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ABSTRACT: We present new cosmological parameter constraints from the eBOSS Lyman-«
forest survey. We use a new theoretical model and likelihood based on the PRIYA simulation
suite. PRIYA is the first suite to resolve the Lyman-« forest in a (120 Mpc/h)? volume, using
a multi-fidelity emulation technique. We use PRIYA to predict Lyman-« forest observables
with < 1% interpolation error over an 11 dimensional (9 simulated, 2 in post-processing)
parameter space. We identify an internal tension within the flux power spectrum data. Once
the discrepant data is removed, we find the primeval scalar spectral index measured at a pivot
scale of kg = 0.78 Mpc ™! to be np = 1.009150%% at 68% confidence. This measurement from
the Lyman-« forest flux power spectrum alone is in reasonable agreement with Planck, and in
tension with earlier eBOSS analyses. The amplitude of matter fluctuations is og = 0.7337) 020
at 68% confidence, in agreement with Dark Energy Survey weak lensing measurements and
other small-scale structure probes and in tension with CMB measurements from Planck
and ACT. The effective optical depth to Lyman-a photons from our pipeline is in good
agreement with earlier high resolution measurements. We find a linear power at z = 3
and k = 0.009s/km of A2 = 0.3027052% with a slope neg = —2.26475025. Our flux power
spectrum only chains prefer a low level of heating during helium reionization. When we
add IGM temperature data we find np = 0.983 4 0.020 and og = 0.70370-052. Our chains
prefer an early and long helium reionization event, as suggested by measurements from the
helium Lyman-a forest. In the near future we will use our pipeline to infer cosmological

parameters from the DESI Lyman-a data.

KEYWORDS: intergalactic media, Lyman alpha forest, Machine learning , cosmological
simulations

ARX1v EPRINT: 2309.03943

© 2024 TOP Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1475-7516/2024 /07 /029



Contents

1 Introduction 1
2 Simulation suite and emulator 3
2.1 Cosmological & astrophysical parameters 4
2.2 Summary statistics: flux power and IGM temperature 5
2.3 Gaussian Process emulators 6
3 Inference scheme and likelihood function 7
3.1 Flux power spectrum data 8
3.2 IGM temperature at mean density data 8
3.3 Covariance matrix 9
3.4 Likelihood 11
3.5 Inference using simulation data 11
4 Results 14
4.1 Cosmological parameters 14
4.2 Reionization and other parameters 19
4.3 Parameter correlations 22
5 Discussion 23
5.1 The tension in the lowest redshift bins 23
5.2 Comparison of the posterior constraints to other Lyman-« analyses 25
5.3 Likelihood modifications 27
6 Conclusions 27
A Leave-one-out versus emulator error 29
B BOSS DRY data 30
C Posterior constraints from the IGM temperature alone 32
D Full posteriors 33

1 Introduction

The Lyman-« forest [1-9] measures the distribution of neutral gas at relatively low densities.
This gas traces the growth of cosmic structure, making the Lyman-« forest an exceptionally
powerful cosmological probe, sensitive to the distribution of dark matter deep in the matter
dominated era. Correlating absorption from different quasar sightlines has allowed detection
of the baryon acoustic oscillations and constraints on the expansion of the universe [10-13].
The densities probed by the Lyman-a forest from redshift z = 2-5 are ~ 1-100 x the



cosmological mean density. For these redshifts and densities stellar winds and star formation
effects are negligible, though feedback from black holes can be important [14, 15]. Thus the
Lyman-a forest is able to measure the primordial fluctuations on some of the smallest scales
available, k ~ 1 h/Mpc [16-23]. In addition, the Lyman-« forest is sensitive to the thermal
and ionization history of the intergalactic medium (IGM) [24-31], and by constraining the
smallest structures, the mass scale of thermal relic dark matter [22, 32-37].

The extended Baryon Oscillation Sky Survey (eBOSS), part of the Sloan Digital Sky
Survey (SDSS) [38], has computed the 1D flux power spectrum along quasar sight lines
for over 43,000 quasars, with a statistical error ~ 1% at some redshifts. This exceptional
statistical error means that the error budget is dominated by systematic uncertainty, especially
uncertainty in the resolution of the spectrograph on small scales [38]. The Dark Energy
Spectroscopic Instrument (DESI) has improved the spectrograph resolution by a factor of
two [39]. Thus, early data from DESI has measured the flux power spectrum at smaller scales
(k 2 0.035km™~! s) than SDSS [40, 41]. Future releases will measure higher redshifts (z > 4.6)
and increase the number of Lyman-« forest quasar spectra by a factor of four over SDSS [42].

There are other high resolution, small sample datasets of quasar spectra, from which
Lyman-a forest flux power measurements have been made [43-46]. Ref. [45] used spectra
from multiple surveys (XQ-100, KODIAQ, and SQUAD) to measure the Lyman-« forest flux
power at redshifts z = 2-4.6 and scales k ~ 0.005-0.1km~!s (albeit with larger uncertainty
than eBOSS), and ref. [46] presents recent cosmological constraints from these datasets.

Modeling the Lyman-« forest requires numerical simulations that are able to follow the
distribution of gas on small scales. In this paper we present cosmological parameter inference
using a new likelihood built on the PRIYA simulation suite [47]. The PRIYA simulations
are in 120 Mpc/h boxes, and are comprised of 60 simulations with 2 x 1536 particles (mean
inter-particle spacing of 78kpc/h), as well as 3 simulations with 2 x 30723 particles (mean
inter-particle spacing of 39 kpc/h). The higher of these two resolutions exceeds the resolution
of state-of-the-art galaxy formation simulations such as Ilustris-TNG [48]. PRIYA is run
with the same highly scalable MP-Gadget code as the ASTRID simulation [49, 50]. PRIYA
contains full hydrodynamic simulations with models of galaxy formation and black hole
feedback to z = 2.2. PRIYA is thus the first cosmological simulation suite which achieves, in
a single box, the required box size of 120 Mpc/h, capable of minimising sample variance in
the Lyman-« forest [51], and a resolution high enough that it includes the pressure smoothing
scale.! Importantly, this removes the need for the ‘splicing’ correction used in earlier work
to combine different boxsizes into a single whole [22, 51].

Here, the PRIYA simulations are used to build multi-fidelity emulators [52-54] for
the flux power spectrum and the IGM temperature at mean density. Each emulator is a
surrogate model, able to reproduce the 1D flux power spectrum or mean IGM temperature
for cosmological parameters (within the prior simulation volume) to ~ 1% accuracy. A multi-
fidelity emulator combines two different resolution training samples. Many low fidelity samples
are used to explore parameter space, and their output is corrected with a few high fidelity
samples. A multi-fidelity emulator makes predictions for the highest resolution simulation
at a fraction of the computational cost of a single fidelity emulator [53, 55]. Emulators

LOur model boosts gas temperature during reionization, increasing the smoothing scale [47].



Simulation Box Volume Ngas | Mgas (Mg h™1)
LF (120 Mpc h=1)3 | 15363 | [5.29,6.98] x 10°
HF (120 Mpc h=1)3 | 30723 | [6.73,7.97] x 10°

Table 1. Low-Fidelity (LF) and High-Fidelity (HF) simulation suite details. Ng,s is the number of
gas particles simulated, Mg, is the resulting mass resolution of those particles.

have been used to study various cosmological probes: the matter power spectrum [56-62],
weak lensing shear [63, 64], the halo mass function [65-67], the 21-cm signal [68-71] and
the Lyman-« forest [36, 52, 72-76].

Here, we present the first fully resolved multi-fidelity emulator based likelihood framework
for the eBOSS Lyman-« forest and the first cosmological constraints derived from it. Our
multi-fidelity emulator is similar to that described in ref. [54], but the simulation volume has
been increased by a factor of 64, and the spatial resolution has been improved by a factor
of 1.5. We also use mean IGM temperature data [30] to constrain the parameters of helium
reionization, data which is ultimately derived from higher resolution quasar surveys [43—45].

In summary, our method is: (1) Construct an emulator for the 1D Lyman-a flux
power spectrum and mean IGM temperature using the PRIYA simulations [47], section 2.
(2) Augment observational errors with estimates of the residual theoretical uncertainty to build
a covariance matrix, and correct the flux power spectra for metal contamination as described
in section 3. (3) Use this emulator and likelihood to constrain cosmological parameters using
Markov Chain Monte Carlo (MCMC), with results described in section 4. We discuss some
caveats and compare to earlier work in section 5 and our conclusions are presented in section 6.

MCMC chains for all the results presented in this work along with files containing the
training outputs used to construct the emulators,? as well as the code,? which includes the
emulator, likelihood, and integration with the Cobaya MCMC package, are available publicly.

2 Simulation suite and emulator

In this section, we briefly describe the properties of the simulations and emulator, and refer
the reader to ref. [47] for the full details. The emulator allows predictions for the output of a
simulation at an arbitrary set of cosmological parameters within our prior volume with an
average interpolation error of 0.2% at low fidelity and 1% at high fidelity. Our multi-fidelity
emulator combines simulations at different resolutions, following the scheme outlined in
ref. [54]. The emulator combines low fidelity (LF) and high fidelity (HF) simulations. Box
volume, number of gas particles, and gas particle mass resolution are reported in table 1. We
ran a total of 60 low fidelity (LF) and 3 high fidelity (HF) simulations. For this work we have
added 12 new LF simulations to those of ref. [47], which extend the simulated parameter
range to better cover the posterior range allowed by SDSS DR14. Low fidelity simulations
have 15363 particles, while high fidelity simulations have 30722 particles. Sampled parameters
are chosen to maximise spread in parameter space, as described in ref. [47].

https://github.com/mafern/InferenceLyaData.
3https://github.com/sbird/lya_emulator.



Our simulations still have limited resolution and a finite box. Ref. [47] showed that
on these scales resolution is important at the 1% level. Compared to the literature, our
resolution convergence is slightly better, due to the temperature boost we impart during H 1
reionization [77]. The finite box scatters the modes of the 1D flux power spectrum at the
2% level on large scales, due mostly to the limited number of helium reionization bubbles
(30 Mpc/h across) that can fit into our volume. Section 3.3 describes how we attempt to
marginalise out residual cosmic variance.

