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A B S T R A C T 

We introduce MF-Box , an extended version of MFEmulator , designed as a fast surrogate for power spectra, trained using N - 

body simulation suites from various box sizes and particle loads. To demonstrate MF-Box ’s effectiveness, we design simulation 

suites that include low-fidelity (LF) suites (L1 and L2) at 256 and 100 Mpc h 
−1 , each with 128 

3 particles, and a high-fidelity 

(HF) suite with 512 
3 particles at 256 Mpc h 

−1 , representing a higher particle load compared to the LF suites. MF-Box acts as 

a probabilistic resolution correction function, learning most of the cosmological dependencies from L1 and L2 simulations and 

rectifying resolution differences with just three HF simulations using a Gaussian process. MF-Box successfully emulates power 

spectra from our HF testing set with a relative error of < 3 per cent up to k ≃ 7 h Mpc −1 at z ∈ [0, 3], while maintaining a cost 

similar to our previous multifidelity approach, which was accurate only up to z = 1. The addition of an extra LF node in a smaller 

box significantly impro v es emulation accurac y for MF-Box at k > 2 h Mpc −1 , increasing it by a factor of 10. We conduct an 

error analysis of MF-Box based on computational budget, providing guidance for optimizing budget allocation per fidelity node. 

Our proposed MF-Box enables future surv e ys to efficiently combine simulation suites of varying quality, effectively expanding 

the range of emulation capabilities while ensuring cost efficiency. 

Key words: methods: statistical – cosmology: theory. 

1  I N T RO D U C T I O N  

Over the past decade, cosmological large-scale structure surv e ys 

ha ve ev olved increasingly in resolution and size. As observations 

probe more non-linear structures with high precision, theoretical 

predictions must be highly accurate to match the observational errors 

at corresponding small scales. The only way to achieve such accurate 

predictions is by running N -body simulations. Ho we ver, including 

e xpensiv e numerical simulations in the cosmological inference will 

require ∼10 6 likelihood e v aluations using simulations, i.e. ∼10 6 

numerical simulations in the Markov chain Monte Carlo (MCMC) 

sampling, making it impractical to use simulations for Bayesian 

inference directly. 

In the development of statistical surrogate modelling, emulators 

emerged as a Bayesian approach to analyse simulations and perform 

fast function predictions (Currin et al. 1991 ; Santner , W illiams & 

Notz 2003 ; O’Hagan 2006 ). In cosmology, emulators have been 

widely used as a fast surrogate model to replace the e xpensiv e 

likelihood e v aluations in the MCMC sampling. F or e xample, using 

surrogate models to replace the Boltzmann code in cosmological 

inference (Auld et al. 2007 ; Auld, Bridges & Hobson 2008 ; Aric ̀o, 

Angulo & Zennaro 2022 ; G ̈unther et al. 2022 ; Nygaard et al. 2022 ; 

Spurio Mancini et al. 2022 ). With a large number of training samples 

( ∼ O(10 4 −10 6 )), these Boltzmann code emulators have successfully 

⋆ E-mail: mho026@ucr.edu (M-FH); sbird@ucr.edu (SB); 

mfern027@ucr.edu (MAF) 

impro v ed the speed of the current parameter estimation pipeline. 

Another approach is using surrogates to replace MCMC to emulate 

the posterior distribution directly, reducing the o v erall required 

number of likelihood e v aluations (El Gammal et al. 2022 ). 

Unlike the emulators for Boltzmann codes, likelihood e v aluations 

based on numerical simulations, such as cosmological N -body 

simulations, are more e xpensiv e per training sample. Therefore, only 

a limited number of full-size training simulations ( ∼ O(10 1 −10 2 )) 

are computationally available. Emulation based on numerical simu- 

lations has been implemented in various cosmological applications: 

the matter power spectrum (Heitmann et al. 2009 , 2014 ; Lawrence 

et al. 2017 ; Euclid Collaboration et al. 2019 , 2021 ), baryonfication 

simulations (Giri & Schneider 2021 ; Aric ̀o et al. 2021 ), arbitrary 

cosmology (Giblin et al. 2019 ), f ( R ) gravity (Arnold et al. 2022 ; 

Harnois-D ́eraps et al. 2022 ), weak lensing (Harnois-D ́eraps, Giblin & 

Joachimi 2019 ; Davies et al. 2021 ; Giblin, Cai & Harnois-D ́eraps 

2023 ), halo mass function (McClintock et al. 2019 ; Nishimichi et al. 

2019 ; Bocquet et al. 2020 ), 21-cm power spectrum (Kern et al. 

2017 ) and global signal (Cohen et al. 2020 ; Bevins et al. 2021 ; 

Bye, Portillo & Fialkov 2022 ), and Lyman- α forest (Bird et al. 2019 ; 

Rogers et al. 2019 ; Pedersen et al. 2021 ; Rogers & Peiris 2021a , b ; 

Cabayol-Garcia et al. 2023 ). All these emulators are self-consistent 

and can replicate the simulations as surrogate models to accelerate 

the parameter inference pipeline. 

Emulators have also been used in several current surveys. Z ̈urcher 

et al. ( 2022 ) used an emulator on Dark Energy Surv e y year 3 

data for cosmic shear peak statistics. Neveux et al. ( 2022 ) used 

an emulator on SDSS quasars and galaxies. Beyond cosmological 
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inference, Jo et al. ( 2023 ) uses emulation to calibrate the galaxy 

formation simulations. Kugel et al. ( 2023 ) and Salcido et al. ( 2023 ) 

build emulators to quantify the subgrid feedback effects in the 

hydrodynamical simulations. Emulators have also been used in a 

wide range of disciplines, for example, exoplanet (Rogers et al. 

2021 ), gra vitational wa ve (Cheung et al. 2021 ), stellar population 

synthesis (Alsing et al. 2020 ), heavy-ion physics (Ji et al. 2021 , 

2022 ), astrochemistry (Holdship et al. 2021 ), and biology (Vernon 

et al. 2018 ). 

The computational costs of cosmological emulators are rapidly 

increasing, driven by an increase in both surv e y accurac y and 

number of model parameters. Over the past few years, cosmological 

emulators based on N -body simulations have evolved from five- 

dimensional cosmology [e.g. wCDM in Coyote Universe (Heitmann 

et al. 2009 )] to higher dimensions, for example, eight-dimensional 

w 0 w a CDM + 
∑ 

m ν cosmology in Euclid Collaboration et al. 

( 2021 ) and Mira-Titan Universe (Lawrence et al. 2017 ; Moran 

et al. 2023 ). The increase in dimensionality means the number of 

simulations required for training an accurate emulator also needs 

to increase dramatically. For instance, EuclidEmulator2 requires 

more than 200 high-resolution simulations with 3000 3 in an eight- 

dimensional cosmology. Moreo v er, when the astrophysics effects are 

not ignorable for cosmological inference (Giri & Schneider 2021 ; 

Villaescusa-Navarro et al. 2021 ; Aric ̀o et al. 2021 ), more e xpensiv e 

simulations, such as hydrodynamical simulations including baryonic 

effects, must be used for training realistic emulators. This increase 

in computational cost poses a challenge for the implementation of 

emulators in future surv e ys, making them prohibitiv ely e xpensiv e 

and difficult to adopt unless the efficiency of emulation techniques 

can be impro v ed. 

An efficient approach to reducing the computational cost is 

building emulators using multifidelity emulation ( MFEmulator ), 

which allows simulations with different particle loads to be combined 

(Ho, Bird & Shelton 2022 ). Fernandez, Ho & Bird ( 2022 ) showed that 

it is possible to construct a realistic emulator using hydrodynamical 

simulations through the MFEmulator technique, emulating Lyman- 

α forest with sub-per cent test accuracy using only six high-fidelity 

(HF) simulations. In Fernandez et al. ( 2022 ) and Ho et al. ( 2022 ), 

we assumed the particle load is the only fidelity variable. This is a 

limitation, as simulation volumes also correlate with the accuracy 

of a simulation: With a constant particle load, larger box sizes 

enhance accuracy at larger scales but diminish it at smaller scales 

due to reduced mass resolution. Smaller volumes with the same 

particle load can capture finer small-scale details, though a minimum 

box size requirement exists (Heitmann et al. 2010 ; Schneider et al. 

2016 ). Here, we show that the cost of training an MFEmulator 

can be further reduced by having multiple fidelities which vary both 

simulation volumes and particle loads. 

The multifidelity method we use, based on Kennedy & O’Hagan 

( 2000 ) and Ho et al. ( 2022 ), is just one of many multifidelity 

techniques. Peherstorfer , W illcox & Gunzburger ( 2018 ) surv e yed 

the multifidelity methods in uncertainty quantification, inference, 

and optimization. A few popular methods include the control variate 

technique, which has been applied in cosmology in Chartier et al. 

( 2021 ); Chartier & Wandelt ( 2022 ) on reducing the variance of the 

covariance matrix, and multilevel or multistage MCMC (Christen & 

F ox 2005 ; Lykke gaard et al. 2020 ), which use low-fidelity (LF) 

models to reduce the number of e xpensiv e likelihood e v aluations 

in MCMC. Though multilevel MCMC is a promising method, its 

practical use requires running thousands of N -body simulations in 

the sampler, which is not yet applicable to cosmological inference. 

Another similar method is using deep-learning methods to learn 

the mapping from low- to high-resolution simulations to directly 

generate the snapshots of the ‘super-resolution’ simulations (Kodi 

Ramanah et al. 2020 ; Li et al. 2021 ; Ni et al. 2021 ). While this 

method shows promise, it is currently limited to a single cosmology 

and is not yet suitable for inference. 

