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Abstract:

This paper applies a polynomial optimization-based framework towards the superstabilizing
control of an Autoregressive with Exogenous Input (ARX) model given noisy data observations.
The recorded input and output values are corrupted with L-infinity-bounded noise where the
bounds are known. This is an instance of Error in Variables (EIV) in which true internal state
of the ARX system remains unknown. The consistency set of ARX models compatible with
noisy data has a bilinearity between unknown plant parameters and unknown noise terms.
The requirement for a dynamic compensator to superstabilize all consistent plants is expressed
using polynomial nonnegativity constraints, and solved using sum-of-squares (SOS) methods in a
converging hierarchy of semidefinite programs in increasing size. The computational complexity
of this method may be reduced by applying a Theorem of Alternatives to eliminate the noise
terms. The effectiveness of this method is demonstrated on control of example ARX models.
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1. INTRODUCTION

This paper proposes a Data Driven Control (DDC) algo-
rithm to (super)stabilize an Autoregressive with Exoge-
nous Inputs (ARX) dynamical system which is corrupted
by Lso-bounded input and measurement noise. The com-
bination of input and measurement noise is known as the
Error in Variables (EIV) setting. The class of systems
consistent with given observations requires a bilinear de-
scription in terms of plant parameters and noise values.
This work will use polynomial optimization through Sum-
of-Squares (SOS) methods to perform (super)stabilization
of all consistent plants with a single dynamic compensator.

DDC is a class of algorithms that perform control of
plants consistent with measured data without requiring
a system identification step first (Hou and Wang, 2013).
Recent design methods for state space models are based on
Willem’s Fundamental Lemma (De Persis and Tesi, 2020;
Berberich et al., 2020), Matrix S-Lemma (van Waarde
et al., 2020), and/or a theorem of alternatives (Dai and
Sznaier, 2018).

Most DDC applications involve structured process noise
in dynamics. The EIV case is considerably less studied
for control. Prior work about system identification and
state estimation of EIV-affected systems includes (Norton,
1987; Cerone, 1993; Cerone et al., 2011; S6derstrom, 2018).
Polynomial optimization for system identification of EIV
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ARX models has previously been considered in Chapter
6 of (Cheng, 2016) using rank-minimization, but the EIV
control task was not previously addressed. This paper is a
continuation of research started by the authors in (Miller
et al., 2022b,a) for EIV control with full-state feedback.

Superstability is a computationally tractable restriction
of stability used in control and static output feedback
(Polyak and Halpern, 2001; Polyak and Shcherbakov,
2002). Superstability allows for the design of controllers
with guaranteed performance bounds on the growth of
the Loo-norm of the state/output (Sznaier and Bianchini,
1995), which was extended to the matrix transfer function
case in (Chen et al., 2005). Data-driven superstabilization
of ARX models under process noise was performed in
(Cheng et al., 2015).

To the best of our knowledge, this paper is the first work
that addresses output-feedback DDC with noisy input-
output measurements. The contributions of this work are,

e Formulation and solution of EIV ARX superstabiliza-
tion as a Polynomial Optimization Problem (POP)
using SOS methods.

e Application of a Theorem of Alternatives to form a
POP where noise terms (Au, Ay) are eliminated.

e Accounting of the computational complexity to solve
the Semidefinite Programs (SDPs) with and without
utilizing the Theorem of Alternatives.

This paper has the following structure: Section 2 intro-
duces preliminaries such as notation, ARX models, Super-
stability applied to ARX models, and SOS methods. Sec-
tion 3 presents a POP for superstabilizing control involving
the variables (a,b, Au, Ay). Section 4 utilizes a Theorem
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of Alternatives to create an equivalent POP in terms of
(a,b). Section 5 tabulates the computational complexity of
these SDPs. Section 6 applies the derived methods towards
example superstabilization problems. Section 7 concludes
the paper.

