Octave: an End-user Programming Environment for
Analysis of Spatiotemporal Data for Construction
Students

Abstract—The construction industry is a new avenue for big
data and data science with sensors and cyber-physical systems
deployed in the field. Construction students need to develop
computational thinking skills to help make sense of this data, but
existing data science environments designed around traditional
programming tools create a significant barrier to entry. To
bridge this gap, we introduce Octave, an end-user programming
environment designed to help students develop computational
thinking skills through the analysis of spatiotemporal data
(e.g., as gathered by a GPS sensor). To aid exploration and
understanding, Octave’s design incorporates a high degree of
liveness, highlighting the interconnection between data, com-
putation, and visualization. We share the underlying design
principles behind Octave, as well as details about the system
design and implementation. To evaluate Octave, we conducted a
usability study with students studying construction. The results
show that non-programmer construction students were able to
learn Octave easily and were able to effectively use it to solve
domain-specific problems used in construction education. The
participants appreciated Octave’s liveness and felt they could
easily connect it to real-life problems in their field. Our work
informs the design of future accessible end-user programming
environments for data analysis targeted toward non-experts.

Index Terms—Construction, Data analytics, End-user Pro-
gramming, Spreadsheets, Spatiotemporal Data

I. INTRODUCTION

The advancement of machine learning and Big Data have
raised expectations in various domains for the applications
of data science and the value it can return. The construction
industry is one such example, where various sensing tech-
nologies are increasingly deployed in the field, enabling data-
driven analysis and decision-making [1]. In practice, domain
experts do not always have a background in data analytics;
construction specialists need to develop computational think-
ing and data analysis skills to make use of the sensor data.

While the curriculum in construction and related depart-
ments in universities includes these advanced topics (e.g.,
“Smart Construction”), teaching a programming language to
promote computational thinking can be challenging. Many
existing programming languages used for data analysis have
a high barrier to entry (e.g., python, R, Matlab). Rather
than using an existing programming language, an end-user
programming (EUP) environment can offer the benefits of
a flexible programming tool, but with a simpler interface
which is tailored to a specific use-case [2]. However, even
a simple EUP environment, such as a spreadsheet application,
can be challenging with overwhelming amounts of raw data,

especially if the data cannot be easily and effectively visu-
alized. We propose an alternative environment which allows
construction students to grok data in an exploratory fashion
by maintaining a tight connection between visualizations,
algorithms, and the underlying data. We posit that such an
environment will help students and domain-specific experts
learn computational concepts.

We test this idea in our ongoing project Octave (Observable
Connections between Tables, Algorithms, and Visualizations
in an EUP Environment), a programming environment for
building data analysis and computational thinking skills. Oc-
tave specifically targets university students studying Construc-
tion Engineering Management (CEM) and related fields and is
designed to help them analyze spatiotemporal sensor data, e.g.,
from GPS sensors deployed at a construction site. We validate
our design with a user study involving 13 students studying
construction. We found that they were able to quickly learn
Octave, and easily understood how it could be used to solve
the domain-specific problems used in a construction class.

II. BACKGROUND AND RELATED WORKS
A. Facilitating Computational Thinking

Many researchers have argued that the value of computa-
tional thinking extends beyond the computer science disci-
pline [3]-[6]. For example, computational thinking skills can
help someone to reformulate problems in computation-friendly
ways or to ask insightful questions they might not have thought
to ask otherwise [7]. Components of computational thinking
encompass not only algorithmic design and abstraction, but
also data collection, representation, and analysis [8].

It has also been shown that when teaching computational
thinking, grounding lessons in the context of domain-relevant
tasks has a positive effect on learning outcomes [9]. This
suggests there is value in a programming environment like
Octave which can teach computational thinking while tack-
ling a domain-specific problem but without the overhead of
learning a general programming language.

B. Benefits of Liveness

Researchers and practitioners used the idea of real-time
program feedback as having “liveness” in programming envi-
ronments, where changes to a program are instantly rendered
to the output [10]-[12]. We utilize this notion of liveness
as one of Octave’s core design principles IV-B, which is to
maintain a tight connection between the data, visualization,



and computation. Researchers have previously validated the
effects of having an immediate and clear connection between
code and a program state in helping programmers have a
clear mental model [11], [13], [14]. In addition, high levels
of liveness are shown to help programmers with debugging
and explaining their programs to others [15], [16].