The range given for the gas mass resolution is due to the varying value of h in our
simulation suite (,h? is fixed at a value of 0.0224). We show in ref. [47] that this gas mass
is sufficient for the scales and redshifts probed by the eBOSS flux power spectrum. Our
simulations include a full galaxy physics model with star formation, stellar and AGN feedback
and inhomogeneous reionization models. Simulations were performed using MP-Gadget,* an
N-body and smoothed particle hydrodynamics (SPH) code. MP-Gadget uses the gravitational
timestepping algorithm from Gadget-4 [78], and various other algorithmic improvements [79].
Simulations are initialised at z = 99 and finish at z = 2.2. The galaxy formation model is
similar to the ASTRID simulation [49, 50] and is described fully in ref. [47].

2.1 Cosmological & astrophysical parameters

Table 2 summarises the parameters that are varied across our suite of simulations, as well as
their limits. We have expanded the limits from ref. [47] with 12 additional LF simulations
covering the parameter ranges a; = 2.5-3.0 and np = 1.0-1.05. This was done so that the
emulator covers the 20 posterior range for np. Simulated parameters were chosen using a
Latin hypercube. We model the primeval (that is, the pre-transfer function) power spectrum
P(k) using two parameters: a slope, np, and an amplitude, Ap:

np—1
P(k) = Ap <0781\]ch1> . (2.1)

The simulation initial conditions are then generated using a set of transfer functions from
CLASS. This parameterization is the same as that used by Planck, but with a different pivot
scale, 0.78 Mpc ™!, rather than 0.05 Mpc™!, reflecting the smaller scales probed by the forest.

We also vary the Hubble parameter h, and the total matter density through ,,h2,
although we will see these are not strongly constrained by the Lyman-« forest. We add
three parameters for the He 11 reionization model [80]: zpe; and zper are the redshifts for the
start and end of He 1I reionization, and a4 is the quasar spectral index (which scales the
peak temperature during He 11 reionization). zp; is the midpoint redshift of H 1 reionization.
Finally, eagn is the black hole feedback factor, to which the Lyman-« forest is insensitive.

There are two further parameters for the Lyman-« effective optical depth, varied by

5

post-processing the artificial spectra.” We parameterize the mean flux F = exp(—7) by

“https://github.com/MP-Gadget /MP-Gadget.
5We have freedom to vary the Lyman-a mean flux as it is degenerate with the amplitude of the ultraviolet
background (UVB).



Parameter Minimum Maximum Description

np 0.8 1.05 Scalar spectral index

Ap 1.2x 1072 2.6 x 1072 Power amplitude at k = 0.78 Mpc ™!

h 0.65 0.75 Hubble parameter

Qoh? 0.14 0.146 Total matter density

ZHei 3.5 4.1 Start redshift of Hell reionization

ZHef 2.6 3.2 End redshift of Hell reionization

0y 1.3 3.0 Quasar spectral index during Hell reionization
ZH; 6.5 8 Median redshift of HI reionization

EAGN 0.03 0.07 Thermal efficiency of black hole feedback

70 0.75 1.25 Mean optical depth at z = 3 in eq. (2.3).

dry —-04 0.25 Mean optical depth redshift evolution in eq. (2.3).

Table 2. Summary of likelihood function parameters, together with the ranges covered by the
emulator. We vary a total of 11 parameters: 4 for cosmology, 3 for helium reionization, 1 for hydrogen
reionization, 1 for the strength of AGN feedback and 2 for the mean optical depth.

modifying the power law redshift evolution from ref. [81], as

T (2) = 0.0023 x (14 2)3% (2.2)
e TKim(z) o im
ni(2) = 7o (Tifm(?,) T (2) (2.3)
Hi1

The parameters varied are 79 and drp, with (1,0) corresponding to the redshift evolution
of ref. [81]. 7y is normalised at z = 3 so that dryp > 0 corresponds to a higher optical
depth at z > 3 and a lower optical depth at z < 3. 7y changes the normalisation of the
optical depth at z = 3. We choose prior ranges for 79 and dry that comfortably cover the
measurement error: 0.75 < 19 < 1.25 and —0.4 < d1y < 0.25. As the mean flux is chosen in
post-processing, we can dramatically over-sample these parameters. We sample 10 linearly
spaced values of the mean flux. Sampling values are independent of redshift and are chosen
so that they include the value of 7y(z) implied by our priors at the extreme (z = 2.2 and
z = 4.6) redshifts included in eBOSS. For concreteness, we generate flux power spectra
scaling the mean optical depth in each redshift bin by a factor between 0.66 and 1.3. This
implies that 75 (z = 3) varies between 0.238 and 0.47 and 75 (2 = 4) varies between 0.54
and 1.06. We thus produce a total of 600 LF and 30 HF simulated flux power spectra in
each redshift bin, ten times the number of simulations.

2.2 Summary statistics: lux power and IGM temperature

Figure 1 shows an example of the gas density and temperature (colors) at z = 4 for both
high and low resolution in our simulations, demonstrating how spectra connect to the matter
density field. We generate a total of 3 x 480% = 691, 200 spectra from each snapshot of each
simulation, from z = 4.6 to z = 2.2 in increments of Az = 0.2, with a pixel resolution of 10 km
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Figure 1. Example Lyman-« forest spectra and corresponding gas density and temperature (colors
in top and bottom panels) from an LF and HF simulation at redshift z = 4. The top panel shows
high resolution and the bottom panel shows low resolution. The middle panel shows the Lyman-«
forest spectra for the skewers passing through the middle of the top panel (high resolution, yellow
line) and bottom panel (low resolution, red dashed line).

s1. We generate Lyman-a forest absorption spectra using Fake Spectra Flux Extractor [82],°
described in ref. [83]. We compute the 1D flux power spectrum of the Lyman-« forest flux,
averaged over all sightlines. The flux power is defined as

Pr(k) = |[L™0% (k)] (2.4)

0%(k) is the Fourier transform of the flux excess, (k) = F(k)/(F(k)) — 1, and L is the
length of the sightline.

Our simulations contain a realistic population of DLAs, which we mask as in the
observational pipeline. We extract the IGM temperatures at mean density directly from
the simulation snapshots. First, the temperature and density for all the gas particles in
the simulation are retrieved, then all particles that are within 5% of the critical density are
retained. The median temperature of these retained particles is the IGM temperature at
mean density. All of the Lyman-« forest flux power spectra, IGM temperatures, trained
emulators, as well as select MCMC chains are available.”

2.3 Gaussian Process emulators

We use the Gaussian Process (GP) emulators described in refs. [47, 54] for the 1D flux
power spectra and mean IGM temperature extracted from our simulations. The emulators
interpolate over simulation outputs and make predictions for arbitrary parameter sets within
the parameter limits shown in table 2. We use a multi-fidelity model, which allows simulations
with different particle loads, and thus costs, to be combined together. Specifically, we combine
simulations run at two different resolutions, high fidelity (HF) and low fidelity (LF) specified

Shttps://github.com/sbird/fake_ spectra.
"https://github.com/mafern/InferenceLyaData.



in table 1. The multi-fidelity prediction for the HF outputs (shown here for the Lyman-«
forest flux power spectrum, but equally valid for the IGM temperature) is given by a linear
multi-fidelity model, at each redshift:

Py (k,0]2) = p. - Py (k,0]2) + 8(k, 0]2), (2.5)

where p, is a constant parameter, and 0(k, 6|z) is a GP. We have simplified the model from
ref. [54] by dropping the & dependence in p,. All cosmology and scale dependence is thus
in the additive GP d(k, 0|z). We tested a GP emulator that included scale dependence in
the p term, but found that it was harder to train and did not significantly improve the
accuracy of the predictions. We train the GP emulators separately for each redshift. We
implement our multi-fidelity models using Emukit [84].

Ref. [47] quantifies the accuracy of our emulator using a leave-one-out technique, in
which one simulation is chosen as a ‘left out’ sample. A smaller emulator built excluding
all samples from this simulation is used to predict the summary statistic for the left out
sample. After computing leave-one-out interpolation errors for all potential test samples,
we found on average 0.2% accuracy for the low-fidelity simulations and 1% for the high
fidelity simulations. The last is likely a significant over-estimate of the actual error since
the leave-one-out procedure in this case is missing 1/3 of the total training data. The
interpolation errors from the mean IGM temperature emulator are significantly smaller than
the 7% average uncertainty in mean IGM temperature measurements. Our likelihood function
and emulator code is publicly available.®

3 Inference scheme and likelihood function

In this section, we describe the inference scheme and likelihood function by which our
cosmological parameter constraints are derived from our emulator, the eBOSS flux power
spectrum [38] and the mean IGM temperature. The overall inference scheme is:

1. Use the emulator to predict the flux power spectrum and IGM temperature at mean
density for a set of input parameters (see table 2).

2. Calculate a likelihood comparing these predictions to their observational counterparts

from eBOSS [38] and ref. [30].
3. Use Cobaya [85, 86] to run MCMC chains and compute posterior parameter constraints.

Section 3.1 discusses the flux power spectrum data, while section 3.2 discusses the IGM
temperature data. We derive our covariance matrix in section 3.3. Details of the likelihood
calculation used in the MCMC sampling are given in section 3.4. We validate our pipeline
on simulated data in section 3.5.

Shttps://github.com/sbird/lya_emulator.



3.1 Flux power spectrum data

We use the observed Lyman-« forest flux power spectrum from [38], which is based on
the Baryon Oscillation Spectroscopic Survey (BOSS) and extended-BOSS (eBOSS) quasar
samples [87, 88]. In [38], the BOSS/eBOSS quasar samples are refined to remove spectra
that have not been visually inspected, and to remove spectra with broad absorption lines.
Sky lines and damped Lyman-« absorbers (DLAs) are masked. Our simulations include a
realistic population of DLAs, which are masked in the same way.

