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ABSTRACT

We introduce MF - Box, an extended version of MFEmulator, designed as a fast surrogate for power spectra, trained using N-
body simulation suites from various box sizes and particle loads. To demonstrate MF - Box’s effectiveness, we design simulation
suites that include low-fidelity (LF) suites (L1 and L2) at 256 and 100Mpc A~', each with 128 particles, and a high-fidelity
(HF) suite with 5123 particles at 256 Mpc h~', representing a higher particle load compared to the LF suites. MF-Box acts as
a probabilistic resolution correction function, learning most of the cosmological dependencies from L1 and L2 simulations and
rectifying resolution differences with just three HF simulations using a Gaussian process. MF - Box successfully emulates power
spectra from our HF testing set with a relative error of < 3 per cent up to k ~ 7 hMpc~! at z € [0, 3], while maintaining a cost
similar to our previous multifidelity approach, which was accurate only up to z = 1. The addition of an extra LF node in a smaller
box significantly improves emulation accuracy for MF-Box at k > 2 hMpc ™!, increasing it by a factor of 10. We conduct an
error analysis of MF - Box based on computational budget, providing guidance for optimizing budget allocation per fidelity node.
Our proposed MF - Box enables future surveys to efficiently combine simulation suites of varying quality, effectively expanding
the range of emulation capabilities while ensuring cost efficiency.

Key words: methods: statistical —cosmology: theory.

1 INTRODUCTION

Over the past decade, cosmological large-scale structure surveys
have evolved increasingly in resolution and size. As observations
probe more non-linear structures with high precision, theoretical
predictions must be highly accurate to match the observational errors
at corresponding small scales. The only way to achieve such accurate
predictions is by running N-body simulations. However, including
expensive numerical simulations in the cosmological inference will
require ~10° likelihood evaluations using simulations, i.e. ~10°
numerical simulations in the Markov chain Monte Carlo (MCMC)
sampling, making it impractical to use simulations for Bayesian
inference directly.

In the development of statistical surrogate modelling, emulators
emerged as a Bayesian approach to analyse simulations and perform
fast function predictions (Currin et al. 1991; Santner, Williams &
Notz 2003; O’Hagan 2006). In cosmology, emulators have been
widely used as a fast surrogate model to replace the expensive
likelihood evaluations in the MCMC sampling. For example, using
surrogate models to replace the Boltzmann code in cosmological
inference (Auld et al. 2007; Auld, Bridges & Hobson 2008; Arico,
Angulo & Zennaro 2022; Giinther et al. 2022; Nygaard et al. 2022;
Spurio Mancini et al. 2022). With a large number of training samples
(~ O(10*—10°)), these Boltzmann code emulators have successfully
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improved the speed of the current parameter estimation pipeline.
Another approach is using surrogates to replace MCMC to emulate
the posterior distribution directly, reducing the overall required
number of likelihood evaluations (El Gammal et al. 2022).

Unlike the emulators for Boltzmann codes, likelihood evaluations
based on numerical simulations, such as cosmological N-body
simulations, are more expensive per training sample. Therefore, only
a limited number of full-size training simulations (~ O(10' —10?))
are computationally available. Emulation based on numerical simu-
lations has been implemented in various cosmological applications:
the matter power spectrum (Heitmann et al. 2009, 2014; Lawrence
et al. 2017; Euclid Collaboration et al. 2019, 2021), baryonfication
simulations (Giri & Schneider 2021; Arico et al. 2021), arbitrary
cosmology (Giblin et al. 2019), f(R) gravity (Arnold et al. 2022;
Harnois-Déraps et al. 2022), weak lensing (Harnois-Déraps, Giblin &
Joachimi 2019; Davies et al. 2021; Giblin, Cai & Harnois-Déraps
2023), halo mass function (McClintock et al. 2019; Nishimichi et al.
2019; Bocquet et al. 2020), 21-cm power spectrum (Kern et al.
2017) and global signal (Cohen et al. 2020; Bevins et al. 2021;
Bye, Portillo & Fialkov 2022), and Lyman-« forest (Bird et al. 2019;
Rogers et al. 2019; Pedersen et al. 2021; Rogers & Peiris 2021a, b;
Cabayol-Garcia et al. 2023). All these emulators are self-consistent
and can replicate the simulations as surrogate models to accelerate
the parameter inference pipeline.

Emulators have also been used in several current surveys. Ziircher
et al. (2022) used an emulator on Dark Energy Survey year 3
data for cosmic shear peak statistics. Neveux et al. (2022) used
an emulator on SDSS quasars and galaxies. Beyond cosmological
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inference, Jo et al. (2023) uses emulation to calibrate the galaxy
formation simulations. Kugel et al. (2023) and Salcido et al. (2023)
build emulators to quantify the subgrid feedback effects in the
hydrodynamical simulations. Emulators have also been used in a
wide range of disciplines, for example, exoplanet (Rogers et al.
2021), gravitational wave (Cheung et al. 2021), stellar population
synthesis (Alsing et al. 2020), heavy-ion physics (Ji et al. 2021,
2022), astrochemistry (Holdship et al. 2021), and biology (Vernon
et al. 2018).

The computational costs of cosmological emulators are rapidly
increasing, driven by an increase in both survey accuracy and
number of model parameters. Over the past few years, cosmological
emulators based on N-body simulations have evolved from five-
dimensional cosmology [e.g. wCDM in Coyote Universe (Heitmann
et al. 2009)] to higher dimensions, for example, eight-dimensional
wow,CDM + > m, cosmology in Euclid Collaboration et al.
(2021) and Mira-Titan Universe (Lawrence et al. 2017; Moran
et al. 2023). The increase in dimensionality means the number of
simulations required for training an accurate emulator also needs
to increase dramatically. For instance, EuclidEmulator2 requires
more than 200 high-resolution simulations with 3000° in an eight-
dimensional cosmology. Moreover, when the astrophysics effects are
not ignorable for cosmological inference (Giri & Schneider 2021;
Villaescusa-Navarro et al. 2021; Arico et al. 2021), more expensive
simulations, such as hydrodynamical simulations including baryonic
effects, must be used for training realistic emulators. This increase
in computational cost poses a challenge for the implementation of
emulators in future surveys, making them prohibitively expensive
and difficult to adopt unless the efficiency of emulation techniques
can be improved.

An efficient approach to reducing the computational cost is
building emulators using multifidelity emulation (MFEmulator),
which allows simulations with different particle loads to be combined
(Ho, Bird & Shelton 2022). Fernandez, Ho & Bird (2022) showed that
it is possible to construct a realistic emulator using hydrodynamical
simulations through the MFEmulator technique, emulating Lyman-
o forest with sub-per cent test accuracy using only six high-fidelity
(HF) simulations. In Fernandez et al. (2022) and Ho et al. (2022),
we assumed the particle load is the only fidelity variable. This is a
limitation, as simulation volumes also correlate with the accuracy
of a simulation: With a constant particle load, larger box sizes
enhance accuracy at larger scales but diminish it at smaller scales
due to reduced mass resolution. Smaller volumes with the same
particle load can capture finer small-scale details, though a minimum
box size requirement exists (Heitmann et al. 2010; Schneider et al.
2016). Here, we show that the cost of training an MFEmulator
can be further reduced by having multiple fidelities which vary both
simulation volumes and particle loads.

The multifidelity method we use, based on Kennedy & O’Hagan
(2000) and Ho et al. (2022), is just one of many multifidelity
techniques. Peherstorfer, Willcox & Gunzburger (2018) surveyed
the multifidelity methods in uncertainty quantification, inference,
and optimization. A few popular methods include the control variate
technique, which has been applied in cosmology in Chartier et al.
(2021); Chartier & Wandelt (2022) on reducing the variance of the
covariance matrix, and multilevel or multistage MCMC (Christen &
Fox 2005; Lykkegaard et al. 2020), which use low-fidelity (LF)
models to reduce the number of expensive likelihood evaluations
in MCMC. Though multilevel MCMC is a promising method, its
practical use requires running thousands of N-body simulations in
the sampler, which is not yet applicable to cosmological inference.
Another similar method is using deep-learning methods to learn
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the mapping from low- to high-resolution simulations to directly
generate the snapshots of the ‘super-resolution’ simulations (Kodi
Ramanah et al. 2020; Li et al. 2021; Ni et al. 2021). While this
method shows promise, it is currently limited to a single cosmology
and is not yet suitable for inference.