Data science and analysis can be thought of as exploratory
programming [17], characterized by rapid experimentation,
often going back and forth between code and visualization.
For this reason, researchers have argued that data science is
well-suited for liveness [18]. In fact, a lack of liveness is seen
as a problem with traditional computational notebooks, where
graphs and code can easily get out of sync [19]. Researchers
have created data science environments around the design
idea that the visualizations should always reflect the current
version of the code [20]-[22]. Although Octave is an EUP
environment designed for simple data analysis tasks, we still
believe liveness is an essential feature for helping our users
explore and understand their data.

C. Spatiotemporal Data

Spatiotemporal data can fit into three broad categories:
spatial time-series data, spatial event data, and trajectory
data [23]. Among these, trajectory data is considered par-
ticularly complex to analyze [24]. Trajectory data can either
be quasi-continuous or it can contain gaps—in the extreme
case, the data may contain only the origin and destination
points [23]. Octave targets quasi-continuous trajectory data,
as would be collected by a GPS sensor.

Our work draws ideas from the literature on Global Informa-
tion System (GIS) technologies for visualizing, manipulating,
and querying spatiotemporal data. For example, the ArcGIS
environment allows analyzing spatiotemporal data through a
variety of methods, including a python notebook interface [25]
and with database query languages like PostgreSQL [26]. GIS
tools are targeted toward experts, which makes them less
suitable for our purposes as an introduction of computational
thinking skills to construction students.

Researchers have built tools to analyze spatiotemporal data
without the use of a general-purpose programming language.
Tools that handle trajectory data often focus on visualizations,
for example, displaying different trajectories views along with
aggregate visualizations like heatmaps [27]-[29]. Some tools
allow both visualization and complex queries over spatiotem-
poral data. One such system is TaxiVis, an environment
for querying origin-destination taxi trip data [30]. Another
example is VAUD, an end-user environment for visualizing
and querying complex, heterogeneous spatiotemporal data,
including—but not limited to—trajectory data [31]. Octave dif-
fers from these systems in that one of our primary goals is
to help students develop computational thinking skills with
some exposure to programming languages such as a boolean
expression or a state diagram. On the other hand, the computa-
tional steps to query the data must be both simple enough for
students to learn easily, yet powerful enough to be meaningful.

III. DESIGN PRINCIPLES

Octave aims to facilitate computational thinking among con-
struction students for a domain-specific problem: the analysis
of spatiotemporal trajectory data. To inform our design, we
did a preliminary task analysis using an assignment used in
an existing construction class. We describe the task below and
show how it led us to the core design principles of Octave.

A. Task Analysis: Productivity Scenario

We began our design process by considering a domain-
specific problem that is taught to CEM students in our Univer-
sity. The scenario, which we will refer to as the Productivity
Scenario, is as follows. Suppose we have GPS sensor data
from a dump truck that is tasked with repeatedly picking up
a volume of material from one location and transporting it to
another. Each round trip (or cycle) the vehicle makes can be
divided into four sections: load, haul, dump, and return [32].
Load and dump refer to when the vehicle is being loaded with
material or is depositing material, and can be approximated
using the GPS coordinates, i.e., whether the vehicle is in the
loading zone or the dumping zone. Haul and return are defined
as when the vehicle is in transit, either heading towards the
dumping zone (haul) or towards the loading zone (return).
Sections of the trajectory that do not fit into these categories
are classified as non-productive movement.
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Fig. 1. The “Productivity Scenario” describes the common construction task
of materials transport. To complete one cycle, the dump truck: loads material
(load), transports the material to the dumping zone (haul), dumps the material
(dump), and then returns to the loading zone (return).

In this scenario, a data analyst in a construction company
wishes to measure the productivity of the vehicle. For example,
how many round-trips did the vehicle make, and thus how
much material was moved? How long did each leg of the
journey take, and were there any bottlenecks?

We started our design process by solving the Productivity
Scenario with example data previously used in the construction
classroom. We devised two solutions using different common
programming environments: a spreadsheet programming lan-
guage and SQL. In both cases, our first step was to classify
whether each data point was inside of the loading zomne or
dumping zone. To do this, we graphed the data using the
spreadsheet program, then evaluated if each GPS coordinate
was within the loading or dumping zone by calculating the eu-
clidean distance between the center of the loading or dumping
zones and the GPS coordinate.



