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Understanding temporal changes and seasonal
variations in glycemic trends using wearable data

Prajakta Belsare1†, Abigail Bartolome1, Catherine Stanger2, Temiloluwa Prioleau1*†
Seasonal variations in glycemic trends remain largely unstudied despite the growing prevalence of diabetes. To
address this gap, our objective is to investigate temporal changes in glycemic trends by analyzing intensively
sampled blood glucose data from 137 patients (ages 2 to 76, primarily type 1 diabetes) over the course of 9
months to 4.5 years. From over 91,000 days of continuous glucose monitor data, we found that glycemic
control decreases significantly around the holidays, with the largest decline observed on New Year’s Day
among the patients with already poor glycemic control (i.e., <55% time in the target range). We also observed
seasonal variations in glycemic trends, with patients having worse glycemic control in the months of November
to February (i.e., mid-fall and winter, in the United States), and better control in the months of April to August
(i.e., mid-spring and summer). These insights are critical to inform targeted interventions that can improve di-
abetes outcomes.
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INTRODUCTION

Diabetes is one of the most prevalent chronic conditions that affects
37.3 million people (∼11.3%) in the United States and more than
536 million people (∼10.5%) globally (1, 2). In addition, it is pro-
jected that the prevalence of diabetes will increase significantly in
the coming decades (3). Yet, only a minority of people with diabetes
achieve the recommended targets for glycemic control (4–6). Ac-
cording to a recent study, there will be alterations to the disease
profile in various regions of the world due to increasing cases of di-
abetes and diabetes-related complications, such as neuropathy, ret-
inopathy, kidney failure, and cardiovascular disease (7). Given the
growing diabetes pandemic, there is an urgent need for greater un-
derstanding of the disease and variations in outcomes to develop
tailored interventions that can change the status quo.

Recognizing the transforming role that wearable devices have
played in various health domains makes a case for improving the
use of such data in the diabetes domain (8–13). Clinical-grade wear-
able devices, like continuous glucose monitors (CGMs), provide a
unique window into understanding how diabetes management
varies in outpatient settings (14, 15). However, research shows
that patient-generated data from CGMs is significantly underuti-
lized (16, 17). For example, the clinical standard involves reviewing
only about 2 weeks of prior CGM data to assess glycemic control
(14, 15). In addition, only a minority of patients (<30%) revisit
their CGM data regularly to learn from it and inform their treat-
ment strategy (6, 18). Hence, there are still many unanswered ques-
tions about diabetes and glycemic trends despite advances in digital
and wearable technology in this field. One important question that
remains unknown relates to the influence of seasons, holidays, and
changes in behavior during the days, weeks, months, and year, on
glycemic trends.

On the basis of prior research, it is well known that there are sea-
sonal variations in lifestyle behaviors and eating patterns that con-
tribute to weight gain around the holiday seasons, for example (19–

23). However, seasonal variations in glycemic trends have not yet
been studied, despite direct associations between food intake, life-
style behaviors, and diabetes outcomes. To bridge this gap, our re-
search leverages over 91,000 days of CGM data from 137 patients
with diabetes, primarily type 1 diabetes, to investigate how glycemic
trends vary across holidays, seasons, days/weeks, and subgroups of
the population. We hope that insights from this study can be useful
to develop targeted interventions that pinpoint the most vulnerable
times for poor glycemic control to improve both short- and long-
term diabetes outcomes.