2. PRELIMINARIES

2.1 Notation

The set of real numbers is R and the n-dimensional real
Euclidean vector space is R™. The set of integers between
r and s is r..s. The n-dimensional nonnegative real orthant
is R’ . The set of n x m real-valued matrices is R"*™. The
transpose of a matrix M is M7T. The identity matrix is
I, the all-ones matrix is 1, and the all-zeros matrix is 0.
The Li-norm of a vector z is ||z|; = Y., |z;|. The Lo
norm of a vector z is ||z||cc = max;ec1. n|z;| The vertical
concatenation of vectors  and y is [z;y]. The lag operator
A applied to a sequence {z;} is Axy = x4—1. The cross-
correlation x x y between {x,}¥_, and {y}7,, is

(l‘ *y)j = Z?:m Titj—nt+m—1Yi, ] =l.k+n—m. (1)

The cardinality of a finite set A is |A|. The set of
natural numbers is N, and the set of n-dimensional multi-
indices is N". Every polynomial p(x) may be defined with
respect to some set A C N" as p(x) = > c4Ca®®
with all coefficients ¢, # 0. The degree of a polynomial
p(x) is degp. The ring of real-valued polynomials with
indeterminates z is R[z|, and its subset of polynomials
with degree d or less is R[x]<4. The notation (R[x])* will
denote a k-vector of polynomials in x. The coefficient
vector of a polynomial p(z) is ¢ = coeffp(x)].

2.2 ARX Models

An ARX model with input-output sequence (u,y) and
parameters (a,b) such that n, > np obeys dynamics for
times t € 1..T":

Yt = — Z:’;:al a;Yt—i + Z?:bl biut_i. (2)

The ARX model in (2) may be represented as a rational
transfer function in the lag operator A with

o) = iz bN___BO) 3)

TN T+ AQY

The numerator B and denominator A of (3) are each
polynomials in A. The function (3) satisfies B(0) = 0 and
is assumed to be strictly proper (G(0) = 0).

Let C(\) be a dynamic compensator with parameters (a, b)
of length (7,4, 7p) following the structure of (3), yielding
polynomials (A(N), B(A\)) with C(A) = B(A)/(1 + A(N)).
Application of C(A) in feedback with G(A) yields the
following closed-loop transfer function G (\):

G\ BO\)(1+AN)

1+GNCO) 1+ AN +AN) + BO)BO) @

The closed-loop system parameter a® related to (4) is
a® = coeff[(1+ AN)(1 + A(\)) + BNB(A) —1]. (5)

A single ARX system in (2) is stable if the roots of
1 + A(X) are contained within the exterior of the unit
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disc {\ | /Re(A\)2+Im()\)2 > 1}. This stability may
be verified through numerical computation of roots or
with the Jury stability criterion (Ogata, 1995). These
methods are computationally expensive to employ when
designing stabilizing compensators C' (as in (4))such that
(5) is stable, given that the methods all involve polynomial

constraints on the entries of (a,b).
2.8 Superstability

Superstability (Blanchini and Sznaier, 1995; Polyak and
Halpern, 2001; Polyak and Shcherbakov, 2002) is a con-
servative notion of stability that possesses simpler com-
putational properties. An ARX system is superstable if
lla]i < 1, which implies that the roots of 1 + A()) are
located in the exterior of the unit diamond {X | |[Re(\)| +
[Im(A)| > 1}. If the system satisfies ||a]l; < « for some
value v € [0,1), then a bound on |y;| based on the initial
condition given v = 0 may be found as V& > 0 : |y| <
yt/matt maxy g p, —1|T_4/| (Theorem A.1.(a) of (Polyak
and Shcherbakov, 2002) when starting at time ¢ = 1).

The superstability norm constraint ||a|; < 1 from (5) is

affine-expressible in the compensator parameters (a, b).

Superstability may be imposed for classes of plants. A
single controller C' can simultaneously superstabilize a set
(a, b) of plants if the closed-loop system (4) is superstable
for each individual plant.