After creating the two columns for load and dump, we
created two additional boolean-valued columns to capture the
haul and return states. To do this, we needed to consider both
the current and previous state values of load and dump. Take
haul, for example, where the truck is moving from the loading
zone to the dumping zone. Regardless of the GPS coordinate,
the haul state is TRUE when the load and dump states are
FALSE, the truck was previously in the load state, and the
truck’s next state will be the dump state. The return state is
defined similarly, but going from state dump to load.

Finally, we wanted to get summary data for each leg of
the journey. Taking the load step as an example, we wanted
to know how many times the truck visited the loading zone
and how long the truck stayed during each visit. For this
task, the common aggregation methods, such as pivot tables in
spreadsheet programming or GROUP-BY statements in SQL,
were not sufficient on their own. If we had used “GROUP BY
load”, for example, all the data inside the loading zone would
form a single group, rather than being broken out by each visit.
Instead, we added an integer-valued counter column for load
which we incremented each time the state transitioned from
FALSE to TRUE (e.g., the truck entered the loading zone).
From there, we grouped the data by both the load state and
the counter column to get our summary information.

B. Design Principles

Based on our task analysis, we derived two core design
principles for Octave, which we describe below.

(DP1) Temporally-aware Querying by Spatiotemporal
State. Spatiotemporal state refers to augmenting trajectory
data with states, which are TRUE/FALSE values associated
with each data point. In our task analysis, this was a natural
way to decompose the problem into smaller steps. Temporally-
aware querying refers to grouping operations which automati-
cally separate data which are not temporally adjacent. During
our task analysis, we felt it was cumbersome to create separate
columns for counters and then do a grouping operation for the
counter values, and wished this feature was built into the tools
we were using.

(DP2) Highly-coupled Spatiotemporal Data Representa-
tions. Raw data and any user-defined states should be tightly
coupled with its visualization. For example, if a user hovers
over spatiotemporal data in a table (raw data), it should high-
light the corresponding data points on a map (visualization).
From our task analysis, we needed visualization to locate the
loading and dumping zones, and wished that the visualization
were connected to the data such that we did not have to define
the geometric equation for being inside of a region by hand.
Furthermore, visualizing the data was useful for checking our
work, and we found it inconvenient that visualizations were
not more readily available.

IV. SYSTEM DESIGN AND IMPLEMENTATION

The interface for Octave is presented in figure 2. On the left
half of the screen is the visualization pane, which shows a map
of the trajectory data. On the right half is the table pane, which

shows different data tables based on the selected tab. The
“Base Table” tab contains the original uploaded data set, along
with additional columns for any states the user has defined (see
section IV-A1). The remaining tabs show summary tables, as
described in section IV-A2. Finally, above the visualization
and table panes is the state toolbar, which allows the user to
view existing states and create new ones.

We now describe these components in detail and relate them
to the design principles from section III.

A. DPI: Temporally-aware Querying by Spatiotemporal State

1) Binary state as a programming primitive: State in
Octave is defined as a state of one spatiotemporal data point —
a row in the table — that can take on a boolean value (TRUE
or FALSE) based on its spatiotemporal properties or based on
other states previously defined by the user. In Octave, states
are the core concept that allows users to query and analyze
data computationally.

To create a new state, the user selects the “New State” button
(Figure 2.2), selects the type of state, and then proceeds with
the provided directions. Once a new state is created, it is added
to the “Base Table” as a new boolean-valued column. Below,
we describe the several types of states users can create in
Octave, each of which has its own user interface for creation.

Region states represent a physical region. Regions are
defined by rectangular or oval shapes on the visualization pane,
which can be placed, resized, and rotated by the user. Data
points inside the region are TRUE and outside the region are
FALSE. In the Productivity Scenario example, the load and
dump states can be defined as region states encompassing the
loading zone and dumping zone, respectively.

Conditional states allow the user to define boolean expres-
sions using logical and comparison operators. The expressions
are evaluated for each row, and can involve values for any
of the columns, including both user-defined states or existing
measurements, like speed or elevation. Notably, these expres-
sions can only reference values from the current row. In our
Productivity Scenario, a user might create a conditional state
to investigate if the vehicle has any unexpected slowdowns
outside of the dumping and loading zones. To capture this
logic, the conditional state might use the expression “Speed
< 5 AND NOT load AND NOT dump’.

