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Data-Driven Safe Control of Discrete-Time
Non-Linear Systems

Jian Zheng

Abstract—This letter proposes a framework to per-
form verifiably safe control of all discrete-time non-linear
systems that are compatible with collected data. Most
safety-maintaining control synthesis algorithms (e.g., con-
trol barrier functions, density functions) are limited to
obtaining theoretical guarantees of safety in continuous-
time, even while their implementation on real systems
is typically in discrete-time. We first present a sum-of-
squares based program to prove the existence of an
(acausal) control policy that can safely stabilize all possible
data-consistent systems. Causal control policies may be
extracted by online optimization, and we provide sufficient
conditions for the extraction of this control policy in general
scenarios. As a specific case, we introduce a method
for tractable online controller recovery when convexity
assumptions are imposed on the candidate Lyapunov
function and safety region descriptor. Discrete-time safe
stabilization is demonstrated on three example systems.

Index
systems,
squares.

Terms—Data-driven  control, discrete-time
nonlinear systems, safety, stability, sum-of-

. INTRODUCTION

AFETY -critical control plays an crucial role in daily lives:
S we expect systems to avoid unsafe conditions. Over the
past decade, intensive studies have been dedicated to safety
verification and safe control synthesis.

Barrier Functions [1] represent a type of level-set method
certifying the safety of trajectories, which relies on the forward
invariance of a super-level set. Control Barrier Functions
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(CBFs) [2], [3] allow for safe control synthesis by finding a
controller that guarantees forward invariance with respect to a
candidate barrier function. Safety and stability can be jointly
enforced by considering both a CBF and a Control Lyapunov
Function (CLF) [4].

These methods depend on perfect knowledge of the system
dynamics. In practice, we only possess limited priors of the
system structure. When the system is unknown, Data Driven
Control (DDC) provides methods that synthesize control
laws directly from observations and thus skip a system-
identification/control-synthesis pipeline [5]. Amongst the vast
literature, the closest DDC approaches related to this letter
are those that pursue a set-membership approach [6], [7], [8],
[9], [10], [11], [12], [13], which seek a controller that can
stabilize all plants compatible with observed data together with
a stability certificate (usually a common Lyapunov function).

Recent work on data-driven safe control of continuous-time
non-linear systems includes [13], [14], [15], [16]. Reference [14]
introduced a learning-based approach that iteratively collects
data and updates a controller corresponding to a known CBF
to ensure ultimate safety. The work in [13] uses density
functions and the Theorems of Alternatives to derive a rational
controller together with a density-based safety certificate. The
approach in [15] finds an ellipsoidal overapproximation of
consistency set and enforces robust invariance to certify safety.
The method in [16] performs forward and backward Hamilton-
Jacobi reachability analysis on a differential game function and
uses data-driven Bayesian inference to construct high probability
safety guarantees. Interested readers are referred to [17] and
references therein for a comprehensive overview on data-driven
safe control using Hamilton-Jacobi reachability, CBFs and
predictive control-related techniques.

Unlike the data-driven safe control of continuous-time
non-linear systems that is relatively well understood, its
discrete-time analogue is considerably less developed and
has been approached mostly from a stochastic perspective.
The approach in [18] models the system as known dynamics
plus an additive residual and synthesizes a control law that
guarantees safety up to a given risk level. Reference [19]
performs formal synthesis of safety for stochastic systems
with a desired confidence level, over a finite time horizon,
relying on multiple measurements at each datapoint. While
these approaches lead to tractable problems, the safety cer-
tificates are probabilistic, which may prevent applicability
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to safety-critical scenarios where it must be guaranteed that
the system never enters an unsafe region. Further, none of
these approaches guarantees closed-loop stability. On the other
hand, the model-based approaches in [20], [21], [22] provide
hard certificates and address, in a “soft” fashion, stability, by
relaxing the stability constraint to allow a Lyapunov function
to increase when it conflicts with the safety requirement.
However, these approaches require that both a model of
the plant and a known CLF be available. Further, allow-
ing the Lyapunov function to grow may result in limit
cycles.

To circumvent these difficulties in this letter we explicitly
address both stability and safety in a data-driven fashion
without dependence on an existing model or a predetermined
CLEFE. Rather, we construct a CLF and associated control law
that are compatible with the safety constraints, that is, the
control law guarantees that both, the system never enters the
unsafe region and that the Lyapunov function decreases along
the flows. To the best of the authors’ knowledge, this is the first
paper to formulate and solve this problem in a computationally
tractable fashion. Specifically the contributions of this letter
are:

« Formulate the problem of non-linear, discrete-time data-

driven safe control problem with stability constraints as
a robust optimization. Notably this approach does not
require prior knowledge of a suitable CLF.

o Use a combination of duality and a novel lifting to
recast the problem into a sequence of tractable convex
optimization problems. This combination results in sub-
stantial reduction of computational complexity vis-a-vis
direct application of Sum-of-Squares techniques.

o Numerical examples demonstrating the efficacy of safe
control on non-linear discrete-time systems, both for
convex and non-convex safe sets.

