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Abstract—This letter proposes a framework to per-
form verifiably safe control of all discrete-time non-linear
systems that are compatible with collected data. Most
safety-maintaining control synthesis algorithms (e.g., con-
trol barrier functions, density functions) are limited to
obtaining theoretical guarantees of safety in continuous-
time, even while their implementation on real systems
is typically in discrete-time. We first present a sum-of-
squares based program to prove the existence of an
(acausal) control policy that can safely stabilize all possible
data-consistent systems. Causal control policies may be
extracted by online optimization, and we provide sufficient
conditions for the extraction of this control policy in general
scenarios. As a specific case, we introduce a method
for tractable online controller recovery when convexity
assumptions are imposed on the candidate Lyapunov
function and safety region descriptor. Discrete-time safe
stabilization is demonstrated on three example systems.

Index Terms—Data-driven control, discrete-time
systems, nonlinear systems, safety, stability, sum-of-
squares.

I. INTRODUCTION

S
AFETY-critical control plays an crucial role in daily lives:

we expect systems to avoid unsafe conditions. Over the

past decade, intensive studies have been dedicated to safety

verification and safe control synthesis.

Barrier Functions [1] represent a type of level-set method

certifying the safety of trajectories, which relies on the forward

invariance of a super-level set. Control Barrier Functions
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(CBFs) [2], [3] allow for safe control synthesis by finding a

controller that guarantees forward invariance with respect to a

candidate barrier function. Safety and stability can be jointly

enforced by considering both a CBF and a Control Lyapunov

Function (CLF) [4].

These methods depend on perfect knowledge of the system

dynamics. In practice, we only possess limited priors of the

system structure. When the system is unknown, Data Driven

Control (DDC) provides methods that synthesize control

laws directly from observations and thus skip a system-

identification/control-synthesis pipeline [5]. Amongst the vast

literature, the closest DDC approaches related to this letter

are those that pursue a set-membership approach [6], [7], [8],

[9], [10], [11], [12], [13], which seek a controller that can

stabilize all plants compatible with observed data together with

a stability certificate (usually a common Lyapunov function).

Recent work on data-driven safe control of continuous-time

non-linear systems includes [13], [14], [15], [16]. Reference [14]

introduced a learning-based approach that iteratively collects

data and updates a controller corresponding to a known CBF

to ensure ultimate safety. The work in [13] uses density

functions and the Theorems of Alternatives to derive a rational

controller together with a density-based safety certificate. The

approach in [15] finds an ellipsoidal overapproximation of

consistency set and enforces robust invariance to certify safety.

The method in [16] performs forward and backward Hamilton-

Jacobi reachability analysis on a differential game function and

uses data-driven Bayesian inference to construct high probability

safety guarantees. Interested readers are referred to [17] and

references therein for a comprehensive overview on data-driven

safe control using Hamilton-Jacobi reachability, CBFs and

predictive control-related techniques.

Unlike the data-driven safe control of continuous-time

non-linear systems that is relatively well understood, its

discrete-time analogue is considerably less developed and

has been approached mostly from a stochastic perspective.

The approach in [18] models the system as known dynamics

plus an additive residual and synthesizes a control law that

guarantees safety up to a given risk level. Reference [19]

performs formal synthesis of safety for stochastic systems

with a desired confidence level, over a finite time horizon,

relying on multiple measurements at each datapoint. While

these approaches lead to tractable problems, the safety cer-

tificates are probabilistic, which may prevent applicability
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to safety-critical scenarios where it must be guaranteed that

the system never enters an unsafe region. Further, none of

these approaches guarantees closed-loop stability. On the other

hand, the model-based approaches in [20], [21], [22] provide

hard certificates and address, in a “soft” fashion, stability, by

relaxing the stability constraint to allow a Lyapunov function

to increase when it conflicts with the safety requirement.

However, these approaches require that both a model of

the plant and a known CLF be available. Further, allow-

ing the Lyapunov function to grow may result in limit

cycles.

To circumvent these difficulties in this letter we explicitly

address both stability and safety in a data-driven fashion

without dependence on an existing model or a predetermined

CLF. Rather, we construct a CLF and associated control law

that are compatible with the safety constraints, that is, the

control law guarantees that both, the system never enters the

unsafe region and that the Lyapunov function decreases along

the flows. To the best of the authors’ knowledge, this is the first

paper to formulate and solve this problem in a computationally

tractable fashion. Specifically the contributions of this letter

are:

• Formulate the problem of non-linear, discrete-time data-

driven safe control problem with stability constraints as

a robust optimization. Notably this approach does not

require prior knowledge of a suitable CLF.