The statistical and computer science literature already contains
work on multifidelity techniques with more than one LF node.
Lam, Allaire & Willcox (2015); Poloczek, Wang & Frazier (2017)
considered a multi-information source framework, which combines
more than one information node to achieve an overall lower variance.
In this work, we use a graphical Gaussian process, based on a directed
acyclic graph (Ji et al. 2021), to predict HF simulations using LF
simulations in two different simulation volumes.

A design using multiple LF nodes can be helpful in several
ways. One example, which we will show in this work, is enhancing
the resolution at small scales using an additional LF node with
a smaller box size. A cosmological simulation has strict volume
requirements to ensure that the base mode is linear and to beat
cosmic variance. However, it also needs high enough particle load
(or spatial resolution) to capture the non-linearities at small scales.
MFEmulator provides a way to improve small-scale structures
using a simulation suite from a lower particle load. Nevertheless,
the non-linear information in a lower particle-load simulation is
also limited. An economical way to resolve small scales is to run
simulations in small boxes to increase the spatial resolution by
sacrificing some large-scale information.

Another approach to minimizing the number of training simula-
tions is Bayesian optimization, where a sequential choice of new
training simulations is designed to optimize the likelihood function
globally. For example, Leclercq (2018), Rogers et al. (2019), and
Takhtaganov et al. (2021) implemented Bayesian optimization in
the cosmological inference. Similar approaches, such as Pellejero-
Ibafiez et al. (2020), Boruah et al. (2022), Cole et al. (2022),
and Neveux et al. (2022), iteratively train emulators on the high
likelihood regions of the parameter space, thus minimizing the
overall training samples to achieve accurate posterior distribu-
tion. Our multifidelity emulation is a complimentary technique,
which can be combined with Bayesian optimization for the lowest
computational cost.

This paper presents MF - Box, extending our previously developed
MFEmulator to allow multiple LF nodes in a multifidelity emulator.
MF-Box uses the multifidelity graphical Gaussian process model
(GMGP) (Ji et al. 2021) to emulate HF simulations using LF
simulations from two different simulation volumes. A GMGP model
is an extension of the traditional KO model (Kennedy & O’Hagan
2000) and non-linear autoregressive Gaussian process (NARGP)
model (Perdikaris et al. 2017). The difference is that a GMGP allows
multiple nodes in a fidelity while KO or NARGP models assume
one node per fidelity. For example, in our case, the LF nodes include
separate box sizes with the same particle load, resolving different
scales of the Universe.

Our references to LF and HF nodes are based on a relative scale
within the context of our multifidelity framework. We do not directly
compare these definitions to other matter power spectrum emulators.
Our primary goal is to demonstrate the effectiveness of MF-Box as a
probabilistic resolution correction tool. This allows us to correct the
resolution of an LF emulator, approximating higher particle loads
using a limited number of HF simulations.

Consequently, the focus of our discussion on emulation error
revolves around predicting unseen HF simulations in the test set.
This choice is intentional, as it allows us to assess how well MF - Box
can upscale an LF emulator when predicting HF simulation outputs.
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Table 1. LF and HF simulation suites used in our study. The definition of LF
and HF nodes is based on a relative scale specific to our approach and is not
intended for direct comparison with other matter power spectrum emulators.

Simulation Box volume Npart Node hour
L1 (256 Mpc h~1)3 1283 ~1.0
L2 (100 Mpc h~1)3 1283 ~1.7
HF (256 Mpc h~1)3 5123 ~140
Test (256 Mpc h~1)3 5123 ~140

It is worth highlighting that the framework we present here can be
adapted for use with various other summary statistics emulators,
accommodating different definitions of LF and HF nodes as needed.

We will also present an analysis of the emulation errors in relation
to the computational budget. Previous studies Wendland (2004) and
Ji et al. (2021) have demonstrated that Gaussian process emulator
errors can be bounded by a power-law function. In this paper, we
model the emulation error from MF -Box as a power-law function of
the number of training simulations and empirically infer the emulator
error function from our MF -Box results. By utilizing this empirical
error function, we can estimate the emulation error associated with
a given multifidelity design, as well as determine the optimal budget
allocation for each node. This error analysis serves as a useful guide
for future development of MFEmulator techniques.

In Section 2, we will describe our simulations and experimental
design. Section 3 will review the single-fidelity emulator as well as
three multifidelity emulation methods, namely AR1, NARGP, and
MF -Box. Our sampling strategy for selecting input cosmologies for
HF simulations will be outlined in Section 4. Empirical inference of
the emulation error function will be discussed in Section 5. Section 6
will present the results of MF-Box, followed by the conclusion in
Section 7.

2 SIMULATIONS

We perform dark matter-only simulations using the open-source MP-
Gadget code (Feng et al. 2018)," an N-body and smoothed particle
hydrodynamical (SPH) simulation code derived from Gadget-3
(Springel & Hernquist 2003) and used to run the ASTRID simulation
(Bird et al. 2022; Ni et al. 2022), a large-scale high-resolution
cosmological simulation with 250 Mpc h~! containing 2 x 5500°
particles. The base of MP-Gadget is Gadget-3, but, among other
improvements, it has been rewritten to take advantage of shared-
memory parallelism and the hierarchical time-stepping from Gadget-
4 Springel et al. (2021). Detailed descriptions of the simulation code
can be found in Bird et al. (2022).

We start the simulations at z = 99 and finish at z = 0. The initial
linear power spectrum and transfer function are produced by CLASS
(Lesgourgues 2011) at z = 99 through the Zel’dovich approximation
(Zel’Dovich 1970). We assume periodic boundary conditions. We
use a Fourier transform-based particle-mesh method on large scales
for the gravitational forces and a Barnes—Hut tree (Barnes & Hut
1986) on small scales. Table 1 summarizes the simulation volumes
and particle loads used in this paper. We use the same set of LF
(L1) and HF pairs as in Ho et al. (2022), with an additional LF
node (L2) to demonstrate the emulation using simulations from
different box sizes. However, the framework presented in this paper
is generalizable to more than two LF nodes. Fig. 1 shows a visual
illustration for the dark-matter only simulations used in this paper.

Thttps://github.com/MP-Gadget/MP-Gadget/

MF-Box: multifidelity with varying box sizes
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Our emulation target is the matter power spectrum, P(k), a sum-
mary statistic of the overdensity field. We measure the matter power
spectrum with a cloud-in-cell mass assignment. We use the built-in
power spectrum estimator from MP-Gadget; the power spectrum is
thus generated on a mesh the same size as the simulation’s PM grid,
which is three times the mean interparticle spacing. The multifidelity
emulation framework we introduce here is also applicable to other
implementations of power spectrum calculations, such as those
generated by NBodyKit (Hand et al. 2018).

Fig.2 shows an example of our emulation target: matter power
spectra from different resolutions, where the LF simulations (L1 and
L2) have two different box sizes. L1 simulations are in the same box
size (256 Mpc h~') as HF simulations (HF) with the same initial
condition seeding; whereas, L2 simulations have a smaller box size
(100Mpc A~') than L1 and HF. In principle, L2 can capture more
small-scale structures due to its smaller box size. Indeed, as shown
in the second, third, and bottom panels in Fig. 2, L2 is more accurate
than L1 at small scales. For example, at z = 3, L2/HF is closer to 1
than L1/HF at small scales (k > 0.6 hMpc™").

Note that L2 is not necessarily better than L1 in matching the
HF simulations. L1 matches the HF power spectrum extremely well
at large scales, while L2 performs better at small scales. Therefore,
the accuracy of the different simulations is not in a monotonically
increasing sequence. Thus, the Kennedy & O’Hagan (2000) method
we used in Ho et al. (2022) cannot be directly applied to this example.

Fig. 3 shows our experimental design in the input parameter space,
corresponding to the prior range of

Qo ~ U(0.24,0.4);

Q, ~ U(0.04, 0.06);

h ~1(0.61,0.73);

Ag/107° ~ U(1.7,2.5);

ns ~U40.92, 1), 1)

where € is the total matter density parameter in the Universe, 2y
is the total baryon density parameter, / is the dimensionless Hubble
parameter, A is the spectral amplitude, and r; is the spectral index.