RESULTS

Data overview
This study leverages retrospective and objective data from clinically
validated CGMs used for daily management of diabetes to study
glycemic trends and elicit seasonal variations in management.
Figure 1 provides an overview of our dataset, which includes a
total of 91,441 days of CGM [i.e., blood glucose (BG)] data from
137 subjects, primarily with type 1 diabetes. Subjects were recruited
remotely from various geographical locations in the United States
(fig. S1), and the dataset includes two independent cohorts that
span various age groups, years with diabetes, and levels of glycemic
control (see Fig. 1, B to D, and Table 1). Cohort 1 was recruited
through an opt-in data sharing process under the Tidepool Big
Data Donation Project (24). This cohort is composed of 100 sub-
jects (ages 2 to 76, diabetes duration of 0 to 60 years) who use
sensor-augmented insulin pump therapy for daily management
(25). Meanwhile, cohort 2 was recruited through online sources
under the SweetGoals project (26). This cohort is composed of 37
subjects (ages 19 to 29, diabetes duration of 2 to 27 years) who use
varying forms of insulin therapy for daily management. All subjects
had a minimum of 9 months of CGM data with at least 70% of read-
ings present during the data collection period. Cohort 1 includes an
average of 501 days (i.e., 1 year and 4 months) of CGM data per
subject, while cohort 2 includes an average of 960 days (i.e., 2
years and 7 months) of CGM data per subject (Fig. 1E).
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Given that BG is affected by over 40 factors in daily living, such
as food, medication, activity, sleep, stress, illness, and outside tem-
perature, it is expected that glycemic trends can be highly variable
for a person with diabetes (27–29). Figure 1F shows an example of
BG variations for one subject during week 27 of year 2018 (i.e., 2 to 8
July). Note that, when the BG is greater than 180 mg/dl, that repre-
sents high BG or hyperglycemia, and when the BG is less than 70
mg/dl, that represents low BG or hypoglycemia (14, 15). The
primary objective of a person with diabetes is to maintain BG
levels in the target range of 70 to 180 mg/dl (14, 15). In this
study, we quantified glycemic trends using clinically validated
metrics for assessing diabetes management, including time in
range (TIR), mean BG, and glycemic variability (GV) (14). Each
metric is calculated daily (i.e., over a 24-hour period) for each

subject, and Fig. 1G shows the distribution of each metric (mean
TIR = 59%, mean BG = 168 mg/dl, and mean GV = 31%) across
all subjects. This figure also shows that subjects in cohort 2 had gen-
erally worse glycemic control with a low mean TIR per day of 48%
[clinical target > 70% (14)] and high mean BG per day of 189 mg/dl.
In contrast, more subjects in cohort 1 had better glycemic control
with a mean TIR of 68% and mean BG of 153 mg/dl.

Effect of holidays on glycemic trends
Several studies in literature have observed changes in lifestyle and
eating behaviors that contribute to weight gain during the holidays
(19–23). However, the effect of holidays on glycemic trends and di-
abetes management outcomes is yet to be studied at scale (30).
Building on the availability of objective data from clinically

Fig. 1. Data overview. (A) Wearable medical device, CGM, used for daily management of diabetes. (B to E) Demographics of subjects (n = 137) and data summary per
subject. (F) Example of glycemic trends and blood glucose (BG) variations over 1 week. (G) Distribution of clinically validated metrics for assessing CGM data.
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validated CGMs used for daily management of diabetes, we set out
to assess changes in glycemic trends across the year. Figure 2 pre-
sents the cumulative daily change in key glycemic metrics, particu-
larly TIR and mean BG, extracted from two independent cohorts
with diabetes (n = 137). CGM data from cohort 1 span the years
of 2015 to 2019, while CGM data from cohort 2 span the years of
2015 to 2022. The TIR and mean BG was calculated for each subject
and for each day of the year and then normalized by subtracting the
subject’s mean over the year and by dividing the mean over the year.
The resulting change curve was averaged across all subjects and then
smoothed with a 7-day running average.

Figure 2A shows that glycemic control was significantly worse on
and around major holidays, especially, New Year, Independence
Day, Thanksgiving, and Christmas. In particular, TIR decreased
by 7.88% on New Year (1 January) (P < 0.001); 7.96% on Indepen-
dence Day (4 July) (P < 0.01); 5.09% on Thanksgiving (24 Novem-
ber) (P < 0.05); and 3.13, 5.56, and 7.02% on Christmas (25
December), 1 day after Christmas (26 December), and 2 days
after Christmas (27 December) (P = 0.07, < 0.01, and < 0.01, respec-
tively). Figure 2B shows that the observed decrease in TIR was due
to an increase in mean BG on major holidays. In particular, mean
BG increased by 4.52% on New Year (1 January) (P < 0.001); 2.55%
on Independence Day (4 July) (P < 0.01); 2.34% on Thanksgiving
(24 November) (P < 0.05); and 2.35, 3.58, and 5.59% on Christmas
(25 December), 1 day after Christmas (26 December), and 2 days
after Christmas (27 December) (P = 0.07, < 0.01, and < 0.001,
respectively).