• Use a combination of duality and a novel lifting to

recast the problem into a sequence of tractable convex

optimization problems. This combination results in sub-

stantial reduction of computational complexity vis-a-vis

direct application of Sum-of-Squares techniques.

• Numerical examples demonstrating the efficacy of safe

control on non-linear discrete-time systems, both for

convex and non-convex safe sets.

This letter has the following structure: Section II reviews

preliminaries such as CLFs and safety certification. Section III

presents the proposed data-driven safe control method.

Section IV demonstrates the performance of the proposed

method on three example systems. Section V concludes this

letter and points out to directions for further research.

II. PRELIMINARIES

A. Notation
R++, (R+) Positive (Non-negative) real numbers

x, x, X Scalar, vector, matrix

1, I Vector of all 1s, identity matrix

‖x‖∞ L∞-norm of vector x

X � 0 X is positive semi-definite

⊗ Kronecker product

vec(X) Vectorized matrix along columns:

vec(X) = [X( : , 1)T , . . . , X( : , n)T ]T

R[x] Polynomials in the indeterminate x ∈ R
n

K∞ Class K-infinity functions

B. Extended Farkas’ Lemma

The following result plays a key role in reducing the safe

data-driven control problem to a tractable convex optimization.

Lemma 1 [23]: Consider the polyhedrons PN
.
= {x : Nx ≤

ν} and PM
.
= {x : Mx ≤ µ}. Then PN ⊆ PM if and only if

there exists a multiplier matrix Y with non-negative entries

such that

YN = M and Yν ≤ µ.

C. Control Lyapunov Functions

Consider a non-linear discrete-time system of the form

xk+1 = f (xk) + g(xk)uk, (1)

where x ∈ R
n is the state and uk ∈ R

m is the control.

Definition 1: A continuous function V(.) : Rn → R+ is a

CLF for the system (1) if for all x ∈ R
n

a) There exist K∞ functions ³1(.), ³2(.) such that

³1(‖x‖) ≤ V(x) ≤ ³2(‖x‖),

b) inf
u∈Rm

V(f (x) + g(x)u) ≤ ´V(x), ∃´ ∈ [0, 1).

As shown in [24], existence of a CLF is equivalent to

(weak) uniform global asymptotic stability of the closed-loop

system. In the sequel we will work with a slightly stronger

condition. We will impose that ³1 = c1‖x‖p and ³2 = c2‖x‖q

for suitable c1, c2, p, q ∈ R++. With these assumptions, the

condition above can be relaxed to

inf
u∈Rm

V(f (x) + g(x)u) + c3‖x‖q ≤ V(x), c3 ∈ R++. (2)

D. Safety Certification

Consider the same system in (1). In the sequel we will

denote by xk(x0, u) the trajectory that starts at the initial

condition x0, under the control action u = u0, u1, . . ..

Definition 2: Given an initial condition set X0 ⊆ R
n and

an unsafe set Xu ⊆ R
n, system (1) can be rendered safe with

respect to Xu, if for all initial conditions x0 ∈ X0, there exists

a control sequence u such that xk(x0, u) �∈ Xu for all k ∈ N.

Note that this definition coincides with the forward-

invariance-based one used for instance in [18] when the

safety set C = R
n \ Xu and X0 = C. Typically, in the

existing literature, safety is certified through the use of barrier

functions, defined through the super-level set of a function

h(.), C = {x : h(x) ≥ 0}.

Definition 3 [18]: The function h(.) is a control barrier

function for the set C if, for each x ∈ C there exist u such that

h(f (x) + g(x)u) ≥ ³h(x), ³ ∈ [0, 1]. (3)

As shown in [18], existence of a CBF is equivalent to

controlled forward invariance of the set C.

The definition above imposes a lower bound on how fast

h(.) can decrease along trajectories: h(xk) ≥ ³kh(x0), and thus

may limit performance. To avoid this effect, we will consider

the case where ³ = 0.

E. The Data-Driven Discrete-Time Safe Control Problem

The goal of this letter is to design a safe, stabilizing control

law based on (noisy) experimental measurements for unknown

discrete-time non-linear systems. Specifically, we consider

non-linear systems of the form (1). We will assume that the

only information available about the system is:
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1) A priori information: (i) f (.) can be expressed as

linear combinations of functions in a known dictionary

φ : Rn → R
df , that is f (x) = Fφ(x) for some unknown

system parameter matrices F ∈ R
n×df ; and (ii) g(.) =

g(.) is a known matrix.1

2) Experimental data D = {(xk, uk)}k=0...T−1 consisting of

T state-input tuples sampled from the trajectories of (1)

under some unknown but bounded process disturbance

w, with ‖w‖∞ ≤ ε, e.g., ‖xk+1−f (xk)−g(xk)uk‖∞ ≤ ε.

