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Abstract— This paper proposes an algorithm to upper-bound
maximal quantile statistics of a state function over the course of
a Stochastic Differential Equation (SDE) system execution. This
chance-peak problem is posed as a nonconvex program aiming
to maximize the Value-at-Risk (VaR) of a state function along
SDE state distributions. The VaR problem is upper-bounded
by an infinite-dimensional Second-Order Cone Program in
occupation measures through the use of one-sided Cantelli or
Vysochanskii-Petunin inequalities. These upper bounds on the
true quantile statistics may be approximated from above by a
sequence of Semidefinite Programs in increasing size using the
moment-Sum-of-Squares hierarchy when all data is polynomial.
Effectiveness of this approach is demonstrated on example
stochastic polynomial dynamical systems.

I. INTRODUCTION

This paper analyzes maximal (1 — ¢)-quantile statistics
of a state function p(x) for Stochastic Differential Equation
(SDE) trajectories evolving in a compact set X. An example
of this type of quantile statistic for trajectory analysis is in
establishing that there exists at least one time with a 1%
chance of the aircraft exceeding a height of 100 meters. This
task of quantile estimation is related to peak and Value-at-
Risk (VaR) estimation, and will also be referred to as the
‘chance-peak’ problem.

The e-VaR is the value at which there is an e-probability
of exceedance [1]. Control and portfolio design typically
aims to minimise the VaR. One specific VaR-upper-bounding
coherent risk measure [2] that results in convex programs is
the conditional VaR risk measure [3], [4]. The conditional
VaR has been utilized for stochastic optimal control in [5],
and for approximation of discrete-time risk-bounded sets
using exponential and logarithmic inequalities with Markov
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Decision Processes in [6]. In contrast, the chance-peak
approach upper-bounds the maximum VaR of the continuous-
time SDE state distribution of x(¢) across all times. We
will solve this problem by maximizing the Cantelli [7] and
Vysochanskij-Petunin (VP) [8] upper bounds for the VaR.

Chance constraints are an adjacent topic to VaR opti-
mization, in which a probability inequality must hold as a
hard constraint. Chance-constrained programs have a wide
variety of application in control theory [9], [10], [11], and
are generally intractable to solve explicitly. Approximation
methods for chance constraints include the Cantelli [7] and
VP [8] inequalities, and application of these tail-bounds in
control include [12], [13]. The scenario approach for ran-
domized constraint generation will converge in probability
to the chance-constrained optimum, but carries a risk of
failure and may require a large number of samples [14]. The
moment-Sum of Squares (SOS) hierarchy of Semidefinite
Programs (SDPs) will converge to the chance-constrained
optimal solution under appropriate boundedness conditions
[15].

The chance-peak problem is also related to a family
of optimal stopping problems which can be solved using
occupation measures. The work in [16] expressed optimal
control problems of Ordinary Differential Equations (ODEs)
as an infinite-dimensional Linear Program (LP) in an ini-
tial, terminal, and occupation measure. The peak estimation
problem to maximize a state function p(x) is an instance of
optimal control with free terminal time and zero running cost.
The work in [17] generalizes this LP to the stochastic case
to find the maximum expectation of p(z) when dynamics
are phrased in terms of their infinitesimal generator (Feller
process). Such LPs will converge to the true solution of the
stopping problem under mild convergence, regularity, and
well-posedness assumptions. The moment-SOS hierarchy
of finite-dimensional SDPs will converge to the infinite-
dimensional LP optimum if all problem data (e.g., dynamics,
constraint sets) are polynomial-representable [18]. This con-
vergent SDP approach has been used for optimal control [19],
peak estimation [20] including compact-valued uncertainty
[21], expectation-maximization of Lévy processes [22], and
option pricing [23]. Other instances of the moment-SOS
hierarchy used to solve stochastic safety problems include
Barrier certificates [24], infinite-time averages [25], and
Reach-Avoid sets [26].

The contributions of this paper are:

e An infinite-dimensional Second-Order Cone (SOCP)

that upper-bounds the chance-peak program using the
VaR inequalities from [7], [8].
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e A convergent set of SDPs using the Moment-SOS
hierarchy to the SOCP upper bound.

o A verification of this approach on example polynomial
SDE systems.

