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On Gibbs measures and topological solitons of exterior
equivariant wave maps

Bjoern Bringmann

Abstract. We consider k-equivariant wave maps from the exterior spatial domain
R3\ B(0, 1) into the target S3. This model has infinitely many topological solitons
Oy k- which are indexed by their topological degree n € Z. Foreachn € Z and k > 1,
we prove the existence and invariance of a Gibbs measure supported on the homotopy
class of Q, x. As acorollary, we obtain that soliton resolution fails for random initial
data. Since soliton resolution is known for initial data in the energy space, this reveals
a sharp contrast between deterministic and probabilistic perspectives.

1. Introduction

The wave maps equation is one of the most prominent evolution equations of mathematical
physics. We initially consider wave maps u: R'™3 — S3, which are critical points of the
Lagrangian

3
e 2 .13
L(u, du) = /Rm dt dx (— 18,2 +]; |3x]u|g).

Here, g denotes the induced Riemannian metric on S3 C R*. In this article, we are pri-
marily interested in a simplified model for the wave maps u: R!*3 — S3, which involves
the following two simplifications:

(i) We require that the wave map u: RT3 — S3 is k-equivariant, where k € N. To be
precise, we require that

u(t,r.w) = (sin(p (1, r)) Qi (@), cos(p(t. 1)),

where (7, w) € (0, 00) x S? are polar coordinates on R3, ¢: R x (0, 00) — R is a scalar
field, and Qx:S? — S? is a harmonic map with eigenvalue k(k + 1). The scalar field ¢
describes the angle between the wave map u and the north pole N = (0, 0,0, 1).

(i) We replace the spatial domain R with the exterior spatial domain R\ B(0, 1), and
impose zero Dirichlet boundary conditions. Since this breaks the scaling symmetry of the
wave maps equation, it effectively turns the wave maps equation from energy-supercritical
into energy-subcritical.
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The resulting initial value problem for the scalar field ¢ = ¢ (¢, r), which is called the
exterior k-equivariant wave maps equation, can be written as

32¢—32¢——8 ¢+¥ in(2¢) = 0, (t,r) € R x (1, 00),

(1.1) $(1,1) = 0, { R,
(¢aat¢)(os I") = (d)()s (}51)(7’), re (I,OO)

This evolution equation has the conserved energy

1 o0
(1.2) E(9.91) = 5 / dr rz((a,qﬁ)2 + (3,¢)% + XD in (¢)).
1
For any smooth solution of (1.1) with finite energy, there exists an integer n € Z such that
(1.3) lim ¢(¢t,r) =nn
r—>00

for all + € R. Due to the symmetry ¢ — —¢ of (1.1), we can restrict ourselves to the
case n > 0. Since ¢ represents the angle between the wave map u and the north pole
N = (0,0,0, 1) € S3, the nonnegative integer represents the topological degree of the
wave map. The energy space of (1.2) can therefore be decomposed into the connected
components

(1.4) Cp o= {(qso,dn):/1 dr r2((0,40) +#3) < 00, o(1) =0, lim ¢o(r) =n}.

One of the most interesting features of (1.1) is that each connected component €, ; con-
tains a unique minimizer of the energy Ejy given by (¢, ¢1) = (On .k, 0). The function
O k 18 a harmonic map, i.e., a solution of the stationary equation

k(k + 1)

22 sin(2Qp k) = 0.

_8;2~ Qn,k - % 8r Qn,k +
We emphasize that this is a feature of exterior equivariant wave maps, since equivariant
wave maps on R!*3 do not have any stationary solutions with finite energy [29, 30]. The
exterior equivariant wave maps in (1.1) were first introduced in [2] as an alternative to the
Skyrme equation [31], which is a different simplification of the wave maps equation. It
was further studied analytically and numerically in [4], which advertised (1.1) as a model
problem for soliton resolution. Soliton resolution was first proven for (1.1) in the case
k = 11in [23,24], and in the general case k > 1, in [22], and is recorded in the following
theorem.

Theorem 1.1 ([22]). For any k > 1, n > 0, and (¢o, $1) € €, k, there exists a unique
global solution ¢ of (1.1). Furthermore, ¢ scatters to the soliton (Qy k. 0).