Combination states provide a way to combine two existing
states into a new one, not only with binary operators (such as
AND/OR/XOR) but also with the specification of spatiotem-
poral transition requirements. After selecting the two states to
combine, users are presented with an interface displaying a
graph with nodes and edges (Figure 3), where nodes represent
all possible combinations of the state values (e.g., TRUE-
TRUE, TRUE-FALSE, etc.), and edges connect nodes when
transitions between those pairs of state values actually occur
in the data. The user can then click on some combination of
nodes and edges to indicate when their new state should be
TRUE. If they select a node, all rows with that combination
of states will be TRUE. Selecting or deselecting edges acts as
a transition constraint on the previous or next state pair. This
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92 37.2308928 | -80.4259896 08:50:03 0.0109 0.4045 False

93 37.2308883 -80.4260737 08:50:08 0.0075 0.412 False

94 372308883 -80.4261409 08:50:13 0.006 0.4179 False

95 37.2308883 | -80.4261745 08:50:18 0.003 0.4209 False

96 37.2308661 -80.4261745 08:50:23 0.0025 0.4234 False

Fig. 2. The interface for Octave. 1) The Visualization Pane: a two-dimensional visualization of the spatiotemporal data. Note that the data points visible
correspond exactly to the visible rows in the table, and the bright green data point corresponds to the row under the cursor. 2) The States Toolbar: this shows
the list of states which have been defined by the user, and also has a button for the user to create a new state. States act as new boolean-valued columns in
the original data table. 3) The data pane: this shows all of the data in the table in a spreadsheet-like format. The data pane has a tab for the uploaded data
(i.e., “Base Table”) and additional tabs for summary tables, which group and aggregate data, similar to a pivot table from traditional spreadsheet programming

environments.

way, users can create a new state based on binary operations
(e.g., AND/OR) and state transitions (e.g., all data points in
state B where the preceding state is neither A nor B, and the
following state is A).

In our Productivity Scenario example, the haul and return
states can both be defined using combination states. To define
haul—where the loaded truck travels from the loading zone to
the dumping zone—a user creates a new combination state that
combines the region states load and dump (Figure 3). On the
combination state interface, there will be three nodes available:
Load, Dump, and Neither. In this case, a node for Both will
not exist because there is no intersection between the loading
zone and dumping zone. The interface will also display arrows
based on how the truck travels: there will be incoming and
outgoing arrows connecting Neither to both Load and Dump,
but there will be no arrow directly between Load and Dump
because there is no way that the truck can travel from the
loading zone to the dumping zone without passing the neutral
area (Neither). From here, the user can define the haul state
by selecting the node Neither, along with the incoming arrow
from Load and the outgoing arrow to Dump.

Sequence states combine a specifically ordered sequence
of existing states into a new state. To create a sequence state,
the user first selects which states to consider. Then, they are
presented with a table which groups temporally adjacent data

points based on the boolean values of those states (Figure 4).
For example, if we consider two states, A and B, the first
group of points might have both states TRUE (the table will
display “A, B”), the next group of points might have just B
TRUE (the table will display “B”), and the next group might
have neither TRUE (table will display “-~”). The user drags
the mouse over the table to select an example of the sequence
they want to define. The remaining instances of that sequence
are picked out automatically, and the new state will be TRUE
for every data point that is a part of one of these sequences.
The user can preview what the new state will look like before
they save it.

In the Productivity Scenario example, a sequence state can
represent a cycle. To define the cycle, the user creates a
sequence state involving states load, haul, dump, and return,
then finds and highlights that sequence in the table. Note
that this differs from a conditional state which represents the
union of load, haul, dump, and return. Such a conditional
state would be insufficient for two reasons. First, it might
capture non-productive movement, say if the truck returned to
the loading zone before reaching the dumping zone. Second,
the conditional state would incorrectly group together adjacent
cycles. Sequence States do not have this problem because of
their special grouping semantics, as described in the following
section (IV-A2).
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Fig. 3. The interface for creating a combination state. The current selection
captures groups of points which have load and dump states FALSE (“NEI-
THER” node selected), where the previous group of points has load TRUE
(incoming arrow from Load) and the next group of points have dump TRUE
(outgoing arrow to Dump). The selected data points are displayed on the
visualization pane to the left and updated in real time as the user selects and
deselects nodes and edges.
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Fig. 4. The interface for creating a sequence state. The bottom table groups
the data by the states selected at the top. The user can select an example
sequence by dragging their mouse over the bottom table, and the data points
from that sequence are shown on the visualization pane. Note that to correctly
define a cycle for the Productivity Scenario, in the above example the user
needs to exclude the region state Crane.

