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Abstract

For decades, multiple-driver/stressor research has examined interactions

among drivers that will undergo large changes in the future: temperature,

pH, nutrients, oxygen, pathogens, and more. However, the most com-

monly used experimental designs—present-versus-future and ANOVA—fail

to contribute to general understanding or predictive power. Linking experi-

mental design to process-based mathematical models would help us predict

how ecosystems will behave in novel environmental conditions. We re-

view a range of experimental designs and assess the best experimental path

toward a predictive ecology. Full factorial response surface, fractional facto-

rial, quadratic response surface, custom, space-�lling, and especially optimal

and sequential/adaptive designs can help us achieve more valuable scien-

ti�c goals. Experiments using these designs are challenging to perform with

long-lived organisms or at the community and ecosystem levels. But they

remain our most promising path toward linking experiments and theory in

multiple-driver research and making accurate, useful predictions.

513



D
o
w

n
lo

a
d
e
d
 f
ro

m
 w

w
w

.a
n
n
u
a
lr
e
v
ie

w
s
.o

rg
. 
 G

u
e
s
t 
(g

u
e
s
t)

 I
P

: 
 1

7
3
.6

6
.2

2
3
.2

1
3
 O

n
: 
T

h
u
, 
1
5
 A

u
g
 2

0
2
4
 1

4
:3

2
:1

1

Driver:
an environmental
dimension of interest
(e.g., temperature or
pH); here, the term
driver is synonymous
with the terms stressor
and factor (note that
factor here does not
imply a categorical
variable)

INTRODUCTION

Why Do We Do Multiple-Driver/Stressor Experiments?

The planet is undergoing environmental changes that are unprecedented in recorded history.

While we have had periods of extremely large environmental change over longer timescales (the

ends of the ice ages, the Paleocene–Eocene Thermal Maximum, etc.), the speed of present histor-

ical change and the wide range of dimensions in which change is happening (temperature, CO2,

pH, nitrogen, biodiversity, �shing pressure, etc.) make the present era a human-driven historical

anomaly (Halpern et al. 2019, IPCC 2021). Faced with the prospect of some of these changes

continuing for centuries and little likelihood of returning to preindustrial conditions for centuries

or even millennia, scientists need to understand how our ecosystems are changing and use this

understanding to reliably predict what our planet’s future holds. If we are to shape policy in a

way that mitigates harm (and takes advantage of bene�ts) to ourselves and to nature, we need

quantitative predictions of how populations, communities and ecosystems will respond to—and

themselves alter—their future environments (Currie et al. 2004, Dietze 2017, Houlahan et al.

2017, Pennekamp et al. 2017, Pottier et al. 2013, Shaw 2019).

What Forms of Drivers/Stressors and Organisms Do We Focus on Here?

We focus on abiotic drivers such as temperature, nutrients, water availability, light, pH, and CO2.

For simplicity, the experiments and models we discuss are largely at the population level (single

species). Our recommendations apply most strongly to short-lived organisms for which experi-

ments measuring vital population rates across environmental gradients are feasible and ethically

uncontentious. They can also be applied to longer-lived organisms, but the experiments will be

more challenging to perform, especially if they involve trophic interactions and population dynam-

ics. These principles and designs can be used at the community and ecosystem levels as well. For

some questions—such as the environment dependence of productivity or respiration—the experi-

ments may be even simpler than those we describe here. But for simple multispecies communities,

some questions may be more challenging to answer, because biotic interactions can involve dis-

continuities that are challenging for statistical and mathematical methods that rely on smooth,

differentiable functions. Given that there is plenty of low-hanging fruit, we do not attempt to

address these challenges here.

What Do We Need to Predict, at What Scale?

A nonexhaustive list of properties that biologists, biogeochemists, and ecosystem scientists are

called upon to predict for the future includes (a) elemental cycles of carbon, nitrogen, phosphorus,

and more; (b) primary productivity at global and regional scales; (c) biomass at global and regional

scales, as well as its spatial distribution and variation across trophic levels and size categories;

(d) biodiversity in its various forms (taxonomic, functional, and genetic) at local and regional

scales; (e) species ranges, population sizes and densities, and rates of reproduction of taxa that

are charismatic (e.g., whales) or have large impacts on communities and ecosystems (nitrogen �x-

ers, pathogens, and keystone species such as beavers and sea otters); ( f ) phenological changes,

especially in species that are important to other taxa (as �owering plants are to pollinators, and

primary producers are to consumers); and (g) the vulnerability of different regions to environmen-

tal change, to help prioritize conservation efforts. These quantities span spatial scales from local to

regional to global and biological scales from intraspeci�c to whole communities and large clades.

Prediction in ecology is easiest at very small and large scales. Questions concerning single

species or genotypes in simple environments are tractable (Keyl & Wolff 2008, Quinn 2003)
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Response:
the property that the
environmental driver
affects that is of
primary interest (e.g.,
population growth
rate); here, the term
response is
synonymous with the
term target

Functional form:
in this context, a
function describing
the shape of the
relationship between
one or more drivers
and a response

because ecologists can identify the most important environmental drivers, quantify their effects,

and make reasonable qualitative and occasionally quantitative model predictions (Blasius et al.

2020, Chen & Irvine 2001, Higgins et al. 1997, Tilman 1977, Yoshida et al. 2003). At broader

spatial scales such as whole biomes, the large number of organisms, species, and limiting resources

involved allows us to average or aggregate these quantities effectively.Modeling techniques such as

statistical mechanics and coarse-graining improve predictions over these scales, partly because er-

rors at small spatial scales tend to cancel out at larger ones (Advani et al. 2018,Dewar&Porté 2008,

Moran & Tikhonov 2022). Aside from this, elemental cycles (carbon, nitrogen, and phosphorus

cycles), primary productivity, and biomass at global scales are heavily constrained by energetics

and fundamental chemistry and can likely be approached from basic chemical and physical

principles (Brown et al. 2004, Vallino 2010, Yvon-Durocher & Allen 2012, Zakem et al. 2020).

The most challenging scale for predictive science is the intermediate scale, where we run into

the middle-number problem (Kay & Schneider 1994, Newman et al. 2019). At the scale of a

region and/or a multispecies community, the number of focal quantities is too large to be com-

puted easily but too small for averaging. Processes operating at smaller scales, such as survival,

growth, and intraspeci�c competition, still matter while being joined by processes that emerge

due to ecological and spatial complexity (Hollowed et al. 2000). Models at these scales are likely

to be sensitive to initial conditions as well (Hastings et al. 1993, Munch et al. 2022). Many of the

properties in the list above—about community composition, phenology, traits, and population

densities—unfortunately fall into this dif�cult intermediate-complexity category.