The statistical and computer science literature already contains 

work on multifidelity techniques with more than one LF node. 

Lam, Allaire & Willcox ( 2015 ); Poloczek, Wang & Frazier ( 2017 ) 

considered a multi-information source framework, which combines 

more than one information node to achieve an overall lower variance. 

In this work, we use a graphical Gaussian process, based on a directed 

acyclic graph (Ji et al. 2021 ), to predict HF simulations using LF 

simulations in two different simulation volumes. 

A design using multiple LF nodes can be helpful in several 

ways. One example, which we will show in this work, is enhancing 

the resolution at small scales using an additional LF node with 

a smaller box size. A cosmological simulation has strict volume 

requirements to ensure that the base mode is linear and to beat 

cosmic v ariance. Ho we ver, it also needs high enough particle load 

(or spatial resolution) to capture the non-linearities at small scales. 

MFEmulator provides a way to improve small-scale structures 

using a simulation suite from a lower particle load. Nevertheless, 

the non-linear information in a lower particle-load simulation is 

also limited. An economical way to resolve small scales is to run 

simulations in small boxes to increase the spatial resolution by 

sacrificing some large-scale information. 

Another approach to minimizing the number of training simula- 

tions is Bayesian optimization, where a sequential choice of new 

training simulations is designed to optimize the likelihood function 

globally. F or e xample, Leclercq ( 2018 ), Rogers et al. ( 2019 ), and 

Takhtaganov et al. ( 2021 ) implemented Bayesian optimization in 

the cosmological inference. Similar approaches, such as Pellejero- 

Iba ̃ nez et al. ( 2020 ), Boruah et al. ( 2022 ), Cole et al. ( 2022 ), 

and Neveux et al. ( 2022 ), iteratively train emulators on the high 

likelihood regions of the parameter space, thus minimizing the 

o v erall training samples to achieve accurate posterior distribu- 

tion. Our multifidelity emulation is a complimentary technique, 

which can be combined with Bayesian optimization for the lowest 

computational cost. 

This paper presents MF-Box , extending our previously developed 

MFEmulator to allow multiple LF nodes in a multifidelity emulator. 

MF-Box uses the multifidelity graphical Gaussian process model 

(GMGP) (Ji et al. 2021 ) to emulate HF simulations using LF 

simulations from two different simulation volumes. A GMGP model 

is an extension of the traditional KO model (Kennedy & O’Hagan 

2000 ) and non-linear autore gressiv e Gaussian process (NARGP) 

model (Perdikaris et al. 2017 ). The difference is that a GMGP allows 

multiple nodes in a fidelity while KO or NARGP models assume 

one node per fidelity. For example, in our case, the LF nodes include 

separate box sizes with the same particle load, resolving different 

scales of the Universe. 

Our references to LF and HF nodes are based on a relative scale 

within the context of our multifidelity framework. We do not directly 

compare these definitions to other matter power spectrum emulators. 

Our primary goal is to demonstrate the ef fecti veness of MF-Box as a 

probabilistic resolution correction tool. This allows us to correct the 

resolution of an LF emulator, approximating higher particle loads 

using a limited number of HF simulations. 

Consequently, the focus of our discussion on emulation error 

revolves around predicting unseen HF simulations in the test set. 

This choice is intentional, as it allows us to assess how well MF-Box 

can upscale an LF emulator when predicting HF simulation outputs. 
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Table 1. LF and HF simulation suites used in our study. The definition of LF 

and HF nodes is based on a relative scale specific to our approach and is not 

intended for direct comparison with other matter power spectrum emulators. 

Simulation Box volume N part Node hour 

L1 (256 Mpc h −1 ) 3 128 3 ∼1.0 

L2 (100 Mpc h −1 ) 3 128 3 ∼1.7 

HF (256 Mpc h −1 ) 3 512 3 ∼140 

Test (256 Mpc h −1 ) 3 512 3 ∼140 

It is worth highlighting that the framework we present here can be 

adapted for use with various other summary statistics emulators, 

accommodating different definitions of LF and HF nodes as needed. 

We will also present an analysis of the emulation errors in relation 

to the computational budget. Previous studies Wendland ( 2004 ) and 

Ji et al. ( 2021 ) have demonstrated that Gaussian process emulator 

errors can be bounded by a power-law function. In this paper, we 

model the emulation error from MF-Box as a power-law function of 

the number of training simulations and empirically infer the emulator 

error function from our MF-Box results. By utilizing this empirical 

error function, we can estimate the emulation error associated with 

a given multifidelity design, as well as determine the optimal budget 

allocation for each node. This error analysis serves as a useful guide 

for future development of MFEmulator techniques. 

In Section 2 , we will describe our simulations and experimental 

design. Section 3 will re vie w the single-fidelity emulator as well as 

three multifidelity emulation methods, namely AR1, NARGP, and 

MF-Box . Our sampling strategy for selecting input cosmologies for 

HF simulations will be outlined in Section 4 . Empirical inference of 

the emulation error function will be discussed in Section 5 . Section 6 

will present the results of MF-Box , followed by the conclusion in 

Section 7 . 

2  SIMULATIONS  

We perform dark matter-only simulations using the open-source MP- 

Gadget code (Feng et al. 2018 ), 1 an N -body and smoothed particle 

hydrodynamical (SPH) simulation code derived from Gadget-3 

(Springel & Hernquist 2003 ) and used to run the ASTRID simulation 

(Bird et al. 2022 ; Ni et al. 2022 ), a large-scale high-resolution 

cosmological simulation with 250 Mpc h 
−1 containing 2 × 5500 3 

particles. The base of MP-Gadget is Gadget-3, but, among other 

impro v ements, it has been rewritten to take advantage of shared- 

memory parallelism and the hierarchical time-stepping from Gadget- 

4 Springel et al. ( 2021 ). Detailed descriptions of the simulation code 

can be found in Bird et al. ( 2022 ). 

We start the simulations at z = 99 and finish at z = 0. The initial 

linear power spectrum and transfer function are produced by CLASS 

(Lesgourgues 2011 ) at z = 99 through the Zel’dovich approximation 

(Zel’Dovich 1970 ). We assume periodic boundary conditions. We 

use a Fourier transform-based particle-mesh method on large scales 

for the gravitational forces and a Barnes–Hut tree (Barnes & Hut 

1986 ) on small scales. Table 1 summarizes the simulation volumes 

and particle loads used in this paper. We use the same set of LF 

(L1) and HF pairs as in Ho et al. ( 2022 ), with an additional LF 

node (L2) to demonstrate the emulation using simulations from 

different box sizes. However, the framework presented in this paper 

is generalizable to more than two LF nodes. Fig. 1 shows a visual 

illustration for the dark-matter only simulations used in this paper. 

1 https:// github.com/ MP-Gadget/ MP-Gadget/ 

Our emulation target is the matter power spectrum, P ( k ), a sum- 

mary statistic of the o v erdensity field. We measure the matter power 

spectrum with a cloud-in-cell mass assignment. We use the built-in 

power spectrum estimator from MP-Gadget; the power spectrum is 

thus generated on a mesh the same size as the simulation’s PM grid, 

which is three times the mean interparticle spacing. The multifidelity 

emulation framework we introduce here is also applicable to other 

implementations of power spectrum calculations, such as those 

generated by NBodyKit (Hand et al. 2018 ). 

Fig. 2 shows an example of our emulation target: matter power 

spectra from different resolutions, where the LF simulations (L1 and 

L2) have two different box sizes. L1 simulations are in the same box 

size (256 Mpc h 
−1 ) as HF simulations (HF) with the same initial 

condition seeding; whereas, L2 simulations have a smaller box size 

(100 Mpc h 
−1 ) than L1 and HF. In principle, L2 can capture more 

small-scale structures due to its smaller box size. Indeed, as shown 

in the second, third, and bottom panels in Fig. 2 , L2 is more accurate 

than L1 at small scales. For example, at z = 3, L2/HF is closer to 1 

than L1/HF at small scales ( k > 0 . 6 h Mpc −1 ). 

Note that L2 is not necessarily better than L1 in matching the 

HF simulations. L1 matches the HF power spectrum extremely well 

at large scales, while L2 performs better at small scales. Therefore, 

the accuracy of the different simulations is not in a monotonically 

increasing sequence. Thus, the Kennedy & O’Hagan ( 2000 ) method 

we used in Ho et al. ( 2022 ) cannot be directly applied to this example. 

Fig. 3 shows our experimental design in the input parameter space, 

corresponding to the prior range of 

�0 ∼ U(0 . 24 , 0 . 4); 

�b ∼ U(0 . 04 , 0 . 06); 

h ∼ U(0 . 61 , 0 . 73); 

A s / 10 −9 ∼ U(1 . 7 , 2 . 5); 

n s ∼ U(0 . 92 , 1) , (1) 

where �0 is the total matter density parameter in the Universe, �b 

is the total baryon density parameter, h is the dimensionless Hubble 

parameter, A s is the spectral amplitude, and n s is the spectral index. 

We generated 60 Latin hypercube samples using max–min sliced 

latin hypercube (Ba, Myers & Brenneman 2015 ), including 20 slices 

with 3 samples in each slice. We will discuss sliced latin hypercube 

design (SLHD) in Section 4.1 . SLHD partitions the design into 

several equal slices (or blocks). Each slice itself is also a Latin 

hypercube design, as well as the whole design. We thus choose one 

of the Latin hypercube slices as our HF input. By using SLHD, we can 

a v oid the design points of the HF node clustered in the corner of the 

prior volume. We ran L1 and L2 nodes using the same cosmological 

parameters (although this is not required by the GMGP from Ji et al. 