This letter has the following structure: Section II reviews
preliminaries such as CLFs and safety certification. Section III
presents the proposed data-driven safe control method.
Section IV demonstrates the performance of the proposed
method on three example systems. Section V concludes this
letter and points out to directions for further research.

Il. PRELIMINARIES

A. Notation
R4y, (R4) Positive (Non-negative) real numbers

x,x, X Scalar, vector, matrix

1,1 Vector of all s, identity matrix
l1x 1l oo Loo-norm of vector x

X>0 X is positive semi-definite

® Kronecker product

vec(X) Vectorized matrix along columns:

veeX) = [XCG, DT, ... XCG ., nTT
R[x] Polynomials in the indeterminate x € R”
Koo Class KC-infinity functions

B. Extended Farkas’ Lemma

The following result plays a key role in reducing the safe
data-driven control problem to a tractable convex optimization.

Lemma 1 [23]: Consider the polyhedrons Py = {x: Nx <
v} and Py = {x: Mx < pu}. Then Py C Py if and only if
there exists a multiplier matrix ¥ with non-negative entries
such that

YN =M and Yv < u.

C. Control Lyapunov Functions

Consider a non-linear discrete-time system of the form

Xpr1 = f(xp) + gep)uy, (1

where x € R” is the state and u; € R™ is the control.
Definition 1: A continuous function V(.): R" — R, is a
CLF for the system (1) if for all x € R"
a) There exist K functions «(.), a2(.) such that
ar(lxl) < Vx) < aa(llxID,
b) ulelﬁ{m V(f(x) +gxu) < BV(x), 3B € [0, 1).

As shown in [24], existence of a CLF is equivalent to
(weak) uniform global asymptotic stability of the closed-loop
system. In the sequel we will work with a slightly stronger
condition. We will impose that «; = ¢ ||x||” and ap = 2| x]|?
for suitable c1, c2,p, g € Ry;. With these assumptions, the
condition above can be relaxed to

uiefgm V(@) +g@uw) +eslx[? < Vx), cseRip. (2)

D. Safety Certification

Consider the same system in (1). In the sequel we will
denote by xji(xo,u) the trajectory that starts at the initial
condition xg, under the control action u = ug, uy, .. ..

Definition 2: Given an initial condition set Xy € R”" and
an unsafe set X, C R”, system (1) can be rendered safe with
respect to A&, if for all initial conditions xg € Xy, there exists
a control sequence u such that xx(xo, u) ¢ X, for all k € N.

Note that this definition coincides with the forward-
invariance-based one used for instance in [18] when the
safety set C = R" \ X, and Ay = C. Typically, in the
existing literature, safety is certified through the use of barrier
functions, defined through the super-level set of a function
h(), C ={x: h(x) > 0}.

Definition 3 [18]: The function h(.) is a control barrier
function for the set C if, for each x € C there exist # such that

h(f(x) + gx)u) > ah(x), @ € [0, 1]. 3)

As shown in [18], existence of a CBF is equivalent to
controlled forward invariance of the set C.

The definition above imposes a lower bound on how fast
h(.) can decrease along trajectories: h(xy) > o¥h(xp), and thus
may limit performance. To avoid this effect, we will consider
the case where o = 0.

E. The Data-Driven Discrete-Time Safe Control Problem

The goal of this letter is to design a safe, stabilizing control
law based on (noisy) experimental measurements for unknown
discrete-time non-linear systems. Specifically, we consider
non-linear systems of the form (1). We will assume that the
only information available about the system is:
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1) A priori information: (i) f(.) can be expressed as
linear combinations of functions in a known dictionary
¢ : R" - R%, that is f(x) = F¢(x) for some unknown
system parameter matrices F € R™%4r: and (i) g() =
g() is a known matrix.!

2) Experimental data D = {(xy, ux)}r=0..7—1 consisting of
T state-input tuples sampled from the trajectories of (1)
under some unknown but bounded process disturbance
w, with [wlleo < €, €.g., [|Xk+1 —f(xk) —gxukllo < €.