In this context, the problem under consideration can be

formally stated as:

Problem 1: Given sets X0, Xu and T training tuples D =

{(xk, uk)}k=0...T−1, find a state-feedback control law u(x) such

that all closed-loop systems consistent with the observed data

and priors (i) are safe with respect to X0 and Xu; and (ii) have

the origin as a globally asymptotically stable equilibrium

point.

III. PROBLEM SOLUTION

We propose to solve Problem 1 by finding a CLF V(.), along

with a control action u(.) so that conditions (2) and (3) hold

simultaneously.

Define a consistency set P1 as the set of all matrices F

compatible with the observed data in D, that is:

P1
.
= {F : ‖xk+1 − Fφ(xk) − g(xk)uk‖∞ ≤ ε,

∀(xk, uk) ∈ D}. (4)

As shown in [7], the consistency set can be rewritten as

P1 =

{

f :

[

A

−A

]

f ≤

[

ε1 + ξ

ε1 − ξ

]}

, (5)

where f = vec(FT) and the matrices A, ξ are functions of the

collected data:

A
.
=

£

¤

¥

I ⊗ φT(x0)
...

I ⊗ φT(xT−1)

¦

§

¨
, ξ

.
=

£

¤

¥

x1 − g(x0)u0

...

xT − g(xT−1)uT−1

¦

§

¨
. (6)

In the sequel, we will make the following assumption:

A1: Enough data has been collected so that the polytope

P1 is compact, that is matrix A has full column rank.

This assumption is required to guarantee a finite diameter

of the consistency set. Otherwise, the worst case identi-

fication error of any interpolatory identification algorithm

is unbounded [25] and thus the classical worst-case-

identification/control-synthesis pipeline will fail.

In terms of the consistency set P1 and the safety set C

Problem 1 can be reformulated as:

Problem 2: Find a CLF V and associated control action u

such that, for each x ∈ C there exists a function u∗(x) such

that the following two conditions are satisfied for all f ∈ P1:

V
(

f (x) + g(x)u∗
)

+ c3‖x‖q ≤ V(x), (7)

h(x) ≥ 0 =⇒ h
(

f (x) + g(x)u∗
)

≥ 0. (8)

1While this assumption seems rather strong, it holds in many practical
situations where it is known how the control action affects the dynamics.
Alternatively, it can be removed by filtering the control action, for instance
to remove high frequency components or to impose integral action.

Problem 2 is a very challenging non-convex feasibility

problem. In order to obtain tractable relaxations we will make

the following assumptions:

A2: The dictionary φ is polynomial, with bounded order.

A3: The function h that defines the set C is polynomial.

A4: The CLF V(.) we are searching over is polynomial.

A5: The sets X0 and Xu are each defined by a finite number

of bounded degree polynomial inequalities (basic semi-

algebraic sets).

Since P1 is a polytope (and hence semi-algebraic),

in principle, under these assumptions Problem 2 can be

relaxed to a semi-definite program by imposing that V is a

Sum-of-Squares (SoS) function and enforcing the conditions

(7)–(8) through Putinar’s Positivstellensatz [26]. However, this

approach quickly becomes intractable, even for small problems

due to the following facts: (i) it requires considering polyno-

mials in the variables x, u, f ; and (ii) due to the polynomial

dependence of conditions (7)–(8) on f , these polynomials will

involve high order monomials in these variables.2 Further, in

order to reduce the problem to an SoS, u must be assumed to

be a polynomial function of x. In turn, this leads to bilinear

expressions involving the coefficients of the polynomials V(.)

and u(.).