Seasonal variations in glycemic trends
In addition to the effect of holidays, seasonal variations have been
observed for health-relevant factors like physical activity, sleep,

mood, and cardiovascular risk factors (31–34). Most closely
related to this work, seasonal variations have also been observed
in hemoglobin A1C among patients with diabetes (35, 36).
However, the effect of various seasons on glycemic trends is not
well understood. To bridge this gap, we investigated the change in
glycemic control across months of the year. Figure 3 (A and C) pre-
sents the cumulative percent change in key glycemic metrics (i.e.,
TIR and mean BG) across the population of 137 subjects with dia-
betes. From this figure, we observe worse glycemic control, evident
from a notable decrease in TIR and increase in mean BG, in the last
2 months and first 2 months of the year (i.e., October to March).
These months with worse glycemic control constitute mid-fall to
end of the winter season in the United States. Conversely, we
observe better glycemic control, evident from an increase in TIR
and decrease in mean BG, during the months of April to September
(with the exception of July). These months with better glycemic
control constitute mid-spring to end of the summer season in the
United States.

To further evaluate the monthly variations in glycemic control,
we split the calendar year into two halves that are most aligned with
the observed direction of change (i.e., increase or decrease). Figure 3
(B and D) shows the cumulative change in TIR and mean BG for 6-
month windows, April to September versus October to March. Our
results show statistically significant differences, where the TIR in-
creased by 0.56% between the months of April and September
and decreased by 1.1% between the months of October and
March (P < 0.001). In addition, mean BG decreased by 0.46%
between the months of April and September and increased by
0.66% between the months of October and March (P < 0.001).
These results show that glycemic trends do change across months
of the year. More specifically, the observed changes in glycemic
trends align with seasonal variations because months of April to
September tend to be warmer months of the year, while months
of October to March tend to be colder months of the year. The ob-
served changes suggest that glycemic trends may be influenced by
seasonal changes in physical activity, sun exposure, sleep, and mood
(31–34).
Daily and weekly variations in glycemic trends
Prior research has studied daily and weekly variations in many
health-relevant factors like physical activity, mood, happiness, and
body temperature (31, 34, 37, 38). Most closely related to the diabe-
tes domain, prior work has also studied relationships between cir-
cadian clock and insulin resistance and nocturnal BG control (39–
41). However, there are gaps in knowledge about how glycemic
trends vary at a population-level across times of the day and days
of the week. To bridge this gap, we sought to leverage rich CGM
data from our study population (n = 137) to quantify daily and
weekly variations in glycemic trends. In particular, the hourly
TIR and mean BG were calculated for each subject and then aver-
aged across all subjects in this study. Figure 4 presents variations in
TIR and mean BG for every hour of the day and every day of the
week. From this figure, we observe better glycemic control
between the hours of around 9:00 a.m. to 5:00 p.m. and gradually
worse glycemic control through the evening hours and nighttime
hours. In addition, we observe comparatively worse glycemic
control at nighttime (i.e., 12:00 a.m. to 6:00 a.m.) on Saturday,
Sunday, and Monday and slightly better control during the same
time between Tuesday and Friday. The best BG control is observed

Table 1. Overview of our dataset comprising two independent cohorts

(n = 137 subjects) with a total of 91,441 days of CGMdata. T1D and T2D
means type 1 diabetes and type 2 diabetes, respectively, while NR means
not reported.