We generated 60 Latin hypercube samples using max—min sliced
latin hypercube (Ba, Myers & Brenneman 2015), including 20 slices
with 3 samples in each slice. We will discuss sliced latin hypercube
design (SLHD) in Section 4.1. SLHD partitions the design into
several equal slices (or blocks). Each slice itself is also a Latin
hypercube design, as well as the whole design. We thus choose one
of the Latin hypercube slices as our HF input. By using SLHD, we can
avoid the design points of the HF node clustered in the corner of the
prior volume. We ran L1 and L2 nodes using the same cosmological
parameters (although this is not required by the GMGP from Ji et al.
2021).

We summarize the notation used in this paper in Table 2.

3 EMULATION

Emulation predicts the output from expensive cosmological simu-
lations. First, a handful of simulations are run at carefully chosen
experimental design points as a training set. Next, a surrogate model
(an emulator) fits the prepared training set to predict simulation
output. The trained emulator will be a proxy for the simulation results,
allowing for inexpensive evaluation of a likelihood function.

In Section 3.1, we will briefly review emulation using a Gaussian
process. Section 3.2 will review how we can extend the Gaussian
process emulator to model simulations from different qualities using
a multifidelity emulator, MFEmulator. Our earlier multifidelity
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Figure 1. Illustration of the MF - Box framework and the dark-matter only simulations performed at z = 0. MF - Box provides a emulation framework to connect
power spectra (denoted as f(#), where 6 is the input cosmology) from LF simulations (L1 and L2) to HF simulations (HF), providing an efficient emulation
framework in predicting HF power spectra using only a few HF simulations augmented with many LF simulations with various volumes. p is a learnable
multiplicative resolution correction parameter, and 8 is a learnable additive resolution correction parameter. Details of the MF-Box model can be found in
Section 3.2.3. The particle loads and box sizes for each simulation are listed in Table 1. (a) Large-scale structures of each simulation are shown. Simulations
L1 and L2 have the same particle load (N, = 128), but L1 has a smaller box size (100 Mpc h~1). As a result, the large scales of L1 resemble those of the
HF simulation, while L2 lacks the necessary large-scale information to match HF. (b) Zoomed-in view (25.6 Mpc h~') of the small scales from (a) L1 lacks
structures due to the sparsity of particles at this scale, whereas L2 captures more structures by utilizing a smaller box size. As a result, L1 resembles HF at small

scales due to its finer mass resolution.

technique based on the KO method (Kennedy & O’Hagan 2000) will
be reviewed in Section 3.2.1. Section 3.2.2 will review an extension
of the KO method based on a deep Gaussian process and NARGP
(Perdikaris et al. 2017). Section 3.2.3 describes a graphical-model
Gaussian process model (GMGP) (Ji et al. 2021), an extension of
NARGP to allow more than one node in the same fidelity.

3.1 Gaussian process emulator

A Gaussian process (GP) regression model (Rasmussen & Williams
2005) is widely used as a cosmological emulator. A GP provides
closed-form expressions for predictions. In addition, a GP naturally
comes with uncertainty quantification, which is handy for inference
framework and Bayesian optimization. In emulation, a GP can be
seen as a Bayesian prior for the simulation response. It is a prior
because the emulator model is chosen to ensure smoothness in the
simulation response before data are collected (Santner et al. 2003).
Let @ € ® C R? be the input cosmologies for the simulator, and
/(@) be the corresponding output summary statistic. This work
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assumes that the summary statistic is the non-linear matter power
spectrum. A GP regression model is a prior on the response surface
of our simulated matter power spectrum:

p(f)=GP(fiu, k), 2

where (@) = E[f(#)] is the mean function, and k(0,0') =
Cov[ f(#), f(0")] is the covariance kernel function. The mean func-
tion is usually assumed to be a constant or zero mean unless there is
prior knowledge about the mean function. In this work, we assume
a zero mean function. The covariance kernel function is typically
chosen as a squared exponential function (radial basis function, RBF)
to return a smooth response surface.

Suppose we run the simulations at n carefully chosen input cos-
mologies, D = {0y, - - - , 0,,}, and we compress each simulation into
the corresponding matter power spectrum, y = {f(0;), --- , f(0,)}.
Conditioning on this training data and optimizing the hyperparame-
ters using maximum-likelihood estimation, we can get the predictive
distribution of fat a new input cosmology 8., f. = f(6.), through a
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Figure 2. Matter power spectra from dark-matter only MP-Gadget simula-
tions with various fidelities, conditioning on the same cosmology. The top
panel shows the power spectra from a large-box LF (L1; blue), a small-box LF
(L2; black), and a large-box HF simulations (HF; yellow). The numeric values
for different fidelities of simulations are tabulated in Table 1. The second,
third, and bottom panels show the ratios of L1/HF (red) and L2/HF (black)
simulations, conditioned on different redshift bins, z = 3.0, 0.5, 0. Bottom
panel: We also show the ratio between (L1, L2) and the linear theory power
spectrum from CLASS at large scales. The solid lines show the median and
shaded areas show the 68 per cent quantiles across 60 different cosmologies.

closed-form expression

P(fi | 3. D, 0) = N(fi | 1:(6), 67(0.)), 3)
where the mean and variance are

1+(8.) = k8., D)TK(D)™' y;
ol(0.) = k@.,0.) — k0., D)K(D)'k(®., D). “

The vector k(8,, D) = [k(0,,0,), -, k(@,,8,)] represents the
covariance between the new input cosmology, 6, and the training
data. The matrix K(D) is the covariance of the training data.

Although we do not explicitly state this in the notation, we let
f(0) be a single-value output. If the target summary statistic is a
vector, we let the Gaussian process model each bin separately. It
will be more apparent why we make this modelling decision in later

MF-Box: multifidelity with varying box sizes
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Figure 3. Experimental design of LF and HF simulations in this work.
The prior volume is chosen to be the same as EuclidEmulator2 (Euclid
Collaboration et al. 2021). Crosses (black) are the input parameters for the
LF simulations (both L1 and L2). Circles (red and yellow) are the parameters
for HF simulations, which is a subset of the LF experimental design. We use
max—min Sliced Latin Hypercube (SLHD) (Ba et al. 2015) for the LF design,
containing 20 slices with three samples in each slice. Red and Yellow circles
show two of the slices, which we select to be the input parameters for HF
simulations.

Table 2. Notations and definitions.

Notation Description
HF HF
LF LF
[4 Input cosmological parameters
1) Summary statistics (matter power spectrum
in this work) corresponding to input parameters.
Np Number of particles per box side
ARI1 Autoregressive GP
(Kennedy & O’Hagan 2000)
NARGP Non-linear autoregressive GP
(Perdikaris et al. 2017)
GMGP Graphical GP (Ji et al. 2021)
MFEmulator Multifidelity cosmological emulator
Ho et al. (2022)
MF-Box Multifidelity cosmological emulator

with different box sizes in LF.

sections (Section 3.2). The primary reason is that the correlation
between LF and HF summary statistics changes depending on the
scales. The multifidelity method can only capture-scale dependence
if we model the scales separately.>

3.2 Multifidelity emulation

We briefly recap the multifidelity emulation framework we proposed
in Ho et al. (2022). We will first review the Kennedy—O’Hagan
model (autoregressive GP; AR1) (Kennedy & O’Hagan 2000) and
NARGP (non-linear autoregressive GP) (Perdikaris et al. 2017)
in Sections 3.2.1 and 3.2.2, respectively. We do not change our

2 An alternative way is to apply a co-kriging kernel to model the covariance
for each vector element. We do not do that in this work because we found the
single-output GP is enough for our cosmological emulation purpose, so there
is no need to introduce another layer of complexity.

MNRAS 526, 2903-2919 (2023)
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AR1 and NARGP modelling presented in Ho et al. (2022), except
we simplified the notations to only two fidelities. Finally, we will
introduce the GMGP model (Ji et al. 2021), combining simulations
from different box sizes.

3.2.1 Kennedy-O’Hagan method

Kennedy & O’Hagan (2000) proposed a linear autoregressive GP
to model the response surfaces of a sequence of computer codes
with increasing fidelity. For simplicity, we assume there are only two
fidelities: dark-matter only simulations with fewer particles in LF
and with more particles in HF.