2.4 Sum of Squares

A Basic Semialgebraic (BSA) set K is the locus of a
finite number of bounded-degree polynomial inequality
and equality constraints:

K= {z € R" | gx(x) > 0, by (x) = 0}, (6)
for all indices k = 1..N;, k¥’ = 1..N,. BSA sets may be
intersected by concatenating their describing polynomials
{g} and {h}. The z-projection operator 7% : X x Y — X
is 7 : (z,y) — 2. A BSA set K C X x Y has an z-
projection 7K = {x € X | (z,y) € K}. BSA sets are not
closed under projection, instead the projection of a BSA
set is generically the union of disjoint BSA sets.

A polynomial is nonnegative if Vo € R™ : p(z) > 0.
A polynomial p(z) is SOS if there exists an integer s,
a polynomial vector v € (R[z])®, and an s x s Positive
Semidefinite (PSD) Gram matrix @ > 0 such that p(z) =
v(z)TQu(z). SOS polynomials are a subset of nonnegative
polynomials, given that the square of any real number is
nonnegative. The set of SOS polynomials is X[z] C R[z],
and its subset of degree-2d polynomials is X[z]<oq C
R[z]<24 (SOS polynomials are always even).

A sufficient condition for a polynomial p(x) to be positive
over a BSA set K is (Putinar, 1993)

p(x) = oo(x) + 32, 0i(x)gi(x) + 325 b;(x)h; (7a)
Joo(z) € Bla], o(x) € (B[)), ¢ € (Rlz)™M. (7b)
The Weighted Sum-of-Squares (WSOS) set X[K] is the
set of polynomials that admit a certificate in (7) (called
a Putinar Psatz). The Putinar certificate in (7) is nec-

essary and sufficient if an Archimedean condition holds:
JR > 0| R—|z||3 € £[K]. Every Archimedean BSA set is
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compact, and compact sets may be rendered Archimedean
by adjoining R — ||z||3 > 0 to the descriptor constraints
if a valid R is previously known. The moment-SOS hier-
archy for optimization involves increasing the degree 2d
to obtain higher-order Putinar multipliers (7b) (Lasserre,
2009). Certifying that a degree-2d polynomial p(x) is SOS
requires 1+ /N, Gram matrices of maximal size (”jd), and
the approximate per-iteration runtime of an SDP origi-
nating from the moment-SOS hierarchy is approximately
O(n5?) when d is fixed.

3. SUPERSTABILIZING CONTROL

This section presents a POP to perform superstabilizing
control of EIV ARX models.

3.1 Problem Statement

A set of input-output observations D = (4, ) are recorded
for an ARX dynamical system within a time horizon of 7.
The ground-truth is the input-output data (u,y) following
dynamics (2). The records in D are corrupted by L
bounded input noise (Au € RT*7~1) and measurement
noise (Ay € RT+na) as
J=y+Ay, [Ay[loo < € (8a)
i =u+ Au, AU oo < €. (8b)
The combination of input and measurement noise is the
EIV setting. Substitution of (8) into (2) yields
= Ay = (= 2002 aifie—i + D02 bitie—i)
— (=20 @iy + 3000 biAuy) )

3.2 Consistency Sets

The (Au, Ay)-constant terms in (9) may be written as

hie =G + 302 @ilie—i — Yoy bitl—i. (10)
Eq. (9) may therefore be expressed in terms of h; as
0= ht + (7 Z?:al al-Ayt_i -+ Z?:bl biAut_i) — Ayt (11)

The set of parameters (a,b) and noise values (Au, Ay)
consistent with data D is

a€R™ beR™| |Aulle < ey
P:{ AuecRTHm-l 1AY|loo < € (12)
Ay € RT*me  |Eq. (11) Vt = 1..T

The set of parameters (a, b) consistent with data in D is
P(a,b) = 7**P(a,b, Au, Ay). (13)
Equivalently, a plant (a, b) is a member of P if there exists

an admissible L,-bounded noise process (Au,Ay) that
could have generated D.

The following assumption will be required to obtain con-
vergence:

A1l The set P is compact.

Remark 1. Compactness of P by Al implies that its pro-
jection P is also compact.

