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Abstract—The Errors-in-Variables model of system
identification/control involves nontrivial input and mea-
surement corruption of observed data, resulting in
generically nonconvex optimization problems. This let-
ter performs full-state-feedback stabilizing control of all
discrete-time linear systems that are consistent with
observed data for which the input and measurement
noise obey quadratic bounds. Instances of such quadratic
bounds include elementwise norm bounds (at each time
sample), energy bounds (across the entire signal), and
chance constraints arising from (sub)gaussian noise.
Superstabilizing controllers are generated through the
solution of a sum-of-squares hierarchy of semidefinite pro-
grams. A theorem of alternatives is employed to eliminate
the input and measurement noise process, thus improving
tractability.

Index Terms—Errors-in-variables, data-driven control,
robust control, linear systems, sum-of-squares.

. INTRODUCTION

HIS letter proposes a method to stabilize linear systems

corrupted by quadratically bounded Errors-in-Variables
(EIV) noise [1]. State and input observations D = (&, i,,}__,
are collected along a trajectory of an a-priori unknown n-state
m-input linear system (A, B,):

Xep1 = At + Bty

(1a)

X =x+Ax, iy =u+ Auy, (1b)
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in which the collected data in D is corrupted by state noise
Ax € R and input noise Au € R™7—1)_ This letter focuses
on the setting where the noise processes (Ax, Au) satisfy a
collection of L convex quadratic constraints as

Ve € 1..L : |[FeAx + GeAullp < 1, 2)

in which the known constraint matrices Fy and Gy have
compatible dimensions. These quadratic constraints could arise
from deterministic knowledge of (Ax, Au), or from high-
probability chance-constraints imposed on stochastic processes
(Ax, Au) if a robust description is overly conservative [2], [3].
Our goal is to find a gain matrix K such that the full-state-
feedback control policy u#; = Kx; can simultaneously stabilize
all plants that are consistent with the data in D under the noise
description in (2).

This letter follows the framework of set-membership direct
Data Driven Control (DDC). In direct DDC, a control
policy is formed from the collected data and modeling
assumptions without first performing system identification
(and synthesizing a controller for the identified system) [4].
Set-membership DDC has three main ingredients: the set
of data-consistent plants (given a noise model), the set of
commonly stabilized plants by a designed controller, and the
certificate of set-containment that the stabilized-set contains
the consistent-set [5]. The Matrix S-Lemma can be used to
provide proofs of quadratic and worst-case Hy or Hy robust
control when the noise model is defined by a matrix ellipsoid
(quadratic matrix inequality) [6], [7]. Farkas-based certifi-
cates for polytope-in-polytope membership have been used
for robust superstabilization [8] and positive-stabilization [9].
Sum-of-Squares (SOS) certificates of nonnegativity have
been employed for stabilization of more general nonlinear
systems [10], [11]. We note that other non-set-membership
DDC methods include using Virtual Reference Feedback
Tuning [12] and Willem’s Fundamental Lemma [13].

Most DDC methods focus solely on process-noise corrup-
tion, allowing for the synthesis of controllers through the
solution of computationally simple convex programs. This let-
ter continues a line of work in addressing the more challenging
setting of EIV superstabilization, proposing a method that
can handle the more difficult but realistic EIV noise scenario
at the cost of more expensive computational requirements.
Prior work on superstabilization [14], [15] of EIV systems
includes full-state-feedback for polytope-bounded noise [16]
(e.g., Lx-bounds) and dynamic output feedback for SISO
plants [17]. In this letter, we will ensure superstabilization
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under quadratically bounded noise. This will involve develop-
ing matrix-SOS expressions defined for (multiple) quadratic
constraints in (2). Computational complexity is reduced by
eliminating (Ax, Au) using a Theorem of Alternatives [18].
The concurrent and independently developed similar work
in [19] performs lossless quadratic stabilization in the presence
of a single quadratic-matrix-inequality-representable quadratic
constraint, with conservatism added under multiple quadratic
constraints.