Let {y,p, yyr} be the matter power spectrum in the training set,
where y ¢ = { fir(0F)}] and yyp = { fur(0:")}/. Here, nir and
nyr are the number of simulations in the LF and HF, respectively.
The KO method models the multifidelity emulator as

Jur(0) = p - fLr(0) + 5(0), (&)

where p (the scale parameter) is a trainable parameter describing the
amount of common behaviour in LF and HF response surfaces. 5(8)
is a GP that models the remaining bias, modelling the variability that
cannot be captured by correlating LF to HF. In the context of the
matter power spectrum, the p - fir(f) term dominates at the large
scales describing the two-halo term while §(#) dominates at the small
scales describing the one-halo term.

We normalize the matter power spectra into a logarithmic scale.
The sample mean is subtracted from the LF log power spectra to
keep the output close to zero, while the HF log power spectra are
passed directly to the training:

Yur < log yir — Ellog y gl
Yur < log yyp. (6)

Not subtracting the mean spectrum of HF simulations is a com-
promise decision. Our benchmark multifidelity emulator uses only
three HF samples, and the sample mean of three power spectra will
often deviate substantially from the true mean spectrum. Instead, we
entirely rely on the bias term, §(@), to compensate for the deviation
caused by not subtracting the mean.

As mentioned in Ho et al. (2022), the p parameter has to be
scale-dependent (as a function of k) to model the scale-dependent
correlation between high and LF. Here, we use the same method as
Ho et al. (2022), where we assume equation (5) is a single-output GP
model and build a KO model for each & bin of the data. In this way,
we can model p as a function of k.

We also assign different KO models to different redshifts. We note
that it is possible to assume a smooth function to model p(k, z), and
we may examine this in future work.

3.2.2 Non-linear autoregressive Gaussian process

Another multifidelity method we used in Ho et al. (2022) is the non-
linear autoregressive GP, or NARGP, developed by Perdikaris et al.
(2017). NARGP is a modification of the KO method to allow non-
linearity in the scale parameter, p, through a deep GP (Damianou &
Lawrence 2013). In cosmic emulators, it means that we allow p to
vary as a function of cosmology.

Let fur(f#) be the HF and fir(#) be the LF power spectra as
functions of cosmology, . NARGP models the multifidelity problem
as

Jur(0) = p(0., fLe(9)) +5(6). O]
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Here, p is modelled as a GP and is a function of the cosmologies,
0, and the output from the previous fidelity, fir(@). We follow
the approximation made in Perdikaris et al. (2017) to simplify the
computation of a deep GP to two separate GPs. The approximation
is done by replacing the fi (@) with its posterior, f,1r(@). Equation
(7) can thus be further reduced to a regular GP with a kernel function
K:

Sfur ~ GP(, K) (3
with
K@0,0")=K,0,0) - Ks(fire®0), f, 150"+ Ks5(0,0"). ©)

We integrate the bias GP and the scale parameter GP here into one
single GP with a composite kernel. Each kernel, (K,, K¢, K;), is a
squared exponential kernel. K5 models the bias term, and the scale
parameter GP is factorized into the K¢, modelling the covariance be-
tween LF output posteriors. K, models the cosmological dependence
of p.

3.2.3 Graphical multifidelity Gaussian process

Here, we briefly explain a new multifidelity model using a GMGP,
first introduced in Ji et al. (2021). A similar approach is the multi-
information source method (Poloczek et al. 2017), which allows
multiple LF nodes (information sources) to resolve a single HF truth.
However, we find the model in Ji et al. (2021) is methodologically
closer to what we applied before in Ho et al. (2022), and so use this
technique for our emulation problem for LF nodes with different box
sizes.

The graphical GP model (Ji et al. 2021) utilizes a directed acyclic
graph to model multifidelity data. Instead of assuming the fidelities
of a simulation code form a monotonically increasing sequence in
accuracy, a GMGP allows the fidelities to have a directed-in tree
structure. Ji et al. (2021) have a thorough mathematical description
for applying GMGP in an arbitrarily directed in-tree structure. Thus,
each HF node has more than one corresponding LF node, a common
situation as there are many ways to approximate HF simulations.

We use the simplest case of the tree structure, illustrated in Fig.
1, with two LF nodes and one HF node. In the case of N-body
simulations, one may vary not only the number of particles, but also
the box size of the simulation. Thus, we can use an LF simulation
with a smaller box size to improve emulation at the HF node. We
will call this tree ‘MF-Box’ throughout the rest of the paper. In
the following text, we will assume L1 is the LF node that has 128>
particles. L2 has the same number of particles as L1 but a smaller
box size (100 Mpc %~'), and HF is the HF node with 5123 particles
and the same box size as L1 (Table 1).

The deep GMGP model (AGMGP), we use from Ji et al. (2021) is
an extension of NARGP, where Ji et al. (2021) implemented a specific
kernel structure allowing LF information from multiple nodes to be
passed to the HF node.? For the directed graph in Fig. 1, the dGMGP
model can be written as

Jur(0) = p({ fi(0) : t € L1, L2}, 0) + 5(0). 10)

Here, we pass the cosmologies 6 and the outputs from L1 and L2 to
the p function. We make the same approximation as in Section 3.2.2,
so we can train the deep GP recursively: We first train the LF

3Since we found NARGP outperformed AR1 in Ho et al. (2022) for the matter
power spectrum case, we will use dGMGP instead of the GMGP extended
from the AR1 model.
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emulators on L1 and L2, respectively. Then, we sample the output
posteriors from the L1 and L2 emulators and use them as the training
input for equation (10).

Similar to NARGP, we use a composite kernel for the HF GP in
the dGMGP:

Kqamar(8, 0")
=K,0,0) K;(fiLr(8), fiLr(8) + K;5(0,0), (11)

where the above expression is the same as equation (9) except that
K takes the outputs from both L1 and L2 emulators as inputs,

K ¢ (foLr(8), fiLr(8)
= Klinear(f*.LF(o)! f*,LF(e/))
+ Krbf(f*,Ll(o)v f*,Ll(o/)) : Krbf(f*,LZ(o)v f*.LZ(ol))- (12)

Here, K,y is a radial basis kernel, and Kjj,e, 18 a linear kernel, which
can be expressed more explicitly as

2 2
Kiinear (f.LF> fL1p) = 07 furi furs + 05 ferafi1as

where o2 and o7 are the hyperparameters of the linear kernel. A
linear kernel in a Gaussian process is equivalent to a Bayesian
linear regression.* The multiplication in the kernel operation means
an ‘AND’ operation, showing high covariance only if both kernels
have high values. The addition operator means an ‘OR’ operation,
indicating the final covariance is high if either of the kernels gives
a high value. The intuition here is that the linear kernel encodes
the linear regression part while the multiplication of RBF kernels
encodes the non-linear transformation from L1 and L2 nodes to the
HF node

4 SAMPLING STRATEGY FOR HF
SIMULATIONS

This section describes the method used for selecting the input
parameters for our HF training simulations. Following Ji et al. (2021),
we employ an SLHD (Qian 2012; Ba et al. 2015) to assign input
parameters for the HF nodes. Each slice (or subset) in an SLHD is a
Latin hypercube and thus can be served as the design points for the HF
node. This approach offers a less computationally intensive and more
straightforward implementation compared to the grid search method
utilized in our previous work (Ho et al. 2022). The details of SLHD
will be discussed in Section 4.1, and our process for selecting the
optimal HF design from the SLHD will be discussed in Section 4.2.

4.1 Sliced Latin hypercube design

SLHD is a type of Latin hypercube that can be partitioned by slices
or blocks, each of which contains an equal number of design points.
Each slice is itself a Latin hypercube. SLHD ensures the space-filling
property both in the whole design and in each slice. Therefore, SLHD
is an intuitive choice for a multifidelity problem.

Suppose we have an SLHD for the LF node. We can use one of the
slices to generate simulations for the HF node, which ensures that
both the LF and HF nodes are in Latin hypercubes. Another advantage
of SLHD is that we can directly obtain a nested experimental design
where the LF samples form a superset of the HF samples, i.e.
Our C 01r. As mentioned in Kennedy & O’Hagan (2000), a nested
design is an efficient training set for a multifidelity model because it

4See  the
cookbook/.

kernel cookbook:  https://www.cs.toronto.edu/~duvenaud/
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Figure 4. MF-Box’s emulation errors, averaged over redshift bins and test
simulations, using 60 L1, 60 L2, and 3 HF (see Table 1). Here, we show the
emulation minimum and maximum errors using different slices from SLHD
(blue-shaded area), and the best slice found by the grid search method is
labelled as yellow.

allows us to obtain an accurate posterior fi (6) at location 8 without
interpolating at the LF.

