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OPEN: DjaTrend: A dataset from advanced
patapescripTor  diabetes technology to enable
_development of novel analytic
solutions
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Objective digital data is scarce yet needed in many domains to enable research that can transform

the standard of healthcare. While data from consumer-grade wearables and smartphones is more
accessible, there is critical need for similar data from clinical-grade devices used by patients with a
diagnosed condition. The prevalence of wearable medical devices in the diabetes domain sets the stage
for unique research and development within this field and beyond. However, the scarcity of open-
source datasets presents a major barrier to progress. To facilitate broader research on diabetes-relevant
problems and accelerate development of robust computational solutions, we provide the DiaTrend
dataset. The DiaTrend dataset is composed of intensive longitudinal data from wearable medical
devices, including a total of 27,561 days of continuous glucose monitor data and 8,220 days of insulin
pump data from 54 patients with diabetes. This dataset is useful for developing novel analytic solutions
that can reduce the disease burden for people living with diabetes and increase knowledge on chronic
condition management in outpatient settings.

Background & Summary

Advanced technologies like continuous glucose monitors (CGMs) and insulin pumps are transforming the
standard of care for diabetes management'—. The ubiquitous nature of these devices enables real-time moni-
toring and treatment in daily living; this is a huge advantage over single point-in-time alternatives like glucose
meters and insulin pens. Research shows that many patients with diabetes achieve better outcomes with CGM:s
and insulin pumps*°. However, research also shows that digital data from these devices is significantly underuti-
lized to optimize outcomes®’. Meanwhile, the next generation of solutions needed to advance diabetes care, such
as the hybrid and fully closed-loop artificial pancreas®’, depend substantially on continuous data from CGMs
and insulin pumps. A major barrier to progress in this field centers around access to rich datasets that facilitate
the development of novel analytic solutions. In addition, there is a large amount of related but disconnected
data streams that is not often reviewed or analyzed together, which further limits our understanding of diabetes
management and even prevention'®!!. To advance research and development of robust analytic solutions for the
growing population of people with diabetes, there is a critical need for open datasets to understand outpatient
management, develop interventions, and build clinically-relevant decision-support solutions.

Despite the recognized need for open datasets to enable research'?, there are limited datasets for data-driven
research in the diabetes domain. One is the OhioT1DM dataset!?, which consists of eight weeks of CGM, insu-
lin pump, physiological sensor, and self-reported events from 12 people with type 1 diabetes, while another
is an N-of-1 dataset, which consists of two weeks of blood glucose, insulin, and carbohydrate intake logs“.
To broaden the scope of research on diabetes and chronic conditions in general, and accelerate development
of robust computational solutions, we provide the DiaTrend dataset. The DiaTrend dataset includes CGM and
insulin pump data from 54 patients with type 1 diabetes. This dataset is created from a subset of two larger
studies focused on: (1) developing computational tools for self-management of diabetes®, and (2) evaluating a
digital intervention for young adults with type 1 diabetes'. The provided dataset includes time-aligned blood
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Fig. 1 Overview of the data collection process and data provided in the DiaTrend dataset.

glucose samples recorded on average every 5 minutes with FDA-approved CGMs by Dexcom'¢, Abbott!, and
Medtronic'®, and insulin pump data comprising basal and bolus insulin doses, carbohydrate intake logs, and
other pump settings such as insulin-carb ratio and more. Figure 1 presents an overview of the data collection
process and data provided.

The DiaTrend dataset is useful for several research directions including more common tasks like blood glu-
cose prediction'®%, prediction of adverse glycemic events (i.e., hypoglycemia and hyperglycemia)?’-*°, detection
of unannounced meals®**, and algorithm development for insulin delivery*®*. However, this dataset is also
useful to support further research on less studied topics like discovering digital biomarkers of glycemic control’,
mining patterns/trends in diabetes management®***, understanding adherence to wearable medical devices and
patterns of missing data***!, developing novel visual analytic and data visualization solutions*, and designing
decision-support tools through user-centered studies**~*. Additionally, prospective researchers can find more
opportunities for artificial intelligence in the diabetes domain through recent reviews in literature®’-*.