In this context, the problem under consideration can be
formally stated as:

Problem 1: Given sets X, &), and T training tuples D =
{(xk, ug)}x=0..7—1, find a state-feedback control law u(x) such
that all closed-loop systems consistent with the observed data
and priors (i) are safe with respect to Xy and &);; and (ii) have
the origin as a globally asymptotically stable equilibrium
point.

Ill. PROBLEM SOLUTION

We propose to solve Problem 1 by finding a CLF V(.), along
with a control action u(.) so that conditions (2) and (3) hold
simultaneously.

Define a consistency set P; as the set of all matrices F
compatible with the observed data in D, that is:

Pr={F: |xiy1 — Fo(xr) — gxr)urlloo < €,
V(xx, ux) € D}. “4)

As shown in [7], the consistency set can be rewritten as

N e R

where f = vec(F T and the matrices A, & are functions of the
collected data:

1® ¢” (xo) x| — gxo)uo

&= : )

Xy —gX7_ur—|

A= :
I1®¢" (xr_1)

In the sequel, we will make the following assumption:

Al: Enough data has been collected so that the polytope

P1 is compact, that is matrix A has full column rank.

This assumption is required to guarantee a finite diameter
of the consistency set. Otherwise, the worst case identi-
fication error of any interpolatory identification algorithm
is unbounded [25] and thus the «classical worst-case-
identification/control-synthesis pipeline will fail.

In terms of the consistency set P; and the safety set C
Problem 1 can be reformulated as:

Problem 2: Find a CLF V and associated control action u
such that, for each x € C there exists a function u*(x) such
that the following two conditions are satisfied for all f € P;:

V(f@) + g@u™) + c3llx? < V), )
h(x) =0 = h(f(x) + gx)u*) > 0. (8)

TWhile this assumption seems rather strong, it holds in many practical
situations where it is known how the control action affects the dynamics.
Alternatively, it can be removed by filtering the control action, for instance
to remove high frequency components or to impose integral action.

Problem 2 is a very challenging non-convex feasibility
problem. In order to obtain tractable relaxations we will make
the following assumptions:

A2: The dictionary ¢ is polynomial, with bounded order.

A3: The function / that defines the set C is polynomial.

A4: The CLF V(.) we are searching over is polynomial.

A5: The sets Xy and X, are each defined by a finite number

of bounded degree polynomial inequalities (basic semi-
algebraic sets).

Since P; is a polytope (and hence semi-algebraic),
in principle, under these assumptions Problem 2 can be
relaxed to a semi-definite program by imposing that V is a
Sum-of-Squares (SoS) function and enforcing the conditions
(7)—(8) through Putinar’s Positivstellensatz [26]. However, this
approach quickly becomes intractable, even for small problems
due to the following facts: (i) it requires considering polyno-
mials in the variables x, u, f; and (ii) due to the polynomial
dependence of conditions (7)—(8) on f, these polynomials will
involve high order monomials in these variables.? Further, in
order to reduce the problem to an SoS, u must be assumed to
be a polynomial function of x. In turn, this leads to bilinear
expressions involving the coefficients of the polynomials V/(.)
and u(.).

Next, we indicate how to circumvent these difficulties
through a combination of lifting and duality. To this effect,
we introduce a new (lifting) variable x € R” that satisfies an
associated equality constraint (over the flows of (1)):

X = Fp(xy) + glxp)ug. 9

Using the properties of the Kronecker product, the constraint
above can be rewritten in terms of f as:

= [1®¢" x0)]f +glen)us.

We introduce a vector-valued function p(x, X) to act as a dual
multiplier against the equality constraint in (10). Consider now
the following set of polynomial inequalities:

— (0" ®¢")f < V(x) — V&) — csllx||?

(10)

— pl(x, )% + Z %T(x, X)g;(x),
i=1

—(p" @ ¢T)f < h(¥) — 01(x, %) — 02(x, D)h(x)

m
—p e DEF Y Y] (. Dgi). (D)
i=1
where o; are SoS polynomials, p, ¥; are polynomial vector
multipliers, and g; denotes the i column of the matrix g.
Lemma 2: If there exists a positive definite function V(.)
such that the inequalities (11) are satisfied for all f € P,
then V is a common CLF and the corresponding control action
renders C safe.
Proof: For a given g, define the i control action:

Y @Dg® e T
ui(x, %) = {{(x,fc)gi(x) if o7 (x. ¥)g;(x) # 0

otherwise.