Since the publication of [22], there has been much further progress on soliton reso-
lution for equivariant wave maps equations. We particularly highlight the recent break-
through [21], in which soliton resolution was obtained for two-dimensional equivariant
wave maps (on the full spatial domain R?).
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Due to Theorem 1.1, the deterministic theory of (1.1) is fully understood. In this
article, we study (1.1) from a probabilistic perspective, which reveals interesting new
aspects. One of the most central directions of research in random dispersive equations,
which is inspired by statistical mechanics, concerns the existence and invariance of Gibbs
measures. The existence (or construction) of Gibbs measures was initially studied by con-
structive quantum field theorists (see, e.g., the monograph [17]). More recently, it has
been studied via stochastic quantization [28], which relies on singular stochastic partial
differential equations [1,3, 18,25,26]. The invariance of Gibbs measures under dispersive
equations was first studied in seminal works of Bourgain [6] and Zhidkov [35], which treat
one-dimensional nonlinear Schrédinger and wave equations, respectively. In recent years,
there has also been much progress on invariant Gibbs measures for nonlinear Schrédinger
and wave equations in two and three dimensions [6,9, 11, 13—15, 19, 27]. We emphasize
that many of the articles cited above only treat compact domains (such as the periodic
box T9). Since the exterior equivariant wave maps equation (1.1) is set on the semi-
infinite interval [1, 0o), we are interested in the infinite-volume limit of Gibbs measures,
which has been considered in [8,16,18,26,33,34]. For a more detailed literature review on
the existence and invariance of Gibbs measures, we refer the reader to the introductions
of [18] and [9, 11], respectively.

In the following, we study Gibbs measures corresponding to each topological degree
n > 0 and all equivariance-indices k > 1. Since €, x from (1.4) is an affine rather than a
linear space, we first introduce the shift operator 7, ¢, which is defined by

Tk (90, 91) := (Qnk + P0, $1).

We then formally define the Gibbs measure ji,, x as the push-forward
ﬁn,k = (Tu k)4 /’_‘E/r(l)’k’

where ﬂ,‘l) ¢ 18 formally defined by

(1.5) “dfiy 1 (90, 91) = Z7" exp(—Ex(Qnk + 0. ¢1)) dgo dg;”.

We emphasize that (1.5) is purely formal, since the energy will later turn out to be infinite
on the support of ﬁ}?’k, and the infinite-dimensional Lebesgue measure dggde; cannot
be defined rigorously. In our main theorem, we prove that the Gibbs measure [i, s can
be constructed rigorously and is invariant under the dynamics of (1.1). In the following
statement, 0 < § < 1 is a fixed but arbitrary parameter, and the weighted Holder spaces
are as in Definition 2.2 below.

Theorem 1.2. For all topological degrees n > 0 and equivariance-indices k > 1, the
Gibbs measure [i, j exists and is supported on the state space

Suk = {(@o. 1) 1 (g0 — Oui) € C 2571278 ([1, 00)),

1.6
(o rei(r) € C™1V201278 (1 o0))).

Furthermore, the exterior equivariant wave maps equation (1.1) is deterministically glob-
ally well-posed on 8, i, and the Gibbs measure [i, . is invariant under the dynamics.
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Remark 1.3. Due to the definition of the weighted Holder spaces (Definition 2.2), the
initial position ¢¢ from Theorem 1.2 satisfies

9o (r) — Qi (M| Sponies ¥~ /T

for all » > 1. In contrast, if the initial position ¢¢ is as in the connected component
from (1.4), then the radial Sobolev embedding implies that

|60(r) = Qi ()] Spomi r~ />

for all r > 1. Thus, while the initial data drawn from i, x relaxes to the topological soliton
as r — 0o, the pointwise decay rate is slower than for initial data in the energy class.

To the best of our knowledge, Theorem 1.2 is the first result on the existence and
invariance of Gibbs measures which are supported near topological solitons. The most
difficult part of our main theorem is the existence of the Gibbs measure, which is proven
in two steps: in the first step, we study a family of Gaussian measures (Section 3). The cor-
responding covariance operators are given by the inverses of the one-dimensional Schro-
dinger operators

(1.7) —0% + @ c0s(2Q 1),

which involve the topological soliton O, . In order to obtain growth and Holder estimates
for the family of Gaussian measures, we rely on Green’s function estimates for (1.7).

In the second step, we control the Radon—Nikodym derivatives of the Gibbs measures
with respect to the Gaussian measures (Section 4). Our argument relies on the variational
approach of Barashkov and Gubinelli [3], which has also been used in [10,27]. In con-
trast to the argument in [3], however, the objective function in the variational problem is
expanded around the drift term rather than the Gaussian term (see Remark 4.5).

In comparison to the construction of the Gibbs measure, the proof of the dynami-
cal aspects of Theorem 1.2 is rather simple (and all ingredients are essentially contained
already in [35]). The reason is that, as stated in Theorem 1.2, (1.1) is deterministically
globally well-posed on the state space S, x, and thus our argument neither relies on the
random structure of the solution (as in [7,9, 11, 13,27]) nor on Bourgain’s globalization
argument (as in [6, 7]). The proof of invariance is slightly technical, since it requires a
finite-dimensional approximation of (1.1), but ultimately follows from similar ingredients
as in the deterministic well-posedness theory.

