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Tractable Approximations of LMI
Robust Feasibility Sets

Teodoro Alamo
Fabrizio Dabbene

Abstract—In this letter, we introduce novel tractable
approximations for robust Linear Matrix Inequality (LMI)
problems. We present various Quadratic Matrix Inequalities
(QMis) that enable us to characterize the effect of ellipsoidal
uncertainty in the robust problem. These formulations are
expressed in terms of a set of auxiliary decision variables,
which facilitate the derivation of a generalized S-procedure
result. This generalization significantly reduces the conser-
vatism of the obtained results, compared with conventional
approaches.

Index Terms—Linear matrix inequalities, quadratic
matrix inequality, robust semidefinite programming.

|. INTRODUCTION

T IS well known that Linear Matrix Inequalities (LMIs),

play a central role in the analysis and design of control
systems under the presence of uncertainty [1], [2], [3]. In this
context, a robust analysis/synthesis problem consists in solving
a feasibility/minimization problem on the decision variables,
codified in matrix X € & subject to the robust linear matrix
inequality in X, ie., L(X,w) < 0, Yw € W, where w ¢
W represents the uncertainty on the model of the system,
possible disturbances, noise, etc. Set A serves to impose
the dimension, structure, and additional hard constraints on
the decision variable X. This problem, often intractable from
a computational point of view [2], [4], [5] is said to be
of semi-infinite nature because there is a finite number of
decision variables, but an infinite number of constraints. In
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this letter, we are interested in characterizing the subset of
feasible solutions Sy = {X e X :L(X,w) <0, Ywe W},
by a reduced number of LMIs that do not depend on w.

In the literature, one often encounters formulations in
which L(X,w) depends in an affine way on w, which is
constrained to a polytopic set, i.e., w €¢ W = conv {w, k =
1,...,N,}. In this situation, the original robust constraint on
X is equivalent [1] to L(X, wg) <0, k=1,...,N,.

These assumptions offer a manageable representation of
the feasible set Sy, only when the number of vertices N,
is not excessively large. For instance, if W represents matrix
interval uncertainty, the number of required vertices explodes
exponentially with the dimension of the uncertain matrices,
and alternative strategies are required [4], [6], [7]. Another
formulation is to consider that L(X,w) exhibits a linear
fractional dependence on w, which is constrained to have a
block diagonal structure [2]. Each block within this structure
is required to have a bounded induced matrix norm, that is

W = | diag[A1,..., Am] :8(A) <1, i=1,...,m}.

In this letter we concentrate on a special case of this frame-
work, in which the dependence with respect to w is quadratic
and W is defined as an ellipsoidal set, or as the intersection of
a finite number of such sets. Our choice is driven by several
motivations, which we discuss below. Within the context of
system identification, it is possible, under some assumptions
on the exciting signals and on the noise/disturbances affecting
the system, to employ identification schemes to obtain not
only a central estimate for the system’s parameters, but also an
ellipsoidal bound on them, see, e.g., [8]. Moreover, in order to
address complex, interconnected systems, in which each sub-
system has a set of parameters, it becomes essential to treat
w as an aggregate of all parameters across systems, with W
the intersection of the ellipsoids corresponding to each sub-
system.

The S-lemma [9], [10] provides a powerful tool to convert
robustness conditions into a set of quadratic forms. In [11], see
also [12], an extension to the classical S-lemma to quadratic
matrix inequalities (QMIs) is given. This extension, known as
the matrix S-lemma, serves to provide a tractable sufficient
condition for the implication of the following two QMIs
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where the first QMI represents a bound of the uncertain matrix
variable Z and the second one is the robust constraint to
check. In this letter, we provide a novel QMI representation of
an ellipsoidal set. This innovative representation incorporates
auxiliary variables that significantly reduce the conservative-
ness of the obtained approximation of the feasible set with
respect to the standard matrix S-lemma [11].

This letter is organized as follows. In Section Il we intro-
duce the problem formulation and we present a motivating
example, in Section III we provide a result based on the clas-
sical S-procedure, on the same lines of the matrix S-Lemma
in [11]. This result is exploited in Section IV, where we
introduce two different QMI representations of the uncertainty
set V. In particular, the second representation, based on
additional variables, allows to derive our main result, presented
in Section V. This result is proved to be less conservative than
the classical S-procedure, via analytic and numerical examples,
discussed in Sections VI and VII, respectively.