2021 ). 

We summarize the notation used in this paper in Table 2 . 

3  EMULATI ON  

Emulation predicts the output from e xpensiv e cosmological simu- 

lations. First, a handful of simulations are run at carefully chosen 

experimental design points as a training set. Next, a surrogate model 

(an emulator) fits the prepared training set to predict simulation 

output. The trained emulator will be a proxy for the simulation results, 

allowing for ine xpensiv e evaluation of a likelihood function. 

In Section 3.1 , we will briefly re vie w emulation using a Gaussian 

process. Section 3.2 will re vie w ho w we can extend the Gaussian 

process emulator to model simulations from different qualities using 

a multifidelity emulator, MFEmulator . Our earlier multifidelity 
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Figure 1. Illustration of the MF-Box framework and the dark-matter only simulations performed at z = 0. MF-Box provides a emulation framework to connect 

power spectra (denoted as f ( θ ), where θ is the input cosmology) from LF simulations (L1 and L2) to HF simulations (HF), providing an efficient emulation 

framework in predicting HF power spectra using only a few HF simulations augmented with many LF simulations with various volumes. ρ is a learnable 

multiplicative resolution correction parameter, and δ is a learnable additive resolution correction parameter. Details of the MF-Box model can be found in 

Section 3.2.3 . The particle loads and box sizes for each simulation are listed in Table 1 . (a) Large-scale structures of each simulation are shown. Simulations 

L1 and L2 have the same particle load ( N p = 128), but L1 has a smaller box size (100 Mpc h −1 ). As a result, the large scales of L1 resemble those of the 

HF simulation, while L2 lacks the necessary large-scale information to match HF. (b) Zoomed-in view (25 . 6 Mpc h −1 ) of the small scales from (a) L1 lacks 

structures due to the sparsity of particles at this scale, whereas L2 captures more structures by utilizing a smaller box size. As a result, L1 resembles HF at small 

scales due to its finer mass resolution. 

technique based on the KO method (Kennedy & O’Hagan 2000 ) will 

be re vie wed in Section 3.2.1 . Section 3.2.2 will re vie w an extension 

of the KO method based on a deep Gaussian process and NARGP 

(Perdikaris et al. 2017 ). Section 3.2.3 describes a graphical-model 

Gaussian process model (GMGP) (Ji et al. 2021 ), an extension of 

NARGP to allow more than one node in the same fidelity. 

3.1 Gaussian process emulator 

A Gaussian process ( GP ) regression model (Rasmussen & Williams 

2005 ) is widely used as a cosmological emulator. A GP provides 

closed-form expressions for predictions. In addition, a GP naturally 

comes with uncertainty quantification, which is handy for inference 

framework and Bayesian optimization. In emulation, a GP can be 

seen as a Bayesian prior for the simulation response. It is a prior 

because the emulator model is chosen to ensure smoothness in the 

simulation response before data are collected (Santner et al. 2003 ). 

Let θ ∈ 	 ⊆ R 
d be the input cosmologies for the simulator, and 

f ( θ ) be the corresponding output summary statistic. This work 

assumes that the summary statistic is the non-linear matter power 

spectrum. A GP regression model is a prior on the response surface 

of our simulated matter power spectrum: 

p( f ) = GP ( f ; μ, k) , (2) 

where μ( θ ) = E [ f ( θ )] is the mean function, and k( θ , θ ′ ) = 

Cov [ f ( θ) , f ( θ ′ )] is the covariance kernel function. The mean func- 

tion is usually assumed to be a constant or zero mean unless there is 

prior knowledge about the mean function. In this work, we assume 

a zero mean function. The covariance kernel function is typically 

chosen as a squared exponential function (radial basis function, RBF) 

to return a smooth response surface. 

Suppose we run the simulations at n carefully chosen input cos- 

mologies, D = { θ1 , · · · , θn } , and we compress each simulation into 

the corresponding matter power spectrum, y = { f ( θ1 ) , · · · , f ( θn ) } . 

Conditioning on this training data and optimizing the hyperparame- 

ters using maximum-likelihood estimation, we can get the predictive 

distribution of f at a new input cosmology θ∗, f ∗ = f ( θ∗), through a 
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Figure 2. Matter power spectra from dark-matter only MP-Gadget simula- 

tions with various fidelities, conditioning on the same cosmology. The top 

panel shows the power spectra from a large-box LF (L1; blue), a small-box LF 

(L2; black), and a large-box HF simulations (HF; yellow). The numeric values 

for different fidelities of simulations are tabulated in Table 1 . The second, 

third, and bottom panels show the ratios of L1/HF (red) and L2/HF (black) 

simulations, conditioned on different redshift bins, z = 3 . 0 , 0 . 5 , 0. Bottom 

panel: We also show the ratio between (L1, L2) and the linear theory power 

spectrum from CLASS at large scales. The solid lines show the median and 

shaded areas show the 68 per cent quantiles across 60 different cosmologies. 

closed-form expression 

p( f ∗ | y ∗, D, θ ) = N ( f ∗ | μ∗( θ∗) , σ 2 
∗ ( θ∗)) , (3) 

where the mean and variance are 

μ∗( θ∗) = k ( θ∗, D ) ⊺ K ( D ) −1 y ; 

σ 2 
∗ ( θ∗) = k( θ∗, θ∗) − k ( θ∗, D ) ⊺ K ( D ) −1 k ( θ∗, D ) . (4) 

The vector k ( θ∗, D) = [ k ( θ∗, θ1 ) , · · · , k ( θ∗, θn )] represents the 

covariance between the new input cosmology, θ , and the training 

data. The matrix K ( D) is the covariance of the training data. 

Although we do not explicitly state this in the notation, we let 

f ( θ ) be a single-value output. If the target summary statistic is a 

vector, we let the Gaussian process model each bin separately. It 

will be more apparent why we make this modelling decision in later 

Figure 3. Experimental design of LF and HF simulations in this work. 

The prior volume is chosen to be the same as EuclidEmulator2 (Euclid 

Collaboration et al. 2021 ). Crosses (black) are the input parameters for the 

LF simulations (both L1 and L2). Circles (red and yellow) are the parameters 

for HF simulations, which is a subset of the LF experimental design. We use 

max–min Sliced Latin Hypercube (SLHD) (Ba et al. 2015 ) for the LF design, 

containing 20 slices with three samples in each slice. Red and Yellow circles 

show two of the slices, which we select to be the input parameters for HF 

simulations. 

Table 2. Notations and definitions. 

Notation Description 

HF HF 

LF LF 

θ Input cosmological parameters 

f ( θ) Summary statistics (matter power spectrum 

in this work) corresponding to input parameters. 

N p Number of particles per box side 

AR1 Autore gressiv e GP 

(Kennedy & O’Hagan 2000 ) 

NARGP Non-linear autore gressiv e GP 

(Perdikaris et al. 2017 ) 

GMGP Graphical GP (Ji et al. 2021 ) 

MFEmulator Multifidelity cosmological emulator 

Ho et al. ( 2022 ) 

MF-Box Multifidelity cosmological emulator 

with different box sizes in LF. 

sections (Section 3.2 ). The primary reason is that the correlation 

between LF and HF summary statistics changes depending on the 

scales. The multifidelity method can only capture-scale dependence 

if we model the scales separately. 2 

3.2 Multifidelity emulation 

We briefly recap the multifidelity emulation framework we proposed 

in Ho et al. ( 2022 ). We will first re vie w the K ennedy–O’Hagan 

model (autore gressiv e GP; AR1) (Kennedy & O’Hagan 2000 ) and 

NARGP (non-linear autore gressiv e GP) (Perdikaris et al. 2017 ) 

in Sections 3.2.1 and 3.2.2 , respectively. We do not change our 

2 An alternative way is to apply a co-kriging kernel to model the covariance 

for each vector element. We do not do that in this work because we found the 

single-output GP is enough for our cosmological emulation purpose, so there 

is no need to introduce another layer of complexity. 
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AR1 and NARGP modelling presented in Ho et al. ( 2022 ), except 

we simplified the notations to only two fidelities. Finally, we will 

introduce the GMGP model (Ji et al. 2021 ), combining simulations 

from different box sizes. 

3.2.1 Kennedy–O’Hagan method 

Kennedy & O’Hagan ( 2000 ) proposed a linear autore gressiv e GP 

to model the response surfaces of a sequence of computer codes 

with increasing fidelity. For simplicity, we assume there are only two 

fidelities: dark-matter only simulations with fewer particles in LF 

and with more particles in HF. 

Let { y LF , y HF } be the matter power spectrum in the training set, 

where y LF = { f LF ( θ
LF 
i ) } 

n LF 
i= 1 and y HF = { f HF ( θ

HF 
i ) } 

n HF 
i= 1 . Here, n LF and 

n HF are the number of simulations in the LF and HF, respectively. 

The KO method models the multifidelity emulator as 

f HF ( θ ) = ρ · f LF ( θ) + δ( θ ) , (5) 

where ρ (the scale parameter) is a trainable parameter describing the 

amount of common behaviour in LF and HF response surfaces. δ( θ ) 

is a GP that models the remaining bias, modelling the variability that 

cannot be captured by correlating LF to HF. In the context of the 

matter power spectrum, the ρ · f LF ( θ ) term dominates at the large 

scales describing the two-halo term while δ( θ ) dominates at the small 

scales describing the one-halo term. 

We normalize the matter power spectra into a logarithmic scale. 