Theorem 1.2 has an interesting consequence for the long-time dynamics of certain
solutions of (1.1), which we record in the following corollary. This corollary involves the
linearization of (1.1) around the topological soliton Q, x, which is given by

k(k + 1)
S

2
(1.8) 07 tn — 7 tin — — Orhin + ——5— c08(2Qp &) Pin = 0.

In light of Theorem 1.2, we are particularly interested in (1.8) with initial data in the linear
(rather than affine) state space

Sy = {(¢o.¢1):r o € Co 2T (1.00)), ra(r) € CTIMATET278 (1 o))
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Corollary 1.4. Let n>0 and k > 1. Then, soliton resolution for (1.1) fails ji, y-almost
surely. More precisely, there exists an event A, x C Sy x, where 8, i is as in (1.6), such
that jiy k(A i) = 1 and such that the following holds for all (¢o, $1) € A, k. Let ¢ be the
unique global solution of (1.1) with initial data (¢o, ¢1). Furthermore, let ¢1; and ¢y,
be any solutions of the linearized equation (1.8) with initial data in S,lli?k. Then, we have
that

(1.9) lim sup ”r(¢ Onik — ¢]m)(l r)“(co 1/2-8,-1/2-8 5 C=1,1/2-8,-1/2=8)([1,2]) ~ 0.

t— +oo

While (1.9) is formulated using the same norm as in the definition of the state space
Sx k., our argument yields similar conclusions in many other norms (see Remark 6.1).

This corollary is an easy consequence of the properties of the Gibbs measure [i, k
and Poincaré’s recurrence theorem (see Section 6). The striking aspect of Corollary 1.4
is that soliton resolution fails for certain (¢, ¢1) € Sy k. i.e., the global solution does
not decompose into a sum of Q, x and a linear wave. Since soliton resolution holds for
initial data with finite energy (Theorem 1.1), this implies that the asymptotic behaviour
for random initial data is different from the asymptotic behaviour for smooth initial data.

Remark 1.5. Using the Gaussian measure from Section 3, we also obtain an invariant
Gaussian measure of the linearized wave equation (1.8) which is supported on Sl‘“ As

a consequence, there exists solutions ¢y, of (1.8) with initial data in S““k which do not
decay (even locally in space) as time goes to infinity. In light of this, the failure of soliton
resolution for initial data in $, x may not be too surprising, but it is still interesting that it
can be proven.

2. Preparations

In this section, we make necessary preparations for the rest of this article. In Subsec-
tion 2.1, we recall basic notation. In Subsection 2.2 and Subsection 2.3, we recall basic
facts from real analysis and the analysis of wave equations, respectively. In Subsection 2.4,
we restrict the exterior equivariant wave maps equation (1.1) to finite intervals and intro-
duce a change of variables. Finally, in Subsection 2.5, we introduce a finite-dimensional
approximation of (1.1).

2.1. Notation

Let A, B > 0. We write A < B if there exists a constant C = C(n, k, §) > 0 such that
A < CB is satisfied, where n, k, and § > 0 are as in Theorem 1.2. If the constant C
depends on additional parameters, this dependence is indicated through subscripts. For
example, if C also depends on ¢ > 0, we write A <, B. We also write A =2 B if B < A.
Finally, we write A ~ Bif A < B and B < A.

We further let Ry = Ro(n, k) > 1 be a sufficiently large radius. In the following, all
statements for finite intervals of the form [1, R] will only be made for R > R, which
guarantees that the properties from Lemma 2.9 below are satisfied.
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2.2. Basic facts from analysis

In this subsection, we recall a few basic facts from analysis. We first recall the definition
of L?-based Sobolev spaces.

Definition 2.1 (L2-based Sobolev spaces). Let I be either the finite interval [1, R], where
R > 1, or the semi-infinite interval [1, 00). For all smooth, compactly supported ¢: I — R,
we define the homogeneous norms

lolZa == /I ar e Nl = /, dr 3, ¢(r)|?.

wnd 1l = [ ar o0l
Furthermore, we define the inhomogeneous norms

161210ty = 1082y + 1912,
101220ty = 1220y + 19125, + 19122

We define the corresponding inhomogeneous function spaces L2(1), H(I), and H?(I)
as the closure of C°(I') with respect to the corresponding norms. Furthermore, we define

Hol (1) as the closure of C® (IO ), where [ is the interior of [ , with respect to the H!(I)-
norm.

In addition to the L2-based norms, we also work with weighted Holder norms, which
are introduced in the following definition.