2) Summarize by State: Using the states they have defined,
users can analyze the data through table summary operations.
To create a summary, the user selects an existing state, and then
selects the “create summary” option. Summaries automatically
group the data by the chosen state, similar to a GROUP
BY clause in SQL. Unlike in SQL, however, points are only
grouped together if they are also temporally adjacent. Each
group of data points is associated with aggregate statistics,
such as the elapsed time and total distance traveled.

The summary for a state contains two tables which appear in

a single tab in the data pane: the breakdown table and the total
summary table (Figure 5). The breakdown table contains one
row for each time a state is visited, i.e., each block of time
for which the state was TRUE. Each row contains the visit
number, the start time of the visit, the total time of the visit,
and the total distance traveled. The user can opt to expand this
table to also include groups where the state is FALSE.

The total summary table contains a single row which
summarizes each of the visits, including the total count, the
average time per visit, the total time for all visits, and the
total distance traveled across all visits. If the breakdown table
is expanded to show the FALSE groups, the total summary
table will contain a second row with the same information for
those groups.

Summaries for sequence states work slightly differently
than for other states. First, the breakdown table for sequence
state summaries can be expanded to show each step of the
sequence in a separate row. This is in addition to being able
to show or hide the groups for which the sequence state
is FALSE. Second, the grouping for sequence states works
slightly differently. In particular, data points are separated
into different groups each time the sequence restarts. For
example, consider a sequence state which uses the sequence
(A, B), for some states A and B. If the actual data contains
the sequence (A, B, A, B), then instead of grouping all those
points together, the two (A, B) pairs are grouped separately.

Base Table  Load  Haul { Cycle
Total
Load Total Average Total
Cycle Occurrences Time Time Distance
B Po%, True 4 43m 55 10m 465 3.547
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Fig. 5. Summary tables for Sequence State cycle. Statistics about each

individual cycle are displayed in the “Breakdown” table, and the “Total” table
contains statistics about all cycles together. The “Breakdown” table also shows
the initial stretch of time, which has no visit number because the state cycle
is FALSE. These data points are shown on the map because the cursor is
currently over this row.

Let us again go back to the Productivity Scenario. By cre-
ating a summary table for the load state, users can understand
the average loading time. This can be compared to summary
tables for the dump, haul, and return steps to determine which
steps take the longest and where efficiency can be improved.
Figure 5 shows the summary for cycle, a Sequence State.
From this summary, the user can determine the total number
of cycles and the total time, which can be used to calculate
the per-hour productivity of the vehicle.



B. DP2: Highly-coupled spatiotemporal data representations

Octave provides two tightly coupled views of the data: a
non-editable table interface (Figure 2.3) and a 2D visualization
(i.e., map; Figure 2.2). The visualization always shows the
full trajectory as a connected path (i.e., lines), and data points
along that path (i.e., dots) appear in response to user interac-
tions with the data pane and state toolbar. The visualization
pane communicates to the user which data points are relevant.

When the “Base Table” is shown in the data pane, the
rows currently visible in the table are all drawn as dots on
the visualization pane. Thus, users can scroll through the data
table to scrub forwards and backwards through time, getting a
sense of what direction the trajectory is moving based on the
dots shown on the path. Furthermore, if the user hovers over a
particular row in the Base Table, the corresponding data point
in the visualization pane is highlighted a brighter green color,
as seen in Figure 2.

When a summary tab is active in the data pane, no data
points are present by default on the trajectory path in the
visualization pane. When the user hovers over a particular
row, all of the data points that are part of that grouping will
appear as dots along the trajectory, as seen in Figure 5. Thus,
users can quickly visualize which group of points the table is
referring to.