Notation: Denote the set of symmetric matrices in R™*"
by §". 8§ = {He 8" :H >0} is the set of semi-positive
matrices in S", and 8, = { H € 8" : H > 0 }. The square
root of H € &' is denoted by H é, which is the positive semi-
definite matrix satisfying (H‘i‘)2 = H. The notation Tr(H)
designates the trace of the square matrix H. I, is the identity
matrix in §". A ® B is the Kronecker product of matrices A
and B. Given w € [w ... wm]T e R™ let us denote

wi = [wily wols ... Wala]" = W@ L. (1)

Il. PROBLEM FORMULATION
In this formulation, we assume that
LX,w)e8", VXeci&, Ywe WC R™,

and a quadratic dependence on the uncertain vector w € W.
That is, we assume that there exists a matrix function M(X)
such that L(X, w) can be rewritten as

A
L(X, w) = [‘E] M(X)[‘f; ] VX e X, Ywe W,
® @

where w{é is defined in (1). Here, we are interested in
characterizing the subset of feasible solutions
Sy={XeX:LX,w) <0, Ywe W ).

We assume that W is a bounded set that results from the
intersection of a finite collection of quadratically constrained
sets Wi, i=1,...,s. Thatis, W =_; _;W;, where, given
Q0i=0,j=1,...,s we define

VVJ,-:{WE]R"’:WTijg 1 ],j:l,...,s.

We notice that boundeness of WV is guaranteed if and only if

A. Motivating Example: The Discrete Lyapunov Equation

Let us consider the following discrete-time system with
affine uncertainty

xt = (Ag + Z w,'A,-)x = A(w)x,

i=l1

where x € R™ and x+ € R™ are the state and succe_srsor state,
respectively. The uncertain vector w = [wy ... w,| €R™ is
constrained to the ellipsoid

W=|w:wTQw51}, 0 > 0. @

Given S > 0, we can define the following robust discrete-
time Lyapunov equation for the uncertain system in the
variable P > 0

A(W) PA(W) — P < —S, Ywe W.

Let us formulate the previous inequality by means of an LMI
on the inverse of P. Denote X = P~! € S*,. The previous
matrix inequality is equivalent to

X XAw)T Xxs?
LX,w)=—| % X 0
* * L,

=< 0.

Suppose that m = 2 and set n = 3n,, If we introduce the
matrix

My (X) M2(X) M;3(X)
MX) = * 0 0 SR (9
* * 0
with
X XAl Xs?
MigX)=—| %« X 0 |,
| * L,
(@ XAl @]
Mia2(X)=—| % 0 0],
| * * 0_
[0 XA, O]
Mi3(X)=—| % 0 01,
* * 0

the inequality L(X, w) < O can be rewritten as the QMI
T

I, I, .17 I
wil, | MO | wil, :[ ’,;] M(X)[w’;,] <0.
WZ]In wZ]In Ve ®

With this notation, the set of matrices X > 0 that robustly
satisfy the Lyapunov equation is

; o I,
Sx:{X)»O:[w{éiI M(X)I:w%il—<0, VweW].

1. THE S-PROCEDURE AND THE QMI
REPRESENTATION OF THE UNCERTAINTY SET W

To provide tractable approximations for set Sy, we will
leverage results related to the S-procedure [1], along with a
novel scheme that exploits the structure of the uncertainty
set W. The following lemma is a direct application of the
S-procedure [1, Sec. 2.6.3]. The result allows us to bound the
set of feasible solutions Sy, provided that the uncertainty set
W can be described, or bounded, by means of the intersection
of a finite number of QMIs with the same structure as the one
used to describe L(X, w).
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Lemma 1: Suppose that W = [._;  W. Given X € &,
suppose that there exists N; = N}T, and 7; > 0, such that, for
every j=1,...,5 we have

wi=tw: [=] 5[] <0 4
J—“'-w% ilwe | 201 4)

and M(X) — 3., ;N < 0. Then,

S I

LX,w) = _"]‘I’?é_ M(X) _i?é_ <0, vwe W. 5)
Proof: Suppose that there is W € W such that
-ll" | T;‘Ia"()&') -11" | # 0. (6)
_“r" . _“r" .
Since ﬁfer}-,j: 1,...,s, we infer from 7; > 0 and (4) that

=
_TJI:JI?:] le:}[?;:l >0, j=1,...,5
We we

This, along with (6), implies

L ! M(X)—Zs:r'N‘ L 40
W — T [ we] T
7=1

which contradicts M(X) — 37, tiN; < 0. |

Remark 1: Lemma 1 is similar to the Matrix S-Lemma
presented in [11]. The main differences here are that we
impose a strict inequality in (5) and we do not require a Slater
condition to hold for (4). Note that, since the uncertainty w
is structured, both Lemma 1 and the Matrix S-Lemma yield
only sufficient conditions.

