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DiaTrend: A dataset from advanced 
diabetes technology to enable 
development of novel analytic 
solutions
Temiloluwa Prioleau  1,2 ✉, Abigail Bartolome1, Richard Comi3 & Catherine Stanger2

Objective digital data is scarce yet needed in many domains to enable research that can transform 

the standard of healthcare. While data from consumer-grade wearables and smartphones is more 

accessible, there is critical need for similar data from clinical-grade devices used by patients with a 
diagnosed condition. The prevalence of wearable medical devices in the diabetes domain sets the stage 

for unique research and development within this 昀؀eld and beyond. However, the scarcity of open-
source datasets presents a major barrier to progress. To facilitate broader research on diabetes-relevant 

problems and accelerate development of robust computational solutions, we provide the DiaTrend 
dataset. The DiaTrend dataset is composed of intensive longitudinal data from wearable medical 

devices, including a total of 27,561 days of continuous glucose monitor data and 8,220 days of insulin 
pump data from 54 patients with diabetes. This dataset is useful for developing novel analytic solutions 
that can reduce the disease burden for people living with diabetes and increase knowledge on chronic 

condition management in outpatient settings.

Background & Summary
Advanced technologies like continuous glucose monitors (CGMs) and insulin pumps are transforming the 
standard of care for diabetes management1–3. Ve ubiquitous nature of these devices enables real-time moni-
toring and treatment in daily living; this is a huge advantage over single point-in-time alternatives like glucose 
meters and insulin pens. Research shows that many patients with diabetes achieve better outcomes with CGMs 
and insulin pumps4,5. However, research also shows that digital data from these devices is signifcantly underuti-
lized to optimize outcomes6,7. Meanwhile, the next generation of solutions needed to advance diabetes care, such 
as the hybrid and fully closed-loop artifcial pancreas8,9, depend substantially on continuous data from CGMs 
and insulin pumps. A major barrier to progress in this feld centers around access to rich datasets that facilitate 
the development of novel analytic solutions. In addition, there is a large amount of related but disconnected 
data streams that is not ogen reviewed or analyzed together, which further limits our understanding of diabetes 
management and even prevention10,11. To advance research and development of robust analytic solutions for the 
growing population of people with diabetes, there is a critical need for open datasets to understand outpatient 
management, develop interventions, and build clinically-relevant decision-support solutions.

Despite the recognized need for open datasets to enable research12, there are limited datasets for data-driven 
research in the diabetes domain. One is the OhioT1DM dataset13, which consists of eight weeks of CGM, insu-
lin pump, physiological sensor, and self-reported events from 12 people with type 1 diabetes, while another 
is an N-of-1 dataset, which consists of two weeks of blood glucose, insulin, and carbohydrate intake logs14.  
To broaden the scope of research on diabetes and chronic conditions in general, and accelerate development 
of robust computational solutions, we provide the DiaTrend dataset. Ve DiaTrend dataset includes CGM and 
insulin pump data from 54 patients with type 1 diabetes. Vis dataset is created from a subset of two larger 
studies focused on: (1) developing computational tools for self-management of diabetes6, and (2) evaluating a 
digital intervention for young adults with type 1 diabetes15. Ve provided dataset includes time-aligned blood 
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glucose samples recorded on average every 5 minutes with FDA-approved CGMs by Dexcom16, Abbott17, and 
Medtronic18, and insulin pump data comprising basal and bolus insulin doses, carbohydrate intake logs, and 
other pump settings such as insulin-carb ratio and more. Figure 1 presents an overview of the data collection 
process and data provided.

Ve DiaTrend dataset is useful for several research directions including more common tasks like blood glu-
cose prediction19–26, prediction of adverse glycemic events (i.e., hypoglycemia and hyperglycemia)27–30, detection 
of unannounced meals31–35, and algorithm development for insulin delivery36,37. However, this dataset is also 
useful to support further research on less studied topics like discovering digital biomarkers of glycemic control7, 
mining patterns/trends in diabetes management6,38,39, understanding adherence to wearable medical devices and 
patterns of missing data40,41, developing novel visual analytic and data visualization solutions42, and designing 
decision-support tools through user-centered studies43–46. Additionally, prospective researchers can fnd more 
opportunities for artifcial intelligence in the diabetes domain through recent reviews in literature47–49.