SLHD, initially proposed by Qian (2012), is a technique developed
for applying the Latin hypercube design to categorical variables. Ba
et al. (2015) later developed an efficient method for constructing
optimal SLHD designs. The number of categories for categorical
variables is usually fixed based on qualitative properties, making it
challenging to apply a Latin hypercube design to such variables.
However, SLHD addresses this challenge and enables the use of
Latin hypercube designs with categorical variables. In SLHD, a
Latin hypercube is divided into equal slices along the dimensions
associated with categorical variables, while non-categorical dimen-
sions are still sampled with ordinary Latin hypercube sampling. The
usage of SLHD in the context of modelling the multifidelity problem
was demonstrated in Ji et al. (2021). Furthermore, SLHD has also
been employed in cosmology, specifically by the Dark Emulator
(Nishimichi et al. 2019).

For implementation, we use the maximin SLHD package,
maxminSLHD,’ in R (Ba et al. 2015). We set the number of design
points to three for each slice and the number of slices to 20. In total,
we have 60 design points. We assign the SLHD with 60 points to LF
and select one slice as our HF design. We use 60 LF points in this
work because we learned in Ho et al. (2022) that ~50 simulations
are enough for a five dimensional emulation problem.

4.2 Selecting the optimal slice

Slices in SLHD are Latin hypercubes in smaller sizes. In principle,
any slice should produce reasonably good emulation, as the points
in each slices span parameter space.

However, in practice, some slices still perform somewhat better
than others, as shown in Fig. 4. We use a procedure similar to our
grid search approach in Ho et al. (2022) to avoid choosing the worst
slice. The procedure is described as follows:

(1) prepare SLHD for LF simulation suite;

Shttps://rdrr.io/cran/SLHD/man/maximinSLHD.html
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(ii) build LF only emulators (LFEmu) for each slice, compute
the interpolation error for each LFEmu, testing solely on the LF
simulation suite; and

(iii) select the slice which can best minimize the interpolation
error.

Note that we do not use any HF simulations in the above
procedure. The selection entirely relies on the LF simulation suite.
The underlying assumption is that the interpolation error of the LF
node is correlated with the interpolation error of the HF node. We
labelled the selected slice in Fig. 3. We will use the best slice as our
HF training set for the results in Section 6.

To summarize, SLHD is a special kind of LHD, with each slice
in the SLHD being a Latin hypercube as well as the whole design.
We thus can assign HF nodes with a slice (or slices) of SLHD,
making both LF and HF nodes Latin hypercubes. In the end, we
describe a procedure to avoid choosing the worst slice for training
an MFEmulator.

5 COMPUTATIONAL BUDGET ESTIMATION

In this section, we present our approach to quantifying the optimal
allocation of simulation budgets across different fidelities. Building
upon the error bounds established in Ji et al. (2021), we have made
modifications to adapt them to our specific context, as described
in Section 5.1. We approximate the emulation errors of our MF-
Box using the form of Ji et al. (2021) and empirically infer the error
function of the emulator for various training designs, denoted as (n;,
nia, ngr). Our objective is to utilize this empirical error function to
determine the most cost-effective strategy for assigning LF and HF
simulations in order to achieve optimal accuracy.

In Section 5.1, we present an approximate error function for our
MF-Box emulator in predicting HF simulation outputs. Next, in
Section 5.2, we show the analysis for assigning optimal compu-
tational budgets to LF and HF simulations, under the assumption
that the emulator error follows the approximate error function. In
Section 5.3, we empirically estimate the approximate error function
of the MF-Box by analysing the average emulator errors obtained
from 144 distinct MF-Box training results. Finally, we determine
the optimal number of LF and HF simulations required for achieving
accurate power spectra emulation using the MF-Box approach.

5.1 Error bounds for Gaussian process emulators

Ji et al. (2021) presents an error bound for a multifidelity emu-

lator, and for the case of two LF nodes, the form is given by
VL2 YHE

YL1

~O@pL1 -n; T 4 pra-n,® g’ ), where (pL1, pro) are the
scale parameters for the L1 and L2 nodes, respectively. (vLi, V12, Vur)
are positive spectral indices, and (n 1, 1y 2, ngr) represent the number
of training simulations at the L1, L2, and HF nodes, respectively.
While this bound does not directly apply to our case, we utilize
the form of the bound as an approximate model for the MF-Box
error and empirically determine the parameters by fitting them to the
MF -Box emulation results using different multifidelity designs, i.e.
varying combinations of (ny, ny,, nyg).

The equation below represents the error function of the MF-Box
emulator we want to infer. Note that our discussion primarily focuses
on the emulation error when predicting ‘HF’ power spectra. This
emphasis aligns with the core objective of MF-Box, which is to
correct the resolution of LF simulations for accurate predictions of
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Figure 5. Relative errors plotted against the number of LF and HF design
points in an MF - Box emulator. Here, LF refers to the combined number of L1
and L2 points, where LF =ny; = nr;. The plot reveals a trend of decreasing
errors as the number of LF training simulations increases. However, due to
the limited number of HF points compared to LF points, the decreasing trend
is relatively modest.

their HF counterparts.
®(nL1, nL2, nur)

_1 N fHF(oi)_me]:(oi)
N 12:1: Sfur(0;)

~ ®(nyy, nr2, nyr)

=n-{pL-n,* +po2-n," +nge s (13)

where N = 10 test simulations in a Latin hypercube are used to
average the emulation relative error. The emulator error function
®(nL1, no, nur) represents the average relative error of the MF-Box
as a function of the number of simulations in L1, L2, and HF nodes. To
estimate this error function, we have already averaged the emulation
error across k bins, enabling us to obtain an approximation of the
error as a function of the design points (ny 1, n12, nyr). Then, we infer
the parameters of this error function from the MF-Box emulation
results, as denoted by the ~ sign in equation (13). The normalization
factor of the functional form in equation (13) is determined by the
free parameter 7.

An important term in equation (13) is the one describing how the

1

error scales with an increasing number of simulations, n, ¢, wherete
L1,L2, HF This scaling term comes from the fact that the fill distance
1

is proportional to O(n, ¢), where d is the number of dimensions in a
space-filling design (Wendland 2004).

To determine the parameters of ®(nyy, nio, nur), we employ
MCMC inference based on 144 distinct MF-Box emulators that
were trained with varying numbers of (n1, 11 2, ngr). Specifically, we
generated MF - Box emulators using [12, 18, 24,..., 60] L1/L2 points
and [2, 3,...,18] HF points, resulting in a total of 144 emulators. For
simplicity, we only considered cases where the number of simulations
inL1 and L2 nodes was equal, i.e. n.; = np», as the costs of L1 and L2
nodes are similar, therefore, choosing between them is not important.
To simplify the notation, we employ 7y to represent the number of
training points in both the L1 and L2 nodes. Fig. 5 presents the
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Table 3. MCM Isis of ion 13 L SN | fur@)-mpg @) o N -4 o I Th .
able 3. MCMC analysis of equation 13: ~ Zi:l ey | = (nrL1, nLo, nur) = n - | pL1 np Yt pLaong,C +nge . e notation
{®(nL1j, ni2,j, nar, )Y

Posterior Posterior (25 per cent,
Parameters Prior (50 per cent) 75 per cent)
n Normal(z = Mean({®;}#), 0 = Var({®;} %)) 0.0308 (0.0290, 0.0327)
VHF LogNormal (u =0,0 = 1) 9.80 (9.44,10.2)
VLI LogNormal (u =0,0 = 1) 5.49 (5.33,5.67)
VL2 LogNormal (u =0,0 = 1) 5.49 (5.33,5.67)
PLI Normal (un=1,0 =1) 4.53 (3.97, 5.08)
pL2 Normal (u =1,0 = 1) 4.54 (3.97,5.10)

Notes. The notation{®(nr1,j, n12, ;. nur,;)} }fl means all 144 MF-Box emulator errors used for parameter estimation. The column ‘Posterior (50 per cent)’
reports the medians of the posteriors of the parameters, and ‘Posterior (25 per cent, 75 percent)’ reports the 25 and 75 per cent quantities of the posterior

distributions.

average relative errors, ®(ny;, ni,, nyp), for all 144 designs under
consideration.