Definition 2.2 (Weighted Holder spaces). Let I be either the finite interval [1, R], where
R > 1, or the semi-infinite interval [1, 00), let &« < 0, and let & € [0, 1). Then, we define

@(r) —o(p)
l@llcoms(ry = sup o ()] + sup | max(r, py* £
rel r,p€l: |7’—p|
r#p

We define the corresponding function space C%%¥(I) as the closure of C2°(I) with
respect to the C %%¥ (I)-norm. We also define

Co ™ (1) :={p € CO**(I):p[;; =0} and Cay™“(I):={p € CO**(I): (1) = 0}.

Furthermore, for any locally integrable ¢: I — R, we define

,
—1,a,k = d ‘ .
lellc-tewcr H /1 pe(p) Coan(r)

Finally, we define the corresponding function space C ~1%* () as the closure of C2°(I)
with respect to the C ~1**-norm.

We now make a few remarks regarding Definition 2.2.

(1) Since our function spaces (such as C %%*) are defined as the closure of C2°([I), our
function spaces are slightly different from the usual Holder spaces. In particular, all
of our function spaces are separable.
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(2) The C, (OO’)“ *_spaces, in which the zero Dirichlet boundary condition is only enforced
atr = 1, will be used to compare Gaussian and Gibbs measures defined on different
intervals (see, e.g., Proposition 4.3).

(3) The precise definition of the C ~1***-norm, which contains the integral of ¢, is moti-
vated by d’ Alembert’s formula (Lemma 2.7). By using integration by parts, it is easy
to see that elements of C ~1*%¥ are distributions.

To simplify the notation, we also define the unweighted Holder norms, that is, the
weighted Holder norms with k = 0, by

lellcoery == ll@llcoeoy and |@llc-1e) = ll@llc-1eor)-

Finally, we recall a special case of Hardy’s inequality.

Lemma 2.3 (Hardy’s inequality). For all R > 1 and for all ¢ € H([1, R]) satisfying

¢(1) = 0, it holds that
R é—2 R
/ dr = < 4/ dr (3,0)%.
1 r 1

At the end of this subsection, we introduce extension and restriction operators.

Definition 2.4 (Extension operator). For any 1 < R < oo and any f: (1, R) —> R, we
define g f: R — R as the extension of f which is odd around both » = 1 and r = R.
Similarly, for any f:(1,00) — R, we define €., f: R — R as the extension of f which
is odd around r = 1.

In the following lemma, we list a few basic properties of the extension operator.

Lemma 2.5 (Properties of the extension operator). For all 1 < R < oo, there exist maps
er:R — [1, R] and og: R — {0, 1} such that

(Br)(r) = (=)D fer(r))

forall f:(1, R) — R. Furthermore, the maps eg and or satisfy the following properties:

(1) eR is linear and has slope 1 on all intervals of the form m - (R — 1) + (1, R),
where m € 7.

(i) er(r) =r forallr € (1, R).
(iii) og is constant on all intervals of the formm - (R — 1) + (1, R), where m € Z.
(iv) or(r) =0 forallr € (1, R).

With obvious modifications, the same properties also hold in the semi-infinite case R = oco.
Proof. The properties follow directly from the definition of the extension operator. |

Definition 2.6 (Restriction operators). Let 1 < L < R < oo. For any smooth function
¢:[1, R] = R, we define Rr.rep:[1,L] - R by

RL;RY = @|[1,L]-
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Furthermore, we define %E,Rtp: [1,L] — R by

0 o(r) ifl<r<L-—1,
%LR()O(V): .
’ oL =1+ (= (L-D)@L)—p(L—1) ifL—-1<r<L.

Finally, we define
@L;R =RLRORL:R and §i2;R = glggR Q RL:R.

Throughout this article, we will primarily work with the restriction operator Ry .g.
However, it can sometimes be important to maintain the zero Dirichlet boundary condi-
tions, and then 922. g Will be used.

2.3. Wave equations and solitons

We now recall properties of the one-dimensional wave equation on the finite interval [1, R]
and semi-infinite interval [1, co). We first state d’ Alembert’s formula, which involves the
extension operators from Definition 2.4.

Lemma 2.7 (D’Alembert’s formula). Let 1 < R < oo, let f € C((1, R)), let g €
C*([1,R)]), and let h € C*°(R x [1, R]). Then, the unique solution of the initial-boundary
value problem

8?u—8$u:h, (t,r) e R x (1, R),
u(,1) =u(t,R) =0, teR,
u,r) = f(r), u(0,r)=g(r), re(l,R)
is given by
€ d _ r+t
) = CRDCED @0 L™ 0

1 t r+(—s)
- d dp (€rh)(s, p).