Having a clear mental model of how their code (or al-
gorithm) will change the data is crucial for a programmer’s
sensemaking process [33]. To that end, whenever a user creates
a state, the visualization is updated to help the user understand
what will happen. Users can hover their mouse over an existing
state in the state toolbar (Figure 2.2) to show dots for all of
the data points for which that state is TRUE. This way, they
can easily remind themselves of what each state represents.
For combination states, the data points which will be TRUE
for that state are displayed as highlighted circles on the
visualization, as seen in Figure 3, as they specify the state.
That way, the user can explore the interface, getting immediate
feedback for what-if questions (e.g., what if I deselect this
arrow?). In our Productivity Scenario, it would have been
challenging for users to make sense of new spatiotemporal
states, such as return and haul in their spatial context just by
looking at raw data or state diagrams. This tight connection
also lets the user verify that their new state captures the logic
they want. Sequence states work similarly; when selecting a
sequence, the data points in the example sequence appear on
the visualization (Figure 4). Once the example sequence is
chosen, the user is presented with the breakdown summary
table based on the sequence state, which they can use to verify
correctness before committing their new state. Finally, any
summary table is also interactive: they can hover over each
row to highlight the corresponding data on the visualization
pane.

C. Other Features

In addition to the features already discussed, Octave sup-
ports importing data, exporting data, and importing site layouts
(i.e., background images). To import data, users can either

choose an existing data set to load or select a CSV file from
their computer. If they choose their own CSV file, they are
shown a preview of the table, and they must specify which
columns refer to the latitude, longitude, and time.

Octave allows users to export their data so they can send
it to others or use it elsewhere. Users can click the “export
data” button on the top-right corner of the screen to download
a CSV of the data in the currently active tab. If the active tab
is the Base Table, the exported data is a CSV with the original
data, along with a boolean-valued column for each state the
user has defined. If the active tab is a summary table, the data
is exported as two separate CSVs: one for the breakdown table
and one for the total summary table.

Users also have an option to import or export an entire
project in Octave. Projects are exported as JSON, and can
either be imported back into Octave or processed using some
other program.

Finally, we allow users to upload an image of a site layout
(i.e., map) to display it under the spatiotemporal trajectories.
This feature was crucial for construction students as the GPS
trajectory should be contextualized in the site layout, which
closely represents the user’s mental model. We also give the
user the ability to move, rotate, and resize their data to fit the
image that they upload as their mental model and uploaded
image may not be consistent with the true geographical
orientation. (e.g., the South entrance of the construction site
may not exactly be south based on the GPS data.) A slider
on the left side of the visualization allows the user to adjust
the opacity of the site map, so they can either make it more
prominent or get it out of the way. Note that uploading a site
layout is a completely optional step, and Octave can be used
without a map in the background.

D. Implementation

Octave is implemented as a web application using the React
framework. For the trajectory visualization, we use the D3
JavaScript library. Octave can easily handle data sets with
up to 10,000 rows without impacting user experience, and
uses the react-window library to selectively render rows in
the Base Table. Octave does not store data in a back-end, and
we instead rely on the browser’s localStorage feature to save
users’ sessions, which caches the most recent data when they
revisit the website if they use the same computer.

V. USER STUDY — METHODOLOGY

We conducted a usability study to evaluate if Octave was
easy to learn and use, and to gauge students’ perceptions and
attitudes towards our system. Participants were introduced to
Octave and then given two tasks to complete under observation
by the researchers. Afterward, we administered a standard SUS
questionnaire [34], followed by a short exit interview to gather
qualitative feedback. Note that at the time of the study, Octave
did not have conditional or sequence states implemented.

A. Farticipants

We recruited 13 participants (8 men, 5 women; ages 19-
31, median 21) through our University’s mailing lists. All



participants were students studying construction or related
fields (8 Construction Engineering Management, 3 Building
Construction, 1 Civil Engineering, and 1 Environmental De-
sign and Planning). Two participants were graduate students,
and the remaining 11 were undergraduates. The self-reported
programming experience of the students varied: while two
indicated intermediate or advanced skills, seven rated them-
selves as beginners, and the remaining four said they had never
programmed before.

B. Procedure

The study took place remotely via Zoom and lasted one
hour. Participants were compensated for their time with a $20
electronic gift card. The study was divided into three parts:
a tutorial, tasks, and an exit interview. During the tutorial,
which lasted about 20 minutes, we introduced key features
of Octave, including uploading data, uploading a site map,
aligning data, creating region states, creating combination
states, and creating summaries. We explained these features
of Octave to the participant while sharing our screen, and
then afterward had the participant share their screen and walk
through the same steps we had taken.