Next, we indicate how to circumvent these difficulties

through a combination of lifting and duality. To this effect,

we introduce a new (lifting) variable x̃ ∈ R
n that satisfies an

associated equality constraint (over the flows of (1)):

x̃k = Fφ(xk) + g(xk)uk. (9)

Using the properties of the Kronecker product, the constraint

above can be rewritten in terms of f as:

x̃k =
[

I ⊗ φT(xk)
]

f + g(xk)uk. (10)

We introduce a vector-valued function ρ(x, x̃) to act as a dual

multiplier against the equality constraint in (10). Consider now

the following set of polynomial inequalities:

−
(

ρT ⊗ φT
)

f ≤ V(x) − V(x̃) − c3‖x‖q

− ρT(x, x̃)x̃ +

m
∑

i=1

ψT
i (x, x̃)gi(x),

−
(

ρT ⊗ φT
)

f ≤ h
(

x̃
)

− σ1(x, x̃) − σ2(x, x̃)h(x)

− ρT(x, x̃)x̃ +

m
∑

i=1

ψT
i (x, x̃)gi(x). (11)

where σi are SoS polynomials, ρ,ψ i are polynomial vector

multipliers, and gi denotes the ith column of the matrix g.

Lemma 2: If there exists a positive definite function V(.)

such that the inequalities (11) are satisfied for all f ∈ P1,

then V is a common CLF and the corresponding control action

renders C safe.

Proof: For a given g, define the ith control action:

ui(x, x̃) =

{

ψT
i (x,x̃)gi(x)

ρT (x,x̃)gi(x)
if ρT(x, x̃)gi(x) �= 0

0 otherwise.
(12)

2In contrast, in the continuous-time case [7], [13] the corresponding
conditions are affine in f which can then be eliminated using the Theorems
of Alternatives.
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The associated flow satisfies

V(xk) − V(xk+1) ≥ c3‖xk‖
q + ρT(xk, xk+1)xk+1 −

[

ρT(xk, xk+1) ⊗ φT(xk)
]

f −

m
∑

i=1

ψT
i (xk, xk+1)gi(xk)

= c3‖xk‖
q + ρT(xk, xk+1)(xk+1 − Fφ(xk) − g(xk)u)

= c3‖xk‖
q. (13)

A similar reasoning shows that along the flows:

h(xk+1) ≥ σ1(xk, xk+1) + σ2(xk, xk+1)h(xk). (14)

Hence
{

max
u∈Rm

V(xk) − V(xk+1) subject to h(xk+1) ≥ 0

}

≥ c3‖xk‖
q.

Remark 1: The acausal controller construction in (12)

is strictly for theoretical results to hold. Section III-A

develops methods to extract causal controllers using online

optimization.

Next, we exploit Lemma 2 and Farkas’ Lemma to construct

a common CLF for all f ∈ P1.

Theorem 1: V is a common CLF for all f ∈ P1 if there

exists a matrix function Y(x, x̃) ∈ R
2×2nT ≥ 0 such that the

following (functional) set of affine constraints is feasible:

Y(x, x̃)N = r(x, x̃) and Y(x, x̃)e ≤ d(x, x̃) (15)

where for notational simplicity we defined

N
.
=

[

A

−A

]

, e
.
=

[

ε1 + ξ

ε1 − ξ

]

, r
.
=

[

−
(

ρT ⊗ φT
)

−
(

ρT ⊗ φT
)

]

d
.
=

[

d1(x, x̃), d2(x, x̃)
]T

,

d1(x, x̃) = V(x) − V(x̃) − c3‖x‖q

−ρT(x, x̃)x̃ +

m
∑

i=1

ψT
i (x, x̃)gi(x),

d2(x, x̃) = h(x̃) − σ1(x, x̃) − σ2(x, x̃)h(x)

−ρT(x, x̃)x̃ +

m
∑

i=1

ψT
i (x, x̃)gi(x). (16)

Proof: The proof follows from applying the extended

Farkas’ Lemma to the polytopes P1 and P2
.
= {f : rf ≤ d},

i.e., (11) holds.

When compared against a straightforward application of

Putinar’s Positivstellensatz to enforce (7)–(8), Theorem 1 has

two main advanatages: a reduction in computational complexity,

and freeing from the restriction that u be an explicit function

of x. The complexity reduction is due to the fact that (15)

involves multipliers only in the variables (x, x̃), as opposed

to (x, f , u) with 2n < n + df + m. Specifically, the maximal

size Gram-matrix in a degree-2k P-satz in (15) with (x, x̃) will

have size
(

2n+k
k

)

, while a P-satz (x, f , u) will have dimension
(n+df +m+k

k

)

. Using the P-satz will require postulating that u is a

polynomial function of x, leading to bilinear products between

the coefficients of the unknown V(.) and u(x). Theorem 1 avoids

this by separating the process of finding the CLF V(.) from

that of finding the control action, which is not restricted to be

polynomial. On the other hand, these advantages are achieved

at the price of having to solve an on-line optimization problem

to extract a causal control action u.

