
‘hical

, Construction
problem

Image source Adapled from Nipun D Nath, Reza
Akhavian, Amir H. Behzadan,(2017), and EWIWorks
(2022 )

* Specification of solution

.oblem formulation

Shouider Flexion

Trunk Flexion

, Data analytics part
(under evaluation)

.crdlsclp]mary applications

.mm\micarion
.Aa modeling
.m processing and analysis

Risk Assessment Chart
'?\9] i (N Y
e g
APl IS S SLLS
‘:f:/(‘j‘c gf,‘yo o af; &

Fig. 3. Basic workflow for ergonomic risk assessment using IMU sensors.



Fig. 4 Click here to access/download;Figure;Fig. 4.pdf =

Import/Export
User data/command/input
Sensor Data
Video Recording

User .
Analytics outputs

Interact l I View

Sensor data
[Task information

Block storing ' ©Sequelize
4 — BIOCkIy [Mouse

Structured data tracking
*Code generation User Updates database
information
Define visualization
M%rtobDB
A—— atabase
+Visualization
View Controller Model
Informs View Manipulates and
based on updates retrieves data

Fig. 4. System architecture of InerSens.



Fig. 5 Click here to access/download;Figure;Fig. 5.pdf =

* Presenting concepts and H Block H

- Tequests in a concrete way 1 s H
Concreteness ) : selection |
i (= AV - N |

i == — i

+ Availability of different ; — p = (%) 5

blocks for decomposing ' Block == — :

Modularity the problemand . construction == = |
composing a solution ' \ﬁ [I i

(decomposition) | — = allll |

: g = (=T !

i £ \Visual Programming Blocks, Analytics Visualizer i

« Step-by-step structuring E Block de_:, \ K / i

e B process (algorithmic l i = o '
Structuredness [ ) : structuring = ( - T |
« Capability of testing the E . - = T ._ i

Thes kit results within the H Analytlcs frt ot H
e - environment (evaluation) ) results O === 0 00— 5 ;

; \__ Code Generator j Playback |

* Outcome of activity to be E i

Reusability re-used (generalization) : Export E

i results/ codes i

Fig. 5. Connections between EUD features and computational thinking.



Fig. 6 Click here to access/download;Figure;Fig. 6.pdf =

ANALYTICS VISUALIZER
BLOCK WORKSPACE

[ sowsor ] S obsce | [(cnsvionspae ] ——————————— PyR——

Task and Cycle

Prosss Seiect Tosk < 5 B e |
Piasse Sonct s B Vibily (e Arvmtion]

Choose Fie | Sample Act._40 Sec.mpt

CODE GENERATOR VIDEO PLAYBACK

Fig. 6. InerSens interface.



Fig. 7 Click here to access/download;Figure;Fig. 7.pdf =

It will be used frequently
=FSystem too complex
Easy touse

Need of post-support help
* Well integrated

Too much inconsistent
Learnt very quickly
Cumbersome to use
Confident in the system
Need of pre-learn training

1

2 3 4 5
B Excel FInerSens

Fig. 7. Comparison of SUS sub-scales between the two conditions (rating: 1 = strongly disagree; 5= Strongly agree).



Fig. 8 Click here to access/download;Figure;Fig. 8.pdf =

13 p=0.0208* p=0.195 p=0.6595 p=0.1221 p=0.0879 p=0.7493 p=0.0384*
12
11
10
9
2
S 8
@
E 7
$ 6
< 5
4
4
3
2
1
¢ Physical Temporal Frustration Overall TLX
Demand Demand . o Level Score
m Excel 3.90 4.75 5.70 6.70 3.85 5.23
m InerSens 2.35 3.50 2.50 4.50 2.80 3.27

Fig. 8. Comparison of perceived workload (raw NASA-TLX) between the two conditions.