Differences compared to prior work include:

o The chance-peak framework maximizes upper-bounds
the VaR, rather than minimizing worst-case VaR-upper-
bounds (v.s. [27], [28]).

o Upper-bounds on the VaR of p are maximized along
stochastic trajectories, rather than maximization of the
expectation of p (v.s. [17], [22]).

This paper has the following structure: Section II gives
an overview of notation, SDEs, and occupation measures.
Section IIT upper-bounds the chance-peak problem using an
infinite-dimensional SOCP in occupation measures. Section
IV reviews the moment-SOS hierarchy and presents a hi-
erarchy of SDPs that approximate the infinte-dimensional
chance-peak SOCP. Section V provides numerical examples
of the chance-peak problem on ODE and SDE systems.
Section VI concludes the paper.

II. PRELIMINARIES
A. Notation

The n-dimensional real Euclidean space is R™. The set
of natural numbers is N, and its subset of natural numbers
between 1 and N is 1..N. The set of n-multi-indices is N".
The degree of a multi-index o € N" is |a| = D" | 5. A
monomial is a term z* = [, z* with degree degz® =
|| A polynomial p(x) € R[z] may be uniquely represented
in terms of multi-indices « and coefficients p, as p(xz) =
Y ac 7 Pax® for some finite set # € N". The degree of
a vector of polynomials (f € (R[z])Y) is the maximum
degree of any coordinate (deg f = max;c1. n deg f;). The
vector space of polynomials of degree at most d is R[x]<q4
and its dimension is ("'{;d). The Second-Order Cone (SOC)
(or Lorentz cone) is Q™ = {(s, k) € R" xRy : ||s]l2 < K},
where ||s|l2 = (s7+...+s2)'/2 denotes the Euclidean norm.

The vector space of continuous functions over a topo-
logical space X is C(X), and its nonnegative subcone is
C4(X). The topological dual of a Banach space V is V*.
The cone of (nonnegative) Borel measures supported over X
is M (X) and the vector space of signed Borel measures
supported on X is M(X) = M (X) — My (X). When X
is compact, C(X) and M(X) are topological dual spaces
that have a duality product by Lebesgue integration: for
f e CX), pn e M(X) the duality product is (f,u) =
Jx f(x)dp(z). This duality product also induces a duality
pairing between C,(X) and M (X). As a slight abuse
of notation, we extend this duality product to all Borel
measurable functions f: (f,u) = [y f(2)du(x). The set
of k-times continuously differentiable functions over X
is C¥(X). The set C12(X x Y) is the set of functions
once-continuously differentiable over x € X and twice-
continuously differentiable over y € Y.

The indicator function of aset A C X is [4 : X — {0,1},
and has the values I4(z) =0 for x ¢ A and I4(z) =1 for

x € A. The measure of A with respect to u € M, (X)
is defined as u(A) = (I4, p). The mass of a measure p €
M (X) is p(X) = (1, ), and p is a probability measure
if this mass is 1. The support of a measure p is the set
of all points = such that each open neighborhood N, of x
obeys (N,) > 0. The Dirac delta 0,/ supported only at
the point z’ is a probability measure such that (f,d,/) =
f(&") for all f € C(X). Given two measures pu € M, (X)
and v € M (Y), the product measure p ® v is the unique
measure that satisfies VAC X, BCY : (u®v)(AxB) =
w(A)v(B). The pushforward of a function Q : X — Y
along a measure p(x) is Quu(y) and satisfies the relation
Vge C(Y): (9(y), Qun(y)) = (9(Q(2)), u(x)).

The operator A will be used to denote the minimum of
two quantities (stopping times) as a A b = min(a,b). The
adjoint of a linear operator £ : X — Y is £ :Y* — X*.

B. Probability Tail Bounds and Value-at-Risk

Let £ be a univariate probability measure &(w) €
ML (R) for a coordinate w € R, with (1,£) = 1 and
[(w, &), (w?, &) < oo (finite first and second moments). In
this paper, we define the e-VaR of ¢ as follows:

VaR(§) = sup {A € R [£([A, 00)) > e} (1)

Let 02 = (w?, &) — (w, £)? be the variance of the probability
distribution &.