Methods
Participants. Ve DiaTrend dataset includes CGM and insulin pump data from a total of 54 patients with type 
1 diabetes (age: 19–74 years, gender: 17 males, 37 females). Table 1 provides an overview of the demographic and 
clinical characteristics of patients in this dataset, including the distribution across age groups, gender, race, diabe-
tes type, and hemoglobin A1C. Participants were recruited through two independent studies. Study 1 (also known 
as Digital SMD) recruited patients from Dartmouth Health in 2019, while study 2 (also known as SweetGoals15) is 
an ongoing randomized control trial that recruits patients through social media and online platforms. Both stud-
ies were approved by the Committee for Protection of Human Subjects at Dartmouth College (STUDY00031632 
and STUDY00023559, respectively) and all participants provided verbal and written consent prior to joining 
either study. In addition, participants provided consent to share their data openly to the broader research commu-
nity. To protect the privacy of study participants and minimize the risk of patient re-identifcation, the DiaTrend 
dataset is provided via a controlled access mechanism50, similar to related datasets in the feld13.

Cohort 1 (n = 17), from the Digital SMD study6, includes persons with type 1 diabetes between the ages of 
25 to 74 years old who use a CGM and insulin pump for daily management of their condition and consented to 
share their retrospective device data for research. Meanwhile, cohort 2 (n = 37), from the SweetGoals study15, 
includes persons with type 1 diabetes for longer than 18 months between the ages of 19 to 29 years old who 
use a Glooko compatible glucometer or CGM, reported a clinical visit within the previous 6 months from the 

Fig. 1 Overview of the data collection process and data provided in the DiaTrend dataset.
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recruitment date, and self-reported their most recent Hemoglobin A1C (HA1C) value as >7.5%. It is important 
to note that all device data included in the DiaTrend dataset was collected at baseline (i.e., prior to any interven-
tion). Additionally, each individual9s dataset spans varying time periods based on the available retrospective data 
at the time of recruitment. Given our focus on advanced diabetes technology for novel analytic solutions, only 
participants who use CGMs (with <30% missing data) and insulin pumps for daily management are included 
in the provided dataset.

Dataset description. Ve DiaTrend dataset includes a total of 27,561 days of CGM data and 8,220 days of 
insulin pump data from 54 patients with type 1 diabetes. In addition, the DiaTrend dataset includes demographic 
and clinical characteristics for each subject, including metrics such as age, gender, race, diabetes type and HA1C - 
see Table 1. Vere is an average of 510 days (range: 31–1885 days) of CGM data per subject, and an average of 152 
days (range: 31–780 days) of insulin pump data per subject - see Fig. 2. Within the insulin pump data, there is an 
average of 993 total bolus doses per subject (range: 132–4939 doses) and an average of 438 total carb inputs per 
subject (range: 1–2310 input) - see Fig. 3. Vese data were collected as part of the Digital SMD6 and SweetGoals15 
studies during which each patient9s retrospective CGM and insulin pump data was downloaded through a 
third-party application (i.e., Tidepool51 or Glooko52). It is important to note that since the SweetGoals study is 
a randomized control trial, only retrospective baseline data collected during the initial screening is included as 
part of the DiaTrend dataset (i.e., the provided data does not include sensor data from the intervention period 
of that study). In addition, HA1C - the primary clinically-validated metric for accessing glycemic control - was 
collected via the patient9s electronic health record (i.e., the most recent HA1C) in the Digital SMD study and via 
a mail-in home test in the SweetGoals study at the time of the baseline assessment (approximately the endpoint 
of the device data).

Data Records
All data records in the DiaTrend dataset are stored and accessible via the Synapse platform50. Ve deposited 
data consists of 54 Excel fles–one fle for each subject. Each fle has a CGM sheet that provides blood glucose 
data that was collected by the CGM. Ve CGM sheet includes 2 columns, namely, date and mg/dL. In addi-
tion, each subjects9 fle also has a Bolus sheet, which describes bolus insulin doses and meal announcements  
(i.e., user-entered estimates of carbohydrate content in meals logged to calculate bolus insulin needed to metab-
olize glucose from the meal consumed53). Ve Bolus sheet includes the following 7 columns: date, normal, car-
bInput, insulinCarbRatio, bgInput, recommended.carb, and recommended.net. It is important to note that only 
17 subject fles that have a Basal sheet, which describes the subject9s basal infusions in 3 columns, namely, date, 
duration, and rate. Ve subject fles that have basal data are as follows: S29-S31, S36-S39, S42, S45-S47, S49-S54.  
In addition, 37 (out of 54) Bolus sheets include 4 more columns, namely, recommended.correction, insulinSen-
sitivityFactor, targetBloodGlucose, and insulinOnBoard. Ve subject fles that have the 4 additional columns in 