Methods
Participants. The DiaTrend dataset includes CGM and insulin pump data from a total of 54 patients with type
1 diabetes (age: 19-74 years, gender: 17 males, 37 females). Table 1 provides an overview of the demographic and
clinical characteristics of patients in this dataset, including the distribution across age groups, gender, race, diabe-
tes type, and hemoglobin A1C. Participants were recruited through two independent studies. Study 1 (also known
as Digital SMD) recruited patients from Dartmouth Health in 2019, while study 2 (also known as SweetGoals'®) is
an ongoing randomized control trial that recruits patients through social media and online platforms. Both stud-
ies were approved by the Committee for Protection of Human Subjects at Dartmouth College (STUDY 00031632
and STUDY00023559, respectively) and all participants provided verbal and written consent prior to joining
either study. In addition, participants provided consent to share their data openly to the broader research commu-
nity. To protect the privacy of study participants and minimize the risk of patient re-identification, the DiaTrend
dataset is provided via a controlled access mechanism®, similar to related datasets in the field'?.

Cohort 1 (n=17), from the Digital SMD study?®, includes persons with type 1 diabetes between the ages of
25 to 74 years old who use a CGM and insulin pump for daily management of their condition and consented to
share their retrospective device data for research. Meanwhile, cohort 2 (n =37), from the SweetGoals study*?,
includes persons with type 1 diabetes for longer than 18 months between the ages of 19 to 29 years old who
use a Glooko compatible glucometer or CGM, reported a clinical visit within the previous 6 months from the
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Characteristics ‘ Count (n=>54) ‘ %Dist
Age

19-24yrs 24 44.4%
25-34yrs 14 25.9%
35-44yrs 4 7.4%
45-54yrs 3 5.6%
55-74yrs 9 16.7%
Gender

Female 37 68.5%
Male 17 31.5%
Race

White/Caucasian 48 88.9%
Asian or Pacific Islander 2 3.7%
Black/African American 1 1.9%
Black/African American & White 1 1.9%
Other 1 1.9%
Not Reported 1 1.9%
Diagnosis

Type 1 Diabetes 54 100%
Hemoglobin A1C

6.0-6.9 8 14.8%
7.0-7.9 23 42.6%
8.0-8.9 17 31.5%
9.0-11.0 3 5.6%
Not Reported 3 5.6%

Table 1. DiaTrend dataset: Demographic and clinical characteristics of patients with diabetes.

recruitment date, and self-reported their most recent Hemoglobin A1C (HA1C) value as >7.5%. It is important
to note that all device data included in the DiaTrend dataset was collected at baseline (i.e., prior to any interven-
tion). Additionally, each individual’s dataset spans varying time periods based on the available retrospective data
at the time of recruitment. Given our focus on advanced diabetes technology for novel analytic solutions, only
participants who use CGMs (with <30% missing data) and insulin pumps for daily management are included
in the provided dataset.

Dataset description. The DiaTrend dataset includes a total of 27,561 days of CGM data and 8,220 days of
insulin pump data from 54 patients with type 1 diabetes. In addition, the DiaTrend dataset includes demographic
and clinical characteristics for each subject, including metrics such as age, gender, race, diabetes type and HA1C -
see Table 1. There is an average of 510 days (range: 31-1885 days) of CGM data per subject, and an average of 152
days (range: 31-780 days) of insulin pump data per subject - see Fig. 2. Within the insulin pump data, there is an
average of 993 total bolus doses per subject (range: 132-4939 doses) and an average of 438 total carb inputs per
subject (range: 1-2310 input) - see Fig. 3. These data were collected as part of the Digital SMD® and SweetGoals'®
studies during which each patient’s retrospective CGM and insulin pump data was downloaded through a
third-party application (i.e., Tidepool®! or Glooko™). It is important to note that since the SweetGoals study is
a randomized control trial, only retrospective baseline data collected during the initial screening is included as
part of the DiaTrend dataset (i.e., the provided data does not include sensor data from the intervention period
of that study). In addition, HA1C - the primary clinically-validated metric for accessing glycemic control - was
collected via the patient’s electronic health record (i.e., the most recent HA1C) in the Digital SMD study and via
a mail-in home test in the SweetGoals study at the time of the baseline assessment (approximately the endpoint
of the device data).