The sample mean is subtracted from the LF log power spectra to 

keep the output close to zero, while the HF log power spectra are 

passed directly to the training: 

y LF ← log y LF − E [ log y LF ]; 

y HF ← log y HF . (6) 

Not subtracting the mean spectrum of HF simulations is a com- 

promise decision. Our benchmark multifidelity emulator uses only 

three HF samples, and the sample mean of three power spectra will 

often deviate substantially from the true mean spectrum. Instead, we 

entirely rely on the bias term, δ( θ ), to compensate for the deviation 

caused by not subtracting the mean. 

As mentioned in Ho et al. ( 2022 ), the ρ parameter has to be 

scale-dependent (as a function of k ) to model the scale-dependent 

correlation between high and LF. Here, we use the same method as 

Ho et al. ( 2022 ), where we assume equation ( 5 ) is a single-output GP 

model and build a KO model for each k bin of the data. In this way, 

we can model ρ as a function of k . 

We also assign different KO models to different redshifts. We note 

that it is possible to assume a smooth function to model ρ( k , z), and 

we may examine this in future work. 

3.2.2 Non-linear autor egr essive Gaussian process 

Another multifidelity method we used in Ho et al. ( 2022 ) is the non- 

linear autore gressiv e GP, or NARGP, developed by Perdikaris et al. 

( 2017 ). NARGP is a modification of the KO method to allow non- 

linearity in the scale parameter, ρ, through a deep GP (Damianou & 

Lawrence 2013 ). In cosmic emulators, it means that we allow ρ to 

vary as a function of cosmology. 

Let f HF ( θ ) be the HF and f LF ( θ ) be the LF power spectra as 

functions of cosmology, θ . NARGP models the multifidelity problem 

as 

f HF ( θ ) = ρ( θ , f LF ( θ )) + δ( θ ) , (7) 

Here, ρ is modelled as a GP and is a function of the cosmologies, 

θ , and the output from the previous fidelity, f LF ( θ). We follow 

the approximation made in Perdikaris et al. ( 2017 ) to simplify the 

computation of a deep GP to two separate GPs. The approximation 

is done by replacing the f LF ( θ ) with its posterior, f ∗, LF ( θ). Equation 

( 7 ) can thus be further reduced to a regular GP with a kernel function 

K : 

f HF ∼ GP (0 , K) (8) 

with 

K( θ, θ ′ ) = K ρ( θ, θ ′ ) · K f ( f ∗, LF ( θ ) , f ′ ∗, LF ( θ
′ )) + K δ( θ , θ ′ ) . (9) 

We integrate the bias GP and the scale parameter GP here into one 

single GP with a composite kernel. Each kernel, ( K ρ , K f , K δ), is a 

squared exponential kernel. K δ models the bias term, and the scale 

parameter GP is factorized into the K f , modelling the covariance be- 

tween LF output posteriors. K ρ models the cosmological dependence 

of ρ. 

3.2.3 Graphical multifidelity Gaussian process 

Here, we briefly explain a new multifidelity model using a GMGP, 

first introduced in Ji et al. ( 2021 ). A similar approach is the multi- 

information source method (Poloczek et al. 2017 ), which allows 

multiple LF nodes (information sources) to resolve a single HF truth. 

Ho we ver, we find the model in Ji et al. ( 2021 ) is methodologically 

closer to what we applied before in Ho et al. ( 2022 ), and so use this 

technique for our emulation problem for LF nodes with different box 

sizes. 

The graphical GP model (Ji et al. 2021 ) utilizes a directed acyclic 

graph to model multifidelity data. Instead of assuming the fidelities 

of a simulation code form a monotonically increasing sequence in 

accuracy, a GMGP allows the fidelities to have a directed-in tree 

structure. Ji et al. ( 2021 ) have a thorough mathematical description 

for applying GMGP in an arbitrarily directed in-tree structure. Thus, 

each HF node has more than one corresponding LF node, a common 

situation as there are many ways to approximate HF simulations. 

We use the simplest case of the tree structure, illustrated in Fig. 

1 , with two LF nodes and one HF node. In the case of N -body 

simulations, one may vary not only the number of particles, but also 

the box size of the simulation. Thus, we can use an LF simulation 

with a smaller box size to impro v e emulation at the HF node. We 

will call this tree ‘ MF-Box ’ throughout the rest of the paper. In 

the following text, we will assume L1 is the LF node that has 128 3 

particles. L2 has the same number of particles as L1 but a smaller 

box size (100 Mpc h 
−1 ), and HF is the HF node with 512 3 particles 

and the same box size as L1 (Table 1 ). 

The deep GMGP model (dGMGP), we use from Ji et al. ( 2021 ) is 

an extension of NARGP, where Ji et al. ( 2021 ) implemented a specific 

kernel structure allowing LF information from multiple nodes to be 

passed to the HF node. 3 For the directed graph in Fig. 1 , the dGMGP 

model can be written as 

f HF ( θ ) = ρ( { f t ( θ ) : t ∈ L 1 , L 2 } , θ ) + δ( θ ) . (10) 

Here, we pass the cosmologies θ and the outputs from L1 and L2 to 

the ρ function. We make the same approximation as in Section 3.2.2 , 

so we can train the deep GP recursively: We first train the LF 

3 Since we found NARGP outperformed AR1 in Ho et al. ( 2022 ) for the matter 

power spectrum case, we will use dGMGP instead of the GMGP extended 

from the AR1 model. 
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emulators on L1 and L2, respectively. Then, we sample the output 

posteriors from the L1 and L2 emulators and use them as the training 

input for equation ( 10 ). 

Similar to NARGP, we use a composite kernel for the HF GP in 

the dGMGP: 

K dGMGP ( θ, θ ′ ) 

= K ρ( θ , θ ′ ) · K f ( f ∗, LF ( θ ) , f ∗, LF ( θ
′ )) + K δ( θ, θ ′ ) , (11) 

where the abo v e e xpression is the same as equation ( 9 ) e xcept that 

K f takes the outputs from both L1 and L2 emulators as inputs, 

K f ( f ∗, LF ( θ) , f ∗, LF ( θ
′ )) 

= K linear ( f ∗, LF ( θ ) , f ∗, LF ( θ
′ )) 

+ K rbf ( f ∗, L1 ( θ ) , f ∗, L1 ( θ
′ )) · K rbf ( f ∗, L2 ( θ ) , f ∗, L2 ( θ

′ )) . (12) 

Here, K rbf is a radial basis kernel, and K linear is a linear kernel, which 

can be expressed more explicitly as 

K linear ( f ∗, LF , f 
′ 
∗, LF ) = σ 2 

1 f ∗, L1 f 
′ 
∗, L1 + σ 2 

2 f ∗, L2 f 
′ 
∗, L2 , 

where σ 2 
1 and σ 2 

2 are the hyperparameters of the linear kernel. A 

linear kernel in a Gaussian process is equi v alent to a Bayesian 

linear regression. 4 The multiplication in the kernel operation means 

an ‘AND’ operation, showing high covariance only if both kernels 

have high values. The addition operator means an ‘OR’ operation, 

indicating the final covariance is high if either of the kernels gives 

a high value. The intuition here is that the linear kernel encodes 

the linear regression part while the multiplication of RBF kernels 

encodes the non-linear transformation from L1 and L2 nodes to the 

HF node 

4  SAMPLING  STRATEGY  F O R  H F  

SIMULATIONS  

This section describes the method used for selecting the input 

parameters for our HF training simulations. Following Ji et al. ( 2021 ), 

we employ an SLHD (Qian 2012 ; Ba et al. 2015 ) to assign input 

parameters for the HF nodes. Each slice (or subset) in an SLHD is a 

Latin hypercube and thus can be served as the design points for the HF 

node. This approach offers a less computationally intensive and more 

straightforward implementation compared to the grid search method 

utilized in our previous work (Ho et al. 2022 ). The details of SLHD 

will be discussed in Section 4.1 , and our process for selecting the 

optimal HF design from the SLHD will be discussed in Section 4.2 . 

4.1 Sliced Latin hypercube design 

SLHD is a type of Latin hypercube that can be partitioned by slices 

or blocks, each of which contains an equal number of design points. 

Each slice is itself a Latin hypercube. SLHD ensures the space-filling 

property both in the whole design and in each slice. Therefore, SLHD 

is an intuitive choice for a multifidelity problem. 

Suppose we have an SLHD for the LF node. We can use one of the 

slices to generate simulations for the HF node, which ensures that 

both the LF and HF nodes are in Latin hypercubes. Another advantage 

of SLHD is that we can directly obtain a nested experimental design 

where the LF samples form a superset of the HF samples, i.e. 

θHF ⊂ θLF . As mentioned in Kennedy & O’Hagan ( 2000 ), a nested 

design is an efficient training set for a multifidelity model because it 

4 See the kernel cookbook: https:// www.cs.toronto.edu/ ∼duvenaud/ 

cookbook/. 

Figure 4. MF-Box ’s emulation errors, averaged over redshift bins and test 

simulations, using 60 L1, 60 L2, and 3 HF (see Table 1 ). Here, we show the 

emulation minimum and maximum errors using different slices from SLHD 

(blue-shaded area), and the best slice found by the grid search method is 

labelled as yellow. 

allows us to obtain an accurate posterior f LF ( θ ) at location θ without 

interpolating at the LF. 

SLHD, initially proposed by Qian ( 2012 ), is a technique developed 

for applying the Latin hypercube design to categorical variables. Ba 

et al. ( 2015 ) later developed an efficient method for constructing 

optimal SLHD designs. The number of categories for categorical 

variables is usually fixed based on qualitative properties, making it 

challenging to apply a Latin hypercube design to such variables. 