For the second part of the study, we gave participants 20
minutes to solve two tasks using Octave. The tasks were both
based on realistic scenarios in the construction domain. The
first task was a safety analysis, where participants had to
determine how many times and for how long a worker came
dangerously close to a crane. We provided a site layout image
for this task, which showed the radius of the crane. This task
required creating a single region state as well as a summary
table. The second task was a more complicated round-trip
analysis, where the participant had to determine how many
round trips were made between two points, and which part
of the journey (i.e., A to B vs. B to A) was faster. This task
required creating two region states, two combination states,
and three summary tables. For this task, there was no site
map in the background.

For each task, rather than going through the standard data-
import flow, we had participants load the data with one click
via a special “User Study” option in the menu bar. During the
tasks, we typically did not interact with the participant, though
we allowed them to ask clarifying questions. After each task,
we had the participant show us their solution and explain the
steps they took.

The final 15-20 minutes of the study was dedicated to
feedback. We first gave participants a short survey which con-
tained an SUS questionnaire followed by a few demographic
questions. Then, we had a short exit interview where we
asked participants about their experience. We asked if they
found Octave easy or difficult to learn, as well as what they
liked or disliked about Octave. We asked what other features
they thought Octave should have, and what other types of
analyses they thought would be good to do with Octave or a
similar system. Finally, we asked specific questions about the
interface, like how they felt about having the data displayed
in a table alongside the visualization.

VI. RESULTS

All 13 participants were able to successfully complete both
tasks using Octave. The average time to complete Task 1 was
2 minutes and 12 seconds, and for Task 2 was 5 minutes
and 8 seconds. These times do not include the time it took
participants to explain their solutions. 7 participants solved
the tasks without asking the researchers anything. Of the
remaining participants, 3 asked clarifying questions and 2
needed a small hint to complete the task. 2 participants created
extraneous states which were not necessary to solve the task,
but were still able to complete the task successfully.

A. SUS Questionnaire Results

The results from our SUS questionnaire are presented in
figure 6. The average SUS score for Octave was 85.96, which
can be described with the adjective Excellent [35]. The SUS
score can also be interpreted as a “letter grade”, with the lower
cutoff for A- at 78.9 [36]. Running a one-tailed t-test against
this value, we see our mean SUS is significantly greater (p =
0.016). Thus, we can conclude that our SUS “grade” is at least
an A-, with statistical significance.

Among the items on the SUS questionnaire, the statement
that scored the worst was: “I think that I would need assistance
to be able to use this website”. This is not too surprising,
given that there is no tutorial built into Octave, and we gave
participants a tutorial ourselves before they used the website.

One unexpected result was the responses from P7, who
scored questions 2, 4, and 6 with the lowest possible score.
Because the questionnaire alternates between positive and
negative statements, it is possible that P7 accidentally provided
the opposite answers to what they meant for these questions.
This seems likely, as P7 responded “Strongly Agree” to the
statement “I found this website unnecessarily complex”, but
later when talking to the researchers, they said they found the
system simple and relatively easy to learn.

B. Qualitative Feedback

Easy to Learn; Simple to Use. All participants felt that
Octave was easy to learn, and participants often described
Octave as “simple” and “straightforward”. P1 said they “felt
pretty confident using it right away”, and P2 thought that
“most people should be able to get it in a couple of minutes.”
Participants thought it was easy to find the functionality they
needed and that there were not too many extra or unnecessary
features. Many participants appreciated the tight connection of
the visualization with data, especially when scrolling through
the data table. Two other mentioned they valued being able to
understand and learn through exploration or “playing around”.

Technical Terminology. Although it did not give them trou-
ble, P11 imagined the terminology in Octave might be a barrier
to usage for others. For example, they thought the term “states”
felt technical, and that the TRUE/FALSE values for region
states could alternatively be called “within” and “outside.”
On the other hand, P8 specifically mentioned the terminology
in Octave was understandable, especially compared to other
software they have used in the past.