The Cantelli bound for VaR is [7]:

VaR.(€) < oy/1/(€) — 1+ (w, &) = VaR™(£).  (2a)
The VP bound for the VaR is [8]:
VaR(€) < o\/4/(9¢) — 1+ (w,€) = VaR!"(£). (2b)

The Cantelli bound is applicable for any probability dis-
tribution £(w) and value € € [0, 1]. The VP bound is sharper
than the Cantelli bound, but is only valid when ¢ is unimodal
and € < 1/6.

C. Stochastic Differential Equations

Let (2, F,P) be a probability space with time-indexed
filtration F;, X C R™ be a compact set, and w be n-
dimensional Wiener process. An It6 SDE with a drift func-
tion f and diffusion function g is [29]

dx = f(t,x)dt + g(t, z)dw. 3)

In this paper, trajectories will start from an initial set Xg C
X and will remain within X in times ¢ € [0,7] by virtue
of stopping at the boundary 0X. Define 7x as a stopping
time (random variable) corresponding to the time at which
the process (3) starting from X touches the boundary 90X
for the first time. A process of (3) starting from an initial
condition z(0) € X, in times ¢ € [0,T] is

Tx NT Tx AT

x(t) = z(0) +/ g(t,z)dw. (4)

t=0

f(t,x)dt + /

t=0
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Solutions of (4) are unique if there exists finite constants
C,D > 0 such that for all (t,z,2') € [0,T] x X2, the
following Lipschitz and Growth conditions hold [30]:

Dz —a'lla > | f(t,x) = f(t,2")ll2 + [lg(t, x) — g(t, 2")]|2
C+lzll2) = [1f (& @)ll2 + gt )2 Q)

Sufficient conditions for the Lipschitz and Growth conditions
will hold are if (f,g) are locally Lipschitz and the set
X is compact. Distributions of the densities of (4) may
be computed by solving a Fokker-Planck equation with
absorbing boundary conditions on 0X [31], [32].

The generator £ associated with the SDE is a linear
operator with Yo(t,z) € C%([0,T] x X) [30]:

Lo(t,z) = 0w+ f(t,x) Vv + %g(t,x)T (VET'U) g(t, x).

(6)

The V2, v term arises from the Itd6 Lemma. Let 7 be a

stopping time adapted to the filtration, defined by 7 = 7x AT

The occupation measure 1 € M ([0, T] x X) corresponding

to the stopping time 7, initial distribution pg € M4 (Xp),
and dynamics (3) is VA C [0,T], BC X is

p(axB) = [ [ La (talt | ) dtdpofaa). D

The initial measure pg € My (Xp), the occupation mea-
sure y from (7), and the terminal measure 1, € M ([0, T] x
X)) defined by following the SDE (3) from initial conditions
o ~ Mo until the stopping time 7, are all related by Dynkin’s
formula [33]

<U,,u¢> = <’U(O,SE), ,LL()(SC» + <EU,,U>

Dynkin’s formula is an SDE generalization of the Liouville
equation for ODEs. Equation (8) may be equivalently written
in weak form as

Yo e CY2. (8)

[ = 0o @ po + L pu. 9)

An expectation-maximizing optimal stopping problem for
the SDE in (3) with a reward function of p(x) in the region
[0,7] x X, when starting at the initial condition (0) ~
po € M4 (Xo), is P* = supE,, [p(z(7))]. The work in [17]
presents an infinite-dimensional LP in measures to solve this
stopping problem

p* = sup (p,u,) (10a)
fir =60 @ po + L p (10b)
(1, o) =1 (10c)
1, pr € M4 ([0, 7] x X) (10d)
o € My (Xp). (10e)

Any p that is part of a feasible solution (u, 1o, ) for
(10b)-(10e) will be referred to as a relaxed occupation
measure. Program (10) satisfies p* > P*, and tightness
(p* = P*) is achieved under the assumptions of Lipschitz
continuity and Growth (5), compactness of [0,7] x X, and
continuity of p(x).

III. PEAK VALUE-AT-RISK ESTIMATION

This section will present the chance-peak problem state-
ment, and will also derive the infinite-dimensional SOCP to
upper bound the chance-peak quantile statistic.

A. Problem Statement

Let € € [0,1] be a value for the quantile statistic, X be
a compact set, Xo C X be a set of initial conditions, and
(4) be the solution to an SDE evolving from z(0) € X that
remains within X until it stops. For a given initial probability
distribution py € M (Xp), and for all ¢ € [0, T, let z(t) be
the stochastic process of (4) at time ¢, and let u; € M, (X)
be its probability distribution (with z(¢) stopping at 9X).