The sample of Lyman-« forests from the set of remaining quasar spectra is then further
refined based on cuts to the spectral resolution, signal-to-noise ratio, number of masked pixels,
and forest length, with a final sample of about 43, 000 spectra. The redshifts and scales covered
by these observations set the redshift range and scales we use in our flux power spectrum
emulator, namely z = 2.2-4.6 (redshift bin size of Az = 0.2), and k£ ~ 0.001-0.02s/km (over
35 linearly spaced bins, Ak = 5.42 x 10~%s/km). Our emulator can easily be re-trained for
the smaller scales probed by DESI. The uncertainty in the eBOSS 1D flux power varies
with k and z, ranging from > 10% at z > 4 to ~ 2% at z < 3, and is often dominated
by systematic uncertainty [38].

We apply correction terms to the Lyman-« forest flux power spectrum predicted by our
emulator to model DLAs and metal contamination. We correct for DLAs using the template
from ref. [89]. This allows us to account for differences in the DLA masking between our
simulated pipeline and the observed pipeline. An example would be DLAs, or Lyman limit
systems (LLS), which are not detected in the observational pipeline due to low spectral
signal-to-noise. Note that our simulation includes a model that produces realistic populations
of LLSs and DLAs, so the marginalised template allows for aspects in which the simulated
model differs from the real Universe. In [89], there are four parameters, with sub-DLAs
separate from LLSs, and DLAs divided into two categories. For each of the parameters, a
redshift and scale dependent correction is applied, where a positive (negative) value for the
parameter implies that our simulation has underestimated (overestimated) the number of
absorbers in that category. We found that in practice our dataset was unable to measure
separately all four of the column density bins. We thus simplify our likelihood by using only
two additional free parameters, one parameter covering sub-DLAs and LLS, ajg, and one
parameter covering DLAS, agla. ouis covers column densities between 1.6 x 1017-102 cm ™2,
and aqp covers 1021-1022° cm—2.

We account for correlated Si 111 absorption within the Lyman-« forest following ref. [9].
Our likelihood includes an additional nuisance parameter, fsir, which measures the amplitude
of the metal contamination. An improved model could use the metal line distribution in

a cosmological simulation.

3.2 IGM temperature at mean density data

We use the IGM temperatures at mean density from ref. [30], derived from simulation modeling
of high resolution quasar spectra from the KODIAQ survey [90]. Ultimately the dataset
is a relatively small, visually inspected set of high resolution quasar spectra. Importantly,
these spectra are independent of the eBOSS quasar sample, justifying our choice of separate
likelihood functions. We include IGM temperature data for z = 2.2-3.8, for consistency with



the available Lyman-« forest flux power data. The average uncertainty for this data set is
~ 10%, whereas our IGM temperature emulator has an average uncertainty of ~ 1%. Ref. [30]
provides IGM temperatures derived from four different statistics: the Lyman-a forest flux
power spectrum, curvature, wavelet decomposition, and Doppler width distribution. We use
the Lyman-« forest flux power spectrum derived temperatures in the main body of this work,
but show results using these other data sets in appendix C.

To derive temperatures from the observed quasar spectra, ref. [30] calculated several
summary statistics and compared them to those derived from spectra drawn from simulations.
The simulations they used were similar in resolution to our HF suite (gas mass resolution
of ~ 10° Mg), though much smaller in volume (10 Mpc/h box side length). These observed
IGM temperatures are themselves derived using a suite of simulations assuming fixed og
and np taken from a Planck prior [30]. If the structure on Lyman-« forest scales differs
significantly from the predictions of the Planck model, the derived IGM temperatures may
be biased or inaccurate. In this case, combining the IGM temperatures with the flux power
spectrum data could lead to inconsistent constraints. An improved analysis would directly
model the observed small-scale 1D flux power spectrum in combination with the flux power
spectrum from eBOSS. We will attempt this in future work.

We do not include data on the IGM temperature-density relation, v. The constraints
from ref. [30] are y(z = 3) = 1.22 + 0.12 at 68% confidence. A reasonable theoretical prior
would be 1.1 < v < 1.6, so this measurement does not represent a strong constraint on our
model. In addition, v varies within our simulations, depending on the redshift at which a
particular region of the box undergoes helium reionization [80].

3.3 Covariance matrix

In this section, we derive the covariance matrix, K, that is used for our inference. We
decompose K as:

K = Kgoss + ocp(p) - 0ip(p) + ocv - oly - (3.1)

Here, Kposs is the covariance matrix from the eBOSS pipeline [38], and is the largest term
in the covariance matrix on most scales. We also add two extra terms which model theoretical
error in our model. ogp(p) is the parameter dependent estimate of the interpolation error
from the Gaussian process. Using mocks (see figure 3), we found that the GP error can
sometimes unphysically drive the chain away from the edges of parameter space, where the
expected interpolation error is large. We thus choose to omit it from the overall covariance
matrix. Appendix A shows that its addition has a small effect on our final results.

The second theoretical error in our simulation suite (which dominates) is ocy, which
models residual sample variance from the finite box size, analogous to cosmic variance from
the finite cosmological horizon.” We include an estimate of sample variance using the leave-
one-out errors discussed in ref. [47], a technique made possible by the inclusion of & in our
simulation suite. The Hubble parameter does not directly affect the gravitational evolution in

9Ref. [91] reduced sample variance by interpolating the parameters of a higher order polynomial, rather
than fitting the binned flux power spectrum directly. Our emulator is much less affected by sample variance
as our simulated volume is 8 times larger.
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Figure 2. Elements of the covariance matrix, as a function of scale and for selected redshift bins
z = 2.8 (left) and z = 3.4 (right). We have selected these redshifts as they are those where ooy is most
important relative to Kpogs. Shown are: 1) The ratio of the 1D flux power spectra between the two
LF simulations with different seeds discussed in ref. [47] (|Pr(Seed)|, brown, dashed). 2) the square
root of the diagonal elements of the eBOSS covariance matrix Kposs (black solid) 3) the diagonal
cosmic variance error estimated from leave-one-out errors, ooy (blue, dot-dashed). The y-axis label
0/ Pr(z, k) signifies that all errors are normalised by the 1D flux power spectrum, Pg(k, z). Hence
ocv is ocv/Pr(z,k) and |Pr(Seed)| is |Pr(Seed, z, k) / Pr(DefaultSeed, z, k) — 1.

our simulations due to Gadget’s use of Mpc/h units, and ref. [47] showed that the effect on the
thermal history is small on the scales probed by eBOSS. However, in our parameterization, h
also changes Q7,'" and so the conversion of wavenumbers from h/Mpc to s/km. Individual
Fourier modes thus move between bins depending on the value of h, mimicking the sample
variance from different initial phases. We thus approximate o?cy with the averaged variance
of the leave-one-out errors using the low fidelity simulations. Leave-one-out errors are found
by building a reduced emulator, which is trained on all but a single sample, then evaluating
the prediction accuracy for that left-out sample using the reduced emulator. This is then
repeated, such that every sample takes a turn being left out (see figure 2 of [47]):

oty = o (PR (k, 2, 0) — PRk, 2,0)) (3.2)
LF
Here the sum runs over all simulated low-fidelity parameter sets p; and Ny is the number
of low-fidelity simulations.

Figure 2 shows the magnitude of the ocy term compared to the eBOSS errors. ocy is
significant only on the largest scales, k < 2.5 x 1072 s/km, as expected from an effect due
to finite box size. In addition, there is a significant redshift dependence: o ¢y is important
relative to the eBOSS errors only for 2.8 < z < 3.4. For clarity, figure 2 shows only z = 2.8
and z = 3.4, which bracket the largest effect. For the redshift range 4.2 > z > 3.4, ocv
remains approximately constant, but becomes less significant as the eBOSS statistical errors
increase. These details reveal the physical source of this large-scale variance. The relevant
scale is close to the 20 Mpc/h size of the helium reionization bubbles, and the relevant redshift
range is when our model performs helium reionization. Helium reionization bubbles are
placed randomly around rare large halos, which creates sample variance in a finite box.

100 h? is a separate parameter and so kept fixed when varying h.
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Figure 2 also shows the absolute value of the ratio of the flux power spectrum between
two LF simulations with different initial structure seeds. If this ratio is consistently larger
than ocv, it would indicate an extra source of cosmic variance not included by varying h.
The average flux power spectrum ratio is similar to ooy on the largest scales measured,
where it is most important. We have deliberately chosen to show the redshift bins near
the ends of helium reionization where the effects of cosmic variance are most important.
To evaluate the effect of a potential under-estimation of cosmic variance from these k-bins,
we performed two extra chains where the last term in eq. (3.1) was 2 x ocy, and where
ocy = 0.02. Our posterior constraints were almost unchanged in both cases, likely because
Kgoss is generally larger than 2%.

3.4 Likelihood
We use a log normal likelihood summed over all redshifts and, for the flux power, all scale bins:

2=4.6

logl = —% Z

((Pjé“”f)T KU PYT 4 og (det(K))) (3.3)
z=2.2

where PET = psim _ Pobs is the vector difference between the simulation prediction and the
observation. The covariance matrix, K, is described in equation (3.1).

The likelihood for the IGM temperature is similar, but single valued per redshift. We
compute the Lyman-« forest flux power and IGM temperature likelihoods separately and
add the log likelihoods. We make use of the Cobaya package [85, 86, 92, 93] to run MCMC
chains using this likelihood. The MCMC sampler uses the Metropolis method discussed
in [92], and uses a Gaussian + exponential proposal distribution that dynamically learns the
proposal covariance. Convergence is determined using the Gelman-Rubin statistic, R, also
detailed in [92]. The chains presented here were run until a convergence of R — 1 < 0.01,
with results plotted for those chains for samples at R — 1 < 1.