This letter has the following structure: Section II reviews
preliminaries including notation, quadratically constrained
noise, superstabilization, and matrix-SOS methods. Section III
presents infinite-dimensional Linear Programs (LPs) to per-
form superstabilization under quadratically-bounded EIV
noise, and applies a Theorem of Alternative to eliminate
the noise variables (Ax, Au) from the linear inequalities.
Section 1V truncates the infinite-dimensional LPs using the
moment-SOS hierarchy of Semidefinite Programs (SDPs), and
tabulates computational complexity of different approaches.
Section V describes extended superstabilization [20] of data-
consistent systems. Section VI demonstrates our method for
EIV-tolerant superstabilizing control of example systems.
Section VII concludes this letter.

Il. PRELIMINARIES
A. Notation

a..b natural numbers between a and b (inclusive)

R.p (R.p) nonnegative (positive) orthant

a* projection operator (x,y) — x

AT Transpose of matrix A

At Pseudoinverse of matrix A

L” n-dimensional Second-Order Cone (SOC)
{x,0) eR"xRxo | 1> [lxlp)

N(m,X) Normal distribution with mean m and
covariance X

R[x] polynomials in indeterminate x

deg(h) degree of polynomial h € R[x]

S'[x] r x r symmetric polynomial matrices in x

Ex] SOS symmetric polynomial matrices in x

(A, B) Matrix pairing Tr(A'B) =}, A;Bjj

B. Quadratic Noise Bounds

This subsection briefly highlights instances of quadratic
noise bounds in (2).

1) Elementwise Norm Constraints: A deterministic noise
bound could impose that ¥Vt € 1..T : ||Ax||; < €, and Vi €
1. T — 1 : |Au||z < €,. Elementwise norm constraints can
arise when Ax and Awu are i.i.d. normally distributed random
variables (Ax; ~ N(0,, .), Au; ~ N (0,,, Z,.). The statistics
AxfTE; ' Ax; and Auf):; ' Ax; are each y’-distributed with n
and m degrees of freedom respectively.

Let £(8; f) refer to the quantile statistic of a XZ distribution
with f degrees of freedom with respect to a probability § €
[0, 1] as in xfz(p < e(8;f)) = 1 — § (for a random variable
p). For a choice of probabilities §,,8, € [0, 1], the joint
probability of Ax, Au lying within the set described by

Vie 1.T : |272Ax), < +e@n) (3a)

Vie 1.T—1: |27 2Au|, < /e(6,;m)

is Pjoint = (1—8,)T(1—8,)T—1. A controller u = Kx certifiably
stabilizes all plants consistent with (1) and (3) will be able
to stabilize the true system with probability Pjoin,. Similar
elementwise quadratic chance-constraints arise when Ax, Au
are drawn from i.i.d. subgaussian distributions [21].

2) Energy Constraints: The standard quadratic expression
used in a Linear Quadratic Regulator of

(3b)

-1
J = Ax] QrAxr + (Z Ax| QAx, + Au,TRAu,) IeY

=1

is compatible with the structure of (2) if the cost matrices
(Q, R, Qr) are all Positive Semidefinite (PSD).

C. Superstabilizing Control

Let W € R " be a matrix with full column rank such that
{x | [[Wx|lo < 1} is a compact set. A discrete-time linear
system x;y1 = Ax; is W-superstable if ||Wx||,, is a polyhedral
Lyapunov function:

[WAW™ | <1 (Lx Operator Norm). (5)

The system is superstable if it is W-superstable with W =
I,. Any superstable system x,y; = Ax; obeys the decay
bound of ||x;] o, < [IAll5% |I*0]lo- This decay bound generalizes
to W-superstability as in ||Wx| < ]|WAW+||go||Wxg||oo.
W-superstabilization of the system x| = Ax; + Bu, proceeds
by choosing a gain K € R™" with 4; = Kx; such that
[W(A + BK)WT| o, < 1. The W-superstabilization problem
of minimizing the decay bound (for fixed W) is a finite-
dimensional LP:

f
Y My<i Vielf

A = inf A: (6a)
MK
=1
[[WA+BKW*].| <M; Vijel.f. (6b)
M e R™" K e R™", (6¢)