HOW CAN WE BEST PREDICT THE FUTURE? A FRAMEWORK
FOR PROGRESS IN PREDICTIVE ECOLOGY

No feasible experiment can predict how multiple stressors will affect future ecosystems, because

any single experiment is too low-dimensional. It cannot capture the complexity of environmental

change, let alone the vast physiological, ecological, and evolutionary changes that will accompany

it in the future. The only realistic way we can solve this problem is by tightly integrating theory

and experiments (Hanson &Walker 2020,Houlahan et al. 2017). Therefore, to predict the conse-

quences of global change, the most valuable and important experiments are ones that can inform

or help evaluate theory or models.

What makes an experiment informative to theory or models? This is dif�cult to provide a

comprehensive answer to, but here are a few types of useful experiments:

1. Experiments that characterize the shape of the relationship between drivers and a response

(saturating, exponential, etc.) to identify how best to describe this relationship mathemat-

ically. The resulting equation—known as the functional form—is unknown for most cases

where more than one driver is considered simultaneously (Collins et al. 2022, Thomas et al.

2017). Identifying the functional form is a crucial step in multiple-driver research (see the

sidebar titled Why Understanding Functional Forms Is Important for Understanding and

Prediction).

2. Experiments that provide reliable parameter estimates with associated uncertainties. The

importance of such estimates is likely underappreciated by empiricists and funding

agencies—some of our most important ecosystem models rely on a handful of estimates

from species that are easy to grow and work with. For example, Ward et al. (2012) used

parameter values from Geider et al. (1998) for a size-structured global ecosystem model.

These parameters are sometimes appropriate, but a wider range of parameter estimates

would provide better estimates of uncertainty, alleviate biases, and enable models to ask a

broader range of questions.

www.annualreviews.org • Designing Better Multiple-Driver Experiments 515
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WHY UNDERSTANDING FUNCTIONAL FORMS IS IMPORTANT FOR
UNDERSTANDING AND PREDICTION

Functional forms are mathematical functions that describe the shape of a response to one or more drivers. In single-

driver research, they describe how a biological response changes across an environmental driver such as temperature

or pH. Once the functional form is known, we can estimate its parameters for each species (or at any taxonomic

level) or community. We can then write dynamic models to predict the species’ performance in any environment,

including conditions it does not presently experience anywhere.

A helpful feature of these functional forms is their generality. The population growth rate of all organisms is a

saturating function of nutrient or food concentration (Holling 1959, 1966; Monod 1949). For all ectotherms, it is a

left-skewed unimodal function of temperature (Kingsolver 2009) (but see next paragraph). For all photoautotrophs,

it is a right-skewed unimodal function of light intensity (Eilers & Peeters 1988, Platt et al. 1980). In each of these

cases, the underlying ecophysiology is common to the entire set of organisms. This means that we have strong

a priori constraints on how environmental change will affect even species for which no data are available. It also

means that we can intelligently design the experimental treatments to best constrain the parameters and their predic-

tions (see the main-text section titled Optimal Designs, Figure 1, and the Supplemental Material section titled

Leverage).

Over the past century, we have identi�ed these functional forms for most single drivers (for nutrients, see

Michaelis & Menten 1913, Monod 1949). For a few drivers, we have multiple mathematical formulations resulting

in similar shapes. This is especially true in the case of temperature (e.g., Johnson & Lewin 1946, Norberg 2004,

Ratkowsky et al. 1983, Rezende & Bozinovic 2019, School�eld et al. 1981; functions are compared in Krenek et al.

2011 and Pad�eld et al. 2021). These competing formulations provide equivalent shapes and predictions over much

of parameter space, so researchers’ choice of function is often arbitrary. However, discrepancies among these func-

tional forms reveal important gaps in our understanding. Temperature functions often differ dramatically in their

predictions for growth at very high and low temperatures. Some predict growth rate bottoming out at zero, while

others predict extreme temperatures driving it negative (mortality), with more extreme temperatures being worse

(Krenek et al. 2011). This difference leads to large differences in predicted performance under precisely the condi-

tions we are most concerned about: heatwaves and future climates. Accurately describing these functional forms is

therefore an important scienti�c goal.

Importantly, for no pair of global change drivers do we have an agreed-upon functional form even for population

growth rate—one of the most important measures of success. We have promising candidates for cases such as

temperature–nutrient interactions (Huey & Kingsolver 2019, Thomas et al. 2017) (Figure 1), although they are

yet to be thoroughly validated. For most other driver pairs, such as temperature–CO2 interactions, and for other

important biological parameters, we have insuf�cient data and theory with which to develop the functions, let

alone parameterize them (Collins et al. 2022), which massively undermines our ability to predict the biological

consequences of global change.

3. Experiments that can rule out possibilities, either of input parameter space (e.g., most vital

rates have at least a weak bound) or of biological consequences. An important case is exper-

iments that can provide constraints by linking different parameters mechanistically, such

as in the case of trade-offs. These constraints can rule out vast regions of parameter space,

making questions lower-dimensional and tractable. For example, grassland plants generally

exhibit a trade-off between growth rates and defense (Lind et al. 2013).

4. Experiments that can validate qualitative predictions from ecological models. Ecological

models are often developed as toy models to investigate �rst principles and rules of thumb

about ecological processes. Experiments in model systems and settings that do not strictly

516 Thomas • Ranjan
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Level: a value of an
individual driver
selected for use in the
experiment (e.g.,
10°C)

Treatment:
a combination of one
level each from all
drivers selected for use
in the experiment (e.g.,
temperature of 10°C
and pH of 6); also
called treatment
combination

Replicate: the number
of experimental
units/trials/runs at
each treatment; note
that we are excluding
technical replicates
here

adhere to all of the assumptions can help verify qualitative phenomena, such as changes in

population cycles (Blasius et al. 2020, Yoshida et al. 2003).

5. Experiments that can validate quantitative predictions from ecological or ecosystemmodels.

These are often the most challenging and are rarely done outside of short-lived microbial

taxa, such as bacteria (Friedman et al. 2017), yeast (Letten et al. 2018), and phytoplankton

(Burson et al. 2018, Huisman et al. 1999). Unless the model is developed with a focal sys-

tem in mind, model assumptions are often not met in experimental systems. Quantitative

predictions are most likely to be sensitive to some of these assumptions and are therefore

hard to validate.