IV. FAMILY OF QMI REPRESENTATIONS
OF AN ELLIPSOID

It is clear that, in order to apply Lemma 1, it is necessary
to rewrite, or bound, the uncertainty set W, as a QMI on w
with the same structure as in (4). That is, one should find a
matrix N, or a family of such matrices, satisfying

e [ {5

A. Simple QMI for an Ellipsoidal Set

The following proposition shows that there is a QMI that
exactly characterizes an ellipsoidal uncertainty set

W={[weR™: WTQWE 1}.
Proposition 1: Suppose that Q € S and define
I 0
N‘[o Q@]L,]' £

Then,
WZ{WERm:WTQWEII

- [rer (A [5] =0}

Proof: Denote Q;j,i=1,...,m,j=1,..., m, the elements
of matrix Q € SY. From (1) we have
I

o
T w]l"

[ M]=1"

Ve Ve

0" ool
Lo 0 ¢9®I,
[l

=—I,+ Z Z Qi jwiwil,

i=1 j=1

= (wTQw = 1)]1,,,

I,
wil,

Lot

-
which implies [‘Ef,lJ NL‘]‘I;',] <0ewQow—1<0. =

We notice that® is ¢ ar%cterization of an ellipsoidal set,
along with Lemma 1, allows us to obtain an approximation of
the original robust problem when the uncertainty is given by
an ellipsoidal set.

Lemma 2: Suppose that W = {w ¢ R™ : wiow < 1},
where Q > 0, N as in (7), and define

: L1" I,
SX:{XEX:I:W%:I M(X)[“%]<0, ‘v’weW].

Then, X € Sy if there is T = 0 such that M(X) — tN < 0.
Proof: The proof follows directly from Lemma 1 and direct
computations. |
In the following we provide a different QMI characterization
of the ellipsoidal set WV, based on the introduction of a family
of matrices N. This result is instrumental to the derivation of
a novel, and less conservative, robust LMI characterization.

Theorem 1: Suppose that Q € ST, H € Sj_Jr, and F;
R™" j=1,...,m are skew-symmetric, i.e., F; = —F . Let
us define

—H F
=
_ F,
N(HaFla-"$Fm)

§
= : Q®H I ®
L7 ]

Then,
e L i
W= Iw:[w%] N(H,Fl,...,Fm)[w%]ﬁo}.

Proof: Consider the matrix N(H,Fy,...
and define

L, 1" I
Somr = WZ[ ’;] N(H,F].,...,Fm)l:n]jo .
? [ Ve we

It is clear that

, Fm) given in (8),

N@H, F1,...,Fu) =N@#H,0,...,0) +NO,F1,...;Fn).

‘We now have that

I ¥, I, ~ T
[W%] N(O,Fl,---gFm)[w%]:Zl:wi(Fi_l—Ff):O'
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]I I
Somi={w:| n N(H,O,...,O)[ :',] =0
€ l wg Ve

]1,, g o In ] <0

W w{é 0 oeH we | 2O

We also have
L= & i
W, 0 O®H]|wg]

[ ] m-H @HT)

I, I, 0 I, 1

AlGEAEE

From this, and the fact that H 3 is non-singular, we infer that

1 L T T | 16
S = 3 0
on={v: [5] [0 oanl[va]=]
= {w : (WTQW— 1)]1,, =< 0]

:{w:wTngl}zw

I

b=

=H

V. TRACTABLE APPROXIMATION OF THE ROBUST
FEASIBILITY SET

The next theorem provides the main contribution of this
letter, which is an LMI inequality, not depending on w, that
provides a less-conservative characterization of the robust
feasibility set of an LMI subject to uncertainty that is bounded
by the intersection of s quadratically bounded sets than the
one provided in [11].

Theorem 2: Suppose that

W:'ﬂ W; = ﬂ {(weR™:

where Q; e S1,j=1,...,s5 Given X € &, suppose that there
exists H; € 8, j=1,...,s5 and skew-symmetric matrices

wiQw <1},

Fy, ..., Fp such that
“FoaBy By . Fa
F{
MX)— =< 0, 9
L TL(oeH) w2
45
LT I
Then, L(X, w) = wa, ] M) I:w’; ] <0, Yw e W.
® ®
Proof: Denote
—-H F1 ... Fn
F{
Ny =
. 01 ® H
FT

m

Ifs>1,forj=2,...,5 define N; as

—H; 0
N; = 2 :
’ [ 0 Qj®Hf]

The direct application of Theorem 1, provides forj=1,...,s,
the equalities

-
Wj:{w : wTijg l}: Iw ; I:‘]"I:{é:l MI:‘E;@] 1‘0}-

These representations for W;, along with the application of
Theorem 2 with 5; =1, j = 1,..., s, provide the following
sufficient condition for L(X, w) < 0, Yw ¢ W