D. Sum-of-Squares Matrices Background

This letter will formulate worst-case-superstabilization
problems as infinite-dimensional LPs, which in turn will be
truncated using the moment-SOS hierarchy [22]. For any
symmetric polynomial-valued-matrix p € S"[x] of size r x r
with indeterminate x € R”", the degree of p is the maxi-
mum polynomial degree of any one of its entries (degp =
max;; degp;;). A sufficient condition for p(x) > 0 over R”
is if p(x) is an SOS-matrix: there exists a polynomial vector
v € (R[x])¢ and a PSD Gram matrix Q € S™*' such that
([23, Lemma 1])

px) = (v@x) @) QWX R I,). (7

The set of SOS matrices with representation in (7) is X"[x],
and the subset of SOS matrices with maximal degree < 2k
is E'[x]<2x. A constraint region defined by a locus of PSD
il rir11Ne
containments can be constructed from {g; € S"[I]}j=| as

K={xeR"|Vjel.N. : gj(x) = 0}. 8)

Authorized licensed use limited to: Northeastem University. Downloaded on August 22 2024 at 12:04:58 UTC from IEEE Xplore. Restrictions apply.



MILLER et al.: DATA-DRIVEN SUPERSTABILIZING CONTROL

1657

The matrix p € S”[x] satisfies Polynomial Matrix Inequality
(PMI) over the region in (8) if Vx € K: p(x) > 0. A sufficient
condition for this PMI to hold is that there exist SOS-matrices
{Jj(x)}f;o and an € > 0 such that (if r=1 or Yjir; =1)

Ne

p@) = oo(x) + Y _ gj(N)aj(x)+el (9a)
J=1

op € L[x], Vjel.N. : 0j € £[x],e > 0. (9b)

The set of matrices in S[x] possessing a representation as
in (9a) (existence of {o;}) will be written as the Weighted
Sum of Squares (WSOS) set £'[K]. See [23, Sec. 2] for a
generalization of (9) if both r > 1 and 3j:r; = 1. The degree-
2k-bounded WSOS cone Z'[K]<ox is the set of matrices
with representation in (9) such that degop < 2k and Vj €
1.N; : deg(gj(x), oj(x)) < 2k. The representation of K by
polynomial matrices in (8) is Archimedean if there exists
an R > 0 such that the scalar polynomial pr(x) = R —
||x|i% satisfies pp € X'[K]. If the representation in (8) is
Archimedean, then every p € §"[x] such that p(x) is Positive
Definite over K satisfies (p(x) — el,) € X’[K] for some
€ > 0 (Corollary 1 of [23]). Testing membership of p
2'[x]<ot through (9) can be accomplished by solving Linear
Matrix Inequality (LMI) in the Gram matrices for {o;} under
coefficient-matching equality constraints. A common choice
of polynomial vector v(x) used to represent the SOS matrices
in (7) is the vector of all ("f‘) monomials of degree < k.
The maximal-size PSD constraint involved in (9) under the
monomial choice for v(x) is r("f‘).

Ill. QUADRATICALLY-BOUNDED LINEAR PROGRAMS

This section presents an infinite-dimensional LP which
W-superstabilizes the class of data-consistent plants.