Ho we ver, SLHD addresses this challenge and enables the use of 

Latin hypercube designs with categorical variables. In SLHD, a 

Latin hypercube is divided into equal slices along the dimensions 

associated with categorical variables, while non-categorical dimen- 

sions are still sampled with ordinary Latin hypercube sampling. The 

usage of SLHD in the context of modelling the multifidelity problem 

was demonstrated in Ji et al. ( 2021 ). Furthermore, SLHD has also 

been employed in cosmology, specifically by the Dark Emulator 

(Nishimichi et al. 2019 ). 

For implementation, we use the maximin SLHD package, 

maxminSLHD , 5 in R (Ba et al. 2015 ). We set the number of design 

points to three for each slice and the number of slices to 20. In total, 

we have 60 design points. We assign the SLHD with 60 points to LF 

and select one slice as our HF design. We use 60 LF points in this 

work because we learned in Ho et al. ( 2022 ) that ∼50 simulations 

are enough for a five dimensional emulation problem. 

4.2 Selecting the optimal slice 

Slices in SLHD are Latin hypercubes in smaller sizes. In principle, 

any slice should produce reasonably good emulation, as the points 

in each slices span parameter space. 

Ho we ver, in practice, some slices still perform somewhat better 

than others, as shown in Fig. 4 . We use a procedure similar to our 

grid search approach in Ho et al. ( 2022 ) to a v oid choosing the worst 

slice. The procedure is described as follows: 

(i) prepare SLHD for LF simulation suite; 

5 https:// rdrr.io/ cran/ SLHD/ man/ maximinSLHD.html 
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(ii) build LF only emulators (LFEmu) for each slice, compute 

the interpolation error for each LFEmu, testing solely on the LF 

simulation suite; and 

(iii) select the slice which can best minimize the interpolation 

error. 

Note that we do not use any HF simulations in the abo v e 

procedure. The selection entirely relies on the LF simulation suite. 

The underlying assumption is that the interpolation error of the LF 

node is correlated with the interpolation error of the HF node. We 

labelled the selected slice in Fig. 3 . We will use the best slice as our 

HF training set for the results in Section 6 . 

To summarize, SLHD is a special kind of LHD, with each slice 

in the SLHD being a Latin hypercube as well as the whole design. 

We thus can assign HF nodes with a slice (or slices) of SLHD, 

making both LF and HF nodes Latin hypercubes. In the end, we 

describe a procedure to a v oid choosing the worst slice for training 

an MFEmulator . 

5  C O M P U TAT I O NA L  BU D G E T  ESTIMATION  

In this section, we present our approach to quantifying the optimal 

allocation of simulation budgets across different fidelities. Building 

upon the error bounds established in Ji et al. ( 2021 ), we have made 

modifications to adapt them to our specific context, as described 

in Section 5.1 . We approximate the emulation errors of our MF- 

Box using the form of Ji et al. ( 2021 ) and empirically infer the error 

function of the emulator for various training designs, denoted as ( n L1 , 

n L2 , n HF ). Our objective is to utilize this empirical error function to 

determine the most cost-ef fecti v e strate gy for assigning LF and HF 

simulations in order to achieve optimal accuracy. 

In Section 5.1 , we present an approximate error function for our 

MF-Box emulator in predicting HF simulation outputs. Next, in 

Section 5.2 , we show the analysis for assigning optimal compu- 

tational budgets to LF and HF simulations, under the assumption 

that the emulator error follows the approximate error function. In 

Section 5.3 , we empirically estimate the approximate error function 

of the MF-Box by analysing the average emulator errors obtained 

from 144 distinct MF-Box training results. Finally, we determine 

the optimal number of LF and HF simulations required for achieving 

accurate power spectra emulation using the MF-Box approach. 

5.1 Error bounds for Gaussian process emulators 

Ji et al. ( 2021 ) presents an error bound for a multifidelity emu- 

lator, and for the case of two LF nodes, the form is given by 

∼ O( ρL1 · n 
−

νL1 
d 

L1 + ρL2 · n 
−

νL2 
d 

L2 + n 
−

νHF 
d 

HF ), where ( ρL1 , ρL2 ) are the 

scale parameters for the L1 and L2 nodes, respectively. ( νL1 , νL2 , νHF ) 

are positive spectral indices, and ( n L1 , n L2 , n HF ) represent the number 

of training simulations at the L1, L2, and HF nodes, respectively. 

While this bound does not directly apply to our case, we utilize 

the form of the bound as an approximate model for the MF-Box 

error and empirically determine the parameters by fitting them to the 

MF-Box emulation results using different multifidelity designs, i.e. 

varying combinations of ( n L1 , n L2 , n HF ). 

The equation below represents the error function of the MF-Box 

emulator we want to infer. Note that our discussion primarily focuses 

on the emulation error when predicting ‘HF’ power spectra. This 

emphasis aligns with the core objective of MF-Box , which is to 

correct the resolution of LF simulations for accurate predictions of 

Figure 5. Relative errors plotted against the number of LF and HF design 

points in an MF-Box emulator. Here, LF refers to the combined number of L1 

and L2 points, where LF = n L1 = n L2 . The plot reveals a trend of decreasing 

errors as the number of LF training simulations increases. Ho we ver, due to 

the limited number of HF points compared to LF points, the decreasing trend 

is relatively modest. 

their HF counterparts. 

� ( n L1 , n L2 , n HF ) 

= 
1 

N 

N 
∑ 

i= 1 

∣

∣

∣

∣

f HF ( θ i ) − m f HF ( θ i ) 

f HF ( θ i ) 

∣

∣

∣

∣

≈ ˜ � ( n L1 , n L2 , n HF ) 

= η ·

(

ρL1 · n 
−

νL1 
d 

L1 + ρL2 · n 
−

νL2 
d 

L2 + n 
−

νHF 
d 

HF 

)

, (13) 

where N = 10 test simulations in a Latin hypercube are used to 

average the emulation relative error. The emulator error function 

� ( n L1 , n L2 , n HF ) represents the average relative error of the MF-Box 

as a function of the number of simulations in L1, L2, and HF nodes. To 

estimate this error function, we have already averaged the emulation 

error across k bins, enabling us to obtain an approximation of the 

error as a function of the design points ( n L1 , n L2 , n HF ). Then, we infer 

the parameters of this error function from the MF-Box emulation 

results, as denoted by the ≈ sign in equation ( 13 ). The normalization 

factor of the functional form in equation ( 13 ) is determined by the 

free parameter η. 

An important term in equation ( 13 ) is the one describing how the 

error scales with an increasing number of simulations, n 
− 1 

d 
t , where t ∈ 

L1, L2, HF. This scaling term comes from the fact that the fill distance 

is proportional to O( n 
− 1 

d 
t ), where d is the number of dimensions in a 

space-filling design (Wendland 2004 ). 

To determine the parameters of ˜ � ( n L1 , n L2 , n HF ), we employ 

MCMC inference based on 144 distinct MF-Box emulators that 

were trained with varying numbers of ( n L1 , n L2 , n HF ). Specifically, we 

generated MF-Box emulators using [12, 18, 24,..., 60] L1/L2 points 

and [2, 3,...,18] HF points, resulting in a total of 144 emulators. For 

simplicity, we only considered cases where the number of simulations 

in L1 and L2 nodes was equal, i.e. n L1 = n L2 , as the costs of L1 and L2 

nodes are similar, therefore, choosing between them is not important. 

To simplify the notation, we employ n LF to represent the number of 

training points in both the L1 and L2 nodes. Fig. 5 presents the 
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Table 3. MCMC analysis of equation 13 : 1 
N 

∑ N 
i= 1 

∣

∣

∣

f HF ( θ i ) −m f HF ( θ i ) 

f HF ( θ i ) 

∣

∣

∣
= � ( n L1 , n L2 , n HF ) ≈ η ·

(

ρL1 · n 
−

νL1 
d 

L1 + ρL2 · n 
−

νL2 
d 

L2 + n 
−

νHF 
d 

HF 

)

. The notation 

{ � ( n L1 ,j , n L2 ,j , n HF ,j ) } 
144 
j= 1 

Parameters Prior 

Posterior 

(50 per cent) 

Posterior (25 per cent, 

75 per cent) 

η Normal ( μ = Mean ( { � j } 
144 
j= 1 ) , σ

2 = Var ( { � j } 
144 
j= 1 )) 0.0308 (0.0290, 0.0327) 

νHF LogNormal ( μ = 0, σ = 1) 9.80 (9.44, 10.2) 

νL1 LogNormal ( μ = 0, σ = 1) 5.49 (5.33, 5.67) 

νL2 LogNormal ( μ = 0, σ = 1) 5.49 (5.33, 5.67) 

ρL1 Normal ( μ = 1, σ = 1) 4.53 (3.97, 5.08) 

ρL2 Normal ( μ = 1, σ = 1) 4.54 (3.97, 5.10) 

Notes. The notation { � ( n L1 ,j , n L2 ,j , n HF ,j ) } 
144 
j= 1 means all 144 MF-Box emulator errors used for parameter estimation. The column ‘Posterior (50 per cent)’ 

reports the medians of the posteriors of the parameters, and ‘Posterior (25 per cent, 75 per cent)’ reports the 25 and 75 per cent quantities of the posterior 

distributions. 

av erage relativ e errors, � ( n L1 , n L2 , n HF ), for all 144 designs under 

consideration. 