Process-based models are powerful but are not the only tools with which to predict. Theory-

free prediction is often necessary for domains where theory is too complex or impossible to

parameterize at present. This is especially true in forecasting, where simple methods such as

the autoregressive integrated moving average (ARIMA) family often perform best over short

timescales. Machine learning methods amplify our ability to make theory-free predictions by tak-

ing into account a wider range of data inputs (Ospici et al. 2022, Qin et al. 2017). However, we

cannot rely on theory-free prediction when extrapolating into new combinations of environmen-

tal conditions for which we have no reliable training data (no-analogue climates; Fitzpatrick &

Hargrove 2009). This extrapolation problem is the principal reason why we must take advantage

of ecophysiological and evolutionary knowledge to constrain our predictions. A new generation

of process-guided or process-constrained models will help address this problem by incorporating

biologically realistic constraints (Hanson et al. 2020, Wagner et al. 2023). Working to improve

our fundamental understanding will help both the traditional process-based models and this

newer generation of process-guided models, because both rely on us having a reasonable under-

standing of ecophysiological and evolutionary constraints. We therefore believe that improving

understanding is our most promising path to generating better ecological predictions.

WHAT SHOULD WE OPTIMIZE MULTIPLE-DRIVER
EXPERIMENTS FOR?

Wewant experimental design to be maximally informative, ef�cient, simple (logistically), fast, self-

contained (not strongly reliant on prior information), and cost-effective. Some of these criteria

are self-explanatory, but here we will expand on what we mean by informative, ef�cient, and self-

contained.

We consider an experiment informative if it provides predictive power beyond the speci�c con-

ditions used in the experiment. If the experiment’s results allow us to accurately interpolate and

extrapolate, then it is informative. We can quantify how informative a design is using a metric of

out-of-sample prediction error, such as root mean square error (RMSE).To do this for any design,

however, we need a theoretical/mathematical/statistical framework with which to make predic-

tions. Knowing the relevant functional form provides us a good starting point (see the sidebar

titled Why Understanding Functional Forms Is Important for Understanding and Prediction).

Experiments also need to be ef�cient, in the sense that the use of resources and experimen-

tal units must lead to maximal information gain. An ef�cient experiment is one that maximizes

the information gain per unit of experimental effort. Ef�ciency therefore depends on our ability

to quantify how informative the experiment is and on the experimental effort. For simplicity, we

treat experimental effort here as equivalent to the number of experimental units, but logistical

complexities and equipment needs should �gure into these calculations as well. An experiment

with the same number of experimental units will often involve far more effort if more levels

are involved per driver, for example. Replicates involve less effort and are easier to run but

www.annualreviews.org • Designing Better Multiple-Driver Experiments 517
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generally lead to less information gain (for more discussion of this topic, see the section titled

Optimal Designs).

Experimental designs that are self-contained are those where choices of where to allocate

experimental effort are not strongly reliant on prior knowledge about the functional form and

good guesses about at least some of the parameter values for the focal taxon. Some information is

always necessary (and always available), but designs differ in how much they depend on previous

knowledge.

TYPES OF EXPERIMENTAL DESIGNS

Ordered roughly from simplest to most complex, some experimental designs that can be used in

multiple-driver research are present-versus-future designs, ANOVA (analysis of variance) designs,

full factorial response surface designs (at least �ve levels per factor), fractional factorial designs,

quadratic response surface designs, custom designs, space-�lling designs, optimal designs, and se-

quential/adaptive designs.The �rst three are commonly used, but many of the others are relatively

unknown. Below, we discuss how each of these experimental designs may be applied to understand

a single species’ response to interacting drivers. However, these designs can be applied at multiple

scales, including individual populations, interacting pairs of taxa such as predator–prey systems,

whole communities via mesocosm experiments, and even whole ecosystems in the case of small

ecosystems such as shallow lakes (Schindler 1978, Schindler et al. 2008, Matthijs et al. 2012).

Although we focus on constant conditions here, variation or �uctuations in each driver can be

explored using the same designs by treating them as separate drivers.

We compare how informative and ef�cient these designs are using simulations from a

temperature–nutrient interaction model that has some empirical support (Thomas et al. 2017)

(Figure 1; for more detail, see the Supplemental Material). The model unites a left-skewed
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Figure 1

(a) An example response surface for our temperature–nutrient interaction model and (b) the leverage of points across this surface, which
indicates their relative in�uence on a �nal model �t (see the Supplemental Material). The surface is based on a function and
data from Thomas et al. (2017), with parameter values adapted for convenience here. We use this model as the basis of all subsequent
simulations. The leverage plot in panel b shows the natural logarithm of the tangent plane leverage, which is calculated using a linear
approximation of the nonlinear model plotted in panel a. High temperatures and low nutrient treatments have high leverage, meaning
that experimental points placed in those regions will have a large impact on the �tted surface. Note that this leverage plot is provided
mainly for illustration and to guide intuition; an optimal design will not place points solely in high-leverage regions (see the section
titled Optimal Designs). We explain how to calculate leverage for nonlinear regressions in the Supplemental Material.
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Table 1 A qualitative assessment of the different designs’ ability to meet our needs

Design Informative Ef�cient Simple (logistically) Fast Self-contained

Present-versus-future Low Low High High High

ANOVA Low Low High High High

Full factorial response surface High Medium/lowa Medium/lowa High High

Fractional factorialb Medium High Medium High Medium

Quadratic response surface Medium High Medium High High

Custom Medium High Medium High Medium

Space-�lling Medium Medium Low High High

Optimal High High Low High Low

Sequential/adaptive High High Low Low Medium

We omit the cost-effective criterion here because it depends strongly on external factors—cost of personnel, equipment, sample analysis, and so on. For all

designs except sequential/adaptive, we assume the experiment is conducted in a single run. The simplicity and speed will change for some designs if multiple

runs and blocking are necessary.
aWe judge full factorial response surfaces to be medium in ef�ciency and simplicity for experiments with two drivers and low for experiments with more

than two drivers.
bNote that fractional factorial designs apply only to experiments with more than two drivers.

unimodal temperature response with a saturating nutrient response. We use these simulations to

quantitatively assess how informative they are, which we follow with a more general qualitative

assessment (Table 1).

For each design, we simulated 100 experiments (Figure 2). Observations have means equal to

the “true” values based on the temperature–nutrient response surface with our chosen parameter

values (for details, see the Supplemental Material). Each point also had noise added that is drawn

from a normal distribution with a standard deviation of 0.1. We then used maximum likelihood

to �t the known temperature–nutrient function to the simulated data. With the �tted parameter

values, we then compared the growth rates estimated across an evenly spaced 100 × 100 grid

with the true values at the same points and calculated the RMSE for each simulation. Finally, we

compared the RMSE values for all designs to highlight the differences in how informative and

ef�cient they are. We used a 5 × 5 full factorial response surface design as our reference and

therefore aimed for a maximum of approximately 25 points. For designs whose main advantage is

their ef�ciency, we used a smaller number of points.

We include replicates where necessary (present-versus-future,ANOVA, and quadratic response

surface designs) or required by algorithmic choice (optimal and sequential/adaptive designs), but

otherwise we simulate no replication, to highlight the fact that replication is unnecessary in other

designs.However, some amount of replication is generally advisable because it is relatively easy and

would improve the quality of the �ts (decrease RMSE), even though replication is less informative

than increasing the number of levels of each driver. We discuss this in more detail in the section

titled Optimal Designs.