A. Consistency Set
Define h°(A, B) as the following residual:

WA, B) = %41 — A% —Biy Yt 1.T—1.  (10)

The quantity h?(A,,,B,) will be equal to zero at all ¢
1..T — 1 if there is no noise present in the system. The joint
consistency set of (A, B, Ax, Au) compatible with the data
in D can be expressed by defining a matrix-valued function
E(A) : Rrxn _y BrT—1)xnT with

E(A) = [Ur_1 ® A), Opr_1yxn] + [Onr—1)xn> —Incr—1)
letting ny be the column dimension of Fy and Gy for each £
(Fp € R*"T Gy e R">*™T=D) and denoting h°(A, B) as
the column-wise vectorization of [h?(A, B)}f;_]l. This consis-
tency set can be described by [24]

P(A, B, Ax, Au)
(A, B, Ax, Au) € R™" x R™™ x BT x RmT=1

= E(A)Ax + (fr—1 ® B) Au+h°(4,B) =0
Ve e 1..L (FeAx+ GeAu, 1) e L™

The consistency set P(A,B) < R™" x R"™™ of plants
compatible with the data in D is the following projection,

P(A,B) = n*BP(A, B, Ax, Au), (12)

an

in which there exists bounded noise (Ax, Au) following (2)
such that D could have been observed. Our task is as follows:

Problem 1: Find a matrix K € R™*" such that full-
state-feedback controller u; = Kx; ensures that A + BK is
W-superstable for all (A,B) < P.

B. Full Linear Program

Let n > 0 be chosen as a margin to ensure stability.

Theorem 1: W-Superstability through a common K (for
Problem 1) can be ensured by solving the following infinite-
dimensional LP in terms of a matrix K € R™” and a
matrix-valued function M(A, B) : P — R/ (125, eq. (12)]):

find st V(A, B, Ax, Aw) e P: (13a)
Vi=1.f: (13b)
l—n—) M;4,B) >0

j=1

Vi=1.f, j=1.f: (13c)
M;i(A, B) — (WA +BK)W™), >0
M;j(A, B) + (WA + BE)W™), > 0
MA,B) : P - R KecR™".  (13d)

Proof: The W-superstabilizing linear system in (6) is
fulfilled for each (A, B) € P, as expressed by the
V(A, B, Ax, Au) € P quantification in (13a). [ |

Remark 1: Under the assumption that P is compact, the
function M can be selected to be continuous ([25, Lemma 3.1])
and even polynomial ([25, Lemma 3.2]). The same type of
linear system structure for superstabilization in (13d)-(13d) is
used (with W = I,,) as in [25], but the set P in [25] is defined
by polytopic-bounded noise rather than quadratically-bounded
noise (11).

C. Robustified Linear Program

Problem (13) involves LP with 2f2 +f infinite-dimensional
linear constraints, each posed over the n(n + T) + m(n +
T — 1) variables (A, B, Ax, Au). Reducing the number of
variables involved in any quantification will simplify resultant
SOS truncations and increase computational tractability. This
subsection will use a Theorem of Alternatives in order to
eliminate the noise variables (Ax, Au) from Program (13).
The maximum number of variables appearing in any infinite-
dimensional linear inequality constraint will subsequently drop
from n(n+7T)+m(n+ T — 1) down to n(n + m), which no
longer depends on the number of samples 7.

Let g(A,B) : P — R be a function that is independent of
(Ax, Au), such as any one of the left-hand-side elements for
constraints (13b)-(13c). The following pair of problems are
strong alternatives (exactly one is feasible):

V(A,B, Ax, Au) € P : qA,B) =0 (14a)
(A, B, Ax, Au) € P : q(A,B) <0, (14b)
because if g > 0 for all (A, B, Ax, Au) € P (14a), then there

cannot be a point in P where q(A, B, Ax, Au) < 0 (14b). We
can define the following dual variable functions

pu: P— R*T-D (15a)
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(sg,7e): P—> LM™YL e 1..L. (15b)

The (A, B) dependence of (u,s,t) will be omitted to
simplify notation. A weighted sum ®(A, B, Ax, Au; 1,5, 1)
may be constructed from g and (u, s, ) from (15):

o= —q+uT (EWAT+ U1 @ B) Au+ 1)
T
+ Z(l’e —s; (FeAx + GgAu)).