Fig. 9 Click here to access/download;Figure;Fig. 9.pdf =

500 p=0.2733 p=0.0020%* p=0.6949 p=0.2503 p<0.0001* p<0.0001*
400
£
=
51
&
= 300
.2
=
=
A
g
= 200
<
R
[
=
&
) - - i i
AOIs infommation Data Selection Data Define Activity Develop Risk Chart evaluation
Review Manipulation Assessment
w Excel 68.22 51.00 104.83 259.40 442.14 63.63
W InerSens 79.87 88.24 125.43 237.97 65.35 120.95

Fig. 9. Comparison of total fixation duration in specific AOIs for both conditions.



Fig. 10 Click here to access/download;Figure;Fig. 10.pdf =

1300 p=0.3169 p=0.0020* p=0.0051* p=0.5428 p<0.0001* p<0.0001*
1200
1100
1000
- 900
§ 800
o]
5 700
£ 600
[
= 500
&
400
300
200
100 i
0 Inf ti Dat: Develop Risk
AOIs nlormation Data Selection Data Define Activity evelop Chart evaluation
Review Manipulation Assessment
= Excel 211.1 123.95 221.45 7245 1206.4 158.5
= InerSens 244 .45 331.1 301.8 696.1 189.3 407.7

Fig. 10. Comparison of total fixation count mean in specific AOIs for both conditions.



Fig. 11 Click here to access/download;Figure;Fig. 11.pdf =

50% p=0.2674 p=0.0017* p=0.9784 p=0.0787 p<0.0001* p<0.0001*

45%
45% m InerSens

10% m Excel

3 35% 34%
g El 27%
£ 25%
z
5 20% 18%
g 15%
= 15% 13%
11% 11%
10% 9%
° 7%
5% 5%
5%
0%
Information Data Selection Data Manipulation Define Activity Develop Risk Chart evaluation
Review Assessment

Fig. 11. Comparison of proportions of visit duration means of AOIs for both conditions.



Fig. 12 Click here to access/download;Figure;Fig. 12.pdf =

InerSens Advantages Excel

- Practical-intuitive to use (29) .
- Simple-casy to use (20) - Easy procedural techniques (23)

- Efficient procedural techniques with - Pre-dFﬁned Excel  formula-
blocks (16) func;l}ons(l no

- Interface-specific advantages - Polsmlve (satisfying and
o Dynamic visualization of analytics enjoyable) experience (8)

results (16) - Excel’s ability to process and
o Easy understanding of blocks analyze datasets (6)
represented by their names (11) - Simpleto use (6)
o Organization of elements (19) - Easy to understand (5)
o Simplified view and identification of - B ract}cal (5)
blocks (6) - ConmstePt workflow (3)
¢ Video playback on same screen with - Easytofind (2) ]
other clements (7) - Beneficial for construction
o Visually appealing (9) operations (1)
o Everything on one screen (4) - Familiarity with Excel helped (1)

o Exporting results (2) - No challenge(1)
- Codes are helpful in explaining

background actions (11)
- Satisfactory user experience (11)
- Adequacy of blocks to complete tasks (10)
- User-friendly (8)
- Easy to understand (7)
- Helpful in learning (3)
- No challenges (4)

- Self-explanatory (3)
Qﬁdence (2) /

Fig. 12. Advantages of InerSens and Excel learning environments.




Fig. 13

r

ﬂ InerSen ]

- Learn the new interface (12)

- Codes(9)

- Codes are not helpful (5)

- Contusing (4)

- Defining tasks with video-
playback (4)

- Hard to understand (1)

- Instructions needed (1)

\

/

Fig. 13. Disadvantages of InerSens and Excel learning environments.

Click here to access/download;Figure;Fig. 13.pdf %

- Repetitive steps (16)

- Data organization (8)

- Instructions needed (7)

- Specifically finding Excel
challenging (7)

- Data manipulation (6)

- Stressful-Annoying (4)

- Not user-friendly (4)

- Prior experience with Excel
needed (4)

- Confusing workflow (4)

- Excel formula-functions (3)

- Correspond between video and
defining activity (2)

- Complex workflow (1)
- Developing histograms (1)