Present-Versus-Future Designs

Present-versus-future designs are the simplest experiments used to evaluate how systems (pop-

ulations, communities, or ecosystems) will respond to complex environmental changes. This

approach involves setting up two treatments, re�ecting present-day and expected future condi-

tions. These experiments are typically analyzed with one-way ANOVAs, which merely establish

that there is a difference between the two treatments and their magnitude. The simplicity of this

approach makes it easy to integrate many drivers simultaneously and to apply this design to more

complex scales (such as mesocosm experiments). The downside is that inferences and predictions

www.annualreviews.org • Designing Better Multiple-Driver Experiments 519
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Figure 2

Some of the experimental designs we describe and simulate. Space-�lling, optimal, and sequential/adaptive designs differed in each
simulation, and we show only one instance here. We omit the fractional factorial design (which is illogical in two dimensions). The
sample size n used for each experiment is shown, and the point sizes indicate the number of replicates used. The smallest points have no
replication.

based on this approach are weak and assumption-heavy. Any deviation in reality from the condi-

tions used in the future treatmentmakes the results nearly impossible to use formaking predictions

or inferences.

Recommended use case: None. Although it may be argued that some information is better than

none, we believe that this argument neglects the opportunity cost of doing these experiments.

Resources directed toward present-versus-future designs are wasted and would be better spent

toward more useful, generalizable goals.

ANOVA Designs

Experiments that use a 2 × 2 factorial design, in which two continuous environmental drivers are

crossed with each other with two treatment levels each, are the most common type in multiple-

driver research (Collins et al. 2022, Jackson et al. 2016, Seifert et al. 2020). These experiments are

analyzed with two-way ANOVAs, which establish that the treatment combinations are different.

They are easy to run and provide some ability to disentangle the effects of two drivers (or more).

These designs can feasibly incorporate a large number of drivers, although not as many as present-

versus-future designs.

The existence of an interaction term in the ANOVA conveys the impression of having derived

some understanding and predictive power from these experiments, but this is largely illusory.

Finding statistically signi�cant differences is largely a question of having enough replicates rela-

tive to the process and measurement error, and it is very rare that insights arise from these designs

(Cottingham et al. 2005, Kreyling et al. 2018).Where they do, it is either because the experiment
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is coupled to a very speci�c and well-developed hypothesis or question or,more rarely, because the

covariation between multiple measured response variables contains useful information. Merely

measuring multiple response variables does not make these experiments informative, however.

These 2 × 2 ANOVA results are often used to classify driver interactions into an additive/

synergistic/antagonistic framework (Crain et al. 2008, Galic et al. 2018, Piggott et al. 2015). We

believe that these classi�cations and their extensions carry extremely limited and low-value infor-

mation for population-level experiments (Collins et al. 2022, Orr et al. 2020), though they may

be more useful for ecosystem-level measurements. Because of the complex shapes of population

response surfaces, sampling the same surface at different locations (i.e., using slightly different

treatments for an ANOVA experiment) can lead to any of the three possibilities (additive, syner-

gistic, or antagonistic) (Collins et al. 2022). These and other such classi�cation frameworks rely

heavily on unjusti�ed assumptions to make predictions that are qualitative at best and contribute

little to predictive power (Orr et al. 2020).

On rare occasions, ANOVA designs with more levels per driver are used, such as 3 × 3 designs.

These are curious beasts, in between the 2 × 2 ANOVAs we have criticized here and the substan-

tially more useful response surface designs we discuss in later sections. Though 3 × 3 designs do

contain more information, they still re�ect the largely pointless ANOVA focus on establishing the

existence of nonzero differences between treatments. With the same level of experimental effort,

many of the subsequent designs will provide substantially more information.

Recommended use case: Pilot experiments, though even for these they are not superior to alter-

natives. In rare cases, 2 × 2 ANOVA designs may suf�ce with a well-developed hypothesis or

question and when monotonic responses are strongly expected, as in the case of food or nutrients

(e.g., Frisch et al. 2014). And, of course, ANOVA designs are entirely appropriate for categorical

factors, which are not the focus of this review.

Full Factorial Response Surface Designs (at Least Five Levels per Factor)

The experimental designs we discuss from here on provide a large increase in information

(Figure 3).

A full factorial response surface (or regression) design is in principle just an extension of the

2 × 2 ANOVA design. It differs in using more levels per factor and in its lack of requirement

for replication (which can be helpful but is not necessary). We de�ne a full factorial response

surface design in ecology as at minimum a 5 × 5 experiment. This is because ecophysiological and

ecological responses to single environmental drivers are nonlinear and generally need �ve or six

levels to capture them well. The threshold is arbitrary; a 4 × 4 with well-chosen levels may do

nearly as well, though this relies on prior knowledge and careful choices to be successful.

Despite the small conceptual difference between a 5 × 5 design and a 2 × 2 ANOVA design,

response surface designs enable the prediction of ecological responses at environmental conditions

that were not measured during the experiment (Boyd et al. 2018, Collins et al. 2022). That is,

they enablemeaningful interpolation and extrapolation (though extrapolation ismore challenging,

especially when not constrained by theory).We can rely on an experiment measuring an ecological

response at 10°C, 15°C, 20°C, 25°C, and 30°C to provide good estimates of that response at any

speci�c value between 10°C and 30°C, and to some limited extent below 10°C and above 30°C as

well. This would not be true if only 10°C and 30°C (or any pair of temperatures) were measured,

as in the �rst two designs.

Full factorial response surface experiments are inef�cient, but a large advantage is that they do

not require much prior information to be designed well. If prior information is available, it can

be used to space their levels well across the environmental gradients, but simulations suggest that

an unevenly spaced full factorial experiment does not meaningfully improve on a well-designed
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Sequential/adaptive
(n = 25)

Optimal
(n = 25)

Space-�lling
(n = 25)

Custom
(n = 13)

Quadratic response surface
(n = 16)

Full factorial response surface
(n = 25)

ANOVA
(n = 24)

Present-versus-future
(n = 24)

0.0 0.1 0.2 0.3

RMSE (d−1)

Figure 3

The out-of-sample prediction error from 100 simulated experiments using each of the different designs we
discuss (except for fractional factorial, which requires at least three dimensions). Lower RMSE is better.
Optimal designs are best, with full factorial response surface and sequential/adaptive designs very close
behind. Quadratic response surface, custom, and space-�lling designs are approximately twice as bad,
although note that the �rst two were simulated with a smaller sample size. Present-versus-future and
ANOVA designs are three to four times worse on average even though we stacked the deck in their favor (see
the section titled Comparison of Designs). For a comparison of RMSE across the full surface for all designs,
see Supplemental Figure 4. Abbreviation: RMSE, root mean square error.

evenly spaced one (Supplemental Figure 1). In the temperature–nutrient interaction, a good

design includes treatments at low nutrients and at high temperatures (above the optimum

temperature for growth; Figure 1).