For each pixel in Fig. 5, we compute the average emulator relative
error across 10 test simulations and multiple & bins across a redshift
range, z € [0, 0.2, 0.5, 1, 2, 3]. To solve the parameter estimation
problem, we employ MCMC inference with a Gaussian likelihood,®

é(’lu, ni2, NyHF)
=n-{pL-ny° +p-n,p" +nge
~ N(u = ®(npy, nia, nup), 0> = Syy(nis, nio, npp)).  (14)

Here, ®(ny, ni,, nyp) represents the average relative errors, while
®,..(n1, nro, ngr) denotes the variance of the relative errors across
10 test simulations.

The results of our MCMC analysis, including the priors and
posteriors, are summarized in Table 3. The posteriors show that vy ;
~ v, and pr; = pro, indicating that both L1 and L2 nodes contribute
to improving the accuracy of the emulator in a similar manner. In
contrast, the power-law index vyr for the HF node is approximately
twice as large as vy and vy, suggesting that the HF node has a more
pronounced impact on enhancing the emulator’s accuracy compared
to the LF nodes. Table 3 shows that the parameters in equation (13)
are reasonably well defined. Thus, we will use the median of the
posterior as point estimates for the error function for the remainder
of this paper.

5.2 Optimal number of simulations per node

Equation (13) models the emulation error, ®(n.;, nyy, ngr), which
behaves as a combination of power-law functions of the number of
simulations in each node, namely LF or HF. The primary goal of an
emulator is to better represent the original simulator by minimizing
the prediction error, subject to a limited computational budget,
denoted by C. By using ®(np;, nip, ngr), we can determine the
optimal number of simulations per node, given the computational
budget available for running each node.

Consider a two-fidelity emulator consisting of two LF nodes,
L1 and L2, where pr; 12 are the scale parameters and (np;, nps,
nyr) represent the number of simulations in L1, L2, and HF nodes,
respectively. Our goal is to minimize the emulation error while

SWe use the PyMC package version 4 (Salvatier, Wiecki & Fonnesbeck 2016)
for the MCMC inference.

subject to a limited budget.
npy - Cri +npa - Crp +npr - Cyr < C, (15)

where we know the ratios between the costs of HF and LF nodes (L1
and L2) are %F ~ 140 and %;f ~ 140/1.7, from Table 1.
The Lagrangian for optimizing the error subjecting to the cost is

— -2 —HE
Lnpy, nio, nurp, M) =0 pur-ng @ +p2-n, ¢ +nge

+A(nry - Cry +nro - Crp + ngg - Cyp — €),
(16)

Here, X is the Lagrange multiplier. To find the optimal number of
(nL1, nLo, ngr) minimizing the emulation error, we use the first-order
derivative conditions of the Lagrangian,

0L(nL1, nio, nur, A)

0;
ony
0L(nLy, nia, nyF, A) — 0
anm ’
0L , , LA
(nL1, nL2, nyF ):0’ a7

Ongpr
resulting in

d

VLI — vLipL1 | Lt
n—opL-ny ¢ =ACL =y X | ——
d Cri
d
VL2 — V2L \ 12t
nN—-pL2 - Ny, =AM = np X | ——
d Cry
_d
VHF _ VHS+zI UHF vyE+d
HF

Here, the intuition is relatively straightforward: the number of
simulations required is inversely proportional to the cost of each
simulation at a given fidelity. However, if we observe a strong
correlation between fidelities (i.e. if py;, 12 is large), then we should
use more LF simulations because they are less expensive.

To ensure that equation (18) identifies local minima instead of
maxima, we can verify the positivity of the second-order derivatives
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Figure 6. Inferred relative errors for all available MF-Box emulators are displayed. Each subplot corresponds to a fixed number of HF points (as indicated
in the title) with varying LF points (on the x-axis). The red curves represent the median predictions (50 per cent posterior). Blue lines indicate the average
relative errors obtained from the MF - Box emulators, while the error bars represent the standard deviation of relative errors across 10 simulations in the test set.
The shaded area depicts the 25 and 75 per cent confidence interval of the predictions based on the inference results. Overall, the relative errors demonstrate a
decreasing trend as the number of LF and HF points increases.

of the Lagrangian.

0°L(nL1, nio, nur, 1)
n?,

O°Lny, nio, nur, 1)

npPL 2

3 L2 3
oni, d

9’ Linw1, nio, nu, D,
sz, e ) vi(ve ) gz (19)

v (v + d)n—”“[—,“[’

L1 > 0;

via(vip +d) -2
= n

L2 > 0;

vE+2d
d

oy d?

The parameters (v, Vi2, Vur), (OL1, OL2, PuF), and 7 are all positive,
while the dimension of the input space, d, must be a positive integer.
Similarly, the number of simulations (7, 1y, nyr) must be positive
integers as well. Therefore, all second-order derivatives are positive,
indicating that equation (18) minimizes the emulation error.

In the special case, where v = v g = vyp, equation (18) simplifies
to the optimal budget identified in Ji et al. (2021):

_d_
np (pLFCHF) v
- = - = s
nHF Cir
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(20)

where the ratio of LF/HF training sample sizes is inversely propor-
tional to the cost of each simulation per run and directly proportional
to the correlation with the HF node.

5.3 Empirical estimate of the error function

In this section, we present the predicted errors of MF-Box obtained
from our MCMC analysis. We explore the impact of different MF -
Box designs on error predictions. Finally, we discuss the choices of
the optimal number of simulations for MF - Box based on the analysis
presented in Section 5.2.

We illustrate the predicted emulation errors in Fig. 6, categorized
by MF-Box models with varying LF and HF points. The predictions
align with the overall trend of the data, except when n g is low, where
the limited availability of LF training points leads to suboptimal
training performance.

Figs 7 and 8 depict the predicted relative errors as a function of LF
and HF points, respectively. Both figures exhibit a power-law trend
characterized by a negative spectral index, indicating that the error
decreases as the number of training points increases. For example,
in Fig. 7, the XLF-3 HF emulator emulators (X € {12, 18, 24, 30,
36, 42, 48, 54, 60}) follow this trend concerning the number of
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Figure 7. Inferred relative errors as a function of LF points. Shaded area
shows the 25 and 75 per cent confidence interval of the prediction from the
inference result.
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Figure 8. Inferred relative errors as a function of HF points. Shaded area
shows the 25 and 75 per cent confidence interval of the prediction from the
inference result.

LF points, suggesting that achieving further accuracy improvements
becomes challenging once a sufficient number of LF points are used.
How much the error can be reduced by increasing the number of
LF points is also influenced by the correlation between LF and HF
simulations, which is controlled by the p parameter. A higher value
of p indicates that LF points can more effectively reduce the error.

On the other hand, incorporating additional HF points can also
enhance accuracy. In Fig. 7, increasing the number of points in the
HF node from 3 to 18 shifts the power-law function towards lower
values, which itself follows the trend in Fig. 8. Similarly, as more
HF points are included in the training, achieving further emulation
accuracy becomes more challenging.

Fig. 9 displays the predicted error functions ®(nr;, nra, ngr) for
different MF-Box emulator designs. We compile these predictions
to create a plot of emulator error versus budget size. The bottom
left region of the plot represents the most economical budget setup,
where the error is minimized relative to the allocated budget.

Based on the predictions in Fig. 9, we can determine the optimal
number of simulations (nr1, 712, and nyg) for achieving a desired level

MF-Box: multifidelity with varying box sizes
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Figure 9. The predicted emulator errors as a function of the budget size, in
the unit of the number of LF simulations. The predictions are based on the
medians of the parameter posteriors presented in Table 3. The plot shows the
predicted error functions using different combinations of LF and HF nodes.
The red, yellow, blue, and black curves represent the predicted error functions
with varying LF nodes and a fixed HF node (ngr = 3, 4, 5, 6). In contrast,
the purple-dashed curve represents the predicted error function with varying
HF nodes and a fixed LF node (n r = 60). The green-dotted line illustrates
the error function corresponding to the optimal budget (equation 21). The
vertical grey-dotted lines indicate the budget size in terms of the number of
HF simulations. The horizontal grey-dotted lines denote the predicted errors
at the levels of (1 per cent, 0.5 per cent, 0.3 per cent).

of average accuracy. For instance, if we aim for at least 1 per cent
average error, the optimal choice is (ny; = 30, n;, = 30, and nyg =
3), which corresponds to a cost of approximately 500 L1 simulations.
Note that a minimum of three HF simulations (~420 L1 simulations)
is required to train an MF-Box in our power spectrum emulation
problem. Similarly, if we aim for at least 0.5 per cent average error,
the optimal setup becomes (n.; = 60, n, = 60, and nyr = 4).
However, a slightly higher cost is required for the setup with (n.; =
50, ni, = 50, and nyg = 5), which yields a similar error.