3.4.1 Priors

We use the parameter limits shown in table 2. As we showed in ref. [47], the AGN feedback
parameter eagn has minimal effect on the Lyman-« forest 1D flux power spectrum. Pre-
liminary chains indicated that it is indeed poorly constrained by the data and has minimal
correlations with other parameters. We use a strong Gaussian prior with p = 0.05 and
o = 0.005, which dominates over data constraints, and will omit constraints on epxgn from
our results. We also place a weak Gaussian prior on the Hubble parameter, h, with u = 0.70
and o = 0.015, as it is weakly constrained and this prior avoids the inference straying into
areas near the edge of parameter volume where the emulation is less accurate. For all other
parameters we use uniform priors within the parameter limits.

3.5 Inference using simulation data

In this section we test our inference framework with simulation outputs in place of the
observational data, confirming that we recover the known input parameters. We first used
the flux power spectrum from one of the three high fidelity simulations, and confirmed that
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the maximum likelihood was indeed at the input parameter values for all parameters. All
input parameters were recovered to better than one sigma.

We next ran chains using data from a low-fidelity simulation with a different random
seed from the main PRIYA suite. For these runs only, we used an emulator built using
the low fidelity suite. This test was designed to quantify whether the finite box size of our
simulations can affect our parameter constraints. Figure 3 shows the results, with dashed
black lines indicating the correct parameters. Note that figure 3 shows an estimate of the
potential bias from cosmic variance on our results.

We have performed three runs. The first (Seed FPS) is our preferred error model, using
the eBOSS covariance and a leave-one-out error term. The second adds an error term for the
expected interpolation error from the Gaussian Process (Seed FPS + GPERR). Both of these
runs use only information from the eBOSS flux power spectrum and thus do not provide
strong constraints on the parameters of helium reionization. We therefore run another chain
including constraints from the IGM temperature.

In all three runs, the optical depth parameters, 7y and drg, are tightly constrained
around the true value in our pipeline, despite the effect of a different structure seed. The
GPERR chain increases the uncertainty, especially on d7p, but does not bias the measurement.
The best estimate comes from the flux power spectrum data alone (Seed FPS). We also
consistently recover the true values of the cosmological parameters np and Ap to better than
1 — 0. Note that we deliberately constructed our test data, with a different structure seed, to
be different from the training data. €3,kh? is poorly constrained in all chains, as expected
given that our prior volume includes only a narrow range for Q);h?, motivated by Planck
results. All parts of the prior range are within the 1 — o posteriors.

The redshift of hydrogen reionization, zy, is estimated from the IGM temperature at
z > 3.6 or from a large-scale increase in the flux power spectrum at z > 4 (see ref. [47]).
The second effect is due to a scale-dependent bias arising from placement of the reionization
bubbles [94]. Figure 3 indicates that this bias is sensitive to sample variance from the
finite box, and so the hydrogen reionization redshift is not well measured by the flux power

spectrum data alone. The three parameters which govern helium reionization, z1!, z}{en

7
and ag, are well constrained by the IGM temperature data. The runs which do not include
IGM temperature data have a slight preference for a larger a, than the input value. As
discussed above, the main effect of a different structure seed is through the placement of
helium reionization bubbles. o, is thus measured using a similar scale-dependent bias as
znr, and so is slightly sensitive to the finite box size in the same way. However, the IGM
temperature is sensitive to a, through the peak temperature during helium reionization,
and thus the chains including it correctly infer o.

The chain including Gaussian Process errors produces some incorrect parameter inferences,
notably in ay. This is because of the specific choice of simulated data, for which o, is at
the lower boundary of the emulator parameter range. The GP expects the emulator error
to be larger near the boundary of the space, which penalises the fit in this region when the
constraints from the data are weak. Notice that «, is poorly measured by the flux power
spectrum alone. In fact, our leave-one-out error calculation reveals that the flux power
spectrum is reasonably accurately modelled even near the emulator boundaries, but, with
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Figure 3. Posteriors using mock data, a simulation output with a different initial seed to the main
PRIYA suite. The true parameter values for the input are indicated by the black dashed lines. Three
chains are used: ‘Seed FPS’ uses the default error model, with the eBOSS covariance and leave-one-out
errors. ‘Seed FPS + GPERR’ adds the covariance from the Gaussian Process. ‘Seed FPS + T’ uses
the default error model but supplements the flux power spectrum data with information from the
IGM temperature. vgcale is the Hubble parameter h, re-labelled for reasons explained in the text.

few simulations in this region, there is not enough information present for the GP to learn
this and reduce the expected error. We show in appendix A that the posteriors from eBOSS
data are not significantly changed by including GP error. Nevertheless, to be conservative
our main results are reported with chains run omitting GP errors from the likelihood.

As discussed above, the Hubble parameter, h, does not affect the evolution of our
simulations except through its effect on Qj; (at fixed Qy7h?) and thus the scaling between
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velocity (km/s) and comoving (Mpc/h) units. Constraints on h (vscle) are incorrect in the
chains shown in figure 3, driven by sample variance in the finite box. We confirmed that
gradients of the likelihood with respect to h are largest for the largest scales, particularly
the first 4 k-bins. We computed the x? per degree of freedom, which was ~ 0.9 for h = 0.65
and x? ~ 1 for the true input value, indicating over-fitting to the noise created by different
structure seeds. We confirmed that fixing h to the known true value results in very small
changes to the other parameters and their confidence intervals. There is thus zero cosmological
information in our h constraints. In order to avoid unwarranted conclusions, we will henceforth
relabel h as vgcale, emphasising that it merely controls the mapping between the native Fourier-
space binning of the simulations and the observed velocity space of the spectra, and its
inference is dominated by modelling error from sample variance.

The posterior vgeyle from the simulation with a different seed does not match the input
value. However, this is to be expected: vgcale is completely degenerate with the initial structure
seed. The measured quantity is thus schematically a linear combination of h and a ‘cosmic
variance parameter’ set by the initial distribution of structures. When the value of the cosmic
variance parameter expected by the emulator differs from the true input, the emulator will
measure a different posterior value for h, as shown in figure 3.

4 Results

In this section, we report posterior constraints on the parameters listed in table 2. Section 4.1
discusses the results for those parameters which are most strongly constrained by the flux
power spectrum data. These are: the optical depth parameters, 7y and dry, the power
spectrum parameters, np and Ap, and the matter density Q,h%. Section 4.2 then discusses

the constraints on the other parameters, and shows the best fit to the IGM temperature at
He 11

mean density data. These are the three parameters defining the He II reionization model, z;*¢ ",

z?e I and «g; the parameter for the midpoint of H 1 reionization, z% !, the strong absorber
models, (apLs and appa), the Silicon IIT correction (fSilIl) and the velocity to distance
scale parameter vg.ae. The same chains are used in all sections: we split parameters into
two sections merely for readability. We show the full corner plot, containing all constrained
parameters, in appendix D. Table 3 shows posterior parameter constraints. We also calculate

the derived parameters A and og, A? and neg.

4.1 Cosmological parameters

Figure 4 shows the results of our chains for the cosmological parameters. We show three
MCMC chains. Two chains are fit to the eBOSS flux power spectrum data only. The first fits
to the full redshift range measured by eBOSS, z = 2.2-4.6, while the second fits a limited
redshift range z = 2.6-4.6. The third chain uses the limited redshift range eBOSS dataset
but adds the IGM temperature likelihood. The chain including the z < 2.6 data prefers
lower np, lower Ap and higher 79 than the reduced redshift range. Figure 5 shows that the
shift in posterior parameters is driven by the fit. The best-fit flux power spectrum to the
data at z > 2.6 is a poor fit to the flux power spectra measured at z = 2.2 and z = 2.4.
Since the lowest redshift bins have the smallest statistical error, when they are included

— 14 —



FPS 2 > 2.6 FPS + Ty FPS z > 2.2
Parameter 68% (95%) 68%, (95%) 68%, (95%)
dro —0.01355047 (F0055) | 0.009+0.045 (F0552) | —0.270 4 0.029 (*0.057)
70 108240088 (1001) | 109040022 (F013) | 1221766 (< 1.19)
np 1L.009*38T (*6049) | 0.983+0.020 (F0%8) | 0808702 (+002)
Ap/10~° 169018 (£039) 146895 (£033) < 1.33 (< 1.44)
Qprh? < 0.142 (< 0.144) <0.143 (—-) < 0.141 (< 0.142)
el —— > 4.00 (> 3.87) > 4.07 (> 4.01)
ZHell < 2.67 (< 2.80) 2.76570.950 (t8;ié) < 2.70 (< 2.83)
ay > 2.86 (> 2.64) 174888 (H630) > 2.85 (> 2.65)
M < 17.01 (< 7.57) 7.2440.38 (——) 7.28 £ 0.37 (——)
Uscale 0.693+0.0085 (*6013) | 0.68878050, (F6658) | 0.6957006% (F0017)
s 0.193 + 0.035 (tg;ggg) 0.196 + 0.033 (tg;ggg) 0.042 + 0.018 (+£0.036)
/1072 | —0.28+0.64 (1}3) ~1.0540.58 (£1.1) | —0.87+0.34 (*§¢F)
fsim/107% | 9.63+0.51 (195 9.63 4051 (197) 8.83 £ 0.39 (40.76)
As/1077 1652015 (£037) 1525019 (1632) 1735097 (£539)
o8 0.733%0035 (*0.957) 07034003 (*5.042) 0.715500% (*055)
Af 0302003 (*002) 026740085 (*0.043) | 0.2316430% (*0037)
Mot ~2.264%0%28 (1003 | —2.288+0.020 (*0549) | 237670912 (092