3.8 Full Program

The coefficients ¢ have maximal length ne = fig + nq.
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Problem 2. A program to perform superstabilizing control
(or to find an infeasibility certificate if v* > 1) is
a,b, Au, Ay) € P: v > |la||;. (14a)

*

¥ = min_ vy ¥(
v€ER,(@,b)

The Li-norm constraint in (14) may be equivalently rep-
resented by a lifted sequence of inequalities. The Li-norm
of a vector x € R™ may also be expressed as |z|; =
ming,errea y_,m; . —m; < x; < my (Gouveia et al.,
2013). Letting m;(a,b) : P — R be a set of functions
for i = 1..n, + N, expression (14) may be written as

7" = min v (15a)
75(@b)

Y(a,b, Au, Ay) € P : (15b)

v =iz mi(a, b) 2 0 (15¢)

mi(a,b) — a(a,b) > 0 Vi=1.nq (15d)

mi(a,b) + a'(a,b) >0 Vi=1.ng (15¢)

8.4 Full Sum-of-Squares Program

Problem 2 may be solved using SOS programming. The
nonnegativity constraints in (15c)-(15e) may each be real-
ized as Psatz constraints in the sense of (7). The degree-
d polynomial restriction to Problem 2 is presented in
Eq. (16). The decision variables of Eq. (16) are the L;-
certificates m and the gain . The > symbols in (15) are
tightened to > in Eq. (16) due to the Putinar Psatz’s (7)
positivity certificate.

Ya = miny (16a)
aeR", beR™ (16b)
m; € (R [a b])<2d Viel.ng (16¢)
v = iy mi(a,b) € B[P]<s (16d)
mi(a,b) — af(a, b) € E[ﬁ]gzd Vi=1.ng  (16e)

mi(a,b) + ai'(a,b) € D[Pl<aq  Vi=l.ng. (16f)

Theorem 3. The functions m; have continuous selections.

Proof. Let M, c : P = R" be the set-valued map
defining the closed convex solution region (a,b) — {m €
R™et | S Simi <y, Vioim > +af(a,b)} from (15)
given (7, @, b). Note that the functions a¢(a, b) from (5) are
linear (continuous) functions of (a, b) given (a, b). Theorem
2.4 of (Mangasarian and Shiau, 1987) proves that M is
a lower-semicontinous map (image of linear inequalities
under perturbations in the right-hand side). Michael’s
Theorem (9.1.2 in (Aubin and Frankowska, 2009)) suffices
to show that a continuous selection exists, because M, ¢
is lower-semicontinuous with closed convex images, P is
compact, and R™< is a Banach space.

Theorem 4. The bounds from Eq. (16) will converge to
limg oo 75 = 7" from Problem 2 with v > 7, > ...7*
when P is Archimedean.

Proof. Let (v,m) be a solution to Problem 2 with each
m;(a,b) continuous over P (by Theorem 3). For each
e > 0, there exists functions m;(a,b) € Rla,b] such
that sup, y)ep|(mi(a,b) + €) — m(a,b)| < € by the Stone
Weierstrass theorem over the compact P. Define r;(a,b) =
m;(a,b) + € — m;(a,b) as the approximation error. The
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finite-degree polynomial variates (y+ nee, m;) are feasible

solutions to (14) with
0 <m;(a,b) — ac(a,b) < m;(a,b) —aq(a,b) (17a)
0<y—>,mi(a,b) < (y+nq)e—> ,mi(a,b). (17b)

The multipliers for Putinar Psatz certificates for (17a) and
(17b) have finite (exponential) degree in terms of degm;
(Nie and Schweighofer, 2007). Therefore it holds that for
each ¢, there exists some degree d such that v4 = v+ nge.
Because lim._,o v* + n¢e = ", it holds that limg o 7} =
7*. The sequence is decreasing with v > 77, ; because the

WSOS cones satisfy S[P]<za C B[P)<a(at1)-
4. ALTERNATIVES CONTROL

Eq. (16) involves a total of 2(n, + ny + T) — 1 variables
(a, b, Au, Ay). The Psatz expressions such as in (16d) will
therefore have Gram matrices of size (2("“+"§+T)+d) at
each fixed degree d. Performance of Eq. (16) is therefore
polynomial in T for fixed (n,, np, d), and is jointly combi-
natorial in all parameters.