In Fig. 9, the purple-dashed curve represents the predicted error
of 60LF-[2-10] HF emulators, illustrating the trend of increasing
the number of HF points while keeping a fixed number of 60 LF
nodes. At the point of (60 LF, 3 HF), the error decrease exhibits a
similar gradient to [12-200] LF-3 HF emulator, but it shows a steeper
gradient after four HF points. This result suggests that adding more
LF or HF nodes does not necessarily lead to superior performance
compared to each other.

Under the assumptions outlined in Section 5.2, we can determine
an optimal number of simulations (ny, ny»,and ngg) for an MF-Box
to achieve the best emulation accuracy within a given computational
budget. The optimal ratio between the number of HF and LF
simulations can be expressed as

- g ~metd Crp o vyr

n =n —_— . 21
L HE CHF PLFVLF @l

Here, LF is either L1 or L2. Cpr and Cyp represent the computational
cost of one simulation in the LF and HF, respectively.

In Fig. 9, the green-dotted line represents the optimal budget
according to equation (21). When nygr = 2.5, the optimal number
of LF simulations is (ny, nr») = (80, 60), which is close to our
initial setup of MF-Box with (n,; = 60, n;, = 60, and nyr = 3).
Moreover, the design of (n.; = 60, n;, = 60, and ngr = 4) is also
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nearly optimal (close to the green-dotted line), as demonstrated in
Fig. 9.

In summary, this section introduces an approach to model the
average emulation error of MF - Box as a function of LF and HF points
using an approximate error model based on power-law functions.
Through empirical analysis of 144 MF-Box designs with various
configurations, we have inferred this error model. We demonstrate
that this empirical model can guide the selection of an optimal design
within a given computational budget, facilitating the construction of
accurate emulators in a resource-efficient manner.

6 RESULTS

This section will demonstrate the emulation accuracy achieved by
incorporating simulations with different box sizes through MF-
Box for correcting the resolution of LF emulators to predict HF
counterparts. The emulation error in this section is computed using
a hold-out test set comprising 10 HF simulations, carefully selected
from a separate Latin hypercube that was not part of the training set.
Here, we will use MF -Box to denote the emulators using the GMGP
model (Ji et al. 2021) with the graph structure in Fig. 1. Section 6.1
will show how MF-Box’s accuracy improves by adding an L2 node
in 100Mpc h~'. Section 6.2 will show how MF-Box’s accuracy
changed as a function of L2 box size, from 100 to 256 Mpc A~
Finally, Section 6.3 shows the runtime comparison between single-
fidelity emulators, MFEmulator (including AR1, NARGP) and
MF -Box.

6.1 MF-Box accuracy (256 + 100 Mpc k1)

This section shows how the emulation error changed when a suite of
small-box simulations is included as a second LF node, L2, through
MF -Box. More precisely, we use two LF nodes:

(i) L1: 1283 simulations with 256 Mpc h7';
(i) L2: 1283 simulations with 100 Mpc A~

The information about the training simulations is summarized in
Table 1.

Fig.10 shows the emulation error averaged over redshift bins, z
€ [0, 3], by using different multifidelity models, AR1, NARGP,
and MF-Box. All three models perform similarly at large scales
(k < 2 hMpc™"). The main difference is MF - Box performs better at
k > 2hMpc~! while AR1 and NARGP have an error bump at 10
per cent level.

In the right panel of Fig. 11, we can easily see the 10 per cent error
bump exists at z = 1—3 at small scales (k > 1 AMpc~"). The small-
scale improvement in the right panel is not a surprise. The additional
LF node in a smaller box (L2) brings more accurate small-scale
statistics than L1, making MF -Box outperform AR1 and NARGP.
MF-Box stays 2~ 1 per cent error within the redshift range z € [0,
3], in contrast to AR1 and NARGP where the error increases from
=~ 1 per cent to >~ 20 per cent (from z = 0 to 3).

The bump in interpolation error in AR1 and NARGP at z > 1 is
due to the feature at the initial inter-particle spacing at these redshifts,
corresponding to the initial particle grid, as mentioned in Ho et al.
(2022). The mean particle spacing of the initial condition appears as
a delta function in the matter power spectrum at high redshift. This
feature eventually disappears, erased by gravitational interactions.
The L2 and HF box, however, both have a smaller mean interparticle
spacing and thus show the delta function on smaller scales, beyond
those we wish to emulate. Using the information the L2 simulations
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Figure 10. Relative errors averaged over z = [0, 0.2, 0.5, 1, 2, 3] for different
multifidelity models, AR1 (blue), NARGP (red), and MF-Box (yellow). The
MF - Box model uses 60 L1 (256 Mpc h~"), 60 L2 (100Mpc h~'),and 3 H
(256 Mpc h~1) simulations for training. Both AR1 and NARGP use 60 L1
and 3 HF for training. The shaded area is the variance among different test
simulations.

provide, MF-Box is able to maintain similar accuracy across z € [0,
3].

The left panel of Fig. 11 shows the redshift trend at large scales,
indicating no significant difference between AR1, NARGP, and MF -
Box. The slightly worse accuracy in MF-Box is probably because
MF -Box has more hyperparameters to fit, making it slightly more
difficult to reach ~ 0.1 per cent accuracy.

Fig.12 shows the AR1, NARGP, and MF-Box accuracies as a
function of the number of HF points, splitting into two redshift bins.
The left panel shows the accuracy averaged over the low-redshift
bins, z € [0, 0.2, 0.5], where NARGP and MF - Box perform similarly
and outperform the AR1 model. It is not a surprise that NARGP
and MF-Box perform similarly since MF-Box is an extension of
NARGP.

The left panel of Fig. 12 shows that the error is almost flat as a
function of HF points. In Section 5, we showed that the emulator
error is a power-law function of the number of training points. Here,
the emulation accuracy is likely limited by the intrinsic accuracy of
our 512° HF simulations, so it is hard to get improvement at the
sub-per cent level.” The right panel of Fig. 12 shows that MF-Box
performs better than the other two models by a factor of ~5—10.

Fig.13 shows the averaged emulation error as a function of LF
points. We see a mild improvement at low-redshift bins (left panel)
by adding more LF points for all three models. At the higher redshift
bins (right panel), AR1 and NARGP cannot be easily improved
by adding more LF training simulations. This is likely because the
error is dominated by the delta function in L1 at small scales.
MF-Box achieves an average error at the 1 percent level with
30L14-30L2 + 3HF, as expected from Section 5.

In summary, we show that the improvement of MF - Box happens
at small scales (k > 2 hMpc~!) at the higher redshift bins (z € [1,
2, 3]). This is primarily because the L1 node at these redshifts has
the delta function feature from the initial particle grid dominating on
small scales.

7As discussed in Ho et al. (2022), our HF power spectra are ~
0.1—10 per cent error compared with EuclidEmulator2.
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Figure 11. Relative errors averaged over all k modes (split into large and small scales) for different multifidelity models (AR1 (blue), NARGP (red), and
MF-Box (yellow), broken down into different redshift bins. The grey-dashed line is the HF-only emulator using 3 H simulations, and the solid grey line is the
LF-only emulator using 60 L1 simulations. The shaded area is the variance among different test simulations. MF - Box improves the emulation at small scales at
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(yellow). The range of the number of HF points is relatively small, so the error estimate trend is unclear. However, in general, the emulation error decreases with
more HF points. Left panel: averaged relative error for z € [0, 0.2, 0.5]. Right panel: averaged relative error for z € [1, 2, 3].

6.2 Emulation with various box sizes

In Section 6.1, we have learned that we can achieve better emulation
performance by incorporating an LF node in a smaller box. This
section examines how MF-Box’s emulation error changed as a
function of the L2 box size.