Table 3. Posterior parameter constraints, including the derived parameters A, and og, as well as the
predicted linear theory power, A? | and slope, ne, evaluated at kp = 0.009s/km, zp = 3. Maximum
posterior values, and 68% confidence limits are shown, with 95% confidence intervals in brackets. Each

column shows a separate chain, from left to right: fits to the flux power spectrum alone from the

reduced redshift range z = 2.6-4.6, fits to the flux power spectrum from the reduced redshift range
z = 2.6-4.6 and the IGM temperature, and fits to the flux power spectrum alone from the full redshift

range z = 2.2-4.6. Single sided limits are shown when one bound is larger than the prior volume of
the emulator. ‘——’" denotes that both 68% and 95% constraints are wider than the prior volume of

the emulator.
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Figure 4. Posteriors for the optical depth and power spectrum parameters, 79, drg, np, Ap, and
Qarh?. Results are from three MCMC chains. ‘FPS z = 2.2-4.6’ (gold) uses the full redshift range
eBOSS flux power spectrum dataset, ‘FPS z = 2.6-4.6’ (blue) uses a reduced redshift range eBOSS
dataset flux power spectrum dataset, which removes the internal tension (section 5.1). The third chain,
‘FPS +T1p, 2 = 2.6-4.6’ (red), uses the limited range eBOSS dataset but adds the IGM temperature
constraints. Our preferred cosmological constraints are from ‘FPS z = 2.6-4.6".

they drive the best-fit flux power spectrum to a region which is a poorer fit to the higher
redshift data. We confirmed that a chain which included the z = 2.4 bin but not the z = 2.2
bin produced posterior constraints mid-way between the chain including z = 2.2-4.6 and
the chain including z = 2.6-4.6. Table 4 shows this quantitatively. The chains which fit to
z > 2.6 are a poor fit to the lowest two redshift bins. The chain fitting to z = 2.2 is a better
fit to these bins, at the cost of an overall worse fit to redshifts z > 2.6. There is thus an
internal tension in the eBOSS dataset, when compared to our model, driven by the lowest
two redshift bins. We discuss possible reasons for this tension in section 5.1 and compare to
the results of earlier analyses further in section 5.2. It is important not to over-interpret the
posterior constraints from the z = 2.2-4.6 chain. When there is an internal tension in the
data, the posteriors can be driven by noise in the dataset and may not be meaningful.
We also checked for other redshift bins where the fit is poor. Visually, figure 5 suggests
that the fit is poor for z = 4.0 and z = 4.2. The x? in table 4 is moderately higher other
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Figure 5. Observed Lyman-a forest flux power spectrum [38], from z = 4.6 to z = 2.2 (black lines
and circles, with shading corresponding to one sigma uncertainty). Also shown are three predictions
for the Lyman-« forest flux power spectrum from our multi-fidelity emulator corresponding to the
maximum posterior input parameters compiled in table 3. The negative of the log-likelihood for these
fits is compiled in table 4.

bins, but not significantly so, as the statistical errors are also large. It is possible that some
element of the covariance matrix, theoretical or systematic, is moderately underestimated in
these bins. Intriguingly, the fit to z = 2.6 is better when the z < 2.6 bins are included, which
may suggest that the cause of the low redshift tension still has a small effect at z = 2.6.
Posterior constraints from the reduced redshift range flux power spectrum data show a
mean optical depth in good agreement with other measurements. As a reminder, our 7y and
dry parameters measure deviations from the mean flux relation of ref. [81], so a value of 7p =1
and drg = 0 corresponds to agreement with that model. The maximum posterior values are
70 = 1.1, with a redshift variation dry consistent with 0. This implies a mean optical depth at
z =3 of 7§l (2 = 3) = 0.398, which is extremely close to the best-fit value of 75 (z = 3) = 0.4
from ref. [95], and consistent within the error bars with 75 (z = 3) = 0.36 + 0.1 from ref. [81].
The spectral index, np, is np = 1.009f8:8% (68% confidence) using only the flux power
spectrum. On inclusion of the IGM temperature data, we find slightly tighter constraints of
np = 0.9834+0.02 at 68% confidence, lower by about 1—o. Planck measures ns = 0.965+0.004,
consistent with the IGM temperature chain at 1 — o and the flux power spectrum chain at
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Redshift 46 | 44 | 42 | 40 | 3.8 | 3.6 3.4

FPS 2 =2.2-4.6 23.8 1221|283 |339 | 187 | 87 | 16.1
FPS 2 =2.6-4.6 278 119.1 | 230|265 | 156 | 74 | 16.5
FPS +1y 2 =2.6-4.6 | 24.9 | 182 | 26.0 | 31.3 | 16.7 | 6.6 | 14.4
Redshift 32 | 30 | 28 | 26 | 24 | 2.2 | Total

FPS 2 =22-46 19.6 | 33.8 | 33.7 | 20.3 | 19.9 | 27.3 | 306
FPS 2 =2.6-4.6 18.9 | 25.6 | 24.6 | 29.1 | 66.5 | 97.6 | 234
FPS+Ty 2 =2.6-46 | 182 | 249 | 25.2 | 37.7 | 76.0 | 103 | 244

Table 4. Negative log-likelihood (x?) for the flux power spectrum for each redshift bin. Shown is the
likelihood at the best fit parameters in each chain. We show chains fitting to the flux power spectrum
only at z = 2.2-4.6, fitting to the flux power spectrum only at z = 2.6-4.6, and fitting to the flux
power spectrum and IGM temperature at z = 2.6-4.6. The column labelled ‘Total’ excludes redshift
bins not in the fit (z = 2.2 and z = 2.4 for the last two chains).

2.5 — o [96]. The matter density, Qyh?, is weakly constrained and not strongly affected
by including IGM temperature data. Planck found Qj,h? = 0.1424 4 0.001, which is close
to the posterior of our chains. The power spectrum amplitude is Ap/107% = 1.69 + 0.14
for the flux power spectrum reduced redshift result. The inclusion of the IGM temperature
shrinks the constraints moderately and shifts the posterior value down by about 1.5 — o,
driven by a correlation with «,. Table 3 shows A, the power spectrum amplitude measured
on large scales, which is related to Ap via:

A, = (0.4/27)" T Ap. (4.1)

We find A, = (1.657073) x 1079 for the flux power spectrum alone and As = (1.537019) x
10~? when including the IGM temperature. Planck [96] found a value of A5 = (2.101J_r8:8§}1) X

1072, We also derived the value of og implied by our parameters by using CLASS in
post-processing [97]. For the flux power spectrum alone, we find og = O.733J_r8:8§g, and
when the IGM temperature is included, og = 0.703f8:8§?7’ (see table 3). The Planck result
is g = 0.811 4+ 0.006 [96]. We thus measure a power spectrum amplitude around 3 — o
lower than Planck or ACT CMB lensing [98]. Interestingly, the dark energy survey year 3
results measure og = O.733f8:8§8 [99], in good agreement with our results. Other small-scale
structure probes vary [e.g. 100-102].

Figure 5 shows the Lyman-« forest flux power spectrum from [38], along with their
estimated one sigma uncertainty (black). Also shown are predictions from our multi-fidelity
emulator based on the maximum posterior input parameters from MCMC analysis with only
the Lyman-« forest flux power emulator in the full and reduced redshift ranges, and MCMC
analysis using both the IGM temperature and flux power emulators. The correlation between
Lyman-a and Si 111 absorption is visible in the form of regular oscillations in the power
spectrum (in section 3.4 we describe the correction we make for Si 111). The best-fit flux
power spectrum is not significantly affected by the inclusion of the Ty data in the likelihood,

although the fit is slightly worse at z = 2.6.
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Table 3 shows the constraints our chains imply for the linear theory power at z = 3,
A? (k,z) and its slope, neg [17, 38, 91]. These are defined by:

A2 (e, 2) = k2P (ks 22)/(272) (4.2)
dln Py,
€ k*; *) = k*, *) - 4,
e (ke ) = "L (ke 2) (43)
Here P (k, z) is the linear theory power spectrum, evaluated at z, = 3 and k, = 0.0009 s/km.
We find A? = 0.30210:922 and neg = —2.264700% from our reduced redshift chains. The

correlation coefficient between Ay and neg is 0.42 for the flux power spectrum only (FPS
z > 2.6) chain and 0.40 when the mean IGM temperature data is included (FPS + Tp).

4.2 Reionization and other parameters

Figure 6 shows the other parameters of our model from the same chains as figure 4. These

are: three parameters of the helium reionization model (z!¢ ™ ZI;Ie 1

, and «y), the midpoint of
H 1 reionization z ', the parameters of the strong absorber model (a1Ls, apra), the strength
of the metal contamination fgr and the box velocity scale vgcale-

The combined data prefer an early start to helium reionization, zJ*!! > 3.87 at 95%
confidence.'!' Interestingly, this is in agreement with constraints from the helium Lyman-o
forest, where regions of high transmission suggest that Hell reionization has already started
at z = 3.5 [103, 104]. The end of helium reionization, z?en, is constrained by the flux power
spectrum data alone to be z}{en < 2.8. Adding the IGM temperature data reinforces this and
constrains it to finish by z = 2.6, so that the IGM temperature can drop at lower redshifts.
This is consistent with the He 11 Lyman-« forest, which suggests an end at z < 2.7 [105-107].
Our constraints on the timing of helium reionization hit our prior volume. Note this prior
volume is set more by the redshift limits of our datasets than our simulation choices. The

flux power spectrum at z > 2.6 alone, for example, cannot determine whether the IGM is

Hell
2

cooling by z = 2.2. In addition, the upper prior limit on z is 4.1, which is larger than
the highest redshift IGM temperature data.

The most significant effect of the IGM temperature data is on the spectral index during
helium reionization, a. Smaller values of «; correspond to a larger heating rate. The flux
power spectrum data prefers a high value of oy > 2.64 at 95% confidence, which corresponds
to minimal heating during helium reionization. However, as shown in figure 7, this high
value of oy produces an IGM temperature which is low and in disagreement with the data
from ref. [30]. The posterior constraint on a,; when the IGM temperature data is included
is lower than that with the flux power spectrum data alone by about 4 — o. Figure 5
shows that the flux power spectrum is not significantly different at the maximum posterior
parameters of either chain. Appendix C shows the results of chains which include only the
IGM temperature data. They are consistent with the combined chains, and the helium
reionization parameters are constrained at similar values, although the maximum posterior
oy is slightly lower than in the joint chains.