A theorem of alternatives may be utilized to eliminate
the noise terms (Au, Ay) from Putinar expressions. This
Alternatives algorithm scales in a linear manner based on
T and possesses Gram matrices of maximal size ("“+gb+d)
Lettmg ng = 3,np = 2,7 = 10, this maximal size is
( ) = 465 for Full and (5+1) =6 for Alternatives.

4.1 ARX Alternatives Psatz

Let g(a,b) be a function defined over P. Because ¢(a,b) is
a function of (a,b) alone, the following positivity criteria
are equivalent by projection:

q(a,b) >0 Y(a,b) € P (18a)

q(a,b) >0 Y(a,b, Au, Ay) € P. (18b)
The following statement is a strong alternative to (18):

J(a, b, Au, Ay) € P : —q(a,b) > 0. (19)
Dual variable functions may be defined according to the
Putinar multipliers in constraint description (12) with

Vv (a,b) >0 Vt=(—np+1).T -1 (20a)
¢E(a,b) >0 Vt = (—ng +1).T (20b)
we(a,b) Vi =1.T. (20c)

The (a,b) dependence in terms (¢*, ¢F, 1) will be omitted
to simplify notation. Additionally, the term 1™ will refer
to the vector {t;"}T_, (with similar vectorial definitions
for 9=, ¢*, u). The nonnegativity constraints in (20a) and
(20b) are required to hold for all (a,b) € P.

A weighted sum ® may be developed from ¢, multipliers
n (20), and the description (12), by forming

® = —q(a,b) + 3y uehe (21)
+ ZtT 1 ﬂt(Z?:b1 bidAug_; — Y i a; Ay — Ayy)
+ Z —(np—1) (Vf (€u — Auy) + U7 (eu + Auy))

+ Etzf(nafl) (Cj(eu — Ay) + ¢ (ey + Ayt)) .

The terms in (21) that are constant in (Awu, Ay) may be
collected into

Q(a7 b) = 7‘1(0’7 b) =+ €1L]_T(1)[;+ + 7/}7)
+hTu 46, 17(CT + (7).

(22)
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Using the cross-correlation operator x from (1), Eq. (21)
may be rewritten as

® = Q(a,b) + (uxb)TAu — (u*[1;a])" Ay
@7 =) Aut (- )T Ay.
A Lagrangian dual function g(a,b) may be defined as
®(a,b, Au, Ay).

(23)

9(a,b) = sup (24)

AueRT+mb . AycRT+na
The coefficients of (Au, Ay) in (23) must be zero in order
to ensure that g(a,b) is bounded. The value of this dual
function is

Qa,b) " =y~ =pxb
g(a,b): C""—C_:/,L‘k[l;a} (25)
o0 Else.
Problem 5. A feasibility program to certify (18) is
fi _ b ; ,
vE, ¢t ,Lll:l(firom (20) Q(a,b) >0 VY(a,b)eP (26a)
C‘*‘—C_:M*[l;a}. (26C)

Theorem 6. Problem 5 certifies (18) and is a strong alter-
native of (19).

Proof. Sufficiency: The statement g(a,b) < 0 is a suffi-
cient condition for invalidation of (19). Assuming that (19)
holds with —g > 0, then ® is constructed by the addition
of the nonnegative —q plus nonnegative weights (¢, (%)
times nonnegative constraints (e,,e¢,) plus free weights
w: times data-consistency equality conditions (11). The
supremal value of a nonnegative term ® being negative
with g(a,b) < 0 is a contradiction.

Necessity: The constraints in (12) are affine (Au, Ay).
Necessity follows if constraints are concave (including
affine) in the eliminated variables by Section 5.8 (Boyd
et al., 2004).