1) Assumptions: The following assumptions will be posed
throughout this paper,

Al The set [0,T] x X is compact and X C X.
A2 The functions (f, g) satisfy (5).
A3 The state function p(x) is continuous on X.
A4 The initial measure pg € M4 (Xp) is a given probabil-
ity distribution ({1, 0) = 1).
2) VaR Problem:
Problem 3.1: The chance-peak problem to find the e-VaR
of p(x) is

P* = sup VaR(pxp-) (11a)
t*€[0,T]
dx = f(t,x)dt + g(t, z)dw (11b)

from ¢ = 0 until a stopping time of 7x At* (11c)

2(0) ~ fio. (11d)

The pushforward p iy~ from (11a) is the univariate proba-
bility distribution of p(x) at the state distribution © ~ .

3) Tail-Bound Upper Bound: Let r be the constant factor

multiplying o in (2) (with VaR () < or+ (w, £)) such that

reent — /T(e) —1 VP = /4/(9¢) — L.

It is further assumed that the VP-bound will only be used
if its conditions are satisfied (¢ < 1/6, unimodal). The
distribution of p(z) with respect to the state distribution fus-
is univariate, for which the relation in (1) and the constants
in (2) can be used to upper-bound on Problem 3.1. We will
use the notation (p?, y1s+) to refer to (p(x)2, us- (x)).

Problem 3.2: The tail-bound program that upper-bounds
the chance-peak (11) with constant r is

12)

Br = sup /(P pe) — (o, =)+ (po-) - (130)
t*€[0,T]
dx = f(t,z)dt + g(t, z)dw (13b)

from ¢ = 0 until a stopping time of 7x At* (13c)
(0) ~ pro.- (13d)
B. Nonlinear Measure Program

Problem 3.2 can be upper-bounded by an infinite-
dimensional nonlinear program in a given initial probability
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distribution 19, terminal measure i, and relaxed occupation
measure j, using the generator £ in (6) as

pr =supry/ (P2, pr) — (p, p1r)% + (P, pir) (14a)
fir =80 @ po + LT p (14b)
MHry B E M+([O7T] x X) (14c)

Theorem 3.3: Program 14 is an upper bound on (13) with
pr > PY under Al-A4.
Proof: Let t* be a stopping time in [0, 7], and let 2y €
Xy be an initial condition. Measures (g, i, i, ) that satisfy
(14b) may be constructed from this (t*,xg) by u as the
state distribution of (4) at time t* given pg, and p as the
occupation measure in (7) associated to this SDE trajectory
with distribution pg. Because the feasible set to constraint
(14b) contains measures induced by all possible provided
SDE trajectories starting from i, it holds that p; > P¥. W
Remark 1: The initial distribution g € M4 (Xp) may
be optimized to find a supremal p} over all probability
distributions in X, by adding pg as a variable and adding
the constraint (g, 1) = 1 to (14).

C. Measure Second-Order Cone Program

The nonlinear measure program (14) may be recast as an
infinite-dimensional convex SOCP.

Lemma 3.4: Let J.(a,b) = rv/b — a?+a be the objective
(14a) with a = (p(z),u,) and b = (p(x)?, p,). For any
convex set C' € R x R, with (a,b) € C, the following pair
of programs have the same optimal value (in which Q3 =

{([s1, 82, 83], k) € R® x R | ||s]|]2 < k} is an SOC cone):
sup a+ryvb— a2 (15)
(a,b)eC
sup a+rz: ([1—5,22,2a],1+b) € Q> (16)
(a,b)eC, z€eR

Proof: The new variable z is introduced under the
constraint v/b — a2 > z, implying that 22 + a? < b. The
SOCP equivalence follows from the power-representation of
Vb — a? from [34], [35], with the steps of

([1 —b,22,2a],1 +b) € Q3 (17a)
(1-0)*+4(2* +a?) < (1+b)? (17b)
(1463 —20+4(2*+a®) < (1+b*)+2b  (17c)
4(2% + a?) < 4b. (17d)

|

Theorem 3.5: An infinite-dimensional SOCP with the
same optimal value and set of feasible solutions as (14) given

o is

pt=sup rz+ (p,pr) (18a)
fr =80 @ pio + L'p1 (18b)
=[1—p* pr), 22, 2(p, pir)] (18c)

(u, 1+ (9%, i) € Q° (18d)

wy pir € M([0,T] x X),z€ R,u € R3. (18e)

Proof: This results from an application of Lemma 3.4
to the objective term (14a). The optimization variables are
now (r, @, 2, u). ]

Corollary 1: Program (18) is convex.