F or each pix el in Fig. 5 , we compute the average emulator relative 

error across 10 test simulations and multiple k bins across a redshift 

range, z ∈ [0, 0.2, 0.5, 1, 2, 3]. To solve the parameter estimation 

problem, we employ MCMC inference with a Gaussian likelihood, 6 

˜ � ( n L1 , n L2 , n HF ) 

= η ·

(

ρL1 · n 
−

νL1 
d 

L1 + ρL2 · n 
−

νL2 
d 

L2 + n 
−

νHF 
d 

HF 

)

∼ N ( μ = � ( n L1 , n L2 , n HF ) , σ
2 = � var ( n L1 , n L2 , n HF )) . (14) 

Here, � ( n L1 , n L2 , n HF ) represents the average relative errors, while 

� var ( n L1 , n L2 , n HF ) denotes the variance of the relative errors across 

10 test simulations. 

The results of our MCMC analysis, including the priors and 

posteriors, are summarized in Table 3 . The posteriors show that νL1 

≃ νL2 and ρL1 ≃ ρL2 , indicating that both L1 and L2 nodes contribute 

to improving the accuracy of the emulator in a similar manner. In 

contrast, the power-law index νHF for the HF node is approximately 

twice as large as νL1 and νL2 , suggesting that the HF node has a more 

pronounced impact on enhancing the emulator’s accuracy compared 

to the LF nodes. Table 3 shows that the parameters in equation ( 13 ) 

are reasonably well defined. Thus, we will use the median of the 

posterior as point estimates for the error function for the remainder 

of this paper. 

5.2 Optimal number of simulations per node 

Equation ( 13 ) models the emulation error, � ( n L1 , n L2 , n HF ), which 

behaves as a combination of power-law functions of the number of 

simulations in each node, namely LF or HF. The primary goal of an 

emulator is to better represent the original simulator by minimizing 

the prediction error, subject to a limited computational budget, 

denoted by C . By using � ( n L1 , n L2 , n HF ), we can determine the 

optimal number of simulations per node, given the computational 

b udget a vailable for running each node. 

Consider a two-fidelity emulator consisting of two LF nodes, 

L1 and L2, where ρL1, L2 are the scale parameters and ( n L1 , n L2 , 

n HF ) represent the number of simulations in L1, L2, and HF nodes, 

respectively. Our goal is to minimize the emulation error while 

6 We use the PyMC package version 4 (Salvatier , W iecki & Fonnesbeck 2016 ) 

for the MCMC inference. 

subject to a limited budget. 

n L1 · C L1 + n L2 · C L2 + n HF · C HF ≤ C, (15) 

where we know the ratios between the costs of HF and LF nodes (L1 

and L2) are C HF 
C L1 

≃ 140 and C HF 
C L2 

≃ 140 / 1 . 7, from Table 1 . 

The Lagrangian for optimizing the error subjecting to the cost is 

L ( n L1 , n L2 , n HF , λ) = η

(

ρL1 · n 
−

νL1 
d 

L1 + ρL2 · n 
−

νL2 
d 

L2 + n 
−

νHF 
d 

HF 

)

+ λ( n L1 · C L1 + n L2 · C L2 + n HF · C HF − C) , 

(16) 

Here, λ is the Lagrange multiplier. To find the optimal number of 

( n L1 , n L2 , n HF ) minimizing the emulation error, we use the first-order 

deri v ati ve conditions of the Lagrangian, 

∂ L ( n L1 , n L2 , n HF , λ) 

∂ n L1 
= 0; 

∂ L ( n L1 , n L2 , n HF , λ) 

∂ n L2 
= 0; 

∂ L ( n L1 , n L2 , n HF , λ) 

∂ n HF 
= 0 , (17) 

resulting in 

η
νL1 

d 
ρL1 · n 

−
νL1 + d 

d 
L1 = λC L1 ⇒ n L1 ∝ 

(

νL1 ρL1 

C L1 

)
d 

νL1 + d 

η
νL2 

d 
ρL2 · n 

−
νL2 + d 

d 
L2 = λC L2 ⇒ n L2 ∝ 

(

νL2 ρL2 

C L2 

)
d 

νL2 + d 

η
νHF 

d 
n 

−
νHF + d 

d 
HF = λC HF ⇒ n HF ∝ 

(

νHF 

C HF 

)
d 

νHF + d 

. (18) 

Here, the intuition is relatively straightforward: the number of 

simulations required is inversely proportional to the cost of each 

simulation at a gi ven fidelity. Ho we v er, if we observ e a strong 

correlation between fidelities (i.e. if ρL1, L2 is large), then we should 

use more LF simulations because they are less expensive. 

To ensure that equation ( 18 ) identifies local minima instead of 

maxima, we can verify the positivity of the second-order deri v ati ves 
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Figure 6. Inferred relative errors for all available MF-Box emulators are displayed. Each subplot corresponds to a fixed number of HF points (as indicated 

in the title) with varying LF points (on the x -axis). The red curves represent the median predictions (50 per cent posterior). Blue lines indicate the average 

relative errors obtained from the MF-Box emulators, while the error bars represent the standard deviation of relative errors across 10 simulations in the test set. 

The shaded area depicts the 25 and 75 per cent confidence interval of the predictions based on the inference results. Overall, the relative errors demonstrate a 

decreasing trend as the number of LF and HF points increases. 

of the Lagrangian. 

∂ 
2 L ( n L1 , n L2 , n HF , λ) 

∂ n 2 L1 

= ηρL1 
νL1 ( νL1 + d) 

d 2 
n 

−
νL1 + 2 d 

d 
L1 > 0; 

∂ 
2 L ( n L1 , n L2 , n HF , λ) 

∂ n 2 L2 

= ηρL2 
νL2 ( νL2 + d) 

d 2 
n 

−
νL2 + 2 d 

d 
L2 > 0; 

∂ 
2 L ( n L1 , n L2 , n HF , λ) 

∂ n 2 HF 

= η
νHF ( νHF + d) 

d 2 
n 

−
νHF + 2 d 

d 
HF > 0 . (19) 

The parameters ( νL1 , νL2 , νHF ), ( ρL1 , ρL2 , ρHF ), and η are all positive, 

while the dimension of the input space, d , must be a positive integer. 

Similarly, the number of simulations ( n L1 , n L2 , n HF ) must be positive 

integers as well. Therefore, all second-order deri v ati ves are positive, 

indicating that equation ( 18 ) minimizes the emulation error. 

In the special case, where ν ≡ νLF = νHF , equation ( 18 ) simplifies 

to the optimal budget identified in Ji et al. ( 2021 ): 

n LF 

n HF 
= 

(

ρLF C HF 

C LF 

)
d 

ν+ d 

, (20) 

where the ratio of LF/HF training sample sizes is inversely propor- 

tional to the cost of each simulation per run and directly proportional 

to the correlation with the HF node. 

5.3 Empirical estimate of the error function 

In this section, we present the predicted errors of MF-Box obtained 

from our MCMC analysis. We explore the impact of different MF- 

Box designs on error predictions. Finally, we discuss the choices of 

the optimal number of simulations for MF-Box based on the analysis 

presented in Section 5.2 . 

We illustrate the predicted emulation errors in Fig. 6 , categorized 

by MF-Box models with varying LF and HF points. The predictions 

align with the o v erall trend of the data, except when n LF is low, where 

the limited availability of LF training points leads to suboptimal 

training performance. 

Figs 7 and 8 depict the predicted relative errors as a function of LF 

and HF points, respectively. Both figures exhibit a power-law trend 

characterized by a ne gativ e spectral inde x, indicating that the error 

decreases as the number of training points increases. For example, 

in Fig. 7 , the X LF-3 HF emulator emulators ( X ∈ { 12, 18, 24, 30, 

36, 42, 48, 54, 60 } ) follow this trend concerning the number of 
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Figure 7. Inferred relative errors as a function of LF points. Shaded area 

shows the 25 and 75 per cent confidence interval of the prediction from the 

inference result. 

Figure 8. Inferred relative errors as a function of HF points. Shaded area 

shows the 25 and 75 per cent confidence interval of the prediction from the 

inference result. 

LF points, suggesting that achieving further accuracy improvements 

becomes challenging once a sufficient number of LF points are used. 

How much the error can be reduced by increasing the number of 

LF points is also influenced by the correlation between LF and HF 

simulations, which is controlled by the ρ parameter. A higher value 

of ρ indicates that LF points can more ef fecti vely reduce the error. 

On the other hand, incorporating additional HF points can also 

enhance accuracy. In Fig. 7 , increasing the number of points in the 

HF node from 3 to 18 shifts the power-law function towards lower 

values, which itself follows the trend in Fig. 8 . Similarly, as more 

HF points are included in the training, achieving further emulation 

accuracy becomes more challenging. 

Fig. 9 displays the predicted error functions � ( n L1 , n L2 , n HF ) for 

different MF-Box emulator designs. We compile these predictions 

to create a plot of emulator error versus budget size. The bottom 

left region of the plot represents the most economical budget setup, 

where the error is minimized relative to the allocated budget. 

Based on the predictions in Fig. 9 , we can determine the optimal 

number of simulations ( n L1 , n L2 , and n HF ) for achieving a desired level 

Figure 9. The predicted emulator errors as a function of the budget size, in 

the unit of the number of LF simulations. The predictions are based on the 

medians of the parameter posteriors presented in Table 3 . The plot shows the 

predicted error functions using different combinations of LF and HF nodes. 

The red, yellow, blue, and black curves represent the predicted error functions 

with varying LF nodes and a fixed HF node ( n HF = 3, 4, 5, 6). In contrast, 

the purple-dashed curve represents the predicted error function with varying 

HF nodes and a fixed LF node ( n LF = 60). The green-dotted line illustrates 

the error function corresponding to the optimal budget (equation 21 ). The 

v ertical gre y-dotted lines indicate the budget size in terms of the number of 

HF simulations. The horizontal grey-dotted lines denote the predicted errors 

at the levels of (1 per cent , 0 . 5 per cent , 0 . 3 per cent ). 

of average accuracy. For instance, if we aim for at least 1 per cent 

average error, the optimal choice is ( n L1 = 30, n L2 = 30, and n HF = 

3), which corresponds to a cost of approximately 500 L1 simulations. 