Recommended use case: Quantifying the effects of two and possibly three interacting factors when

limited prior information is available.Full factorial response surface designs should be the standard

approach until the functional form of an interaction is reasonably well understood and making

reasonable parameter guesses is possible (see the sidebar titled Why Understanding Functional

Forms Is Important for Understanding and Prediction). These designs help to de�ne the func-

tional forms and are a stepping stone toward more ef�cient designs.With more than two or three

drivers, however, they become unmanageably complex and inef�cient.
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Fractional Factorial Designs

Fractional factorial designs (Box & Hunter 1961a,b; Box et al. 2005; Gunst & Mason 2009) are

a family of methods that address the principal problems with full factorial designs: scale and cost

(and therefore ef�ciency). The central insights are that not all points in a full factorial design are

equally informative (Figure 1b; Supplemental Material) and that higher-order interactions are

typically less important than lower-order ones and main effects (the sparsity-of-effects principle).

Experimental designs can therefore be scaled down by neglecting the higher-order interactions.

The more drivers of interest there are, the more useful these methods are. For the two-factor

examples we have discussed, they are no different from ANOVA experiments. However, there are

often many environmental drivers to consider, such as nutrients, temperature, pH, light availabil-

ity, predation pressure, and pathogen load. A full factorial experiment with �ve levels for each of

these factors would need 56 = 15,625 treatments, which would be far too expensive even if it were

logistically possible. Even a full factorial experiment with just two levels for each of these factors

(an ANOVA design) would be 26 = 64 treatments. In contrast, a fractional factorial experiment

with k factors, I levels per factor, and a fraction of the full factorial experimental effort p would use

I k−p treatment combinations. If we use two levels per factor and a half fraction, this amounts to just

26−1 = 32 treatment combinations, and even lower fractions are feasible. This reduction in size

is achieved by intentionally confounding (aliasing) speci�c combinations of factors relative to the

full factorial experiment. As a result, we cannot estimate each separate main effect and interaction

term, but the much smaller number of treatments does allow us to rapidly explore many drivers.

This is a notable advantage for multiple-driver research, especially if we consider environmental

variation for each driver to be an additional dimension.

Fractional factorial experiments therefore enable the extraction of useful information with

comparatively little effort. They are used in �elds that prioritize predictive power, ef�ciency, and

cost, such as engineering and chemistry. They have seen rare use in ecology (Porter & Busch

1978, Warner et al. 1993) but ought to be a more prominent part of the methodological tool kit

in global change biology (Boyd et al. 2018). The main downside to these designs is that they do

not characterize the response in a mechanistic way and do not capture nonlinear ecophysiolog-

ical responses well. The results will be sensitive to the choice of driver levels, especially when

the response is nonmonotonic, as most global change drivers are. They therefore do not provide

suf�cient information to develop mathematical models of response surfaces, but they may suf�ce

to prioritize speci�c drivers for further investigation with other experimental designs (especially

sequential designs) and to provide some predictive power.

Recommended use case: Quickly assessing responses when there are more than �ve drivers of

interest, to prioritize speci�c drivers (or sets of drivers) to investigate further. Fractional factorial

designs are especially useful when exploring the impact of changes in variance (or other higher

moments) in addition to changes in mean, by treating each driver’s variance as an independent

driver itself.

Quadratic Response Surface Designs

Quadratic response surface designs are extensions or modi�cations of factorial and fractional fac-

torial designs that are commonly used in so-called response surfacemethodology (RSM) (Box et al.

2005) (see the section titled Sequential/Adaptive Designs). In RSM, �rst-order methods such as

ANOVA designs with an added point at the center enable the estimation of a plane.We focus here

on second-order methods, which are sometimes called response surface designs, and emphasize

the quadratic aspect to avoid ambiguity, because unlike �rst-order methods, these approaches are

designed to capture curvature in a response surface.We brie�y describe two of the most common
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methods: central composite designs and Box–Behnken designs.We refer readers to relevant text-

books for details for these and other related designs, such as Doehlert designs (Myers et al. 2009,

Wu & Hamada 2009).

Central composite designs begin with an embedded 2 × 2 factorial. In the simplest case, points

are added at the center and extending out from the center through the midpoints of each of the

four faces (star or axial points; see Figure 2). The projection of this design onto a single dimension

captures �ve distinct levels per driver, enabling the characterization of nonlinear responses. This

design scales up well from two dimensions to several more and is most commonly used to identify

regions of maxima or minima for industrial production as part of RSM. It is also entering use in

ecotoxicology and the natural sciences (Hashemi et al. 2019, Mehdizadeh Allaf & Trick 2019).

Box–Behnken designs include a central point but no embedded factorial design. Instead, points

are placed at the midpoints of all edges of a cube or hypercube de�ned by two levels per driver.

This approach therefore requires applying at least three drivers (which is why we do not evaluate it

in our simulations here) and uses three levels per factor instead of �ve. It uses fewer experimental

units than central composite designs but at the cost of �exibility. It also omits the corners of the

cube or hypercube, and these regions of combined extremes may be important in multiple-driver

research.

Broadly, quadratic response surface designs offer ef�cient ways of capturing high-dimensional

interactions with some limited nonlinearity, making them more informative than fractional

factorial experiments.

Recommended use case: Quantifying responses when there are more than three drivers of in-

terest, to capture important nonlinearities and interactions when functional forms are unknown.

Quadratic response surface designs are especially useful when experimental units are at a premium

(such as in mesocosms) and as part of sequential/adaptive designs.

Custom Designs

Fractional factorial and quadratic response surface designs are two ways in which a full factorial

design can be reduced to a smaller, more manageable experiment. However, designs can be more

�exible when functional forms are known (see the sidebar titled Why Understanding Functional

Forms Is Important for Understanding and Prediction) and when there are clear scienti�c goals

(Boyd et al. 2015).These customdesigns can downscale factorial experimental designs in a targeted

manner, saving experimental effort without much loss of information. They therefore improve on

full factorial response surface designs in terms of their ef�ciency.