Cohort 1 Cohort 2 Total

Mean ± SD Mean ± SD Mean ± SD Range

# Subjects 100 37 137

Age 34 ± 21 23 ± 3 32 ± 19 2–76
Male/
female/NR

23/13/64 6/31/0 29/44/64

T1D/
T2D/NR

41/0/59 37/0/0 78/0/59

Years with
diabetes

18 ± 17
(NR: 6)

12 ± 6
(NR: 2)

17 ± 16
(NR: 8)

0–60

Total
CGM days

52,924 38,517 91,441

CGM
days/
subject

501 ± 172 960 ± 378 625 ± 319 296–
1,567

Total
BG samples

14,416,242 7,181,253 21,597,495

BG
samples/
subject

144,162
± 49,594

276,379
± 108,843

179,871
± 91,640

85,251–
451,236
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between the hours of 11:00 a.m. and 1:00 p.m. on weekdays, and
there is about a 2-hour delay in this window on Saturday.

Subgroup and individual-level differences in
glycemic trends
Prior research also shows that glycemic trends vary across sub-
groups and across individuals (16, 17, 42). Hence, it is important
to understand how glycemic trends vary across subgroups and in-
dividuals in this work. To achieve this, we used clinical targets as a
basis for stratifying subjects into three subgroups based on glycemic
control (4, 14). The good control subgroup is composed of subjects
with mean TIR greater 70% across the full duration of their own
CGM data (n = 50), the moderate control subgroup is composed
of subjects with mean TIR between 55 and 70% across the full du-
ration of their own CGM data (n = 38), while the poor control sub-
group is composed of subjects with mean TIR less than 55% across
the full duration of their own CGM data (n = 49). Figure 5A shows
the daily change in TIR across subjects in each subgroup and
smoothed over 7 days. From this figure, we observe that there is a

decline in glycemic trends around holidays for all three subgroups,
independent of glycemic control. However, glycemic trends de-
creased more substantially during holidays for subjects in the mod-
erate and poor glycemic control subgroups compared to subjects in
the good glycemic control subgroup. In particular, TIR decreased
by 2% or less in the good control subgroup on Independence
Day, Thanksgiving, and Christmas. However, TIR decreased by
around 5% on the same holidays in the poor control subgroups.
In addition, the largest decline in glycemic trends was observed
on New Year ’s Day for all subgroups, where TIR decreased by
2.56% for the good control subgroup, 7.17% for the moderate
control subgroup, and 13.76% for the poor control subgroup.

Similar subgroup analysis was conducted for participants in four
age groups, namely, 0 to 18 years (n = 28), 19 to 34 years (n = 60), 35
to 50 years (n = 23), and 51 to 76 years (n = 26). Figure 5B shows the
daily change in TIR across subjects in each age group and smoothed
over 7 days. From this figure, we observe different patterns of gly-
cemic control in each age group, including around the holidays.
Most notably, the subjects in the oldest age group (age 51 to 76

Fig. 2. The effect of holidays on glycemic trends in patients with diabetes (n = 137). (A) The cumulative change in TIR across days of the year, where U.S. holidays are
marked with a vertical line. (B) The cumulative change in mean BG across days of the year, where U.S. holidays are marked with a vertical line.
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years) had the best glycemic control throughout the year with the
least variability and lowest decreases around holidays. Meanwhile,
subjects in the age groups of 19 to 34 years and 0 to 18 years had the
lowest TIR per day when averaged across the days of the year, where
the mean TIR per day was 54.7 and 61.3%, respectively. In addition,
subjects in the age group of 19 to 34 years and the age group of 0 to
18 years showed the largest decrease in TIR on New Year’s Day,
where their TIR decreased by 11.6 and 7.3%, respectively. Last,
fig. S2 shows the subgroup analysis across genders (male, female,
and not reported). Given the large number of unreported genders
(n = 64), insights from this figure are limited.

To complement the above analysis of glycemic trends at a pop-
ulation level and for different subgroups, we explored variations in
glycemic trend at the individual level. Figure 6 shows the TIR and
mean BG for each week of the year for all subjects in this study.
From this figure, we observe that patterns of glycemic trends are
highly variable throughout the year and highly variable across indi-
viduals. This critical observation further underscores the need for
personalized interventions to improve diabetes outcomes.