Characteristics Count (n = 54) %Dist

Age

19–24 yrs 24 44.4%

25–34 yrs 14 25.9%

35–44 yrs 4 7.4%

45–54 yrs 3 5.6%

55–74 yrs 9 16.7%

Gender

Female 37 68.5%

Male 17 31.5%

Race

White/Caucasian 48 88.9%

Asian or Pacifc Islander 2 3.7%

Black/African American 1 1.9%

Black/African American & White 1 1.9%

Other 1 1.9%

Not Reported 1 1.9%

Diagnosis

Type 1 Diabetes 54 100%

Hemoglobin A1C

6.0–6.9 8 14.8%

7.0–7.9 23 42.6%

8.0–8.9 17 31.5%

9.0–11.0 3 5.6%

Not Reported 3 5.6%

Table 1. DiaTrend dataset: Demographic and clinical characteristics of patients with diabetes.
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the bolus sheets are as follows: S1-S28, S32-S35, S40, S41, S43, S44, and S48. Each row in all three of the Excel 
sheets refers to one record collected at a given timestamp in the column titled 8date9. All data records in each 
subject fle are time-ordered according to the device log. More specifcally, CGMs record a blood glucose sample 
approximately every 5 minutes, meanwhile insulin pumps have irregularly sampled data records because they 
depend on user triggers for bolus insulin doses and user settings for basal insulin doses. Excluding the date col-
umn, the rest of the data can be read as foating point numbers. Table 2 provides a detailed breakdown of each 
data record, the format, and a description.

Fig. 2 Overview of the number of days of sensor data per patient in the DiaTrend dataset.

Fig. 3 Overview of the total number of bolus and carb input data per patient in the DiaTrend dataset.
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Sheet Name Column Name Format Description

CGM
date datetime (yyyy-mm-dd HH:MM:SS) Date and time that glucose reading was recorded

mg/dL Float64 Blood glucose reading in mg/dL

Bolus

date datetime (yyyy-mm-dd HH:MM:SS) Date and time that bolus was administered

normal Float64 Amount of bolus insulin delivered (units)

carbInput Float64 Total carbs announced for bolus (grams)

insulinCarbRatio Float64 Patient setting for grams of carbs covered per one unit of insulin

bgInput Float64 Blood glucose reading at time of bolus (mg/dL)

recommended.carb Float64 Amount of insulin recommended to cover carb intake for normal bolus

recommended.net Float64 Amount of insulin recommended for bolus delivery

recommended.correction Float64 Amount of insulin recommended for correction component of normal bolus

insulinSensitivityFactor Float64 Patient setting for how one unit of insulin lowers blood glucose level

targetBloodGlucose Float64 Target blood glucose value for ager bolus delivery

insulinOnBoard Float64 Amount of active insulin remaining from prior insulin doses

Basal

date datetime (yyyy-mm-dd HH:MM:SS) Date and time of basal infusion

duration Float64 Duration of basal infusion (ms)

rate Float64 Rate of basal infusion (units/hr)

Table 2. Overview of the data records, format, and description in the DiaTrend dataset.

Fig. 4 Descriptive summary of CGM data in the DiaTrend dataset. (a) Ve percent of blood glucose samples in 
5 clinically-relevant categories. (b) Ve distributions of daily mean blood glucose, daily glycemic variability, and 
daily time in [target] range.
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Technical Validation
For each patient included in the DiaTrend dataset, we provide an overview of their blood glucose data using 
clinically-validated metrics for assessing glycemic control54,55. Vis includes the percentage of all blood glucose 
readings in 5 clinically-relevant categories, namely, very low (<54 mg/dL), low (54–69 mg/dL), target range 
(70–180 mg/dL), high (181–250 mg/dL), and very high (>250 mg/dL). From Fig. 4, we can observe that blood 
glucose is highly variable and only a minority of patients living with diabetes (less than 10% in our dataset) meet 
the clinical target of maintaining blood glucose within the target range of 70–180 mg/dL for more than 70% 
of the time54. Fig. 4b presents histograms for daily mean blood glucose (mean = 187 mg/dL), daily glycemic 
variability (mean = 0.33), and daily time in range (mean = 47%). From this fgure, we can observe a normal 
distribution for each clinically-relevant metric in the DiaTrend dataset.