When estimating the parameters describing a response surface, there is no strong need for the

design to be factorial or even balanced. For example, we do not need to have the same number of

nutrient levels at each temperature level in a temperature–nutrient experiment (Figure 2). Most

experimentalists are aware of the relative value of different points on a response curve or surface,

and there is strong statistical justi�cation for this intuition (see the Supplemental Material).We

can show with simulations and with leverage calculations that some points in the factorial design

are less important than others (Figure 1). Excluding them only slightly reduces the uncertainty in

the parameter estimates and the out-of-sample prediction error when compared with other, more

important points. Therefore, when the functional form of the response surface is known (from

�rst principles or previous experiments) and when rough guesses of the parameter estimates (or

surface shape) are possible, custom designs can improve experimental ef�ciency. They allow us

to redirect effort toward parts of the surface that are more informative and more likely to occur

in nature. Note, however, that custom designs are an inferior form of optimal design, guided by

intuition rather than mathematical optimization.
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Recommended use case: Parameterizing response surfaces when only a small number of experi-

mental units is possible and the functional form is known, along with rough parameter guesses.

Custom designs are also sometimes useful for answering targeted questions that do not require a

full response surface.

Space-Filling Designs

Factorial designs �ll the two-dimensional (or higher-dimensional) space of the environmental

drivers in a simple grid design. Space-�lling designs aim to cover this parameter space more ef�-

ciently when experimental effort is a limiting factor. Space-�lling designs make intelligent use of

limited experimental units to capture information about the shape of the response surface bymain-

taining a reasonably constant density across the surface. A variety of decision criteria are used for

the positioning of these units, including maximin, minimax, and the more commonly used Latin

hypercube sampling and its variants. For details, we direct interested readers to reviews of these

methods (Crombecq et al. 2011, Joseph 2016, Joseph et al. 2019).

Space-�lling designs are common in computer simulations, but we have not encountered them

in empirical work. However, there is no conceptual reason why they should not be used for

multiple-driver research. In principle, they allow one to quantify response surfaces adequately with

limited experimental effort. Their major downside is that they achieve this ef�ciency by avoiding

reuse of the same factor levels; for example, in a temperature–pH experiment, no temperature or

pH levels will be used more than once. They therefore require the precise manipulation of treat-

ment conditions in individual experimental units, which is not easy to achieve for some drivers.

These logistical challenges probably outweigh the bene�ts of space-�lling designs, except perhaps

in rare cases, such as mesocosm experiments.

Recommended use case: Quantifying response surfaces when the number of experimental units is

a major constraint but manipulating individual treatments is not dif�cult, such as with mesocosm

experiments.

Optimal Designs

Making experiments ef�cient and informative is an optimization problem.Optimal designs can be

thought of as algorithmically optimized versions of custom designs. How should we allocate lim-

ited experimental resources to learn the most from them? This question is extremely important

since collecting better data is often more useful than collecting more data.The �eld of optimal de-

sign focuses on maximizing the information contained within the data, using optimization theory

and linear algebra (Smith 2005, Steinberg & Hunter 1984). Developments in this �eld have come

from attempts to improve yields in chemical and industrial experiments (Box 1954, Box &Wilson

1951, Box & Youle 1955), and despite their success, the resulting ideas have yet to in�uence the

oceanography and global change biology communities. We believe that incorporating ideas from

optimal design could lead to more informative and ef�cient global change experiments. We pro-

vide a brief overview here and direct interested readers to introductory books in the �eld (Berger

& Wong 2009, Smith 2005).

Experimental designs can be optimized for different goals, including improving predictions,

obtaining the best parameter values, distinguishing among functional forms, and more. These

goals lead to different criteria against which designs can be evaluated and the optimal design

identi�ed. We focus here on criteria related to minimizing prediction error, though in practice

different optimization criteria often lead to similar designs. Prediction-focused optimal designs

seek tominimize the variance of the predicted values (i.e., the prediction error).G-optimal designs

aim to improve the worst-case scenario and minimize the maximum variance across all predicted
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values. I-optimal designs focus instead on minimizing the average variance across the experimental

region (for a brief mathematical explanation of these design criteria, see the sidebar titled Optimal

Design Criteria).

OPTIMAL DESIGN CRITERIA

Experimenters can customize experiments for different goals using a range of optimal design criteria. Here, we

brie�y explain some that might be useful for global change experiments. We consider a regression experiment

where

yi = η(xi;θ) + εi.

Here, yi(i = 1. . .n) represents the n observed values of the response, xi represents the values of the driver, and εi

represents the error. The function η(xi;θ) relates the driver x to the response y. The vector of parameters to be

estimated is represented by θ with length p. Next, we can de�ne the design matrix,X(n × p), such that

Xi j =
∂η

∂θ j
(xi ), i = 1 . . . n, j = 1 . . . p.

The ith row of the designmatrixX contains the sensitivities ∂η/∂θ j of the function η(xi;θ) to each of the p parameters

at the ith observation xi.

If there is only one parameter (p = 1) to be estimated in the regression, a good measure of the quality of �t is

the variance of the parameter estimate. The reciprocal of the variance in this case gives us the Fisher information,

which is a measure of the information contained in the parameter estimate. Since the variance of the parameter

estimate is inversely related to the Fisher information, minimizing the variance means maximizing the information.

However, models typically contain multiple parameters (p > 1). In this case, the variances of the parameter

estimates form a matrix. Since minimizing a matrix can mean multiple things mathematically, different optimality

criteria optimize different quantities. The most popular criterion is known as the D-optimality criterion, and it

minimizes the determinant of the informationmatrixXTX.Minimizing the determinant of the informationmatrix is

equivalent to minimizing the variance in the parameter estimates.We focus instead on criteria related tominimizing

prediction error, as we believe these are more relevant to oceanographers.

Optimality criteria for prediction seek to minimize the variance in the predicted values. We can de�ne the

variance d(xi;θ) of the predicted value at any observation xi as

d(xi;θ) =
∂η

∂θ
T
(xi )(X

TX)
−1 ∂η

∂θ
(xi ).

The G-criterion focuses on the worst-case prediction error, minimizing the maximum variance across all sampling

points (xi = 1. . .n) in a design. If the designs are mathematically continuous—meaning that the design is speci�ed

in terms of the proportion of total experimental units at a point in the design space—then G-optimal designs are

equivalent toD-optimal designs (Kiefer&Wolfowitz 1960).Themost useful alternative is probably the I-optimality

criterion, which minimizes the average prediction variance across the entire range of the predictor variables (χ ):

∫χd(x;θ)dx

∫χdx
.