Data Records

All data records in the DiaTrend dataset are stored and accessible via the Synapse platform®. The deposited
data consists of 54 Excel files—one file for each subject. Each file has a CGM sheet that provides blood glucose
data that was collected by the CGM. The CGM sheet includes 2 columns, namely, date and mg/dL. In addi-
tion, each subjects’ file also has a Bolus sheet, which describes bolus insulin doses and meal announcements
(i.e., user-entered estimates of carbohydrate content in meals logged to calculate bolus insulin needed to metab-
olize glucose from the meal consumed>?). The Bolus sheet includes the following 7 columns: date, normal, car-
bInput, insulinCarbRatio, bgInput, recommended.carb, and recommended.net. It is important to note that only
17 subject files that have a Basal sheet, which describes the subject’s basal infusions in 3 columns, namely, date,
duration, and rate. The subject files that have basal data are as follows: $29-531, S36-S39, S42, S45-547, S49-S54.
In addition, 37 (out of 54) Bolus sheets include 4 more columns, namely, reccommended.correction, insulinSen-
sitivityFactor, targetBloodGlucose, and insulinOnBoard. The subject files that have the 4 additional columns in
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Fig. 2 Overview of the number of days of sensor data per patient in the DiaTrend dataset.
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Fig. 3 Overview of the total number of bolus and carb input data per patient in the DiaTrend dataset.

the bolus sheets are as follows: S1-528, S32-S35, S40, S41, S43, S44, and S48. Each row in all three of the Excel
sheets refers to one record collected at a given timestamp in the column titled ‘date’ All data records in each
subject file are time-ordered according to the device log. More specifically, CGMs record a blood glucose sample
approximately every 5 minutes, meanwhile insulin pumps have irregularly sampled data records because they
depend on user triggers for bolus insulin doses and user settings for basal insulin doses. Excluding the date col-
umn, the rest of the data can be read as floating point numbers. Table 2 provides a detailed breakdown of each
data record, the format, and a description.
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oM date datetime (yyyy-mm-dd HH:MM:SS) | Date and time that glucose reading was recorded
mg/dL Float64 Blood glucose reading in mg/dL
date datetime (yyyy-mm-dd HH:MM:SS) | Date and time that bolus was administered
normal Float64 Amount of bolus insulin delivered (units)
carbInput Float64 Total carbs announced for bolus (grams)
insulinCarbRatio Float64 Patient setting for grams of carbs covered per one unit of insulin
bglnput Float64 Blood glucose reading at time of bolus (mg/dL)

Bolus recommended.carb Float64 Amount of insulin recommended to cover carb intake for normal bolus
recommended.net Float64 Amount of insulin recommended for bolus delivery
recommended.correction | Float64 Amount of insulin recommended for correction component of normal bolus
insulinSensitivityFactor Float64 Patient setting for how one unit of insulin lowers blood glucose level
targetBloodGlucose Float64 Target blood glucose value for after bolus delivery
insulinOnBoard Float64 Amount of active insulin remaining from prior insulin doses
date datetime (yyyy-mm-dd HH:MM:SS) | Date and time of basal infusion

Basal duration Float64 Duration of basal infusion (ms)
rate Float64 Rate of basal infusion (units/hr)

Table 2. Overview of the data records, format, and description in the DiaTrend dataset.
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Fig. 4 Descriptive summary of CGM data in the DiaTrend dataset. (a) The percent of blood glucose samples in
5 clinically-relevant categories. (b) The distributions of daily mean blood glucose, daily glycemic variability, and
daily time in [target] range.
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Fig. 5 Descriptive summary of insulin pump data in the DiaTrend dataset. (a) A box plot of all bolus insulin
doses per subject. (b) A box plot of all carb input entries per subject. (¢) The distributions of total daily bolus
insulin and total daily carb inputs across all subjects.

Technical Validation
For each patient included in the DiaTrend dataset, we provide an overview of their blood glucose data using
clinically-validated metrics for assessing glycemic control®**. This includes the percentage of all blood glucose
readings in 5 clinically-relevant categories, namely, very low (<54 mg/dL), low (54-69 mg/dL), target range
(70-180 mg/dL), high (181-250 mg/dL), and very high (>250 mg/dL). From Fig. 4, we can observe that blood
glucose is highly variable and only a minority of patients living with diabetes (less than 10% in our dataset) meet
the clinical target of maintaining blood glucose within the target range of 70-180 mg/dL for more than 70%
of the time®*. Fig. 4b presents histograms for daily mean blood glucose (mean = 187 mg/dL), daily glycemic
variability (mean = 0.33), and daily time in range (mean =47%). From this figure, we can observe a normal
distribution for each clinically-relevant metric in the DiaTrend dataset.