(12)

2In contrast, in the continuous-time case [71, [13] the corresponding
conditions are affine in f which can then be eliminated using the Theorems
of Alternatives.
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The associated flow satisfies

V) — V) = aallxeell? + o7 ek, Xi )Xt —

[o” er X)) @ @7 ) Jf — D ¥ Cen, xaey 1)gi (k)

i=1

= c3llxill? + p7 Cer, Xt 1) (k1 — F(xx) — g(xp)u)

= c3lxe?. (13)
A similar reasoning shows that along the flows:
h(Xk+1) > 01Xk, Xk+1) + 02 (X, Xer1)h(xE).  (14)
Hence
{m%x V(xx) — V(xk+1) subject to h(xpy1) > O}
ucR™
> c3lxe 9.
|

Remark 1: The acausal controller construction in (12)
is strictly for theoretical results to hold. Section III-A
develops methods to extract causal controllers using online
optimization.

Next, we exploit Lemma 2 and Farkas’ Lemma to construct
a common CLF for all f € Py.

Theorem 1: V is a common CLF for all f € P; if there
exists a matrix function Y(x,Xx) € R2x27T > () guch that the

following (functional) set of affine constraints is feasible:
Y(x,X)N =r(x,X) and Y(x,X)e <d(x,X) (15)

where for notational simplicity we defined

v A] ez [A4E] e [lreen

d=[di(x,5), dxD],
di(x,%) = V(x) — V(&) — c3lx||
—pT (x, D)% + Z ¥l (x, B)gix),
i=1
dr(x,X) = h(X) — o1(x,X) — o2 (x, X)h(x)

—p @ BE+ ) Pl @ Dgix).

i=1

(16)

Proof: The proof follows from applying the extended
Farkas’ Lemma to the polytopes P; and P = {f: rf < d},
i.e., (11) holds. |

When compared against a straightforward application of
Putinar’s Positivstellensatz to enforce (7)—(8), Theorem 1 has
two main advanatages: a reduction in computational complexity,
and freeing from the restriction that u be an explicit function
of x. The complexity reduction is due to the fact that (15)
involves multipliers only in the variables (x,X), as opposed
to (x,f,u) with 2n < n + dr + m. Specifically, the maximal
size Gram-matrix in a degree-2k P-satz in (15) with (x, x) will

have size (2": k), while a P-satz (x,f, u) will have dimension

(”+df :m+k). Using the P-satz will require postulating that u is a

polynomial function of x, leading to bilinear products between
the coefficients of the unknown V(.) and u(x). Theorem 1 avoids
this by separating the process of finding the CLF V(.) from
that of finding the control action, which is not restricted to be

polynomial. On the other hand, these advantages are achieved
at the price of having to solve an on-line optimization problem
to extract a causal control action u.

A. Extracting a Controller via On-Line Optimization

As indicated earlier, the control (12) is mostly of theoretical
importance, since, at time k it requires knowledge of both xj
and xy1. Next, we discuss how to construct a causal control
by solving on-line a robust optimization problem. We will
consider first the case where V and —# are convex (for example
this assumption holds for the usual positive-definite quadratic
Lyapunov functions V(x) = x7Qx).

Theorem 2: Assume that V(x) is convex and that A(x) is
concave.® Let fi» i = 1,...,n, denote the vertices of the
polytope P; and consider the following convex optimization
program:

uj = arg min ||u|| subject to:
V(I ®¢" @n]fi +geom) < Vi) — cslixl?,
W[ ® " axp)]fi +gleu) =0, Vi=1,...,n,. (17)

Then the control u* safely stabilizes P;.
Proof: Follow from the fact that, from Caratheodory’s
theorem, any f € P; can be written as

ny ny
f=) afiwith Y ai=1.
i=1 i=1
Since V and —h are convex in f, then, for any f € P;

V(I ®¢" xn]f +glxou®)
< Z AV (I ® ¢ o) f; + gleu*)
< V(xx) — c3llxkll9.

A similar reasoning shows that, for all f € P

(I ® ¢ x0]f +gGxou*) = 0.

B. The General Case

We now consider the general case where V, —h are not
necessarily convex. In order to obtain tractable problems we
will make the follow additional assumption:

A6: The control action is constrained to u € U, compact.