Note that a minimum of three HF simulations ( ∼420 L1 simulations) 

is required to train an MF-Box in our power spectrum emulation 

problem. Similarly, if we aim for at least 0.5 per cent average error, 

the optimal setup becomes ( n L1 = 60, n L2 = 60, and n HF = 4). 

Ho we ver, a slightly higher cost is required for the setup with ( n L1 = 

50, n L2 = 50, and n HF = 5), which yields a similar error. 

In Fig. 9 , the purple-dashed curve represents the predicted error 

of 60 LF-[2-10] HF emulators, illustrating the trend of increasing 

the number of HF points while keeping a fixed number of 60 LF 

nodes. At the point of (60 LF, 3 HF), the error decrease exhibits a 

similar gradient to [12-200] LF-3 HF emulator, but it shows a steeper 

gradient after four HF points. This result suggests that adding more 

LF or HF nodes does not necessarily lead to superior performance 

compared to each other. 

Under the assumptions outlined in Section 5.2 , we can determine 

an optimal number of simulations ( n L1 , n L2 ,and n HF ) for an MF-Box 

to achieve the best emulation accuracy within a given computational 

budget. The optimal ratio between the number of HF and LF 

simulations can be expressed as 

n 
−

νLF + d 
d 

LF = n 
−

νHF + d 
d 

HF 

C LF 

C HF 

νHF 

ρLF νLF 
. (21) 

Here, LF is either L1 or L2. C LF and C HF represent the computational 

cost of one simulation in the LF and HF, respectively. 

In Fig. 9 , the green-dotted line represents the optimal budget 

according to equation ( 21 ). When n HF = 2.5, the optimal number 

of LF simulations is ( n L1 , n L2 ) = (80, 60), which is close to our 

initial setup of MF-Box with ( n L1 = 60, n L2 = 60, and n HF = 3). 

Moreo v er, the design of ( n L1 = 60, n L2 = 60, and n HF = 4) is also 
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nearly optimal (close to the green-dotted line), as demonstrated in 

Fig. 9 . 

In summary, this section introduces an approach to model the 

average emulation error of MF-Box as a function of LF and HF points 

using an approximate error model based on power-law functions. 

Through empirical analysis of 144 MF-Box designs with various 

configurations, we have inferred this error model. We demonstrate 

that this empirical model can guide the selection of an optimal design 

within a given computational budget, facilitating the construction of 

accurate emulators in a resource-efficient manner. 

6  RE SULTS  

This section will demonstrate the emulation accuracy achieved by 

incorporating simulations with different box sizes through MF- 

Box for correcting the resolution of LF emulators to predict HF 

counterparts. The emulation error in this section is computed using 

a hold-out test set comprising 10 HF simulations, carefully selected 

from a separate Latin hypercube that was not part of the training set. 

Here, we will use MF-Box to denote the emulators using the GMGP 

model (Ji et al. 2021 ) with the graph structure in Fig. 1 . Section 6.1 

will sho w ho w MF-Box ’s accurac y impro v es by adding an L2 node 

in 100 Mpc h 
−1 . Section 6.2 will show how MF-Box ’s accuracy 

changed as a function of L2 box size, from 100 to 256 Mpc h 
−1 . 

Finally, Section 6.3 shows the runtime comparison between single- 

fidelity emulators, MFEmulator (including AR1, NARGP) and 

MF-Box . 

6.1 MF-Box accuracy (256 + 100 Mpc h 
−1 ) 

This section shows how the emulation error changed when a suite of 

small-box simulations is included as a second LF node, L2, through 

MF-Box . More precisely, we use two LF nodes: 

(i) L1: 128 3 simulations with 256 Mpc h 
−1 ; 

(ii) L2: 128 3 simulations with 100 Mpc h 
−1 . 

The information about the training simulations is summarized in 

Table 1 . 

Fig. 10 shows the emulation error averaged over redshift bins, z 

∈ [0, 3], by using different multifidelity models, AR1, NARGP, 

and MF-Box . All three models perform similarly at large scales 

( k < 2 h Mpc −1 ). The main difference is MF-Box performs better at 

k ≥ 2 h Mpc −1 while AR1 and NARGP have an error bump at 10 

per cent level. 

In the right panel of Fig. 11 , we can easily see the 10 per cent error 

bump exists at z = 1 −3 at small scales ( k ≥ 1 h Mpc −1 ). The small- 

scale impro v ement in the right panel is not a surprise. The additional 

LF node in a smaller box (L2) brings more accurate small-scale 

statistics than L1, making MF-Box outperform AR1 and NARGP. 

MF-Box stays ≃ 1 per cent error within the redshift range z ∈ [0, 

3], in contrast to AR1 and NARGP where the error increases from 

≃ 1 per cent to ≃ 20 per cent (from z = 0 to 3). 

The bump in interpolation error in AR1 and NARGP at z > 1 is 

due to the feature at the initial inter-particle spacing at these redshifts, 

corresponding to the initial particle grid, as mentioned in Ho et al. 

( 2022 ). The mean particle spacing of the initial condition appears as 

a delta function in the matter power spectrum at high redshift. This 

feature eventually disappears, erased by gravitational interactions. 

The L2 and HF box, ho we v er, both hav e a smaller mean interparticle 

spacing and thus show the delta function on smaller scales, beyond 

those we wish to emulate. Using the information the L2 simulations 

Figure 10. Relative errors averaged over z = [0, 0.2, 0.5, 1, 2, 3] for different 

multifidelity models, AR1 (blue), NARGP (red), and MF-Box (yellow). The 

MF-Box model uses 60 L1 (256 Mpc h −1 ), 60 L2 (100 Mpc h −1 ), and 3 H 

(256 Mpc h −1 ) simulations for training. Both AR1 and NARGP use 60 L1 

and 3 HF for training. The shaded area is the variance among different test 

simulations. 

provide, MF-Box is able to maintain similar accuracy across z ∈ [0, 

3]. 

The left panel of Fig. 11 shows the redshift trend at large scales, 

indicating no significant difference between AR1, NARGP, and MF- 

Box . The slightly worse accuracy in MF-Box is probably because 

MF-Box has more hyperparameters to fit, making it slightly more 

difficult to reach ∼ 0 . 1 per cent accuracy. 

Fig. 12 shows the AR1, NARGP, and MF-Box accuracies as a 

function of the number of HF points, splitting into two redshift bins. 

The left panel shows the accuracy averaged over the low-redshift 

bins, z ∈ [0, 0.2, 0.5], where NARGP and MF-Box perform similarly 

and outperform the AR1 model. It is not a surprise that NARGP 

and MF-Box perform similarly since MF-Box is an extension of 

NARGP. 

The left panel of Fig. 12 shows that the error is almost flat as a 

function of HF points. In Section 5 , we showed that the emulator 

error is a power-law function of the number of training points. Here, 

the emulation accuracy is likely limited by the intrinsic accuracy of 

our 512 3 HF simulations, so it is hard to get impro v ement at the 

sub-per cent level. 7 The right panel of Fig. 12 shows that MF-Box 

performs better than the other two models by a factor of ∼5 −10. 

Fig. 13 shows the averaged emulation error as a function of LF 

points. We see a mild impro v ement at low-redshift bins (left panel) 

by adding more LF points for all three models. At the higher redshift 

bins (right panel), AR1 and NARGP cannot be easily impro v ed 

by adding more LF training simulations. This is likely because the 

error is dominated by the delta function in L1 at small scales. 

MF-Box achieves an average error at the 1 per cent level with 

30L1 + 30L2 + 3HF, as expected from Section 5 . 

In summary, we show that the impro v ement of MF-Box happens 

at small scales ( k > 2 h Mpc −1 ) at the higher redshift bins ( z ∈ [1, 

2, 3]). This is primarily because the L1 node at these redshifts has 

the delta function feature from the initial particle grid dominating on 

small scales. 

7 As discussed in Ho et al. ( 2022 ), our HF power spectra are ∼

0 . 1 −10 per cent error compared with EuclidEmulator2. 
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Figure 11. Relative errors averaged over all k modes (split into large and small scales) for different multifidelity models (AR1 (blue), NARGP (red), and 

MF-Box (yellow), broken down into different redshift bins. The grey-dashed line is the HF-only emulator using 3 H simulations, and the solid grey line is the 

LF-only emulator using 60 L1 simulations. The shaded area is the variance among different test simulations. MF-Box impro v es the emulation at small scales at 

higher redshifts ( z ≥ 1). We do not include the variance of LFEmu (60L1) because the variance is too large. 

Figure 12. Relative error as a function of the number of HF training points for different multifidelity methods: AR1 (blue), NARGP (red), and MF-Box 

(yellow). The range of the number of HF points is relatively small, so the error estimate trend is unclear. Ho we ver, in general, the emulation error decreases with 

more HF points. Left panel: averaged relative error for z ∈ [0, 0.2, 0.5]. Right panel: averaged relative error for z ∈ [1, 2, 3]. 

6.2 Emulation with various box sizes 

In Section 6.1 , we have learned that we can achieve better emulation 

performance by incorporating an LF node in a smaller box. This 

section examines how MF-Box ’s emulation error changed as a 

function of the L2 box size. 