A. Extracting a Controller via On-Line Optimization

As indicated earlier, the control (12) is mostly of theoretical

importance, since, at time k it requires knowledge of both xk

and xk+1. Next, we discuss how to construct a causal control

by solving on-line a robust optimization problem. We will

consider first the case where V and −h are convex (for example

this assumption holds for the usual positive-definite quadratic

Lyapunov functions V(x) = xTQx).

Theorem 2: Assume that V(x) is convex and that h(x) is

concave.3 Let f i, i = 1, . . . , nv denote the vertices of the

polytope P1 and consider the following convex optimization

program:

u∗
k = arg min ‖u‖ subject to:

V
([

I ⊗ φT(xk)
]

f i + g(xk)u
)

≤ V(xk) − c3‖xk‖
q,

h
([

I ⊗ φT(xk)
]

f i + g(xk)u
)

≥ 0, ∀i = 1, . . . , nv. (17)

Then the control u∗ safely stabilizes P1.

Proof: Follow from the fact that, from Caratheodory’s

theorem, any f ∈ P1 can be written as

f =

nv
∑

i=1

λif i with

nv
∑

i=1

λi = 1.

Since V and −h are convex in f , then, for any f ∈ P1

V
([

I ⊗ φT(xk)
]

f + g(xk)u
∗
)

≤
∑

λiV
([

I ⊗ φT(xk)
]

f i + g(xk)u
∗
)

≤ V(xk) − c3‖xk‖
q.

A similar reasoning shows that, for all f ∈ P1

h
([

I ⊗ φT(xk)
]

f + g(xk)u
∗
)

≥ 0.

B. The General Case

We now consider the general case where V,−h are not

necessarily convex. In order to obtain tractable problems we

will make the follow additional assumption:

A6: The control action is constrained to u ∈ U , compact.

Lemma 3: For each x ∈ C define the function �x (paramet-

ric in x)

�x(u, f )
.
= V(x) − V

([

I ⊗ φT(x)
]

f + g(x)u
)

− c3‖x‖q (18)

and consider the Linear Program (in px(.)):

p∗
x(u) = sup

p∈R[u]

∫

U

px(u)du1 . . . dum

subject to ∀(f , u) ∈ P1 × U

px(u) ≤ �x(u, f )

px(u) ≤ h
([

I ⊗ φT(x)
]

f + g(x)u
)

(19)

3This situation arises for instance when the safe region is convex and h is
defined by its level sets.
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Then

px(u) = min
f∈P1

min
{

�x(u, f ), h
([

I ⊗ φT(x)
]

f + g(x)u
)}

almost everywhere in P1 × U .

Proof: The proof follows from applying [27, Lemma 2.5

and Corollary 2.6] to the semi-algebraic function

zx(f , u)
.
= min

{

�x(u, f ), h
([

I ⊗ φT(x)
]

f + g(x)u
)}

over the compact set P1 × U .

Lemma 4: The following controller safely stabilizes P1

u∗(xk)
.
= arg max

u
p∗

xk
(u) subject to u ∈ U . (20)

Proof: From Lemma 2, V(.) is such that for all x ∈ C,

there exist u such that (7)–(8) hold for all f ∈ P1. Since u∗

maximizes minf∈P1
zx(f , u) subject to u ∈ U , it follows that it

renders �(xk, u∗) ≥ 0 and h([I ⊗φT(xk)]f +g(xk)u
∗) ≥ 0 for

all f ∈ P1. Thus, the safe set C is invariant and V(.) decreases

along the trajectories.

C. Finite Dimensional Approximations

In principle, Lemma 3 requires solving an infinite

dimensional linear program. However, under the additional

assumption that the sets U is Archimedean, from [27, Th. 3.3]

it follows that the degree n truncation of p∗
n(u) converges

monotonically to p∗. Hence, for some n large enough, p∗ ≥

minf zx(f , u) − δ. The controller (20) therefore renders the

system safe, provided that there exists a control action such

that h(xk+1) ≥ δ for all h(xk) ≥ 0. Further, this controller will

drive the system to the ball V(x) ≤ δ.

IV. NUMERICAL EXAMPLES

The proposed method is tested on the following three

examples. All experiments are implemented in MATLAB

2022b with Yalmip [28] and are solved by Mosek [29]. Code

is publicly available.4

Example 1: Consider a discrete-time linear system with

f (xk) =
[

x2; −2x1 − 5x2

]

, g =
[

0; 1
]

,

which is open-loop unstable, and a convex safety requirement

h(x) = −x2
1 − (x2 − 1)2 + 4 ≥ 0.