£=1
The terms in ® may be rearranged into

L
o= (—q +uThO4 Z rg)

£=1

(16)

T

E
+ (E(A}T.LL— ZF}sE) Ax

=1

L T
+ ((IT—l ® BT)#— Z GETSE) Au. (A7)
=1

Expressing the (Ax, Au)-constant terms of ® as Q with
L
0=—q+u"h+) =,
£=1
the supremal value of ® w.r.t. Ax, Au has a value of
Q if0=EA) u—YL, F{se
if0=(Ir_1 ®B")u—Y y_, G} se (19
oo otherwise.

(18)

sup @ =
Ax,Au

Theorem 2: Problem (14a) will have the same feasibility
(or infeasibility) status as the following program:

find st V(A,B) €P: (20a)
L
q—) n—pu'h =0 (20b)
=1
L
EQ@A) p— Z F/s¢=0 (20c)
=1
L
(IT_, ® BT) u=Y Glse=0  (20d)
£=1
(., 5, ) from (15). (20e)

Proof: This relationship holds using the convex-duality
based Theorem of Alternatives from [18, Sec. V-H], given
that all description expressions in ¢ and P are affine in the
uncertain terms (Ax, Au). |

Theorem 3: If P is compact, then the multipliers (u, s, )
can be chosen to be polynomial functions of (A, B).

Proof: The proof is omitted due to page limitations, but
follows from [26, Th. 3.3] (generalizing [16, Ths. 4.4 and 4.5]
to the conically constrained case). |

Remark 2: In the case of probabilistic noise set from (3)
with L = 2T — 1, the multipliers (s, t) can be partitioned into
Vte l.T: (s}, 7)) for (3a)and ¥Vt € 1..T—1: (57, t/) for (3b).
The certificate (20) can then be expressed as

find s.t. ¥(A,B) € P:

TR -

(21a)

T -1
q—Y Ve@am + Y Vel mry
=1 =1

—p I Y =0 (21b)
S = AT (21c)
Vi=2.T—1: 3572 = ATpy—py 1 (21d)

;s = —pra (2le)
VIE LT -2 3B ="y, (21f)
(i, 5, t) from (15). (21g)

V. TRUNCATED SUM-OF-SQUARES PROGRAMS

This section uses the moment-SOS hierarchy of SDPs
to discretize the infinite-dimensional LP in (13) into finite-
dimensional convex optimization problems that are more
amenable to computation. This discretization will be per-
formed by SOS-matrix truncations.

A. Quadratically-Bounded Truncations

Program (13) has 2f2 +f infinite-dimensional LP constraints
posed over (A, B, Ax, Au). This subsection applies a degree
2k SOS tightening to the constraints in program (13). In
each case, the matrix M is restricted to a polynomial M
(R[A, B]l<2#)™". The remainder of this section will analyze
the computational complexity of an SOS tightening on a
single infinite-dimensional constraint from (13) (represented
as q(A,B) = 0 from (14a)). Complexity will be compared
according to the PSD Gram matrix of maximal size.

1) Full Program: The full program applies a scalar WSOS
constraint g € EI[P] over (A, B, Ax, Au). The size of the
maximal Gram matrix for each (14a) restriction is

(n(n+T)+m(n+T—l}+k)
F = k .

2) Alternatives (Dense): The SOC constraint in (15b) can
also be expressed by a PSD constraint [27, page 7],

(22)

n T s, ny+1

(sg,7¢) e L™ & [Sg fefng:l eS; .

In order to prove convergence of the Alternative truncations

as the degree k — oo, we must assume that there exists a

known Archimedean set I1(A, B) such that IT 2 P. Such a IT

might be known from norm or Lipschitz bounds on (A, B), or

other similar knowledge on reasonable plant behavior. If IT is

a-priori unknown, then we will use the WSOS symbol Z[I1]

to refer to the SOS set X'[x]. At the degree-k truncation, the
multipliers from (15) can be chosen:

(23)

e (RIMay_1)" (242)
se € (R[Ml<x)™ Veel.L (24b)
1 e R[]y VEel.L. (24c)

These multipliers are required to satisfy:
w(A,B) st(A.B)"] _ gt
I:SE(A,B) A B, e LT My VEel.L. (24d)

The matrix WSOS constraint in (24d) has PSD Gram matrix
of maximal size

ph=(n+ 1) (”(”“LmHk). (25)

k
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The ‘dense’ nomenclature for this approach will refer to the
imposition that (24d) is WSOS over a matrix of size ng + 1
for each £ = 1..L.