+2/0 S/r_(t_s) p (Erh)(s, p)

With obvious modifications, the same formula also holds in the semi-infinite case R = oo.
In order to simplify the notation, we make the definition
1 t r+(—s)
Duhg[h] := —/ dsf dp (8rh)(s, p).
2 0 r—(t—s)

We now state a precise definition of the topological solitons Q,, i, which were infor-
mally introduced in the introduction.

Definition 2.8 (Topological solitons [4,24]). Foralln > 0 and k > 1, we define O, x as
the unique minimizer of

> Kk + 1
% /1 dr r2((9r9)? + % sin® (¢) )

subject to the boundary conditions ¢ (1) = 0 and lim,_,~, ¢ () = nm. For notational pur-
poses, it is convenient to also define Qg,0(r) = 0.
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The case n = k = 0 will only be needed in the definition and analysis of the white
noise measure (Definition 3.6). In the following lemma, we recall basic properties of the
topological solitons.

Lemma 2.9 (Topological solitons [22, 24]). For all n > 0 and k > 1, there exists an
a = o,k € R such that

‘Qn k(r)_ (nzr k+1)’ sn,k r73(k+1)
is satisfied for all r > 1. Furthermore, there exists a constant ¢y j > 0 such that
R k(k+1 R
[ aru (=8 S cos20,.0) ¥ = ea [ arloy?
1
forall R > Rg and all ¥ € H}([1, R)).

2.4. Restriction to finite intervals and change of variables

In order to rigorously construct the Gibbs measures, we first need to replace the infinite
interval in (1.1) by a finite interval. To this end, we let R > Ry. We then consider

k(k +1)

Pon— x> dpr =t sin0gr). () €Rx(LR),
(2.1 ¢r(t,1) =0, t eR,
Br(1, R) = O k(R) (<R
@ 00)0.7) = Gro. 9.0, re R,

In (2.1), we impose the Dirichlet condition ¢r(f, R) = O, x(R), which will guarantee
that the limit of ¢ as R — oo lies in the same homotopy class as O, k. In order for (2.1)
to be consistent at r = R, we also require that the initial data satisfies ¢o, g (R) = O, x (R).
The initial-boundary value problem (2.1) has the conserved energy

R
0D Bex@rigw) =5 [ (0 + 0rgr) + D sin ).

We now introduce a change of variables which separates the topological soliton O, r and
converts the variable-coefficient operator 32 + 2r 19, into 32. To be precise, we write

(2.3) $r = Oni + 1" Ur.
The new unknown Y is a solution of the initial-boundary value problem
YR — YR =~ Nk (r ' YR), (t.r) € R x (L. R),
Yyr(t, 1) =0, t e R,
VR, R) =0, t € R,
(VR 9:¥R)(O0, 1) =r(@R0 — Qnk. PR, r € (1, R),
where
k(k+1) . .

) Ko@) = LD (Gin2(Quk + ) — 5in20,.0).

2
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Since the linearization of sin(2(Qp x + r~'¥r)) — sin(2Q, k) is cos(2Q, 1) (2r 1 Yg),
we define a linear operator

(2.5) Anir - D(Ani.r) € L2([1, R]) — L2([1, R])
by )

D(Apk,r) == (Hy N H?)([1, R])
and

k(k +1
<_3z+w
r rz

Ank,RYVR = COS(ZQn,k))l/fR

for all Yg € D(An k. r)- Since —d?2 is self-adjoint and the multiplication operator cor-
responding to cos(2Q, x)/r? is bounded and self-adjoint, it follows that A, x g is self-
adjoint. Furthermore, it follows from Lemma 2.9 that A, x g is positive definite.

The energy of ¢ r defined in (2.2) can also be written in terms of the new unknown vy g.
A direct computation shows that

Ex R(BR. :0R) = Ex (O, 0) + Enx R(WR, 3 VR),

where

Enkr(Vr-0i9R) = 5/1 dr((0:¥r)* + (8- Vr)?)
R
+ @ / dr (sin(Qn i +7 " ¥R)? — sin(Qy 1) — sin2Q, ) F " Vr).
1

In the following, the energy E n.k,R 1s often decomposed as

k(+)

il 1 R 2 2
Bvari0m) = 5 [ ar(00v0? + @t + =2 c0s(20,.00 V)

+ Vi, R(WR),

where the higher-order term V}, ¢ r(¥'g) is defined by

k(k+1) (L
@6 Varrlym) = D /1 ar g (V).

Q2.7) Yk (YR) := sin®(Qpn g + 1" YR) — sin®(Qp k) — sin(20, ) 1" Y&
—08(2Qn4) (r "Yr)?.

We note that the integral density 7}, x corresponds to the error in the second-order Taylor
expansion of sin?(Q, x + r~'¥g).