There are two possible explanations for this discrepancy in a4. The first is that the

discrepancy is caused because the IGM temperature constraints assumed the Planck value of

"The flux power only chain admits a solution where both helium and hydrogen reionization are late, but
this is ruled out by the inclusion of IGM temperature data.
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Figure 6. Posterior constraints for the parameters of the helium reionization model (ziHeH, z}{en,
@), the hydrogen reionization model (211, the strong absorber models (arrs, apra), the Silicon IIT
correction (fsir), and the velocity to distance scale parameter vgcale. Results are from the same three
MCMC chains as figure 4. ‘FPS z = 2.2-4.6’ (gold) uses the full redshift range eBOSS flux power
spectrum dataset, ‘FPS z = 2.6-4.6’ (blue) uses a reduced redshift range eBOSS dataset flux power
spectrum dataset, which removes the internal tension (section 5.1). The third chain, ‘FPS +Tp, z =
2.6-4.6’ (red), uses the limited range eBOSS dataset but adds the IGM temperature constraints.

og, which is inconsistent with our results. Assuming a larger value for og will increase the
flux power spectrum and require a greater degree of thermal heating to smooth the gas. The
IGM temperature constraints from ref. [30] may thus be biased high. A consistent analysis
of the flux power spectra from both eBOSS and XQ-100 varying Ap and oy simultaneously
would resolve this question, and we will perform it in future work. The second possibility is
suggested by table 4, which reveals that the high o, is driven by the fit to the z = 2.6 flux
power spectrum bin. It is thus possible that the same effect which is responsible for the tension
between the full redshift and reduced redshift chains is also present at z = 2.6 in the flux power
spectrum, exploiting partial parameter degeneracies to move the posterior confidence intervals
on ay. We will in future work examine this possibility with the higher resolution DESI data.
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Figure 7. IGM temperatures at mean density from [30] (black lines and circles, with shading
corresponding to one sigma uncertainty). Specifically their temperatures derived from the flux power
spectrum calculated using high resolution Lyman-« forest spectra. Also shown are predictions for
the IGM temperature from our multi-fidelity emulator corresponding to the same three maximum
posterior input parameters used in figure 5.

The midpoint of hydrogen reionization is poorly constrained in all models. The redshift
range explored here (z = 2.2-4.6) is well after the completion of hydrogen reionization, even
in models where it ends late. All our chains are consistent with a midpoint of z7 ' ~ 7. This
is within the range allowed by other experiments: Planck suggests zH ' = 7.7 4 0.7, while an
analysis of the Lyman-a emitter luminosity function finds z ' ~ 7.25 [108].

We show results for the nuisance parameters associated with the strong absorbers and the
Lyman-a-SilIl cross-correlation. As discussed in ref. [47], our simulation suite includes strong
absorbers self-consistently using a galaxy formation model. The strong absorber parameters
measure the difference between the strong absorber model in the simulation and the model
in the observed spectra, so that ag = 0 means that our galaxy formation model is a good
match to the circumgalactic gas in the observed Universe. DLAs are subtracted from both
the observed and simulated spectra, and so apya measures primarily the efficiency of the
observational DLA finder. All our chains produce a posterior apra tightly peaked and close
to 0. The chains using the flux power alone are centered on apra = 0, while the chain
including the IGM temperature prefers a slightly negative value, perhaps indicating that
the eBOSS DLA finder includes some false positives.'? Note that DESI includes improved
DLA finding algorithms based on machine learning [109-111].

2A5 DLAs finders are sensitive to reduced flux transmission, regions with more Lyman-o forest absorption
are more likely than average to be flagged as a DLA. The efficiency of the DLA finder may thus affect the flux
power spectrum.
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For the restricted redshift chains, we measure oy, ~ 0.19, while for the full redshift
range arrs ~ 0.04. The preference for a non-zero arrg in the reduced redshift chains suggest
that our simulations have fewer LLS than the real Universe. LLS are on the boundary of being
optically thick and thus radiative transfer effects within the gas are important, making them
the most difficult absorbers to model accurately. arps can affect the flux power spectrum
normalisation, and so it is reasonable to interpret the preference of the full redshift chains for
a low ayrs as an artifact of the fit. However, it is also possible that the low ar1s points to
the origin of the internal tension, a possibility we discuss further in section 5.1.

The SilII cross-correlation is fsir = 0.0096£0.001 (95% confidence) from our z = 2.6-4.6
chains. The full redshift range prefers a slightly lower value of 0.0085 £ 0.0008, which is in
good agreement with the measurement of 0.008 & 0.001 from DR9 by ref. [112]. The effect of
fsirm1 can be seen in the oscillations of the flux power spectrum in figure 5. The results for
Uscale are dominated by the prior, as expected [22, 113]. Constraints are weaker than for the
simulated data, likely because the simulated data did not include noise and so was over-fitting.

Figure 7 shows the IGM temperature from the flux power spectrum on small scales from
ref. [30]. Also shown in figure 7 are predictions from our multi-fidelity emulator based on
the maximum posterior input parameters from the same chains used in figure 5. Once the
IGM temperature data is included in the fit, the chains are in good agreement. However,
when it is not included the chains prefer a lower IGM temperature, as discussed above. The
thermal history preferred by the full redshift range of the flux power spectrum is similar to
that preferred by the restricted range flux power spectrum.

4.3 Parameter correlations

Figure 8 shows the correlations between our parameters, for the chain using the flux power
spectrum from z = 2.6-4.6, as well as the IGM temperature. Most correlations are weak. We
have deliberately chosen our pivot scale of 0.78 Mpc~! to minimise the correlation between
Ap and np, and the correlation matrix confirms it is weak, with a correlation coefficient
r = 0.2. There is a correlation between 79 and dry (r = —0.54), as the redshift bin which
provides the strongest constraints on the optical depth is not exactly z = 3. The optical
depth 79 is anti-correlated with both Ap (r = —0.7) and np (r = —0.62) as its main effect

is to change the amplitude of the flux power spectrum.
ZHeII and ZHeII

There is a three-dimensional degeneracy between ay, z; ¢ (see figure 8), which
allows a wide range of oy to fit the flux power spectrum data, and is only broken by information
from the thermal history. Lower o, corresponds to more heating from quasars during He 11
reionization. If He 1I reionization starts earlier or ends later, the IGM requires more heating
from quasars to match the observations, while the opposite is true for late starting, or early
ending He 11 reionization. Appendix C shows the results of chains which include only the
IGM temperature data, which clearly shows this three-dimensional degeneracy: a slightly
later start to helium reionization would require less total heating and thus a higher value of
ay. Several of these correlations could be broken by the inclusion of higher redshift thermal
history data, or lower redshift flux power spectrum data.

Finally, the abundance of Lyman Limit Systems, apyg, exhibits several interesting

correlations. ayrg is anti-correlated with appa (r = —0.59), as the flux power spectrum
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Figure 8. Correlation matrix between parameters for the chain using the flux power spectrum and
IGM temperature for z : 2.6-4.6.

templates for strong absorbers have similar shapes in neighbouring column density bins. agg
is also correlated with np (r = 0.61) and dmp (r = 0.42), due to similarities in the shapes of
their flux power spectrum templates. The combination of the three-way correlation between
np, apLs and 7y is exploited by the chains to explain the inconsistent z = 2.2, 2.4 flux power
spectrum bins and drives the discrepant constraints these chains show. This correlation may
be reduced by the inclusion of extra small-scale data available in the DESI early data release.

5 Discussion

In this section we discuss the implications of the results in section 4. Section 5.1 discusses
possible explanations for the internal tension in the data between z = 2.2-2.4 and z > 2.6.
Section 5.2 compares our results to other datasets and earlier Lyman-« analyses. Section 5.3
discusses how our results are affected by modifications to our likelihood.

5.1 The tension in the lowest redshift bins

In this section, we discuss possible explanations for the internal tension between the flux
power spectrum data at z = 2.2-2.4 and z > 2.6. There are two generic possibilities: either
an important physical effect is missing from our simulation model, or there is a systematic
in the dataset not captured by the systematic error budget.
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Figure 9. Observational 1D power spectrum data from SDSS DR14 (solid black) [38], SDSS DR9
(green dotted) [112] and KODIAQ/SQUAD [45]. Filled bands show the range covered by diagonal
elements of the covariance matrix. (Left) At z = 2.2. (Right) At z = 2.6.

To evaluate the possibility of systematic error, we can look at independent measurements
of the flux power spectrum on similar scales and at similar redshifts. Figure 9 shows different
measurements of the 1D flux power, Pr(k), at z = 2.2 and z = 2.6. We show the results
from SDSS DR14 [38], SDSS DR9 [112], a recent analysis using high resolution spectra
from KODIAQ/SQUAD [45], and from DESI Early Data Release data (DESI EDR) [40].
At z = 2.6 (and higher redshift bins) all analyses are in reasonably good agreement, given
their respective statistical errors. However, this is not the case at z = 2.2, where there is a
discrepancy between SDSS (DR14 and DR9), DESI and KODIAQ. SDSS DR14 and DR9 are
in reasonable agreement. Appendix B shows the posterior parameter constraints for DR9.

The KODIAQ flux power spectrum is lower by around 1 — ¢ on the smallest scales
measured by eBOSS, which could be due to the effect of continuum modelling in the
KODIAQ data [45]. The DESI EDR data agrees well with eBOSS for k& > 0.01s/km, but
is discrepant by > 20 for k£ < 0.01s/km. This discrepancy is also present at z = 2.4, and
is discussed in the DESI EDR papers, see ref. [41], appendix D. They ascribed 30% of
the difference between eBOSS and DESI to continuum fitting, but the origin of the rest is
currently unclear. Given the fairly large disagreements between different measurements at
z = 2.2, systematic error is a highly plausible explanation for the internal tension we find.
In future work we will combine our likelihood function with the DESI flux power spectra
and investigate their cosmological implications.