Other optimality criteria of interest to oceanographers focus on extrapolation. These criteria usually require

the point at which extrapolation is desired to be speci�ed in advance, and the design often depends on this point’s

location. The mathematics involved in deducing extrapolation-focused optimal designs is complex, however, and

I-optimality is more useful for predictive purposes.
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Design space:
the set of all possible
experimental designs
for a given set of
drivers and a response

Prediction error also results from model misspeci�cation. This bias occurs when the �tted

function is different from the true function. Scientists often do not know the true function and

instead use approximations based on graphical shape (see the sidebar titled Why Understand-

ing Functional Forms Is Important for Understanding and Prediction). The difference between

the true function and the approximation can cause prediction error despite an experimental de-

signminimizing prediction variance. Bias-focused optimal designs are model-robust—that is, they

minimize bias in experimental designs by accounting for the difference between the true and �t-

ted functions (Box & Draper 1959, 1963; Läuter 1974). Computing bias-focused designs often

requires large assumptions and is an active area of research. Most research on these designs has

been done on simple polynomial functions, and even this is complex to execute. In our opinion,

bias-focused designs require substantial research before they will be of use to oceanographers,

and we do not evaluate them here. In contrast to model-robust designs, model-sensitive designs

instead allow experimenters to distinguish among candidate functions (Atkinson 1981; Atkinson

& Fedorov 1975a,b; Box & Hill 1967; Hunter & Reiner 1965). This may be particularly use-

ful in the context of drivers like temperature, where the shape of the relationship is well known

but numerous functions are used (see the sidebar titled Why Understanding Functional Forms Is

Important for Understanding and Prediction).

Calculating optimal designs is straightforward in the case of linear regression, but in nonlinear

regressions, the optimal design relies on the function’s parameter values. Since the true parame-

ter values are unknown before the experiment is performed, this results in a catch-22 where the

optimal design cannot be derived without the parameter values and the parameter values cannot

be derived without the optimal design. This problem can be solved by using a range of parameter

guesses, calculating the optimal design for each, and integrating them into a single �nal design.

There appears to be no prescribed way to select this single �nal design, which poses a problem.

In our simulations (Supplemental Figure 2), however, we found reasonable consistency in the

optimal designs across a wide range of parameter values. We chose a random subset of these de-

signs to simulate experiments, and most (though not all) of the designs chosen performed very

well. One alternative strategy for integrating designs could involve selecting points based on their

frequency of occurrence across the optimal designs for different parameter guesses. A different

solution to this problem is sequential design (Fedorov 1972), which we discuss in the next section,

titled Sequential/Adaptive Designs.

Whichever approach is used, calculating the optimal design is a challenge and is done using

one of a variety of exchange algorithms, such as the KL exchange algorithm (Atkinson et al. 2007,

Wheeler 2022). These algorithms all start with an initial design and then iteratively perturb it,

comparing the optimality criteria at each iteration to decide whether the new design represents an

improvement. This is continued until some time- or iteration-based stopping criterion is reached.

As it is impossible to explore all possible designs for most reasonable design spaces, there is no

guarantee that these algorithms will �nd a global optimum, but our simulations suggest that this

is not a substantial problem.

A design optimal for one functional form is not necessarily optimal for another and may even

be worse than a simpler design like a full factorial response surface, highlighting the importance

of identifying the functional form (see the sidebar titled Why Understanding Functional Forms

Is Important for Understanding and Prediction). Given this function and a range of reasonable

parameter guesses, optimal designs tend to outperform even full factorial experiments, though

not by much in our simulations (Figure 3). When the number of possible experimental units is

small, their advantage over full factorial designs will be much larger—our simulations suggest that

the optimal design for 15 points performs nearly as well as the full factorial response surface with

25 points (Figure 3; Supplemental Figure 3).
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Optimal designs also offer a more nuanced picture of the oft-debated topic of replication (ver-

sus using more treatment levels) in experimental design (Chalcraft 2019, Kreyling et al. 2018). In

our simulations, the optimal designs always involved replication at a few treatment combinations

but not all (Figure 2). This is not to say that the truth is exactly in between the opposing camps,

however: In our simulations, optimal designs were only marginally better than full factorial de-

signs with no replication, while replication-focused designs (present-versus-future and ANOVA)

were substantially worse than both (Figure 3).

Even when the information needed for their calculation is unavailable, optimal designs offer

useful insights. At least for our temperature–nutrient function, we found that the borders of the

design space (the maximum and minimum values of temperature and nutrients that we were

willing to entertain) were of the highest importance, especially the corners. A few points were

useful inside those borders, mostly at low to medium nutrients and medium to high temperatures

(Supplemental Figure 2). The locations of greatest importance will change based on the driver

pair (or set), but similar insights are likely possible in each case, once the functional forms are

identi�ed.

Recommended use case: Quantifying response surfaces when a reasonable amount of prior in-

formation is available (in the form of parameter guesses) and the functional form is known, or

to distinguish among possible functional forms. Suf�cient prior information is often available for

single-driver relationships such as the Holling type II functional response, but at present, such

information is harder to come by for multiple-driver response surfaces. Optimal design is espe-

cially valuable when the number of possible experimental units is small and in conjunction with

sequential design.

Sequential/Adaptive Designs

All of the experimental designs discussed above implicitly involved a single experimental step.

However, experiments are often done in multiple rounds because of logistical constraints. This

introduces some complexities that need to be accounted for by blocking (which we do not ad-

dress in this review), but it also creates opportunities because we gain information at each stage

of the experiment. Sequential or adaptive experimental design takes advantage of the information

gained to improve the subsequent stage of experimentation by allocating experimental treatments

ef�ciently. We have already brie�y mentioned one type of sequential design, RSM, in the section

titled Quadratic Response Surface Designs. RSM usually focuses on identifying a peak or maxi-

mum on the surface, which is not an important goal to us. Instead, we focus on a design strategy

to maximize predictive power in a scenario more relevant to global change biologists.

These designs begin with a �rst experimental round based on any of the previous designs; full

factorial response surface, fractional factorial, quadratic response surface, custom, and optimal

designs are all reasonable choices. After this �rst round, we �t the functional form to the data

and estimate its parameters. We use these parameter estimates to calculate a new optimal design

that adds treatments and/or replicates to the design in the �rst round. Each step in sequential

design improves the parameter estimates, and the process can be continued until the experimenter

is satis�ed with the estimates or adding more sampling points is not feasible (Figure 4). The

degree of improvement will decrease in each round, and so a few rounds is likely to be enough to

achieve a good �t.While many advanced algorithms are available to implement sequential design

ef�ciently (Ryan et al. 2016), we implemented it relatively simply here for pedagogical purposes.

We started with an optimal experimental design in the �rst step based on reasonable parameter

guesses (randomly chosen), with 15 sampling points; we then added 5 points each in the second

and third steps, for a total of 25 points (identical to the sample size in the full factorial response
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Figure 4

A simulated sequential/adaptive design experiment. We used 100 sets of parameter values as guesses for the initial step, but we are
showing only one of them here for illustration. (a) We started with an I-optimal design of 15 points generated using the KL algorithm.
The KL exchange algorithm iteratively identi�es the best design by exchanging the K least promising points at each iteration with the
L most promising candidate design points. The values of K and L can be speci�ed by the experimenter. The dots correspond to the
position of the experimental points, and the �tted surface is shown beneath. (b) In the second step, we added 5 more experimental
points. The locations of these points were determined using a modi�ed KL exchange algorithm (see the Supplemental Material).
(c) In the �nal step, we added another 5 points using the same methodology, bringing the total to 25. While we stopped our sequential
design process here, this process could be continued further if needed. (d) The effectiveness of the sequential design can be seen via the
decrease in prediction error from each �t. As we go from step 1 to step 3 (top to bottom), the mean RMSE decreases steeply. Note that
even the initial RMSE is good, indicative of the value of the optimal design even with 15 points. Abbreviation: RMSE, root mean
square error.

surface simulations). A detailed description of the process we followed is in the Supplemental

Material. As expected, the mean RMSE decreased with each step as we moved forward in the

sequential design process (Figure 4d; Supplemental Figure 3).