2.5. Finite-dimensional approximations

In order to prove the invariance of the Gibbs measure, we need to introduce finite-dimen-
sional approximations of the Gibbs measure and dynamics. Our finite-dimensional trunca-
tion is based on the eigenfunctions of the differential operator —3? with Dirichlet bound-
ary conditions. We recall that the corresponding orthonormal basis of eigenfunctions is
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given by

{\/%sin(nn;__ll) n > 1}.

We define Pg, <y as the L2-orthogonal projection onto the finite-dimensional space

VR,<N := span ({\/% sin (nn;__ll) 1 <n< N})

We note that Vg <y contains functions with frequencies < N/R (rather than < N). Since
the finite-dimensional approximations will only be used for fixed R > 1, this does not
create any problems. In the following lemma, we record a few elementary properties of
the projection Pr, <n.

Lemma 2.10 (Properties of Pr,<n). Let R > 1, let N > 1, and let o € [0, 1). Then, it
holds for all f € Cy**([1, R)) that

(2.8) I PR, <N fllz21,R)) < R1/2”f||L°°( 1,R])>
(2.9) I Pr,<n fllooqu,ry < NS llLeoqr,ry
(2.10) 10~ Pro<m) Flleury S RY(5) 1 leos o m

Remark 2.11. The second inequality (2.9) is rather crude, and can be improved sig-
nificantly (using estimates for the Dirichlet kernel). Since it will only be used in soft
arguments, however, the precise dependence on N is inessential.

Proof. The first inequality (2.8) follows from the L2-boundedness of Pg <y and the
embedding L™ < L2. To prove the second inequality (2.9), we note that

Py f(r)= —Zsm(nnr_l)/Rd,o sin(nng:

The desired inequality then follows from the trivial estimate |sin(x)| < 1. The third in-
equality (2.10) with o« = 0 follows from (2.8). Furthermore, it holds that

) /).

(1= Pr.<N)fll2 S ||f Iz < Rz R ALASE

The general case o € (0, 1) of (2.10) then follows by interpolation. ]

Equipped with Pr <y, we now define the frequency-truncated energy

1
@?Awmaw95=5ﬁcwwwmf+mwwh)

k 1
+ —(k +1 / dr sm(Qn rt+r 1PR <Nw(N))2

—mm@mﬁ 25in(Qn i) r ' Pr<n ¥ &)
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The energy Er(l]\,? g leads to the frequency-truncated initial-boundary value problem

(@2 - 2)yg" = —Pro<n (' Nuk ' Pro<n¥R)). (t.1) e R x (1L R),
v, 1) =0, t eR,
v, R) =0, t eR,
VR 0.r) = rdro — Ok, BVg (0.r) = r1. 1€ (1R).

@2.11)

3. Gaussian measures

As discussed in the introduction, the construction of the Gibbs measures is performed in
two steps. In the first step, which is the subject of this section, we analyze a family of
Gaussian measures. Throughout this section, we letn > 0and k > 1 orn = k = 0 (as in
Definition 2.8). Furthermore, we let R > R, where Ry is as in Section 2.1.

Definition 3.1 (Gaussian measures). We let g, ¢ r be the Gaussian measure on L ([1, R])
with covariance operator A;}c g> Where A, i g is asin (2.5).

Remark 3.2. The Gaussian measure g, g is supported on L2((1, R)) since A;}C risa
trace-class operator (for a fixed R > 1). We can also represent g, g as the law of

where (em)°°_1 is an orthonormal basis of eigenfunctions of A, x g with eigenvalues
(A2)%°_,, and (gm,)S>_, is a sequence of independent, standard, real-valued Gaussians.

>J|<>e

In the following proposition, we obtain growth and Holder estimates for samples from
the Gaussian measure g, i R-

Proposition 3.3 (Gaussian measures). Let 0 < ¢ < 1 and definea := 1/2 — ¢ and k =
—1/2 — &. Then, it holds for all p > 1 that

1
(31) gnkR[HWHCOaK([I R ] /p 58 ﬁ

Furthermore, it holds for all v € [1, R] that
21 > _r _
(3.2) Eg oV 2 (1 R)(r 1.

Remark 3.4. Proposition 3.3 shows that v/ (r) grows slower than r/2+¢ for all & > 0.
Thus, the growth rate of ¥ (r) is as for Brownian motion, which corresponds to the case
n = k = 0 (in the limit R — 00).

The proof of Proposition 3.3 is postponed until Subsection 3.2 below. While Proposi-
tion 3.3 yields uniform estimates in R > Ry, it does not (explicitly) contain the conver-
gence in the infinite-volume limit R — oo, which is the subject of the next lemma.
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Lemma 3.5 (Infinite-volume limit). Let« := 1/2 —§ and let k :== —1/2 — 8. Then, there
exists a unique Gaussian measure g j supported on C(? @K ([1, 00)) which satisfies

(3.3) (RL;00)# Gnk = W-Im (RL;R)# Gn kR
R—o0

forall L > 1. In (3.3), the limit refers to the weak limit on C(OO’;I’K([I, L)) (see Definition 2.2

and Definition A.4) and (R0 )4 and (Rr;r)# denote push-forwards.