Proof: The objective (18a) is affine in (z, ). Con-
straints (18b)-(18e) are convex (affine for (18b) and SOC
for (18d)), ensuring convexity of (18). |

Remark 2: Problem (18) has an infinite-dimensional
affine constraint in (18b) and a finite-dimensional SOC
constraint in (18d).

IV. FINITE MOMENT PROGRAM

This section will upper-bound (18) utilizing a converging
hierarchy of SDPs of increasing size.

A. Review of Moment-SOS Hierarchy

All content from this subsection is referenced from [18].
For any multi-indexed sequence m = {mg}qene € RV,
we define the Riesz functional L, : R[z] — R as follows:

p(@) = 3 pat® > Lmp= 3 paMa. (19
aeNn OéeN"”
Let 4 € M (X) be a measure. The a-moment of p for

a € N" is m,, = (x®, u). The collection of moments m =

{m, }aene is @ moment sequence and has the following
property:

Vp € R[z], (py ). (19b)

A key result to build the moment-SOS hierarchy is the
characterization of sequences m that correspond to moment
sequences, i.e. such that (19b) holds for some X C R™ and
some p € My (X):

For m € RY" and h € R[z], we define the localizing
bilinear functional Ly, : R[z] X R[z] — R by

Lmp =

Lym = (p,q) — Lm(hpq). (20a)

Equipping R[z] with a linear basis (e;);en (e.g. €;(z) = ™
with {a;};en = N, an ordering of monomials such that
la;| < |ej| = i < j) yields an infinite size matrix represen-
tation of Ly, which we call the localizing matrix M[hm] =
(Lm(heie;))ijen. For instance, if h(z) = Y ;cyn hpa?,
using a basis of monomials with nondecreasing degrees
yields, for all 4,5 € N

M[hm]; j = Ly (ha“iz%) = Z hgme, ya;+5. (20b)

BEN

A Basic Semialgebraic (BSA) set is a set defined by a
finite number of bounded-degree inequality constraints such
as K = {z | hg(z) > 0: k = 1..N.}. Assuming “ball
constraints” hy(z) = 1 and hy,(z) = R — ||z||3 (this can
always be enforced if K is compact in R”, up to adding
redundant constraints), m € RY" has a representing measure
€ M, (K) such that (19b) holds if, for all k£ = 1..N,, the
bilinear functional L, m, is positive semidefinite, i.e.

Vp € Rlz],k = 1..N,, L (hp?) > 0. (21a)
or, equivalently,
Vd e N,k =1..N,, My[hym] = 0. (21b)

where Mg[hym] is the top left block of size ("1%) of
M{[hjm)], which corresponds to the matrix representation of
Ljm in the finite dimensional space R[x]<q4
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For notational convenience, we define the block diagonal
synthetic matrix

Md [Km] = diag(Md, [dr/2] [hkm])kzl..NU (22)

where dy, = deg(hy). This synthetic matrix has two impor-
tant properties, deduced from (20b) and (21b):

o it exactly involves all the terms m,, for |a| < 2d

e (21) holds if and only if My[Km] = 0 for all d € N.

The process of increasing the degree d — oo when posing
Positive Semidefinite (PSD) constraints on Mz[Km] is called
the moment-SOS hierarchy.

B. Moment Program

The following assumptions are required to utilize the
moment-SOS hierarchy in approximating (18):

AS5 The sets Xy and X are BSA sets with ball constraints.
A6 The functions f(t,z),g(t,x) are polynomial vector
fields and p(z) is a polynomial.

Given an initial measure pg € M (Xp), let (m, m") be
moment sequences corresponding to the measures (u, fi,)
respectively. For each monomial z*t? with o € N*, 3 € N,
define the operator D,p(m, m7) as the moment counterpart
of the operator involved in Dynkin’s formula (9)

Dyp(m,m") = mg;z — L (L(2217)). (23)
Define the dynamics degree D as
D =d+ [max(deg f —1,2degg — 2)/2]. (24)

so that for (a, ) € N**1,
la| + 8 < 2d = deg(L(z*t?)) < 2D.