3) Alternatives (Sparse): The SOC constraint in (23) can be
decomposed into 2 x 2 blocks as in [28, Th. 2.3]:

n
.| T Sie 2
ng e = v
(se, 7¢) € L™ & 3z [m m] eSt, w=) e
i=1

The multipliers in (15) can be restricted to

p e (RMay )"
se, ze € (RIMen)™ Veel.L

(26a)
(26b)

subject to the constraint

Y ity zie(A, B) sie(A, B)
sig(A,B)  ziy(A,B)

The Gram matrices from (26¢) have a reduced size of

_» nn+m)+k

Remark 3: The cone constraints (24d) and (26¢) are not
necessarily equivalent at finite degree 2k, although they will
describe the same set as k — oo given that (s, 7) are
optimization variables. Refer to [29] for more details on the
relationship between matrix SOC cone representations.

] € T2 [M]oy V€ = 1..L. (26¢)

(27)

B. Computational Complexity

Computational complexity of the Full, Alternatives (Dense),
and Alternatives (Decomposed) schemes will be judged com-
paring the sizes and multiplicities of the largest PSD constraint
in any P-nonnegativity constraint. As a reminder, the super-
stabilizing program in (13) has 2n? + n such ‘P-nonnegativity
linear inequality constraints.

For each P-nonnegativity constraint, the Full program
requires 1 block of maximal size pr from (22). The
Alternatives programs require L+ 1 PSD blocks each, in which
the Dense program has block sizes of pﬁ from (25) for £ = 1..L
(and a scalar block of size (""*"*X)). The sparse program
has all L blocks of size pp from (27) along with a similar
scalar block of size (""*/**). Table I reports the size of
the largest PSD matrix constraint for the three approaches
under n = 2,m = 2,k = 2,T = 12. The considered
quadratically-bounding constraints all have L = 2, such as in
the elementwise-norm ||Ax;|[, < €, and ||Au|, < ¢, from
Section II-B1. We first note that the per-iteration complexity of
solving an SDP using an interior point method (with PSD size
N having M affine constraints) is O(N>M+N2M?) [30]. In the
context of Table I, the size of N = pr = 1540 is intractably
large for current interior-point methods. The ‘Multiplicity’
scaling for Dense and Sparse causes computational complexity
to grow linearly, while the increasing ‘Size’ parameter causes
polynomial growth in scaling.

V. EXTENDED SUPERSTABILITY

The superstabilization method considered in Sections III
and IV rely on the use of a previously given and fixed
W matrix. The framework of Extended Superstability [20]

1659
TABLEI _
SIZE OF PSD VARIABLES FOR P-NONNEGATIVITY
Size Multiplicity
Full pr = 1540 1
Dense | pf =135 46
Sparse | pp = 90 46

allows for W to be chosen as a positive-definite n-dimensional
diagonal matrix, in which this diagonal-restricted W may be
searched over in optimization and is not fixed in advance. The
resultant common Lyapunov function ||WXx]||,, therefore has
hyper-rectangular sublevel sets. Letting v € R", v > 0 be a
positive vector with matrix W = diag(v)_], and x;p 1 = Ax;
be a dynamical system, the W-superstabilization condition
|[WAWY || o < 1 may be expressed as
Vi=l.n,j=1.n[A diag(v)]; < M;
Yi=1..n Z’?:l M < v;.