Proposition 7. The multiplier functions (1»*, ¢*, p) may
each be chosen to be polynomial in the compact set P.

Proof. This proofis omitted for brevity, as it follows using
arguments from the proof of Theorems 4.4 (continuity) and
4.5 (polynomial approximability) of (Miller et al., 2022a).

Forming a Psatz with Problem 5 requires an additional
assumption:

A2 An Archimedean set IT O P is known in advance.

Eq. (27) is a Psatz that can certify (18) at degree d.

¥*(a,b) € (S[)<oq) ™! (27a)
(*(a,b) € (S[M]<2a)™ (27b)
wu(a,b) € (R[a,b]ggd_l)T (27¢)
—Q(a,b; ¥, ¢ p) € B<aq (from (22))  (27d)
YT =T =pxb, (T (" =px[l;al. (27e)

Proposition 8. Eq. (27) will converge to a positivity cer-
tificate for (18) as d — oo under Al and A2.

Proof. Proposition 7 ensures that there exists at least one
polynomial certificate (»*, ¢*, p). Given that polynomi-
als have finite degree, letting d — oo will ensure that a
polynomial will be reached at some finite d.
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4.2 Alternatives for Superstabilization

The Alternatives Psatz in Eq. (27) may be employed for
superstabilizing EIV control. The Alternatives program
to solve Problem 2 is described in Eq. (28). Eq. (28) is
structurally identical to (16), with the difference that m
is now a function of (a, b) and the positivity constraints in
(28d)-(28f) are imposed using Eq. (27) (X[P]25,).

Ya = miny (28a)
a€ R, beR™ (28b)
m; € (Rla, b]) 25, Viel.ng  (28¢c)
v = 2 mi(a,b) € B[P)<o (28d)
mi(a,b) — a(a,b) € Z[ﬁ]ggd Vi=1l.ng (28e)

mi(a,b) + af(a,b) € X[Pl<aqg  Vi=l.ng. (28f)

5. COMPUTATIONAL COMPLEXITY

This section will tabulate the computational complexity
of imposing that a polynomial g(a,b) € Rla,bl<2q is
nonnegative over P using the Putinar (Full) Psatz in
(7) and the Alternatives Psatz in (27). We will use the
quantity N = n,+np in this analysis. The Full program in
(16) and the Alternatives program in Eq. (28) each have
2n. + 1 instances of their respective Psatz certificates.
Table 1 compiles the sizes of the optimization variables in
the Full and Alternatives programs. The notation R and
S+ in the table refers to the length of a real vector and
the dimension of a PSD matrix, respectively. This analysis
treats the set II = R™ 1™ in the Alternatives program to
simplify tabulation. If the BSA set II has Ny polynomial-
defined constraints, then the Alternatives program has 1
set of variables corresponding to entries in the Alternatives
column in 1 and N sets of variable with smaller sizes.

Table 1. Size of Superstabilizing Psatz.

‘ Alternatives

‘ # polynomials ‘ Full
N+d
S+(7

SINFT)=TFd
Sy ( d)

oo 1
Wt 2ny + T — 1) Sy 2(N+T) 1+d 1 S+(N3-d)

¢F | 2 +7T) Sy (N”C? a1 sy (VF?
2(N+T) 1+2d 2 N+2d-1
m T ( ) R( 2d—1 )

Remark 9. The Alternatives program is more efficient
than the Full program for each d given that N < 2(N+T).

Remark 10. Section 4 eliminated (Au,Ay) and presented
a Psatz (27) in terms of the (n, + n,) variables (a,b).
Given that P in (12) is bilinear in terms of the groups
[(a,b), (Au, Ay)] and each a® in (5) is linear in (a,b), an
Alternatives program in terms of (Au, Ay) could have been
created by eliminating (a, b). This approach would be more
complex than Eq. (28), because (Au,Ay) has a total of
2T 4+ ng +ny — 1 > n, + nyg variables.