Sequential design is most useful when there is insuf�cient information available to do a

one-shot optimal design. Designing the �rst step remains a challenge, and the simplest solution is

using a full factorial response surface or optimal design with reasonable parameter guesses

(described in the section titled Optimal Designs). Pseudo-Bayesian sequential designs de�ne

prior distributions for all model parameters and average design criteria over these distributions

to achieve robustness (Pronzato & Walter 1985, D’Arzenio 1990). Bayesian sequential designs

or Bayesian adaptive experimental designs go one step further and explicitly de�ne the design

criteria to be dependent on the posterior distribution (Ryan et al. 2016). This can be computa-

tionally complex and often requires numerical approximations or stochastic solution methods.

Applications of sequential design in ecology are therefore scarce (however, see Moffat et al. 2020).

Recommended use case: Quantifying response surfaces when the functional form is known, there

is limited prior knowledge to guess parameter values, and time is not a strong constraint. Sequen-

tial/adaptive designs are especially helpful when equipment or logistics allows for only a limited

set of treatments at one time.

COMPARISON OF DESIGNS

We simulated each experimental design 100 times with random noise added to each measurement

and then calculated the prediction error (RMSE) between the �tted surfaces and the true sur-

face. This resulted in a distribution of RMSEs for each design (Figure 3). The designs fell into

three broad groups. First, full factorial response surface, optimal, and sequential/adaptive designs

performed best (i.e., had the lowest prediction error) (Figure 3). These models tended to also

do best in high-temperature and low-nutrient conditions even when extrapolating slightly, where
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other models struggled (Supplemental Figure 4). Second, quadratic response surface, custom,

and space-�lling designs had prediction errors that were approximately twice as high as those

in the �rst group. Note that the principal advantage of these three designs and fractional facto-

rial designs is ef�ciency (we even used small sample sizes for the quadratic and custom designs),

and so these are reasonable designs to use. This is especially true when studying more than two

environmental drivers, where ef�ciency is a much more important criterion. The �rst group of

designs will still outperform the second group in more dimensions but will need substantially

more experimental effort (full factorial response surface) or more prior knowledge (optimal) or

time (sequential/adaptive designs) (Table 1). Note that fractional factorial and quadratic response

surface designs are most often used as part of RSM, a sequential/adaptive design framework.

By far the worst designs were the two that are most commonly used: present-versus-future and

ANOVAdesigns.These designs had prediction errors that were three to four times as large as those

of the best designs on average, despite using the same number of experimental units (Figure 3).

While it may be argued that they were disadvantaged by their narrower range of temperature and

nutrient values, these values were chosen to be re�ective of commonly published experiments.We

also made choices that strongly favored these designs by using excellent starting guesses close to

the true values, using relatively informative treatment levels, constraining the parameter optimiza-

tion algorithm to stay within a reasonable range of parameter values, and evaluating performance

across the entire surface instead of focusing on regions that had strong interactions. Therefore,

this comparison arguably understates the advantage of the better designs.

A PROPOSAL FOR A RESEARCH PLAN FOR THE MULTIPLE-DRIVER
COMMUNITY

These simulations (Figure 3) illustrate the value of knowing functional forms and choosing appro-

priate experimental designs based on the objectives and constraints (Table 1). The challenge we

face as a community is integrating these ideas into a larger project to predict how multiple drivers

will reshape ocean ecology. To that end, we propose a general outline of what a community-wide

effort to achieve this goal may look like, taking advantage of these designs. Not every question

needs species-level response surfaces to answer, and so some of these steps will be unnecessary for

some goals.

For any species, a small set of relevant drivers can be identi�ed using fractional factorial or

quadratic response surface experiments. Note that variation, �uctuations, and extreme events can

be thought of as separate dimensions in this context and that the relevant drivers may already

be known in well-studied taxa. Once these drivers are known, we need to generate candidate

models for how they shape the response of individual species (or whole communities) to multiple

interacting drivers. These models can be generated from �rst principles or based on full factorial

response surface experiments. If there are multiple candidate models, model-sensitive designs (see

the section titled Optimal Designs) can be used to identify the best functional form. Experiments

with custom, optimal, or sequential/adaptive designs can then be used to estimate the parameters

for these functional forms for additional species.

With the functional form and these parameter values, marine scientists can take advantage

of theory–experiment feedback. Mathematical models can be used to generate expectations for

single-species dynamics in constant and varying environments. Theoretical expectations can be

validated and re�ned from experiments with single species (or communities) in these environ-

ments (Gerhard et al. 2023). This approach can then be scaled up to models with multiple species

and multiple trophic levels. Mesocosm experiments will be particularly advantageous for valida-

tion at these intermediate scales. For longer-lived organisms or organisms otherwise unsuited to
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experiments, models can be used to predict patterns in nature and validated with observational

data. After these rounds of validation, we can scale up further with Earth system models and other

global models (whose predictions will be largely untestable except over long timescales) to develop

projections with associated uncertainties based on different climate scenarios.

Optimizing our experimental designs at every stage is key to linking theory and experiments,

and therefore to building a more predictive and mechanistic science. This will be a challenging

community-wide undertaking that requires a wide range of expertise. However, we believe it is

the most promising path toward accurately predicting the future of our ecosystems.

APPENDIX: SOFTWARE TOOLS USED

To perform the simulations and analyses in this review, as well as generate the �gures, we used

Mathematica 12.3 (Wolfram Res. 2021) and R 4.2.2 (R Core Team 2022) along with the following

R packages: AlgDesign 1.2.1 (Wheeler 2022), bbmle 1.0.25 (Bolker & R Dev. Core Team 2022),

cowplot 1.1.1 (Wilke 2020), gridExtra 2.3 (Auguie & Antonov 2017), lhs 1.1.6 (Carnell 2022),

OptimalDesign 1.0.1 (Harman & Filova 2019), optimx 2022.4.30 (Nash & Varadhan 2011, Nash

2014), rootSolve 1.8.2.3 (Soetaert &Herman 2009, Soetaert et al. 2021), rsm 2.10.3 (Lenth 2009),

and tidyverse 2.0.0 (Wickham et al. 2019).
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