We should also consider possible theoretical explanations. Explanations rooted in alterna-
tive early Universe models seem a priori unlikely as they would have to cause an effect only for
z < 2.6, when the Universe is known to be matter dominated. However, there are a few possi-
ble astrophysical explanations. Feedback effects from AGN become increasingly important at
low redshift. It is possible that a stronger AGN feedback prescription than we use, or than is
implemented in current cosmological simulation suites, could efficiently disrupt gas at z < 2.6
on small scales and explain these results. Interestingly, such an AGN feedback model has
recently been proposed as an explanation for the low value of Sg = 0g(23,/0.3)° preferred by
some weak lensing surveys [114], which matches our results. Ref. [15] found that AGN feedback
affects the forest at the 8% level at z = 2, but their AGN model has a different mean flux to
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their non-AGN simulation, and once this is corrected for the effect is much smaller. Ref. [14]
finds a 10% effect of AGN feedback, but their AGN model results in a star formation rate which
is a factor of 10 too low at z = 2 [115]. Existing models of AGN feedback which also match
the galaxy stellar mass function thus do not seem able to affect the Lyman-« forest at z ~ 2
enough to explain this tension. We note, however, that more aggressive models are possible.

DLASs are important at low redshift, and do affect the slope of the flux power spectrum.
Our simulations include a population of DLAs in good agreement with observations [47],
which are masked using the same procedure as the observational pipeline. We include a
free parameter to model the residual power from any DLAs not detected by eBOSS, and
the posterior value for this free parameter is consistent with zero. We considered separate
constraints on the DLA efficiency at low and high redshift: appa(z < 2.6) and appa(z > 2.6).
The high redshift DLA efficiency apra(z > 2.6) remained consistent with zero. However,
the low redshift parameter was negative; appa(z < 2.6) = —0.0134 £ 0.0074, indicating an
excess of large-scale power in eBOSS at z < 2.6. While most cosmological parameters were
unchanged, np increased (by about 2 — o) to np = 0.916 + 0.014, reducing the internal
tension by 1/3. Since this is only a partial resolution, the DLA parameter may be sensitive
to a continuum fitting problem in the (relatively short) low redshift spectra.

At low redshift, the Lyman-« forest is increasingly contaminated by metal lines. We
include a simple prescription for Silll and the inclusion of low redshift data does not drive
the best-fit parameter for this model, preferring slightly less metal contamination. However,
it is possible that a more sophisticated model could help reduce the tension.

One interesting but entirely speculative possibility is suggested by the LLS abundance,
arrs, which is lower in the full redshift chains. Ref. [116] identified a systematic in the
SDSS colour selection which causes quasar sightlines containing Lyman Limit Systems (LLS)
to be preferentially selected for spectroscopic followup. Refs. [117, 118] showed that, due
to the width of the u-band filter in SDSS, LLS are over-sampled for z = 2.5-3.6 for all
quasars in the redshift range z = 3.0-3.6. It is thus possible that appg depends on the
quasar (not absorber) redshift. Note that the flux power spectrum we measure depends
on the absorber redshift and so a simple redshift split would not detect this effect.® A
check for colour selection systematics would involve the flux power spectrum being computed
from two different quasar redshift bins.

5.2 Comparison of the posterior constraints to other Lyman-a analyses

It is interesting to compare the results of our chains to those of ref. [22] (for DR14) and
ref. [113] (for DR9). The most notable difference is that ref. [22] tested excluding the lowest
two redshift bins and found minimal change in the posteriors of their cosmological parameter.
This disagrees with our results. We believe this discrepancy can be ascribed to our different
treatment of nuisance parameters. Ref. [22] employed correction functions for supernova
feedback from the OWLs simulation suite [14] and for AGN feedback from the Horizon-AGN
suite [15]. Each correction function is most significant at low redshift, and is included with

BWe ran a chain with two arLs parameters for z < 2.6 and z > 2.6. The maximum likelihood for arrs at
z > 2.6 was ~ 2 — o larger than in the full redshift chain, and np increased by ~ 0.50, but all other parameters
were unchanged.
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a free amplitude parameter which is marginalised over. In addition, earlier models were
forced by computational limits to use the ‘splicing’ technique of ref. [51]. In this model
multiple simulation boxes with over-lapping scale ranges are combined to model the scales
probed by the Lyman-o forest. A single larger simulation with 2048 particles was used
to generate a scale and redshift dependent correction function, and the amplitude of this
correction was marginalised over with a Gaussian prior.

Our larger simulations can instead model all relevant scales in a single simulation and so
do not need a free parameter for splicing. In addition, we self-consistently incorporate models
for stellar and AGN feedback and star formation into our simulations. Thus the analysis
of ref. [22] differs from ours in that it has three nuisance parameters, each of which affects
the lowest redshift bins most strongly and each of which is marginalised over in the chains.
Ref. [119] mentions that removing splicing reduces ny significantly (although the posterior
value of the splicing correction is not reported), which is what we would expect if the splicing
correction were absorbing an internal tension. Thus we believe that the z = 2.2 and z = 2.4
redshift bins contribute only marginally to the cosmological constraints in ref. [22] and instead
constrain splicing and AGN feedback. We should therefore compare the quantitative results
of ref. [22] to our reduced redshift chains.

Ref. [22] found ns = 0.954 4+ 0.006 for DR14 and ns = 0.938 +0.010 for DR9. Meanwhile
the power spectrum amplitude as measured by og is 0.826 + 0.02 in DR14 and similar in
DR9. As shown in appendix B, we do not reproduce this shift in ng, although we do observe
a smaller shift in dry. Ref. [22] attribute this shift to the different catalogues for masking
DLAs and BAL, and we marginalise out the DLA masking.

Ref. [113] find a mean optical depth of 7eg(z = 3) = 0.0025+0.0001 and dr = 3.734+0.015
in DR9. We define the mean optical depth relative to the power law 7oz = 0.0023(1 + 2)3:6%,
so that in our parameterization these constraints correspond to 79 = 1.09 + 0.05 and
dtg = 0.084 + 0.015. Their optical depth measurements from z = 2.2-4.4 in DR9 are thus
in good agreement with our measurements for the reduced redshift range of z = 2.6-4.6
from DR14. Appendix B shows that DR14 generally prefers a lower drp than DR9. Ref. [22]
do not report a value for 7eg(z = 3) from DR14. A higher dry implies a lower np. It is
possible that the ref. [22] DR14 value of dry is large and discrepant with other optical depth
measurements, driving the change in np.

We find np ~ 1.0 and og ~ 0.73 from the reduced redshift flux power alone, a 3.5 — o
tension in og. Some of the differences between our constraints on Ap and og are due to
a lever arm effect: for ns < 1 the power spectrum amplitude will be increased on larger
scales and measuring ns will induce a correlation between ng and og. A direct comparison
can be made by comparing our constraints on A? and neg to those of ref. [38], who found
A% = 0.31 £ 0.02 and neg = —2.339 & 0.006. Their measurement of neg is thus ~ 40 lower
than the maximum posterior from our reduced redshift flux power spectrum chains, while
their measurement of A% is in agreement. The discrepancy between our results thus lies in
the measurement of the spectral slope. The ultimate source of this tension is not clear, but
our simulation suite is substantially larger and more robust than that used by ref. [22]. A
possibility is that the splicing correction they use does not fully account for the correlation of
small and large scales (for example, the accuracy of the splice may be cosmology dependent).
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Another possibility is that the emulator used is a polynomial expansion around a ‘best-fit’
simulation, with ng = 0.9624. This is quite far from the posterior constraints, and so the
accuracy of the polynomial emulator may be reduced. A third possibility is the lack of an
explicit model for LLS. There is a correlation between np and agyg, as shown in appendix D,
so that fixing aprs = 0 could produce a low np.

Rather than use effective broken power laws for the IGM thermal history as a function of
redshift, we have explicit physical models for hydrogen and helium reionization, which include
the scale-dependent effects of patchy reionization. As shown in figure 7, the preferred IGM
thermal history shows a temperature peak at z = 2.8 and thus Ty(z) cannot be described by
a power law broken at z = 3 as assumed in ref. [22] and many earlier works. Figure 5 shows
that this does not affect the flux power spectrum on the scales measured by eBOSS. However,
DESI data probes smaller scales, so it is not clear that this will be the case in future.

5.3 Likelihood modifications

We also considered modifications to the likelihood not shown here. First, we increased the
observational uncertainty from eBOSS by a uniform factor of two. This increased the posterior
uncertainties, but did not significantly resolve the internal tension at low redshift (which is
many o). We also considered removing the high redshift data, with z > 3.8, as is done in
some earlier analyses [120]. We found that this made little difference as the statistical errors
in the high redshift data are large and so they provide little information. We considered
removing the largest and smallest scales with cuts in k. Several of the smallest scale bins
are highly correlated, and so removing them either led to very poor constraints or had small
effects, depending on the scale cut. Removing the largest bins on the largest scales increased
the posterior uncertainty, but did not noticeably shift the posteriors. Thus none of these
checks show any evidence for an internal tension between scales.

We tested whether a second mean flux rescaling slope would improve the fit to the
observed Lyman-« forest flux power (figure 5), especially at lower redshifts and smaller scales.
To do this, we added a second mean flux slope to the MCMC sampled parameters, and
assigned each to a specific redshift range (we tested this using a redshift pivot of z = 3 and
z = 3.6). Posterior constraints on the other parameters from a chain run using the second
mean flux slope were unaffected and the fit was not improved.

6 Conclusions

We have developed a new likelihood and pipeline for the analysis of Lyman-a forest data
and run MCMC chains using the Cobaya package [85, 86]. Our likelihood is built on a
percent-level accurate emulator using the PRIYA simulations [47]. We use the multi-fidelity
emulation technique [54] and a set of high resolution simulations to avoid the need to ‘splice’
together multiple simulations resolving different scales.