Just as for Proposition 3.3, the proof of Lemma 3.5 is postponed until Subsection 3.2
below. In addition to the Gaussian measures ¢, x,r and g, r, which will be used to
describe the random initial position, we also need a measure describing the random ini-
tial velocity. This measure is the white noise measure, which is defined in the following
definition.

Definition 3.6 (White noise measure). We define the white noise measure w-g as the
push-forward of g¢,0, g under the distributional derivative d,.

Since the potential energy in (2.6) and (2.7) only depends on the position but not on
the velocity, the white noise measure w g plays a less important role in this article than
the Gaussian measures g, i, g. In the following corollary, we record the properties of
the white noise measure, which easily follow from the corresponding properties of the
Gaussian measures.

Corollary 3.7 (White noise measure). Let 0 < ¢ K 1, let o := 1/2 — ¢, and let k :=
—1/2 — &. Then, it holds for all p > 1 that

1/p
EwR[”wug‘fl,u,x([l’R])] 58 \/ﬁ

Furthermore, there exists a unique probability measure w supported on C V%K ([1, 00))
which satisfies
(%L;oo)#w = w-lim (Rr.p)swr foral L > 1.
R—o0

Proof. This follows directly from the definitions of the C %% and C~1'**-norms, the
definition of w g, and Proposition 3.3, and Lemma 3.5. [

3.1. The Green’s functions

In order to prove Proposition 3.3, we require estimates for the Green’s function of the
operator A, r g, which is defined as follows.

Definition 3.8 (Green’s functions). We define G, x r:[1, R] x [1, R] — R as the Green’s
function corresponding to the operator A, k g, i.e., as the solution of the initial value
problem

{ (=82 + 25D 0820, 1)) G & (1. p) = 8(r — p),

Gin,r(1,p) = G, r(R, p) = 0.
Since A, kg is self-adjoint, the Green’s function G, kg is symmetric, i.e., satisfies

Gni,r(r.p) = Gy x,r(p,7) forall (r,p) €1, R]z.
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In the next lemma, we state two representations of the Green’s functions. The first
representation, which is only available in the special case n = 0, is explicit. The second
representation, which holds for general n > 0, is an expansion of G, kg around Gg g gr.

Lemma 3.9 (Representations of the Green’s functions). We have the following two iden-
tities.

(i) Thecasen = 0. Forall1 <r < p < R, it holds that

1 R1+2y _p1+2y
1+2y Ry 1

1 1
y=ve:=yytkk+)—5=

(i1) The casen > 1. Forall 1 <r,p < R, it holds that

Gok,r(r,p) = (oY r1TY oYY,

where

Gn,k,R(rv p) = GO,k,R(r’ p)

R cos (20, 1k (u)) — 1
+ k(k + 1)/ du Go . g(r,u) ( ’;2 ) Gok,r(u, p)
1

cos (2Qn,k(u)) -1

u2

R R
+ k2 (k + 1)2/1 du/1 dU[Go,k,R(rvu)
cos(20, x(v)) — 1
2

X Gy i, r(U, V) Gok,r(v, P)]'

Remark 3.10. In the case n = k = 0, the Green’s function is given by

R—p
-1
R_l(r )

Go,o,r(7,p) =

forall 1 <r < p < R. This corresponds to a Brownian bridge with starting point r = 1
and endpoint r = R.

Proof. We prove the two identities in (i) and (ii) separately.

Proof of (i). Since Q¢ = 0, G k,r is a solution of

k(k +1
G.4) (=92 + D) Gontrp) = 56—,

The characteristic polynomial equation corresponding to (3.4) is given by —a (o — 1) +
k(k + 1) = 0, which has the roots

L L
{3+ +kk+D. 5=/ +kk+D} = 1+y.—p).

Thus, the Green’s function G,z can be written as

ar'*Y 4+ br7v ifr <p,

35 G P =
(3.5) 0.k,R(7, p) {Cr1+y+dr—1’ ifr > p,
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where a, b, c¢,d € R are parameters depending only on y, R, and p. In addition to (3.5),
the differential equation (3.4) also implies the two conditions
lim Go ,r(r, p) = lim Go r(r, p)
(3.6) rtp rip
and lim 0, Go k,r(r, p) = lim 8, Go  r(r, p) + 1.
rtp rip

Together with the boundary conditions Go,r(1, p) = Gox,r(R, p) = 0, (3.6) yields a
linear system for the parameters a, b, c,d € R, whose solution leads to the desired identity.