Fig.14 shows the emulation error as a function of L2 box size,
averaging over all k bins and splitting into two redshift bins. We
include AR1, NARGP, and MF-Box. In this section, we use the L2
node as the LF node for both AR1 and NARGP. The left panel shows
the error at the low-redshift bin (z € [0, 0.2, 0.5]). AR1 and NARGP
have < 1 per cent error with L2 = 256 Mpc A ™!, but the error gets
worse when the L2 box size becomes smaller due to the cosmic
variance at large scales. On the other hand, MF - Box error stays flat
for L2 € [100, 224] Mpc h~!.

The right panel of Fig. 14 shows the error versus L2 box size at
the high-redshift bin, z € [1, 3]. All models show a decrease in error

using a smaller L2 box size in training. This is mainly due to the
feature at the initial interparticle spacing mentioned in Section 6.1. If
a smaller L2 is used, the feature moves to smaller scales, away from
those we are emulating, causing a decline of error from the large L2
box to the small L2 box size.

To help visualize the performance change on different scales, we
show in Fig. 15 the emulation error as a function of k, averaged over
all redshift bins. As Fig. 15 shows, for different L2 sizes, MF-Box
accuracy only changes at the small scales with k > 3 AMpc~'. This
is not a surprise because all MF - Box models share the same L1 node
(1282 simulations in 256 Mpc 4 ~'), and thus the emulation at large
scales stays the same. The NARGP shown in Fig. 15 uses L2 with
100 Mpc h~! as an LF node. Its performance is worse than MF - Box
with L2 = 100 Mpc A~! at all & bins.

To sum up, the error of MF-Box changed as a function of L2 box
size: using a smaller L2 can result in better MF-Box accuracy. The
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Figure 14. Relative errors of multifidelity emulation as a function of L2 boxsize, for AR1 (blue), NARGP (red), and MF -Box (yellow). Note that we use L2
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improvement caused by L2 is mostly at small scales (k > 2 hMpc™!)
at higher redshift bins (z = 1, 2, 3).

6.3 Runtime comparison

We will compare the costs of each method in this section. Fig. 16
shows the error of different emulators as a function of node hours
for the training simulations. A similar compute time versus accuracy
plot can be found in fig. 4 of Ho et al. (2022), albeit only for z =
0. We performed the MP-Gadget simulations at high-performance
computing centre (HPCC) at UC Riverside,® each compute node has
32 intel Broadwell cores.

To understand Fig. 16, we can start with the HF only emulators
([3-11] HF). This is the emulator we would train before we have mul-
tifidelity methods. HF-only emulator shows a steady improvement

8https://hpce.ucr.edu
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with an increase in run time. However, the error gradient gets flatter
with more training points, indicating the difficulty of improving an
emulator at a highly accurate regime.

This trend is intuitive because the error of an emulator roughly
scales as a power-law function, (number of training points)’5. Each
line in Fig. 16 is a segment of different power-law models. In this
view, we can see AR1 and NARGP follow two very similar trends,
except one has a lower mean emulation error.

Switching the focus to MF-Box, we can see the mean error of
the power law is ~6—8 times better than AR1 and NARGP. The
error for both AR1 and NARGP plateaus, implying that adding new
simulations will not increase the emulator’s accuracy. The only way
to improve the emulation at a similarly good efficiency is using
small-box simulations through MF - Box.

Recall the HF/L1 ratios in Fig. 2. L1 is roughly at ~ 5 per cent
error at large scales. On the other hand, the L2-only emulator is
at ~ 10 per cent error. Using an MF-Box, the information carried
by L1 and L2 is corrected to be at ~ 0.5 per cent level, which is a
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Figure 16. Runtime comparison in node hours. We average the error across
redshift bins z = [0, 0.2, 0.5, 1, 2, 3] and average across k bins. AR1 and
NARGP perform similarly to MF-Box at z < 1. Dashed lines are the predicted
error based on the error function equation (13), which we inferred in Section 5.

substantial improvement given that only 3 HF simulations are utilized
to establish correlations between fidelities.

7 CONCLUSIONS

In this work, we show that our multifidelity emulation, MF-Box
(model structure refers to Fig. 1, and simulation data refer to
Table 1), can combine simulations from different box sizes to achieve
improved overall emulator accuracy. MF - Box has a higher accuracy
improvement per CPU hour than the multifidelity method with only
one box size. The framework is adaptable to different simulation
suites and emulation problems.
We summarize the key contributions of this work as follows:

(i) Propose a new multifidelity emulation, MF-Box, combining
information from different simulation box sizes: Using the in-tree
graph of GMGP (Ji et al. 2021), we can fuse cheap LF simulations
from multiple box sizes in one unified machine-learning model.

MF-Box: multifidelity with varying box sizes
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Simulations in a large box capture large-scale statistics, while
the simulations in a small box can improve small-scale statistics.
Previously, the cheapest way to improve MFEmulator was by
increasing the particle load in the LF node, which scales as ~ O(Ng).
MF-Box opens a new avenue to add additional information to the
multifidelity emulation framework in a cheaper way.

(ii) Leverage accurate and systematic-free information from L2
to improve multifidelity emulation accuracy: L2 provides unique
information absent in L1, and also acts as a cross-check for L1.
Systematic errors or unknown bugs in LF nodes can limit the effec-
tiveness of multifidelity methods, as it relies on existing information.
Ho et al. (2022) identified such a limitation, noting that systematic
errors present in the LF node can make achieving high accuracy
difficult. MF-Box helps resolve the systematic in one LF node by
introducing an additional L2 node without the systematic. It is worth
noting that systematic errors may exist in both L1 and L2 nodes,
but MF-Box can help mitigate these errors by cross-checking the
information provided by two nodes, as long as the systematic errors
are present at different scales.

(iii) Power-law analysis of emulation errors in multifidelity mod-
elling with MF-Box: In Section 5, we present an error analysis
of MF-Box models. We empirically estimate the emulation error
function, which follows a power-law decay with respect to the
number of training simulations. This explains why it is difficult
to improve single-fidelity emulators which are already percent-
level accurate. Multifidelity emulation shows advantageous in re-
ducing the overall cost and time required to achieve high accu-
racy. The estimated error function can also serve as a guide for
optimizing resource allocation across fidelity nodes, facilitating
the development of accurate emulators in a more efficient use of
resources.

MF -Box also opens up opportunities to experiment with different
ways to implement multifidelity emulation in cosmology. The second
LF node, L2, can be anything that brings new information to a
multifidelity emulator. For example, it could be a node that runs using
hydrodynamical simulations, or a node that uses a linear perturbation
theory code. One example could be L1 runs with dark-matter
only simulations at high resolution, L2 runs with hydrodynamical
simulations at low resolution (and in a small box), and an HF
node as hydrodynamical simulations at high resolution. This way,
the cosmological dependence of the baryonic effects is captured
by L2, and L1 gives us highly accurate gravitational clustering.
MF-Box, using a different box size in an additional LF node,
is just a simple example to demonstrate the flexibility of this
method.

The main remaining limitation of our multifidelity emulation
framework is that the highest fidelity node must be in the training
set, and encompass the largest box and highest resolution. In other
words, our multifidelity framework cannot extrapolate to predict the
results of a simulation with a resolution higher than the HF node.

Future applications of our multifidelity emulation include applying
the MF-Box to the accurate high-resolution simulations, where the
resolution can match the future experiments. We may also apply
MF-Box to different cosmological probes, especially applying to
the beyond two-point statistics, such as weak-lensing peak counts
and scattering transform coefficients.

SOFTWARE

We used the GPy (GPy 2012) package for Gaussian processes.
For multifidelity kernels, we moderately modified the multifidelity
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submodule from emukit (Paleyes et al. 2019).° For the dGMGP
model, we used the code provided by Ji et al. (2021), which uses
GPy. For maxmin SLHD, we use the R software maximinSLHD
(Ba et al. 2015). We used the MP-GADGET (Feng et al. 2018)
software for simulations.'” We generated customized dark matter-
only simulations using Latin hypercubes through a modified version
of SimulationRunner." Fig. 1 is plotted using gaepsi2.!?
We also make use of the following python libraries: matpltolib
(Hunter 2007), numpy (Harris et al. 2020), scipy (Virtanen et al.
2020), and pymc (Salvatier et al. 2016).

Our code is publicly available at https://github.com/jibanCat/
matter_emu_mfbox, including an additional notebook example for
the Tensorflow Probability'® (Dillon et al. 2017) implementation of
MF-Box.
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