Similarly, we provide an overview of each patient’s insulin pump data using box plots and histograms.
Figure 5a,b show box plots with descriptive statistics associated with bolus insulin doses and carb inputs,
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respectively, for each subject. Additionally, Fig. 5¢ shows the distributions of total daily bolus insulin doses
(units) and total daily carb inputs (g), respectively. From this figure, we can observe a mean total daily bolus of
24 units and a mean total daily carb input of 115g, both with a positively skewed distribution. In particular, we
observe a high number of days (~1400 days) with very low carb inputs (~0g); this could be indicative of missed
mealtime boluses (i.e., no bolus insulin used during mealtimes)-this is a common contributor to poor glycemic
outcomes®*8,

Limitations. There are some important considerations and limitations associated with the DiaTrend data-
set provided in this paper. First, there is imbalance in the representation of subjects across the dimensions of
race, gender, and age. More specifically, majority of patients whose CGM and insulin pump data is provided
(i.e., 48 out of 54 or 89%) are non-Hispanic White/Caucasian. Also, this dataset includes a lower representation
of males (n=17 out of 54 or 32%) compared to females, and a lower representation of older adults (e.g., for
age >45 years old, n=12 or 22%). The limitation with regards to race (i.e., low representation of participants
from non-White/Caucasian races, including Hispanics, non-Hispanic Black/African Americans, and Asians) is
partly due to the geographical location (i.e., New Hampshire) from which some participants (17 out of 54) were
recruited. However, the imbalance in representation also underscores racial disparities that have been identified
in prior literature relating to access and use of advanced diabetes technologies, particularly CGMs and insulin
pumps®*. Additionally, the limitation with regards to age (i.e., low representation of older adults and higher
representation of young adults) is primarily due to the targeted focus on young adults with type 1 diabetes in
the SweetGoals study'. A second limitation of the DiaTrend dataset is that it lacks full temporal alignment in
the CGM and insulin pump data for each participant. This difference is apparent from Fig. 2 which shows more
CGM data than insulin pump data for a number of subjects. While the reason for this is unknown, we suspect
that it is primarily due lower data storage capacity on insulin pumps compared to CGMs, which in turn limits the
amount of retrospective data available for download from insulin pumps or patients’ switching insulin delivery
systems (e.g., to multiple daily injections or other devices that are not compatible with the third-party platform).
Third, there are various forms of missing data associated with the provided dataset. As previously mentioned, all
data provided in this paper represents retrospective data collected directly from the user’s devices (i.e., CGMs
and insulin pumps) and downloaded through a third-party application (i.e., Tidepool®! or Glooko®?). Given
this, missing data in the data files are due to either missing data in the user’s device or technical issues with
the third-party platform used for download. For example, basal insulin data is not available for subjects from
cohort 2 (37 out of 54) due to technical issues with Glooko not providing basal data from the insulin pumps at
the time of data collection for this study. These forms of missing data might limit some research efforts with the
provided dataset. However, despite the aforementioned limitations, the DiaTrend dataset represents one of the
largest open-source datasets currently available in the diabetes domain. This critical resource provides a unique
opportunity to advance development of novel data-driven solutions that can improve the lives of people living
with diabetes. In addition, this dataset provides a necessary benchmark to evaluate the generalizability of numer-
ous diabetes-relevant algorithms in literature'*-.

Usage Notes
The DiaTrend dataset is provided for research and educational purposes that support the development of novel
data-driven solutions for the diabetes community and beyond. Consistent with exemplar studies'*"*%, we have
set governance structures in place to balance the need for open datasets that advance research and protect the
privacy of participants.

Researchers interested in accessing the DiaTrend dataset should complete the following steps:

Register for a Synapse account (www.synapse.org).

Become a Synapse Certified User with a validated user profile.
Submit an Intended Data Use statement.

Agree to the Conditions of Use.

il M

Code availability
Python was used for all data processing described in this paper. The Python code used to generate all figures in this
paper is available on the Augmented Health Lab’s Github: https://github.com/Augmented-Health-Lab/Diatrend.
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