We know as prior knowledge that the system is linear of

dimension n = 2 and that g =
[

0; 1
]

. 40 noisy datapoints

with ε = 0.1 are collected for the safely stabilizing controller

design, yielding a polytope P1 from (5) with 4 dimensions, 64

(out of 160) nonredundant faces [30], and 36 vertices. Solving

Theorem 1 with c3 = 0.1 for polynomials Y, V, ρ,ψ of degree

≤ 2 in corresponding dimensions leads to a learned Lyapunov

function

V(x) = −0.18x1x2 + 2.39x2
1 + 2.24x2

2.

Fig. 1(a) plots 40-step safe/unsafe trajectories in blue/orange

starting at x0 = [2; 1], and features contour lines of V in colors

and unsafe set boundary h = 0 in red. It clearly illustrates

the safety of the closed-loop system under the controller u

4https://github.com/J-mzz/ddc-safety-discrete

Fig. 1. Results of Example 1.

Fig. 2. Results of Example 2.

synthesized using Theorem 2. Note that the unsafe controller

(and corresponding V) is designed in the same framework but

without considering the safety constraint in Theorem 1 and 2.

Fig. 1(b) illustrates the stability from the decreasing trend of

Lyapunov traces and control inputs along the trajectories.

Example 2: Consider a 3d discrete-time polynomial system

with

f (xk) =
[

x2
2 + x3; x1x2

2 + x3; 0
]

, g = [2; −1; 1],

and a convex safety requirement h(x) = 1 − x1 ≥ 0.

We know as a prior that f can be represented by the

dictionary φ = [x3, x2
2, x1x2

2] and that g = [2;−1; 1]. 8 noisy

datapoints with ε = 0.01 are collected, yielding a polytope

P1 with 9 dimensions, 32 (out of 48) nonredundant faces,

and 3584 vertices. Solving Theorem 1 with c3 = 0.01 for

Y, V, ρ,ψ of degree ≤ 2 leads to a learned Lyapunov function

V(x) = −0.00087x1x3 + 2.85x2
1 + 2.83x2

2 + 2.83x2
3.

Fig. 2(a) plots 10-step safe/unsafe trajectories starting at

x0 = [−1; 1; 1] with designed controller u from Theorem 2.

Fig. 2(b) illustrates the decreasing trend of Lyapunov traces

along the trajectories.

Example 3: Consider a discrete-time polynomial system

f (xk) =
[

x2; −x1 + 1
3
x2

1 − x2

]

, g =
[

0; 1
]

,

with a non-convex safety requirement

h(x) = (x1 − 1)2 + (x2 + 1)2 − 1 ≥ 0.

We assume as a prior that f can be represented by the

dictionary φ = [x1, x2, x2
1] and that g = [0; 1]. 10 noisy
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Fig. 3. Results of Example 3.

datapoints with ε = 0.01 are collected for the controller

design, yielding a polytope P1 with 6 dimensions, 22 (out of

40) nonredundant faces, and 60 vertices. Solving Theorem 1

with c3 = 0.01 for Y, V, ρ,ψ of degree ≤ 2 leads to a learned

Lyapunov function

V(x) = 0.035x1x2 + 1.99x2
1 + 1.99x2

2.

Fig. 3(a) plots 10-step safe/unsafe trajectories starting at x0 =

[2; 1] under the controller u from Lemma 3 and 4 with U =

[−2, 2], and features unsafe set boundary h = 0 in red. It

illustrates the safety of the closed-loop system with a non-

convex safety requirement. Fig. 3(b) illustrates the decreasing

trend of Lyapunov traces along the trajectories.

V. CONCLUSION

Safe stabilization of dynamical systems is generally a

challenging problem (when the compatible Lyapunov function

must be synthesized), and this difficulty is exacerbated in the

discrete-time setting as compared to the continuous-time case.

This letter considered safe-stabilization of all possible discrete-

time systems consistent with the process-noise corrupted data

in D. Control Lyapunov Functions V were generated according

to Theorem 1 by solving an SoS program with variables (x, x̃).

Feasibility of this program guarantees the existence of a safely

stabilizing, albeit acausal, control policy u(xk, xk+1). A causal

control u(xk) can be found by solving an on-line optimization

problem.

Future work includes developing methods to relax some of

the assumptions imposed in this letter, including synthesis for

the case where g is unknown and more general noise models.

Other aspects include using duality to reduce the number of

constraints in (17).
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