6. NUMERICAL EXAMPLES

MATLAB (2020b) code to reproduce the below experi-
ments is located at https://github.com/jarmill/eiv_
arx. These routines require Mosek (ApS, 2020) and
YALMIP (Lofberg, 2004).
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We tested the effectiveness of the proposed method using
a discrete-time model of
)\2

GO = 1+ 0.50 — 1.21X2 — 0.605A3
This system is open-loop unstable with unstable poles
z = % = +1.1. For comparison purpose, we first solve the
model-based superstabilization problem. This is addressed
by minimizing v with ||a®||; <~ and known a, b from (29)
to search for control coefficients a,b. A superstabilizing
controller will occur with v < 1, and a smaller v results
in a faster controller. A special case 7 = 0 corresponds to
the deadbeat control, i.e. all closed-loop poles are located
at the origin. For model (29), two types of controllers
can be found. The low-order controller is obtained with
ng = 3,n; = 2 and v = 0.4417:

1.829)2

1 —0.50+ 1.46A% — 0.73X3°
The deadbeat controller is obtained with nz = 4,n; = 3
and v = 0:

(29)

o) = (30)

0.73\ — 1.464)\% — 0.8833\3

cK = 1— 0.5\ + 1462

(31)

Remark 11. Note that we design using A = %, the con-
troller is improper in A but is physically realizable in z.

For the data-driven setup, we used the deadbeat controller
as the benchmark, i.e. v = 0. The system is excited using
uniformly distributed input ||u¢|les < 1, initial output
{9} pass and noise [|Ayfloe < € [Aull < € with
T = 10 samples. We start from the noise-free data, i.e.
€, = €, = 0. Directly applying Full Eq. (16) (with d = 2)
leads to an intractable problem. Using the Alternatives Eq.
(28) (with d = 1) leads to the same ¢;-optimal deadbeat
controller as in (31). This indicates that there is no gap
between the original problem and its alternative form. For
specific complexity, see Table 2

Table 2. Size of Superstabilizing Psatz (Model
(29) with n, = 3,n, = 2,T = 10).

‘ # polynomials ‘ Full ‘ Altern.

oo | 1 465 | 6
PpE | 22 30 6
¢t | 26 30 6
i 10 465 | 6

Next, we show the effect of changing T (Table 3) and ¢
(Table 4) on the performance index +.

Table 3. v v.s. T' with €, = €, = 0.02.

T 1 20 40 60 80
v | 0.4365 | 0.3132 | 0.2732 | 0.2515

Table 4. v v.s. € = ¢, = €, with T' = 80.

€ 0.02
v | 0.2515

0.04
0.4924

0.06
0.7312

0.08
0.9755

Several conclusions can be drawn from the tables.

a) For the noisy trajectory, v # 0, the learned controller
is no longer deadbeat.
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b) As we increase T', the consistency set shrinks, hence
we get a faster controller.

c¢) Larger noise leads to a larger consistency set, which
makes it harder to find a single robust controller. This
issue may be alleviated by collecting more samples.

The performance 7 can also be improved by selecting a
higher order controller. This is illustrated by Table 5 in
which ny = n, — 1.

Table 5. v vs. n, with ¢, =€, =0.01,7 = 10.

Ng | 4 6 8 10
¥ 0.6926 | 0.5436 | 0.5167 | 0.5166

Remark 12. This behaviour is not seen in the model-based
control since any controller order with n, > 4, n;, > 3 leads
to the deadbeat control. However, for data-driven control,
the extra order helps to reduce 7.

7. CONCLUSION

This paper proposed an algorithm to perform superstabi-
lizing control of EIV-corrupted ARX systems. The con-
troller (a,b) is recovered by solving a POP using the
moment-SOS hierarchy of SDPs. Utilizing the Theorem
of Alternatives results in a significantly more tractable
program as compared to the Full case. Future work in-
volves forming superstabilizing controllers for Multi-Input
Multi-Output systems using Matrix Fraction Descriptions
(Chen et al., 2005) and for Linear-Parameter Varying
systems. An extended version of this paper is available at
arXiv:2210.14893, which includes control of switched ARX
models and process-noise-disturbed EIV systems.
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