5
M(X)— ) N; <0.
j=1
This concludes the proof because the previous expression is
identical to (9) by construction. |

We note that, compared to [11], the proposed formulation
makes use of additional skew-symmetric matrices Fi, ..., Fp.
This allows to provide additional degrees of freedom, and thus
substantially decrease the conservatism, as discussed in the
next section and shown in the numerical examples. Of course,
this comes at the cost of increasing the complexity, since the
ensuing optimization problem involves additional variables.
On the other hand, we remark that the problem is still in a
semi-definite programming (SDP) form, and may be solved by
interior-point methods that depend mildly (and, in any case,
polynomially) on the number of optimization variables.

V1. IMPROVEMENT WITH RESPECT TO
STANDARD S-PROCEDURE

We now show that the proposed result provides exact
representations of the robust set Sy for some simplified
situations. We also show that for those situations, the standard
S-procedure, i.e., Lemma 2, fails to provide a sharp represen-
tation.

Consider the following robust LMI, where, given r > 0,
the uncertainty w is a scalar subject to the interval constraint
w e [—r,r], ie.,

Mo +wM; +wM! <0, Yw € [—r, rl. (10)

We remark that both My € S™ and M} € S" could be
affine functions of a given decision variable X. We do not
make this dependence explicit to simplify the expressions.
Since the dependence on w is affine, the worst-case situations
are obtained at the vertices w = —r and w = r, see,

g., [1], [7]. That is, the robust LMI is satisfied if the
following deterministic LMIs hold

Mo —rM; — rM| < 0,
My + My + M| < 0.

(11
(12)
Imagine that instead of resorting to this classic vertex result,
we formulate both the original robust LMI and the constraint
w € [w—,w'] as QMIs on the uncertainty w, and apply
Lemma 2. The robust LMI (10) in QMI form is

C
["E]'f ] [;?r ﬂg‘][‘f}'{' ] <0, Ywel-rrl. (13)
n 1 n

The constraint w € [ — r, r] can be rewritten as

]I,, L _]In 0 ]L;
b Lo sl ] =
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From the application of the S-procedure, we infer that Mg and
M, satisfy (10) if there is T > 0 such that

iy Mi] I:_]IH ; ]
i - 1 =< 0.
I:Ml 0 0 =l
As we show in the following discussion, this is only a

sufficient condition for (10) that can be very conservative.
Suppose that n = 2, and that

fo t-r 3

In this case, My + wM| +wM;'— =My=-I <0, Vwel
Thus, in this case, the robust LMI is satisfied for every r > 0.
We now show that for this particular choice of matrices My
and M, (14) provides a bounded value for r. We observe
that (14) is equivalent to

Ml] > 0.

—My — 11,
= 5L,

(14)

My =

Using the Schur complement [1], we rewrite the previous
inequality as —Mp — tl, — éMlM]T > 0. Taking into
consideration the values for My and M; we obtain

rz
I, — 7l — —1I; = 0.
T

Thus, we conclude that an equivalent condition for (14) is

l—17——=>=0.
T

(15)

Given r, the optimal value for r (e.g., maximizing the left term
of the previous inequality) is the one for which the derivative is
zero. That is, —1 4 o= 0. This means that the optimal value
is T = r. Substituting this optimal value in (15) we obtain
the constraint r < % This proves that for this example, the
standard S-procedure fails to properly characterize the range
of values of r for which the robust LMI (10) is satisfied.

In view of Theorem 1, we have that given F = —FT and

H > 0, the quadratic constraint w? < r? can be rewritten as

L,1'T-H FI[L, i
wl,| | FT ;I-ZH wl [

From this and Theorem 2, we deduce that My and M,
satisfy (10) if there exists F = —F" and H > 0 such that

[ Mo+ H M;— F] 0

T T 1 =

M, —F —=H

The following lemma shows that this characterization of the

robust pairs My and M is exact.

Lemma 3: Matrices My and M, satisfy
Mo +wMy +wM] <0, Yw € [—r, ], (16)

if and only if there exists F = —F " and H > 0O such that

My+H M;— 0

Ml —FT —Lu|="

Proof: The implication (17) = (16) has been already
discussed (it follows from Theorem 2). We now prove (16)

a7

= (17). As commented before (see (11), (12)), (16) is
equivalent to

Mo — My — rM| <0,
Mo + rMy + M| < 0.