Similarly, we provide an overview of each patient9s insulin pump data using box plots and histograms. 
Figure 5a,b show box plots with descriptive statistics associated with bolus insulin doses and carb inputs, 

Fig. 5 Descriptive summary of insulin pump data in the DiaTrend dataset. (a) A box plot of all bolus insulin 
doses per subject. (b) A box plot of all carb input entries per subject. (c) Ve distributions of total daily bolus 
insulin and total daily carb inputs across all subjects.
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respectively, for each subject. Additionally, Fig. 5c shows the distributions of total daily bolus insulin doses 
(units) and total daily carb inputs (g), respectively. From this fgure, we can observe a mean total daily bolus of  
24 units and a mean total daily carb input of 115 g, both with a positively skewed distribution. In particular, we 
observe a high number of days (~1400 days) with very low carb inputs (~0 g); this could be indicative of missed 
mealtime boluses (i.e., no bolus insulin used during mealtimes)–this is a common contributor to poor glycemic 
outcomes56–58.

Limitations. Vere are some important considerations and limitations associated with the DiaTrend data-
set provided in this paper. First, there is imbalance in the representation of subjects across the dimensions of 
race, gender, and age. More specifcally, majority of patients whose CGM and insulin pump data is provided 
(i.e., 48 out of 54 or 89%) are non-Hispanic White/Caucasian. Also, this dataset includes a lower representation 
of males (n = 17 out of 54 or 32%) compared to females, and a lower representation of older adults (e.g., for 
age ≥45 years old, n = 12 or 22%). Ve limitation with regards to race (i.e., low representation of participants 
from non-White/Caucasian races, including Hispanics, non-Hispanic Black/African Americans, and Asians) is 
partly due to the geographical location (i.e., New Hampshire) from which some participants (17 out of 54) were 
recruited. However, the imbalance in representation also underscores racial disparities that have been identifed 
in prior literature relating to access and use of advanced diabetes technologies, particularly CGMs and insulin 
pumps59,60. Additionally, the limitation with regards to age (i.e., low representation of older adults and higher 
representation of young adults) is primarily due to the targeted focus on young adults with type 1 diabetes in 
the SweetGoals study15. A second limitation of the DiaTrend dataset is that it lacks full temporal alignment in 
the CGM and insulin pump data for each participant. Vis diference is apparent from Fig. 2 which shows more 
CGM data than insulin pump data for a number of subjects. While the reason for this is unknown, we suspect 
that it is primarily due lower data storage capacity on insulin pumps compared to CGMs, which in turn limits the 
amount of retrospective data available for download from insulin pumps or patients9 switching insulin delivery 
systems (e.g., to multiple daily injections or other devices that are not compatible with the third-party platform).  
Vird, there are various forms of missing data associated with the provided dataset. As previously mentioned, all 
data provided in this paper represents retrospective data collected directly from the user9s devices (i.e., CGMs 
and insulin pumps) and downloaded through a third-party application (i.e., Tidepool51 or Glooko52). Given 
this, missing data in the data fles are due to either missing data in the user9s device or technical issues with 
the third-party platform used for download. For example, basal insulin data is not available for subjects from 
cohort 2 (37 out of 54) due to technical issues with Glooko not providing basal data from the insulin pumps at 
the time of data collection for this study. Vese forms of missing data might limit some research eforts with the 
provided dataset. However, despite the aforementioned limitations, the DiaTrend dataset represents one of the 
largest open-source datasets currently available in the diabetes domain. Vis critical resource provides a unique 
opportunity to advance development of novel data-driven solutions that can improve the lives of people living 
with diabetes. In addition, this dataset provides a necessary benchmark to evaluate the generalizability of numer-
ous diabetes-relevant algorithms in literature19–36.

Usage Notes
Ve DiaTrend dataset is provided for research and educational purposes that support the development of novel 
data-driven solutions for the diabetes community and beyond. Consistent with exemplar studies13,61,62, we have 
set governance structures in place to balance the need for open datasets that advance research and protect the 
privacy of participants.

Researchers interested in accessing the DiaTrend dataset should complete the following steps:

 1. Register for a Synapse account (www.synapse.org).
 2. Become a Synapse Certifed User with a validated user profle.
 3. Submit an Intended Data Use statement.
 4. Agree to the Conditions of Use.

Code availability
Python was used for all data processing described in this paper. Ve Python code used to generate all fgures in this 
paper is available on the Augmented Health Lab9s Github: https://github.com/Augmented-Health-Lab/Diatrend.
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