Lemma 3: For each x € C define the function A, (paramet-
ric in x)

Ax(u.f) = Vx) = V(I ®¢" @]f +gu) — c3lx[7(18)

and consider the Linear Program (in py(.)):

/px(u)dul...dum
peR[u] JU

subject to V(f,u) € Py x U
px() < Ax(u,f)
px@) < h([I®¢" @ ]f +gx)u)

pe(u) = sup

(19)

3This situation arises for instance when the safe region is convex and  is
defined by its level sets.
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Then
Px(w) = min min{Ar@.f), (I ® ¢" O)]f + gx)u)}
€P

almost everywhere in Py x U.
Proof: The proof follows from applying [27, Lemma 2.5
and Corollary 2.6] to the semi-algebraic function

z(f u) = min{ A, f), h([I® ¢" ®)]f +gx)u)}

over the compact set P; x U. u
Lemma 4: The following controller safely stabilizes P

u*(xy) = arg max p;“k (u) subject to u € U. (20)
u

Proof: From Lemma 2, V(.) is such that for all x € C,
there exist u such that (7)—(8) hold for all f € P;. Since u*
maximizes minsep, zx (f, u) subject to u € U, it follows that it
renders A(xg, u*) > 0 and h([I @ ¢7 (xp)f +gx)u*) > 0 for
all f € Py. Thus, the safe set C is invariant and V(.) decreases
along the trajectories. |

C. Finite Dimensional Approximations

In principle, Lemma 3 requires solving an infinite
dimensional linear program. However, under the additional
assumption that the sets U/ is Archimedean, from [27, Th. 3.3]
it follows that the degree n truncation of p(u) converges
monotonically to p*. Hence, for some n large enough, p* >
miny 7, (f, u) — 8. The controller (20) therefore renders the
system safe, provided that there exists a control action such
that A(xx+1) > § for all h(xy) > 0. Further, this controller will
drive the system to the ball V(x) < §.

IV. NUMERICAL EXAMPLES

The proposed method is tested on the following three
examples. All experiments are implemented in MATLAB
2022b with Yalmip [28] and are solved by Mosek [29]. Code
is publicly available.*

Example 1: Consider a discrete-time linear system with

f) =[x =20 —5x].g=[0; 1],
which is open-loop unstable, and a convex safety requirement
h(x) = —x7 — (x2 — 1) +4 > 0.

We know as prior knowledge that the system is linear of
dimension n = 2 and that g = [O; 1]. 40 noisy datapoints
with € = 0.1 are collected for the safely stabilizing controller
design, yielding a polytope P; from (5) with 4 dimensions, 64
(out of 160) nonredundant faces [30], and 36 vertices. Solving
Theorem 1 with ¢3 = 0.1 for polynomials Y, V, p, ¥ of degree
< 2 in corresponding dimensions leads to a learned Lyapunov
function

V(x) = —0.18x1x3 + 2.39x7 +2.24x3.

Fig. 1(a) plots 40-step safe/unsafe trajectories in blue/orange
starting at xo = [2; 1], and features contour lines of V in colors
and unsafe set boundary 2 = 0 in red. It clearly illustrates
the safety of the closed-loop system under the controller u

4https:// github.com/J-mzz/ddc-safety-discrete

— —»— Safe traj

Unsafe traj 1
— Unsafe reg

(a) Safe/unsafe Trajectories (b) V. u along Trajectories

Fig. 1. Results of Example 1.

—+ Safe traj
Unsafe traj
[ Unsafe reg

—+—SafeV
Unsafe V

Unsafe u

06
4 6 8 10

(a) Safe/unsafe Trajectories (b) V, u along Trajectories

Fig. 2. Results of Example 2.

synthesized using Theorem 2. Note that the unsafe controller
(and corresponding V) is designed in the same framework but
without considering the safety constraint in Theorem 1 and 2.
Fig. 1(b) illustrates the stability from the decreasing trend of
Lyapunov traces and control inputs along the trajectories.

Example 2: Consider a 3d discrete-time polynomial system
with

f(xk)=[X§+X3; X143 + x3; 0], g=12; —1; 1],

and a convex safety requirement A(x) =1 —x; > 0.

We know as a prior that f can be represented by the
dictionary ¢ = [x3, x%,xlxg] and that g = [2; —1; 1]. 8 noisy
datapoints with € = 0.01 are collected, yielding a polytope
P1 with 9 dimensions, 32 (out of 48) nonredundant faces,
and 3584 vertices. Solving Theorem 1 with ¢3 = 0.01 for
Y,V, p, ¥ of degree < 2 leads to a learned Lyapunov function

V(x) = —0.00087x1x3 + 2.85x7 4 2.83x3 + 2.83x3.

Fig. 2(a) plots 10-step safe/unsafe trajectories starting at
xo = [—1; 1; 1] with designed controller u from Theorem 2.
Fig. 2(b) illustrates the decreasing trend of Lyapunov traces
along the trajectories.

Example 3: Consider a discrete-time polynomial system

o) =[x —x1 + 333 —x2]. g=[0. 1],
with a non-convex safety requirement
hx) =@ — D>+ (o +1D>—1>0.

We assume as a prior that f can be represented by the
dictionary ¢ = [xl,xz,x%] and that g = [0; 1]. 10 noisy
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