Fig. 14 shows the emulation error as a function of L2 box size, 

av eraging o v er all k bins and splitting into two redshift bins. We 

include AR1, NARGP, and MF-Box . In this section, we use the L2 

node as the LF node for both AR1 and NARGP. The left panel shows 

the error at the low-redshift bin ( z ∈ [0, 0.2, 0.5]). AR1 and NARGP 

have < 1 per cent error with L2 = 256 Mpc h 
−1 , but the error gets 

worse when the L2 box size becomes smaller due to the cosmic 

variance at large scales. On the other hand, MF-Box error stays flat 

for L2 ∈ [100 , 224] Mpc h 
−1 . 

The right panel of Fig. 14 shows the error versus L2 box size at 

the high-redshift bin, z ∈ [1, 3]. All models show a decrease in error 

using a smaller L2 box size in training. This is mainly due to the 

feature at the initial interparticle spacing mentioned in Section 6.1 . If 

a smaller L2 is used, the feature mo v es to smaller scales, away from 

those we are emulating, causing a decline of error from the large L2 

box to the small L2 box size. 

To help visualize the performance change on different scales, we 

show in Fig. 15 the emulation error as a function of k , av eraged o v er 

all redshift bins. As Fig. 15 shows, for different L2 sizes, MF-Box 

accuracy only changes at the small scales with k > 3 h Mpc −1 . This 

is not a surprise because all MF-Box models share the same L1 node 

(128 2 simulations in 256 Mpc h 
−1 ), and thus the emulation at large 

scales stays the same. The NARGP shown in Fig. 15 uses L2 with 

100 Mpc h 
−1 as an LF node. Its performance is worse than MF-Box 

with L2 = 100 Mpc h 
−1 at all k bins. 

To sum up, the error of MF-Box changed as a function of L2 box 

size: using a smaller L2 can result in better MF-Box accuracy. The 
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Figure 13. Relative errors for AR1 (blue), NARGP (red), and MF-Box (yellow) as a function of LF points, splitting into two redshift bins. Left panel: averaged 

error for z ∈ [0, 0.2, 0.5]. Right panel: averaged error for z ∈ [1, 2, 3]. 

Figure 14. Relative errors of multifidelity emulation as a function of L2 boxsize, for AR1 (blue), NARGP (red), and MF-Box (yellow). Note that we use L2 

instead of L1 for AR1 and NARGP models. 

impro v ement caused by L2 is mostly at small scales ( k > 2 h Mpc −1 ) 

at higher redshift bins ( z = 1, 2, 3). 

6.3 Runtime comparison 

We will compare the costs of each method in this section. Fig. 16 

shows the error of different emulators as a function of node hours 

for the training simulations. A similar compute time versus accuracy 

plot can be found in fig. 4 of Ho et al. ( 2022 ), albeit only for z = 

0. We performed the MP-Gadget simulations at high-performance 

computing centre (HPCC) at UC Riverside, 8 each compute node has 

32 intel Broadwell cores. 

To understand Fig. 16 , we can start with the HF only emulators 

([3–11] HF). This is the emulator we would train before we have mul- 

tifidelity methods. HF-only emulator shows a steady impro v ement 

8 https://hpcc.ucr.edu 

with an increase in run time. Ho we ver, the error gradient gets flatter 

with more training points, indicating the difficulty of improving an 

emulator at a highly accurate regime. 

This trend is intuitive because the error of an emulator roughly 

scales as a power-law function, (number of training points) −
ν
d . Each 

line in Fig. 16 is a segment of different power-law models. In this 

view, we can see AR1 and NARGP follow two very similar trends, 

except one has a lower mean emulation error. 

Switching the focus to MF-Box , we can see the mean error of 

the power law is ∼6 −8 times better than AR1 and NARGP. The 

error for both AR1 and NARGP plateaus, implying that adding new 

simulations will not increase the emulator’s accuracy. The only way 

to impro v e the emulation at a similarly good efficiency is using 

small-box simulations through MF-Box . 

Recall the HF/L1 ratios in Fig. 2 . L1 is roughly at ∼ 5 per cent 

error at large scales. On the other hand, the L2-only emulator is 

at ∼ 10 per cent error. Using an MF-Box , the information carried 

by L1 and L2 is corrected to be at ∼ 0 . 5 per cent level, which is a 
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Figure 15. Relative errors averaged over redshift bins, as a function of k 

modes. MF-Box with 224 Mpc h −1 L2 (blue), MF-Box with 160 Mpc h −1 

L2 (yellow), and MF-Box with 100 Mpc h −1 L2 (red). The grey-dashed line 

is the NARGP model uses 100 Mpc h −1 L2. 

Figure 16. Runtime comparison in node hours. We average the error across 

redshift bins z = [0, 0.2, 0.5, 1, 2, 3] and average across k bins. AR1 and 

NARGP perform similarly to MF-Box at z < 1. Dashed lines are the predicted 

error based on the error function equation ( 13 ), which we inferred in Section 5 . 

substantial impro v ement giv en that only 3 HF simulations are utilized 

to establish correlations between fidelities. 

7  C O N C L U S I O N S  

In this work, we show that our multifidelity emulation, MF-Box 

(model structure refers to Fig. 1 , and simulation data refer to 

Table 1 ), can combine simulations from different box sizes to achieve 

impro v ed o v erall emulator accurac y. MF-Box has a higher accurac y 

impro v ement per CPU hour than the multifidelity method with only 

one box size. The framework is adaptable to different simulation 

suites and emulation problems. 

We summarize the key contributions of this work as follows: 

(i) Propose a new multifidelity emulation, MF-Box , combining 

information from different simulation box sizes: Using the in-tree 

graph of GMGP (Ji et al. 2021 ), we can fuse cheap LF simulations 

from multiple box sizes in one unified machine-learning model. 

Simulations in a large box capture large-scale statistics, while 

the simulations in a small box can impro v e small-scale statistics. 

Previously, the cheapest way to impro v e MFEmulator was by 

increasing the particle load in the LF node, which scales as ∼ O( N 
3 
p ). 

MF-Box opens a new avenue to add additional information to the 

multifidelity emulation framework in a cheaper way. 

(ii) Leverage accurate and systematic-free information from L2 

to impro v e multifidelity emulation accurac y : L2 pro vides unique 

information absent in L1, and also acts as a cross-check for L1. 

Systematic errors or unknown bugs in LF nodes can limit the effec- 

tiveness of multifidelity methods, as it relies on existing information. 

Ho et al. ( 2022 ) identified such a limitation, noting that systematic 

errors present in the LF node can make achieving high accuracy 

difficult. MF-Box helps resolve the systematic in one LF node by 

introducing an additional L2 node without the systematic. It is worth 

noting that systematic errors may exist in both L1 and L2 nodes, 

but MF-Box can help mitigate these errors by cross-checking the 

information provided by two nodes, as long as the systematic errors 

are present at different scales. 

(iii) Power-law analysis of emulation errors in multifidelity mod- 

elling with MF-Box : In Section 5 , we present an error analysis 

of MF-Box models. We empirically estimate the emulation error 

function, which follows a power-law decay with respect to the 

number of training simulations. This explains why it is difficult 

to impro v e single-fidelity emulators which are already per cent- 

level accurate. Multifidelity emulation shows advantageous in re- 

ducing the o v erall cost and time required to achiev e high accu- 

racy. The estimated error function can also serve as a guide for 

optimizing resource allocation across fidelity nodes, facilitating 

the development of accurate emulators in a more efficient use of 

resources. 

MF-Box also opens up opportunities to experiment with different 

ways to implement multifidelity emulation in cosmology. The second 

LF node, L2, can be anything that brings new information to a 

multifidelity emulator. For example, it could be a node that runs using 

hydrodynamical simulations, or a node that uses a linear perturbation 

theory code. One example could be L1 runs with dark-matter 

only simulations at high resolution, L2 runs with hydrodynamical 

simulations at low resolution (and in a small box), and an HF 

node as hydrodynamical simulations at high resolution. This way, 

the cosmological dependence of the baryonic effects is captured 

by L2, and L1 gives us highly accurate gravitational clustering. 

MF-Box , using a different box size in an additional LF node, 

is just a simple example to demonstrate the flexibility of this 

method. 

The main remaining limitation of our multifidelity emulation 

framework is that the highest fidelity node must be in the training 

set, and encompass the largest box and highest resolution. In other 

w ords, our multifidelity framew ork cannot extrapolate to predict the 

results of a simulation with a resolution higher than the HF node. 

Future applications of our multifidelity emulation include applying 

the MF-Box to the accurate high-resolution simulations, where the 

resolution can match the future experiments. We may also apply 

MF-Box to different cosmological probes, especially applying to 

the beyond two-point statistics, such as weak-lensing peak counts 

and scattering transform coefficients. 

SOFTWARE  

We used the GPy (GPy 2012 ) package for Gaussian processes. 

For multifidelity kernels, we moderately modified the multifidelity 
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submodule from emukit (P ale yes et al. 2019 ). 9 For the dGMGP 

model, we used the code provided by Ji et al. ( 2021 ), which uses 

GPy . For maxmin SLHD, we use the R software maximinSLHD 

(Ba et al. 2015 ). We used the MP-GADGET (Feng et al. 2018 ) 

software for simulations. 10 We generated customized dark matter- 

only simulations using Latin hypercubes through a modified version 

of SimulationRunner . 11 Fig. 1 is plotted using gaepsi2 . 12 

We also make use of the following python libraries: matpltolib 

(Hunter 2007 ), numpy (Harris et al. 2020 ), scipy (Virtanen et al. 

2020 ), and pymc (Salvatier et al. 2016 ). 

Our code is publicly available at https:// github.com/ jibanCat/ 

matter emu mfbox , including an additional notebook example for 

the Tensorflow Probability 13 (Dillon et al. 2017 ) implementation of 

MF-Box . 
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