Problem 4.1: For d > deg(p), the order-d moment prob-
lem that upper-bounds problem (18), given pq is

Prg=max 7z + Lyrp (25a)
ceRmer ) mm eRUTT) a5y
Dop(m,m") = dpo(z*, 1o)

Y(a,B) e N"T1 st Jal+ B8 <2d (250)
s =[1 = L~ (p*), 22, 2Lm-p) (25d)
(5,14 Ly-(p?)) € Q® (25¢)
Ma[([0,T] x X)mT] = 0 (25f)
Mp[([0,T] x X)m] = 0, (25g)

where dgo denotes the Kronecker symbol that is 1 if 8§ =
0 and O otherwise. Note that constraint (25c) is a finite-
dimensional truncation of the infinite-dimensional (18b).
The following boundedness result is required to ensure
convergence:
Lemma 4.2: All of (u, pr,2) are bounded in (18) under
Al-A3.

Proof: A sufficient condition for a measure to be
bounded (in the sense that all moments are bounded) is
that it has finite mass and is supported on a compact set.
Compactness of [0,7] x X holds by Al. Assumption A4
imposes that (1, o) = 1. By substituting v(¢,2) = 1 (18b),

it holds that (1, u.) = (1,p9) = 1. Performing the same
step with v(t,z) = ¢ yields T > (t,ur) = (Lip). It
therefore holds that (p, u») and (p?, uu,) are bounded. The
SOC constraint (18d) ensures that z is finite, demonstrating
that all variables are bounded. |
Theorem 4.3: Under A1-A6, the optima in (25) will con-
verge to (18) as limg_,o p:‘,’d = p;.
Proof: This convergence will occur by Corollary 8 of
[36] (when extending to the finite-dimensional SOC case)
through Lemma 4.2. [ ]
Remark 3: The relation p}; > py > P7 will still hold
when [0, T] x X is noncompact (violating A1 and A5), but it
may no longer occur that limg_, p ; = p;. (the conditions
Lemma 4.3 will no longer apply). 7

C. Computational Complexity

In Problem (25), the computational complexity mostly
depends on the number and size of the matrix blocks involved
in LMI constraints (25f,25g), which in turn depend on the
number and degrees of polynomial inequalities describing
X (the higher dj, = deg(hx), the smaller Mg_rg, /21 [hm]).
At order-d, the maximum size of localizing matrices is
(n+1D+D)~

Problem (25) must be converted to SDP-standard form
by introducing equality constraints between the entries of
the moment matrices in order to utilize symmetric-cone
Interior Point Methods (e.g., Mosek [37]). The per-iteration
complexity of an SDP involving a single moment matrix of
size (”;d) scales as n%¢ [23]. The scaling of an SDP with
multiple moment and localizing matrices generally depends
on the maximal size of any PSD matrix. In our case, this
size is at most ("+;+d) with a scaling impact of (n + 1)5<.
The complexity of using this chance-peak routine increases
in a jointly polynomial manner with d and n.

V. NUMERICAL EXAMPLES

MATLAB (2022a) code to replicate experiments is avail-
able at https://github.com/Jarmill/chance_
peak. Dependencies include Mosek [37] and YALMIP [38].
Monte Carlo (MC) sampling to empirically find VaR esti-
mates is conducted over 50,000 SDE paths under antithetic
sampling with a time spacing of At = 1073, All experiments
contain a table of chance-peak bounds as well as solver-times
to compute these bounds.

A. Two States

Example 1 of [39] is the following two-dimensional cubic
polynomial SDE

dz = {_xl o ;xi{*] dt + [091] dw.  (6)

This example performs chance-peak maximization of
p(x) = —xo starting at the point (Dirac-delta initial measure
o) Xo = [1,1] with X = [—1,1.4] x [-2,1.25] and T = 5.
Trajectories of (26) are displayed in cyan in Figure 1 starting
from the black-circle X, and four of these trajectories are
marked in non-cyan colors. The ¢ = 0.5 row of Table
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I displays the bounds on the mean distribution as solved
through finite-degree SDP truncations of (10). The bounds at
e = {0.15,0.1,0.05} are obtained through the VP expression
in (2b) and solving the SDPs obtained from (25). The dotted
and solid red lines in Figure 1 are the ¢ = 0.5 and € = 0.15
bounds respectively at order 5.