DISCUSSION

This study is unique in its use of large-scale longitudinal data (over
91,000 days) from clinical-grade wearable devices to quantify vari-
ations in glycemic trends across different time horizons (i.e., times
of the day/week, days/months of the year, seasons, and holidays).
Although variations in other physiological metrics have been
studied in prior literature, a number of studies rely on sparse data
collected throughmanual loggingmethods that are often biased and
erroneous or single point-in-timemeasurements that are irregularly
sampled (19–21, 43). Meanwhile, there are other studies that use
consumer-grade wearable devices to elucidate variations in physio-
logical metrics (33). However, many of such studies are conducted
with data from a healthy population (i.e., people without a diag-
nosed condition). Unlike prior work, routine use of clinical-grade
wearable devices in the diabetes domain creates unmatched oppor-
tunities for understanding the dynamics of disease management in
everyday settings (16, 17, 30, 44, 45). Retrospective analysis of rou-
tinely collected data can also reveal behaviors in the natural environ-
ment that are not altered by enrolling participants in a research
study (46). Subsequently, insights from such analysis can inform
the development of tailored interventions to improve the health
outcomes of patients.

Fig. 3. Glycemic trends across months of the year. (A) The change in TIR for each month of the year (the zero mark represents the mean TIR over all the months of the
year). (B) The change in TIR for two 6-month windows with distinct glycemic trends in the year. One-way analysis of variance (ANOVA) with a two-sided test was used for
statistical analysis to evaluate differences in change in TIR in the months of April to September versus October to March. The differences were significant with P = 3.29 ×
10−306 (i.e., P < 0.001). (C) The change in mean BG for each month on the year (the zero mark represents the mean BG over all the months of the year). (D) The change in
mean BG for two 6-month windowswith distinct glycemic trends in the year. One-way ANOVAwith a two-sided test was used for statistical analysis to evaluate differences
in change in mean BG in the months of April to September versus October to March. The differences were significant with P = 0 (i.e., P < 0.001).
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In this work, the inclusion of subjects between 2 and 76 years of
age, 0 to 60 years with diabetes, and with varying levels of glycemic
control (i.e., good, moderate, and poor) enabled comparative anal-
ysis across subgroups of subjects to understand key differences that
may exist. Some important findings from our subgroup analysis are
that glycemic trends decreased more during the holidays (e.g., New
Year) for subjects in the moderate and poor glycemic control sub-
groups compared to subjects in the good control subgroup. In

addition, we found that subjects in the oldest age group (ages 51
to 76) had the best glycemic control throughout the year with the
least variability and lowest declines during the holidays. It is expect-
ed that the oldest subgroup also represents many people who have
had diabetes for longer durations; thus, more experience with dia-
betes likely contributes to better management.

Another important finding from this study relates to seasonal
variations in glycemic trends in which glycemic control was

Fig. 4. Daily and weekly variations in glycemic trends across our study population (n = 137). (A) The average BG values in the target range (70 to 180 mg/dl)
calculated for each subject per hour of the day and day of the week and then averaged across all subjects. (B) The mean BG calculated for each subject per hour of
the day and day of the week and then averaged across all subjects.

Fig. 5. Glycemic trends across the year for different subgroups. (A) Stratification by glycemic control, showing glycemic trends of subjects with good control (TIR >
70%), moderate control (55% < TIR < 70%), and poor control (TIR < 55%). (B) Stratification by age group, showing glycemic trends of subjects between the ages of 0 to 18
years, 19 to 34 years, 35 to 50 years, and 51 to 76 years.
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worse during the end of fall to winter months (i.e., November to
February), and glycemic control was better during the end of
spring to summer months (i.e., April to August, with the exception
of July). This finding corroborates with results from prior work in
the diabetes domain and beyond (35, 36, 47). For example, Quer
et al. (33) found from smartwatch data that resting heart rate is
lower in the summer months. In conjunction with the aforemen-
tioned study, it is consistent to infer that increased physical activity
in the summer months may be a contributor to better glycemic
control (i.e., higher TIR and lower mean BG). However, targeted
research is needed to further understand the relationship between
physical activity, months of the year, and glycemic trends.