We model the Lyman-a forest 1D flux power spectrum from eBOSS [38], and include
several simulated and post-processed parameters. Our main cosmological constraints are
on the slope and amplitude of the primeval power spectrum on the scales probed by the
Lyman-« forest (np and Ap). We augment our Lyman-a flux power spectrum likelihood
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with information about the IGM thermal history [30]. With this information, we constrain

He 11 He 11
3 ) Zf )

the start, end, and heating rate for a patchy model of helium reionization (z;

aq), as well as the mean optical depth and its evolution with redshift (7p and drp). Our
likelihood includes corrections to the Lyman-« forest flux power spectrum from correlated
Si 111 absorption and from the presence of Damped Lyman-« systems.

We found that the lowest redshift bins in the eBOSS flux power spectrum, at z = 2.2
and z = 2.4, produced results which were discrepant with those from higher redshifts. The
flux power spectrum from the DESI early data release is also discrepant with eBOSS at these
redshifts. It thus seems likely that this discrepancy is due to an as-yet unidentified systematic
in the eBOSS pipeline at z < 2.6. We found that the discrepancy was reduced if the DLA
finder efficiency was allowed to be redshift dependent. However, an unmodeled astrophysical
effect, perhaps connected with AGN feedback, is still possible.

We added data on the IGM temperature at mean density to our chains, improving
constraints on the thermal history. Our best-fit parameters from the flux power spectrum
alone prefer a peak IGM temperature data much lower than the constraints of ref. [30],
although the eBOSS flux power spectrum only weakly constrains helium reionization. It is
possible that these constraints are affected by assuming the Planck value of og, which is
inconsistent with our results. The low temperature is driven by improving the fit at z = 2.6,
so it is also possible some residual effect connected with the tension between the low redshift
bins is biasing the flux power only chains. Our least constraining and so most conservative
constraints are those from the eBOSS flux power spectrum alone.

When removing the lowest redshift bins from the analysis, we find, for a primeval power
spectrum with a pivot scale of 0.78 1/Mpc:

A power spectrum slope of np = 1.009f8:8% from the eBOSS flux power alone and

np = 0.983 + 0.020 when adding the IGM temperature data, both in reasonable (2 — o)
agreement with Planck.

e A power spectrum amplitude Ap = 1.69J_r8:ﬁ-)l from the eBOSS flux power spectrum,

which translates to A = (1.65f8:ﬁ X 10_9) or oy = 0.73370020  approximately 2-3¢
lower than measurements from Planck, but in agreement with some other measurements
from weak lensing or galaxy surveys.

e An early start and late finish to helium reionization, beginning at z > 4.00 and ending
at z = 2.765f8:8§g once IGM temperature data is included. Our data is consistent at
95% confidence with helium reionization still being underway at the lowest redshift
eBOSS data we use, z = 2.6. When IGM temperature data is not included the chain
prefers models where the IGM temperature does not increase substantially and thus
cannot place strong constraints on the start and end of helium reionization.

o Weak constraints on hydrogen reionization and the matter density Qsh?.

In terms of the reduced likelihood of [17, 38, 91], we find a linear power of A7 = 0.302f8:8§‘%

and Neg = —2.264Jj8:8%2 from our z > 2.6 flux power chains. The A% constraint is in
agreement with earlier analyses, while n.g is 4 — o larger. When the IGM temperature
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data is included, it reduces both the best-fit A and neg to 0.267J_r8:8%§ and —2.288 4+ 0.020,
respectively. Ref. [121] noted that earlier analyses were in tension with the values implied
by Planck of A2 ~ 0.35 and neg ~ —2.305. In our analysis the tension in neg is largely
eliminated, while the A% tension remains.

In future work, we will combine our Lyman-« likelihood with other cosmological informa-
tion, in particular the Planck CMB and Baryon Acoustic Oscillation measurements, with which
we can constrain several extensions to the ACDM model. While we defer quantitative con-

straints to later papers, we are able to qualitatively discuss the constraints we expect. We will

dng
dlnk"*

the difference between the spectral index measured by the CMB on large scales and the spec-

be able to constrain the running of the spectral index, oy = Constraints on a come from
tral index measured by the Lyman-« forest on small scales. The sum of neutrino masses can be
constrained via a comparison between the power spectrum amplitude on CMB and Lyman-«
scales [122]. Our constraints are in strong tension with those of ref. [22], which will certainly
affect neutrino mass constraints from the Lyman-« forest. Since our preferred power spectrum
amplitude is lower than that of Planck, we will likely have a preference for a non-zero neutrino
mass, although the strength of the preference and the value preferred is yet to be determined.

We will also incorporate new data sets into our likelihood. We will examine the posterior
parameter constraints from the DESI EDR flux power spectrum. The statistical power of
DESI EDR is currently weaker than that of eBOSS, but it is able to measure smaller scales
(kp < 0.05s/km rather than kp < 0.02s/km for eBOSS). The higher resolution data may
also improve the internal consistency of the dataset at z < 2.6. Finally, we can perform a
joint analysis of eBOSS and the high resolution Lyman-a forest flux power spectra from
ref. [45]. These smaller scales would directly measure the parameters of helium reionization,
without the intermediate step of the IGM temperature, allowing an end-to-end validation
of the consistency of our modelling of large and small scales.
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A Leave-one-out versus emulator error

In this appendix we evaluate the impact of including the Gaussian Process interpolation
error, ogp, on the posterior parameters, as discussed in equation (3.1). Figure 10 compares
the effect of including emulator errors, showing the training samples, GP emulator errors
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Figure 10. Emulator error and leave-one-out errors across parameter space. For eight of the input

parameters, the training samples (grey crosses for LF, red circles for HF), GP emulator errors (yellow
dots), and scale-averaged leave-one-out errors (red dashed) are shown. All chains contain the IGM
temperature data, and the eBOSS flux power spectrum from z = 2.6—4.6. Shown are 1D marginalised
posteriors for the chains with the default likelihood (red) compared to chains run adding the GP
emulator error to the likelihood (yellow).

and scale-averaged leave-one-out errors. The leave-one-out error is independent of position in
parameter space, whereas the GP error is larger towards the edge of parameter space. The
largest effect is on the matter density Qj,h? and the hydrogen reionization midpoint, which
are very weakly measured by the data and so end up dominated by the GP error prior. There
are smaller shifts in helium reionization, preferring a slightly later start and extra heating,
albeit with shifts less than 1.5 — 0. The cosmological parameters are unchanged.

B BOSS DR9 data

In this section we compare posteriors obtained using the flux power spectrum from ref. [112],
which is based on BOSS DR9 quasar spectra. Figure 11 shows the posteriors for chains run
with DR14, with both reduced and full redshift ranges, and chains with DR9, again with
the reduced and full redshift ranges. We show chains using only the flux power spectrum
likelihood, to emphasise any differences between the datasets.

The tension between z < 2.6 and z > 2.6 remains in DR9, and the parameter shifts by
dropping the lowest redshift bins are similar. DR9 measures a similar Ap to DR14, and thus
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Figure 11. Posteriors for chains run using observations from the earlier SDSS data release, DR9, for
the reduced redshift range (gold) and full redshift range (blue), compared to our main chains using
DR14 with the reduced redshift range (black) and full redshift range (red).

also implies a low og. The 7y posteriors are also similar. The best-fit helium reionization
model is similar in both datasets. Although DR14 includes many more quasars, the covariance
matrix is often dominated by systematic error. At z = 2.6 DR14 and DR9 have very similar
errors, while DR14 has smaller measurement uncertainty at z > 3. The posterior uncertainties

for DR9 are for most parameters similar to those for DR14. The largest parameter changes
are in the posterior values of dry and zZHeH, although both are less than 1 — ¢. Particularly,

DR prefers a low value of 2/l plausibly because of the inclusion of high redshift data
in DR14. The good consistency between our posterior constraints in DR9 and DR14 is a

validation of the robustness of our analysis.
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Figure 12. Posteriors for chains run with only the IGM temperature likelihood. Shown are chains
using each of the four observational measurements of the IGM temperature: using the flux power
spectrum (blue), using the Doppler width distribution (BPDF, yellow), using the curvature statistic
(red), and using a wavelet decomposition (black). The main results of this work use the flux power
derived IGM temperatures.

C Posterior constraints from the IGM temperature alone

In this section, we present results from chains run using only the IGM temperature likelihood.
Shown in figure 12 are four chains, each using one of the observational measurements of the
IGM temperature at mean density, derived from different Lyman-« forest summary statistics:
the flux power spectrum, the Doppler width distribution, the curvature statistic, and a wavelet
decomposition. Most of the cosmology parameters are entirely unconstrained by the IGM
temperature and are omitted from the figure. We show Ap for reference. The three He 11
reionization parameters are well constrained by the IGM temperature history. There is very
little difference between the different IGM temperature observations, with the BPDF derived
temperature differing the most, specifically preferring a later start to He 11 reionization, and less
heating, corresponding to a lower IGM temperature. However, differences are well within 1o.

The midpoint of H 1 reionization has a marginal preference for a late midpoint, but is
very weakly constrained. The IGM temperature provides information on zy; as the IGM
cools from the completion of H I reionization, setting the temperature before the onset of
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Figure 13. Posteriors for the full set of simulation parameters, both cosmological and astrophysical.
Shown are the same chains from the figures in section 4, thus the correlations between the parameters
in figure 4 and those in figure 6 are the only new information here. ‘FPS z = 2.2-4.6’ (gold) uses the
full redshift range eBOSS flux power spectrum dataset, ‘FPS z = 2.6-4.6" (blue) uses a reduced redshift
range eBOSS dataset flux power spectrum dataset, which removes the internal tension (section 5.1).
The third chain, ‘FPS +7p,z = 2.6-4.6’ (red), uses the limited range eBOSS dataset but adds the
IGM temperature constraints.

helium reionization. Incorporating measurements of the IGM temperature at z > 3.8 [e.g.
123] could substantially improve these constraints and we may do so in future work.

D Full posteriors

Figure 13 presents the full posteriors, including the correlations between the cosmology
and astrophysics parameter sets, using the same chains discussed extensively in section 4.
Correlations are discussed in section 4.3.
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