# | SUS Statement

P2 [ P3 | P4 | P5S | P6 | P7 | P8 | P9 | PI0 | PII | P12 | PI3 ]

I think that I would like to use this website frequently

I found this website unnecessarily complex
I thought this website was easy to use
I think that I would need assistance to be able to use this website

I found the various functions in this website were well integrated

I thought there was too much inconsistency in this website

I would imagine that most people would learn to use this website very quickly
I found this website very cumbersome/awkward to use

I felt very confident using this website

I needed to learn a lot of things before I could get going with this website
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Fig. 6. The SUS scores broken down by participant and question. Note that P7 seems to have put the opposite of what they meant for questions 2, 4, and 6,
as their responses conflict with their follow-up interview. Never-the-less, we decided not to remove their scores from our analysis.

Combination States. Although all participants were able
to effectively create combination states during Task 2, some
participants reported confusion in the exit interview. P11
felt that combination states felt very technical, and was not
sure why they needed a node to represent both states being
FALSE, denoted by Neither in the state diagram. P5 felt that
combination states might not work well for a complex real-life
scenario with a large number of region states.

New Features and Other Use Cases. Participants came
up with different ideas to make Octave more usable. Some
participants thought it would be useful to have a sense of
scale shown on the map, which P6 suggested could be done
by drawing a latitude and longitude grid. A few participants
mentioned adding different colors to the regions or tables.
For example, P12 mentioned it would be easier to detect
colors than read the TRUE/FALSE state values in the table.
P1 thought it could be nice to color-code regions, and P10
imagined color-coding either regions or sets of data points
based on specific conditions, e.g., using red color to highlight
if the data has been inside a region for too long. Finally,
some participants thought the site layout map should either
be aligned automatically with the data, or the map should be
procured automatically, e.g., using Google Maps.

When we asked what types of problems Octave might
help solve, participants gave a variety of responses. Many
participants returned to the safety and productivity use cases
from the two tasks they had solved earlier. Regarding the
safety use case, P3 suggested they might like to determine if a
sensor attached to a moving vehicle came too close to a sensor
attached to a moving worker. This would require a new feature
for Octave to analyze multiple trajectories at the same time.
Regarding productivity, some participants suggested running
simulations, which could then be analyzed using Octave. P2
suggested they might like to use Octave for self-tracking, e.g.,
how long they spend in various places as they travel. Finally,
P5 and P11 thought a tool like Octave would be especially
useful for communication, with P11 lamenting that people will
often “just throw you a spreadsheet” which they found difficult
to understand and interpret.

C. Limitations

Our study only tests the region states and combination
states: while we believe the other state types (sequence and

conditional states) are simple enough, they have not yet been
validated. Nevertheless, we believe our study evaluates the two
main design principles of Octave, and shows the promise of
this type of end-user programming and data analysis.

VII. DISCUSSION AND FUTURE WORK

Our study highlights some of the tensions between using a
general-purpose programming environment versus a domain-
specific one. On one hand, experience with Octave might
not directly translate to other programming environments. For
example, although Octave might help someone understand
how to decompose a problem into smaller parts, the indi-
vidual parts might still be difficult in another environment
(e.g., calculating geometry for regions). On the other hand,
participants were able to pick up concepts from Octave quickly
and appreciated how approachable it was. Thus, Octave can
introduce computational concepts like boolean-valued states
and grouping and aggregation functions without being over-
whelming. We plan to design and develop lectures, class
activities, and assignments to validate Octave in deployment
studies in the authors’ universities.

One future direction for Octave could be to help users
more directly translate their learning to other technologies,
like spreadsheets. For example, Octave could show users the
code (e.g., spreadsheet formulas) needed to define boolean-
valued states. Octave could also make it more explicit how
the summary tables are related to pivot tables or GROUP BY
statements — this might be particularly helpful, as grouping
and aggregate functions are difficult concepts to grasp in query
languages like SQL [37] [38].

Another direction is to expand Octave to support more
complex analysis scenarios outside of the classroom. For
example, Octave could support comparing trajectories from
multiple agents, as some participants suggested could be useful
for analyzing safety in the field. Another common case in
trajectory analysis is to compare multiple trajectories from
a single agent, aligning them with the same relative start
time [23]. Relating to the Productivity Scenario, this could
be useful in comparing productivity over the course of several
days. Finally, Octave could be expanded to support 1D time-
series data using the same design principles.
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