Despite the unique contributions of this work, there are some
limitations that must be acknowledged and addressed in future
work. First, this study does not include analysis of factors that
affect glycemic trends such as food, insulin use, and physical activity
(28). Given that majority of our study population includes persons
with type 1 diabetes (i.e., insulin-dependent diabetes), variations in
insulin use (for example) will directly influence variations in glyce-
mic trends; hence, such factors should also be studied. A second
limitation is that demographic data from this study did not
include gender for a notable portion of our study population;
thus, we were unable to fully analyze potential differences across
genders. A third limitation is that there was unequal representation
of subjects across age groups. More specifically, 44% (i.e., 60 of 137)
of participants are between ages of 19 and 34 years, while the other
age groups have fewer participants ranging from 17 to 20% of the
study population. Last, our study leverages wearable data from sub-
jects with type 1 diabetes who have high adherence (i.e., ≥70%) to
CGMs for daily management of their diabetes. Given this unique

population, our findings may not generalize to a population with
type 2 diabetes and/or persons who do not use or have access to
CGMs for diabetes management.

Building on these limitations, future work should consider anal-
ysis of glycemic trends in conjunction with factors that affect these
trends to further inform interventions. In addition, prior work sug-
gests that there are gender-related differences in glycemic control
(48); however, more research is needed to understand temporal
and seasonal variations across genders. Last, more research is
needed to understand how findings from studies with advanced di-
abetes technology relate or translate to the larger population of
persons with diabetes who do not have access to advanced technol-
ogies like CGMs, such as persons from lower-income backgrounds
and/or racial minorities (49–51).

MATERIALS AND METHODS

Data description
This study leverages a total of 91,441 days of CGM data from 137
subjects with diabetes, primarily type 1 diabetes (ages 2 to 76, years
with diabetes of 0 to 60). As shown in Table 1, our dataset includes
representation from two independent cohorts recruited through
online sources, one from the Tidepool Big Data Donation Project
(24) and the other from SweetGoals study (26). Cohort 1 comprises
100 subjects (mean ± SD age, 34 ± 21 years) with an average of 501
days (i.e., 1 year and 4 months) of CGM data per subject; mean-
while, cohort 2 comprises 37 subjects (mean ± SD age, 23 ± 3
years) with an average of 960 days (i.e., 2 years and 7 months) of
CGM data per subject. Given the remote recruiting format, subjects
in this study come from various states within the United States. The

Fig. 6. Individual-level differences in glycemic control across our study population (n = 137). (A) Variations in TIR for all weeks of the year and for all subjects. (B)
Variations in mean BG for all weeks of the year and for all subjects.
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geographical location of subjects in cohort 1 is unavailable, while
fig. S1 shows the geographical location of subjects in cohort 2. In
addition, data on the specific CGM type are unavailable for
cohort 1, while majority of subjects (>80%) in cohort 2 used a
Dexcom CGM (52). However, because CGMs are wearable
devices, missing data are not uncommon (45), so we instated an in-
clusion criteria of >70% of data present (i.e., <30%missing data) for
all subjects in this study to facilitate analysis of temporal changes in
glycemic trends. Overall, our combined dataset includes a total of
21,597,495 BG samples from 137 subjects with diabetes and an
average of 179,871 BG samples per subject (range, 85,251
to 451,236).

It is important to note that, because the SweetGoals study (26) is
a randomized control trial, only retrospective baseline data collected
during the initial screening are used for cohort 2 (i.e., this dataset
does not include sensor data from the intervention period of that
study). In addition, our use of the aforementioned dataset in this
study was approved by the Committee for Protection of Human
Subjects at Dartmouth College, and all subjects provided informed
consent for use of their diabetes device data for research.