The quadratically-bounded EIV extended superstabilization
task involves the following optimization problem with vari-
ables M(A,B) : P — R™" § ¢ R™*" vy ¢ R™:

(28a)
(28b)

find st V(A,B) €P: (29a)
M, S v
Viel.n (29b)
n
vi>0, Y M;jA,B) <v
j=1
Viel.n, jel.n: (29¢)

m
|Aijvj + ZBiESEj| < M;j(A, B)
£=1
M:P — R™" §cR™" ycR" (29d)

If Program (29) is feasible, then the controller K recovered
by K=5W= S(c!ia(.g.;('.»'))_I is guaranteed to W-superstabilize
all systems in P. All three methods (Full, Dense, Sparse) for
WSOS truncation can be employed to formulate order-k ver-
sions of Program (29) (w.r.t. a Psatz in (A, B, Ax, Au) for Full
or (A, B) for Alternatives) by choosing M ¢ (R[A, Bl<x)"*".

V1. NUMERICAL EXAMPLE

Code to generate the following experiment is available at
https://github.com/Jarmill/eiv_quad. The SDPs deriving from
the SOS programs were synthesized through JuMP [31] and
solved using Mosek 10.1 [32].

A. White Noise

This example involves a 2-state 2-input ground-truth plant:

0.6863 0.3968 04170 0
A= [—0.3456 1.0388]’ B, = [0.7203 —0.3023]‘ S

Data D is collected from an execution of (30) over
a time-horizon of T = 13. In the data collection,
the EIV noise Ax, Au are i.i.d. distributed according to
Axy~N(0,0.0321), Auy~N (0, 0.025%1). Tt is desired to cre-
ate an extended superstabilizing controller that will succeed
in regulating the ground-truth system with joint probability
Pioint = 95%. The per-noise probability is chosen as &, =
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84 = (0.95)1/@T=1 — 0.9981. The (4., §,) chance constraint
is modeled as ||Ax;||, < 0.03¢(dy; 2) = 0.1056 and || Au|l, <
0.025€(8,; 2) = 0.08796 for each .

Extended superstabilizing control is performed to minimize
A such that Vi : L > v;. The kK = 1 truncation of (29) using
the dense Alternatives method (24) (pa = 27) returns

—0.9000 —0.8807 0.5519 31)
0.1564 0.3679 1.4481 |

The Full (13), Dense (24), and Sparse (26) superstabilization
(W = I) programs are all infeasible for k = 1. Attempting
execution of the k = 2 tightening for the Full program (pr =
(%)) = 2016) results in out-of-memory errors in Mosek. For
this specific example, the algorithms from [19, Ths. 1 and 2]

both fail to find a common quadratically stabilizing controller.

Kiense = [

B. Monte Carlo Test

This second example involves a Monte Carlo test for
robust stabilization of 300 randomly generated 2-state 2-input
ground-truth plants. Elements of the plant matrices (A, B) are
each i.i.d. drawn from a unit normal distribution. The noise
Ax; and Au, are drawn i.i.d. uniformly from unit L,-balls of
radius €, = 0.225 and ¢, = 0.1 respectively for a time horizon
of T = 14. At k = 1, dense and sparse superstable SOS
restrictions stabilized 48 and 42 systems respectively. Dense
and sparse extended superstabilization k = 1 SOS restrictions
stabilized 71 and 62 systems respectively. [19, Th. 1] was
infeasible at each instance. [19, Th. 2] stabilized 61 systems,
with an overlap of 31 stabilized systems with the k = 1 dense
superstability, and 38 systems with the kK = 1 dense extended
superstability.

VIl. CONCLUSION

This letter presented a solution approach for data-driven
superstabilization in the quadratically-bounded EIV setting.
The W-superstabilization problem was formulated as an
infinite-dimensional linear program, and was discretized using
SOS-matrix methods. A Theorem of Alternative was used to
eliminate the (Ax, Au) noise terms, resulting in matrix SOS
constraints with lower computational complexity.

Future work involves reducing conservatism of EIV-aware
control methods and incorporating streaming data for EIV-
tolerant model predictive control.
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