This can be rewritten as

Mo — rMy — M| 0
I -'<0.
0 M{)—I—FM]—I—!’M]
Den T—]I" _]I"P ltiplying the LMI by T' and
ote T = O ] re-multiplying the y an

post-multiplying by T we obtain the equivalent LMI

Mo (M +M[)]
2(Mi+M])  2Mp k.

Pre and post-multiplying by %I:]I" s ] we obtain

0o 1r,
My  MiM]
2 2 0
MiiM] g
2 57 Mo
_MT
Denote now H = —3Mo, and F = u. With this choice,

we can rewrite the LMI as

[ Mo+H M — F] 5

T T 1 <.

M| —F —=H

We notice that F is anti-symmetric by construction. Also,

H= — %M{) is positive definite because of the evaluation of
LMI (16) at w = 0. [ ]

VII. NUMERICAL EXAMPLE
A. Case A
Let us consider the uncertain system
xt = (Ao + wiA1 +waA2)x = A(W)x,
0.1 0 1 0.2
A= [ 0 0.1]’ A :[—0.2 1 ]
s 0 0.0075
2= o2 o1 |

. g W | e 100 1)
w1thweW_{w_[w2].w|:0 10 w < 1}.
; 05833 0 : T
Given § = 0 12372 |0 We @m at minimizing the

size of P subject to A(W)TPA{w} —P < -5 YweW, to
obtain a sharper bound on
oo
Joo = Zx;{Sxk < x;)rng, Vxg, Vw € W.
k=0
It is easy to observe that this can be obtained by maximizing
the trace of P~', i.e., minimizing Tr (P).

Let us denote by Nys;, and Nygz, the matrices required for the
QMI representation of the uncertainty set W for the standard
matrix S-lemma (Lemma 1) and for the improved version
proposed in this letter (Theorem 2), respectively, i.e.,

—Ih 0 0
Nyst=| 0 Qul, Qu2ly, |,
0 Qi 020,

Authorized licensed use limited to: Northeastem University. Downloaded on August 22, 2024 at 12:17:51 UTC from IEEE Xplore. Restrictions apply.



ALAMO et al.: TRACTABLE APPROXIMATIONS OF LMI ROBUST FEASIBILITY SETS 477

0.3
402
=
0.1
0L =
01 — "_ 0
e 0.2
001 =t 0.6 0.4
X190 X1

Fig. 1. Feasible sets obtained applying the standard matrix S-lemma
(blue) and the improved matrix S-lemma (green).
—H Fi Fs
Nisp = f‘? OunH QnH
F, QnH QOnH

Let us define X =
problems are

P~1. The corresponding optimization

Xyrs = max  tr(X)

X, =0
s.t. M(X) — tNysz, < 0 (18)
Ko = tr(X
ILS = y I F, X)

s.t. M(X) — NFSL <0
H>0,Fi=—F] ,F,=—F). (19)

where the expression for M (X) can be found in (3). We remark
that these problems are in LMI form and, thus, they can be
solved by standard SDP tools. Comparing the results obtained
with the two methods, we obtain that for the case under anal-
ysis, the trace of X* achieved applying the proposed approach
is equal to tr(X}; g) = 1.0793 and it is almost 60% larger
than the one obtained with the approach proposed in [11],
ie., lr(X;[LS) = 0.6346. Moreover, in Figure 1, we show
how the corresponding feasible sets reflect that the relaxed
matrix S-lemma is able to reduce some conservativeness of the
standard approach thanks to the over-parametrization of the
matrix Nygy.

B. Case B

In this second case study, we evaluate how the ratio p
between tr(Xj; ) and (X3, ) scales with respect to the
problem dimension. In particular, we select five case studies
with n, ranging from 2 to 6 and m = n, — 1. For each
case study, we run 1000 simulations, where the matrices A;,
i=0,...,m, are obtained as sparse random matrices with a
sparsity density of 0.4, and with Q0 = 104an.

Figure 2 shows how increasing the size of the problem
implies an improvement in terms of reducing the conserva-
tiveness of the standard matrix S-lemma, with the median of
the ratio p increasing from 1.68 to 2.06.

e —T T T 1

1.68103 1.71258 1.72415 1.87679 2.06155

1 2 3 4 5
m

Evolution of p over 1000 runs for nx = [2, 6] and m = [1, 5].

VIIl. CONCLUSION

We presented a novel approach to design tractable approxi-
mations of robust feasible sets of LMIs affected by ellipsoidal
uncertainty. These are obtained reformulating the problem in
an specifically designed QMI form, and subsequently applying
a generalized matrix S-procedure. The result is shown to
be significantly less conservative than the classical approach.
Future work will be devoted to further reducing conservatism
by designing specific versions of our recent approach based
on probabilistic scaling [13].
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