TABLE I. Chance-Peak estimation of the Stochastic Flow

System (26) to maximize p(x) = —x2
order 2 3 4 5 6 MC
e=0.5 0.8818 0.8773  0.8747 0.8745 0.8744  0.8559
e=0.15 1.6660 1.6113 1.5842 15771 1.5740 0.9142
e=0.1 2.0757  1.9909 19549 1.9461 19427 0.9279
e =0.05 29960 2.8441 27904 2.7772 27715 0.9484

Stochastic Flow System

06 -04 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 1: Trajectories of (26) with ¢ = 0.5 (dashed red) and
€ = 0.15 (solid red) bounds

TABLE II: Solver time (seconds) to compute Table I

order 2 3 4 5 6
e=0.5 0.380 0.449 0.625 1.583 4.552
e=0.15 0262 0443 0.727 2756 5.586
e=0.1 0.268 0380 1.364 2.882 3.143
e=0.05 0242 0390 1261 2923 7.539

B. Three States
An SDE modification of the Twist system from [40] is

—2.521 + 3 — 0.5z3 + 223 + 223 0
dr = | —x1 + 1.522 + 0.523 — 2x§ — 2x§ dt+ | 0 | dw.
1.521 + 2.5x9 — 273 — 223 — 223 0.1

27)

This second example performs chance-peak maximization
of p(x) = x3 starting at the point Xy, = [0.5,0,0] with
X =1]-0.6,0.6] x [-1,1] x [-1,1.5] and T = 5. VP bounds
from solving the SDPs from (10) and (25) are recorded in
Table III in the same manner as in Table I. Figure 2 plots
trajectories and bounds of (27) starting from the black-circle
Xy point, with four of these trajectories visibly distinguished.

TABLE III: Chance-Peak estimation of the Stochastic Twist
System (27) to maximize p(z) = x5

order 2 3 4 5 6 MC
e=0.5 09100 0.8312 0.8231 0.8211 0.8201  0.7206
e=0.15 1.6097 14333 13545 1.3318 1.3202 0.7685
e=0.1 1.9707 1.7453 1.6283 1.5877 1.5739 0.7801
e=0.05 27834 24426 22333 2.1622 2.1267 0.7970

The solid red plane in Figure 2 is the ¢ = 0.15 bound on
xg at order 6, and the transluscent red plane is the e = 0.5
bound on x3 (also at order 6).

Stochastic Twist System

-0.2

0.4

-0.6 jw
1 y . 0.5

Fig. 2: Trajectories of (27) with ¢ = 0.5 (dashed red) and
€ = 0.15 (solid red) bounds

TABLE IV: Solver time (seconds) to compute Table III

order 2 3 4 5 6
e=0.5 0428 1939 5196 19.201 83.679
e=0.15 0328 0999 4755 21.108 96.985
e=0.1 0.325 1.083 5.172 22596 119.823
e=0.05 0325 1294 4516 22357 115.820

VI. CONCLUSION

This paper considered the chance-peak problem, which
involved finding upper bounds on the quantiles of state
functions p(z) achieved by SDE systems. The true (1 — €)-
quantile statistic P* (11) is upper-bounded by the Can-
telli/VP approximation P’ (13), which in turn is upper
bounded by an infinite-dimensional SOCP p; (18) and its
moment-SOS finite-dimensional SDPs yielding p; ; with
limg_o Py ; = pj- Bach of these upper-bounds contribute
valuable information towards the analysis of SDEs.

Future work includes finding conditions under which the
measure-based upper-bounding does not add conservatism
(e.g. cases where p; = P}), and utilizing higher-moment
tail-probability inequalities to obtain closer estimates to the
VaR [41]. Other work involves studying the duality structure
of (18) with respect to the achievement of strong duality. The
techniques introduced in this paper can also be extended to
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application domains such as distance estimation [40], Lévy
processes [22], and exit-time statistics [19]. Another avenue
involves developing stochastic optimal control strategies to
minimize quantile statistics.
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