Data analysis
In this study, we use clinically validated metrics, specifically, TIR
and mean BG for assessing temporal changes and seasonal varia-
tions in glycemic trends (14, 15). TIR is identified as one of the
most useful CGM metrics in clinical practice, and it refers to the
percentage of BG readings within the target range of 70 to 180
mg/dl (14). Conversely, mean BG refers to the mean glucose
value within a given period. Both metrics were calculated to
assess daily, weekly, and monthly variations in glycemic trends.
Last, in Fig. 1G, we evaluated GV, which refers to BG oscillations
(or fluctuations) that occur throughout the day, and we used the
preferred coefficient of variation as the metric for quantifying GV
(53). Thus, GV is defined as the SD over the mean BG, calculated
daily, and expressed as a percentage.

Our approach for analyzing the effect of holidays on glycemic
trend was informed by prior work on fluctuations in weight gain
over the holidays (21). Per Eq. 1, we assessed the daily change in
TIR (ΔTIRday i) for all subjects by calculating TIR for each subject
for each day of the year, then normalized by subtracting each sub-
ject’s mean TIR across the year, and divided by the subject’s mean
TIR for the year. It should be noted that, for the metrics TIRyear, the
TIR was first calculated for each day of the year for a given subject
and then averaged across the year for that subject. The daily change
in TIR for each subject was summarized across all subjects by taking
the mean for each day of the year, and, then, the resulting change
curve was smoothed with a 7-day running average as shown in
Fig. 2A. Similarly, the change in mean BG (ΔmBGday i) was calcu-
lated for each subject for each day of the year as shown in Eq. 2. This
daily change was then summarized by taking the mean for each day
of the year across all subjects. The resulting change curve was then

smoothed with a 7-day running average as shown in Fig. 2B

8sub [ f0; 1; . . .; 137g;ΔTIRday ið%Þ

¼
TIRday i � TIRyear

TIRyear

� �

� 100 ð1Þ

8sub [ f0; 1; . . .; 137g;ΔmBGday ið%Þ

¼
mBGday i �mBGyear

mBGyear

� �

� 100 ð2Þ

Following this, we assessed seasonal variations in glycemic
trends by evaluating the change in TIR and mean BG for each
month of the year. As shown in Eqs. 3 and 4, we calculated the
average TIR and mean BG for each month of the year for each
subject, then normalized this by subtracting the subject’s respective
mean metric for the year, and divided by the subject’s mean metric
for the year. The monthly change was summarized by taking the
average across all subjects for each month of the year. The results
of this analysis is shown in Fig. 3 (A and B)

8sub [ f0; 1; :::137g;ΔTIRmonth i

¼
TIRmonth i � TIRyear

TIRyear

� �

� 100 ð3Þ

8sub [ f0; 1; :::137g;ΔmBGmonth i

¼
mBGmonth i �mBGyear

mBGyear

� �

� 100 ð4Þ

In addition, we assessed the daily and weekly variations in gly-
cemic trends of the full population by calculating the TIR and mean
BG for each subject for every hour of the day and day of the week
and then averaging the corresponding values across all subjects. The
results of this analysis are shown in Fig. 4. Following this, we as-
sessed the variation in glycemic trends across subgroups based on
glycemic control (good control, TIR > 70%; moderate control, 55%
< TIR < 70%; and poor control, TIR < 55%) and based on age (0 to
18 years, 19 to 34 years, 35 to 50 years, and 51 to 76 years). For each
subgroup, the change in TIR was assessed per Eq. 1, and the results
are shown in Fig. 5. Last, to assess individual-level variations in gly-
cemic trends, the average TIR and mean BG for each subject for
each week of the year are presented in Fig. 6.

Statistical analysis
In this study, we use one-way analysis of variance (ANOVA) with a
two-sided test for statistical analysis (54, 55). More specifically,
ANOVA was used to evaluate differences in the change in TIR
and mean BG on (i) holidays versus non-holidays and (ii) seasonal
variations (i.e., glycemic changes in the months of April to Septem-
ber versus October to March). Significance levels of P < 0.05, 0.01,
and 0.001 were used to assess the strength of evidence against the
null hypothesis.

Supplementary Materials
This PDF file includes:

Figs. S1 and S2
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