Proof of (ii). By using the resolvent identity twice, we obtain that
-1 _ g4-1 -1 -1
Ak r = Aogr T Ak r (Ank.R = Aok.R) Ag i R
-1 -1 -1
3.7 = Ao + Ao iR (Anjer = Aok, R) Ao R
-1 -1 -1
+ Aok, (An iR = Aok, R) Ay i R (An kR = Aok, R) Ag g k-

After converting this operator identity into an identity for the corresponding Green’s func-
tions, we obtain the desired identity. ]

In the next lemma, we obtain pointwise and derivative estimates for the Green’s func-
tions. These estimates will be the main ingredient in the growth and regularity estimates
in Proposition 3.3.

Lemma 3.11 (Growth and derivative estimates for the Green’s functions). Forall 1 <r
and p < R, it holds that

(38) |Gk,n,R(rv p)| S min(rv p)’
(3.9) |aer,n,R(rv )O)| <1,
(3.10) 10,Grn,r(r, p)| < 1.

Proof. We split the proof into two steps. In the first step, we treat the special case n = 0,
which uses Lemma 3.9 (i). In the second step, we then treat the general case n > 1, which
uses the resolvent identity from Lemma 3.9 (ii).

Step 1. The special case n = 0. We separately prove the three estimates (3.8), (3.9),
and (3.10). Due to the symmetry of the Green’s functions, it suffices to treat the case
1 <r < p < R. Using Lemma 3.9 (i), we obtain the pointwise estimate

1 R1+2}/ _p1+2y
1-r<r.

~

v 14y _ VY < )
12y R 1 (o r prr )_1+2y

Similarly, we obtain the d,-estimate

Gox,r(r.p) =

R1+2)’ _p1+2)’
10-Gok,r(r, p)| = 112y R#+2r 1

In order to obtain the d,-estimate, we first decompose

((1 + y)(%)y + yp_”r_l_”) <.

1 Rl+2y _p1+2y 4+
— -V Y VY,V
GAD BpGror(r0) = 758 “ iy ) (07 =)
1 R1+2)/_ 1+2y
(3.12) + P 8, (07 r1HY — p V),

1+2y R
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For the first summand (3.11) and second summand (3.12), we then have that

p*Y

GADI £ Zay

14y
r<1 and |(3.12)|5(5) F1S1
0

This completes the proof of the three estimates (3.8), (3.9), and (3.10) in the special case
n=0.

Step 11. The general case n > 1. We first prove forall 1 <r < p < R that

(3.13) |G ie,r(r, )| < /7P

To this end, we use Cauchy—Schwarz, which implies

_ 2 ~1/2 —1/2
|Gk, R(T, PP = |(8r’An,lk,R8P)L2’ = ”An,k/,RSr”iz ) ||An,k/,R5p||i2

= (6, A;,}C,Rgr) : (8;0’ A;,}C,RS;» = Gux,r(r,7) G i, R(P: P)-

Thus, it suffices to treat the case r = p. Due to Lemma 2.9, there exists a positive constant
Cnk > Osuchthat A, xR > ¢y k Aok, r- Due to the operator monotonicity of the operator
inverse, it follows that A;,lk’ R = cn_}( A(T,}c, - At the level of the Green’s function, it then
follows that
Gu,r(r, 1) < C,Z}c Gox,r(r,r) S

This completes the proof of (3.13).

We now prove the desired estimates (3.8), (3.9), and (3.10). Due to the symmetry
of G, ., r, it suffices to prove (3.8) and (3.9). We now recall the resolvent identity' from
Lemma 3.9 (ii), which yields

(3.14) Gp i r(r,p) = Gox,r(r,p)

COS(ZQnJ;(u)) —1 Gox,r(1, p)

R
(3.15) + k(k + 1)/ du Go g, r(r,u)
1

cos(2Qp k(1)) — 1

u?

R R
(3.16) Rk + 1)2/ du/ dv[Go,k,R(r,u)
1 1
c0s(2Qy k(v)) — 1
2

Gokr(v.9)]

We emphasize that in all three terms (3.14), (3.15), and (3.16), the r and p-variables only
enter as arguments of Gk, g, which is crucial for upgrading the pointwise estimate (3.13)
to derivative estimates. It suffices to prove the pointwise estimate (3.8) and the derivative
estimate (3.9) separately for the three summands (3.14), (3.15), and (3.16).

For the first summand (3.14), the estimates (3.8) and (3.9) have already been proven
in the first step. For the second summand, Lemma 2.9 implies that

X Gn,k,R(u» U)

R R
|(3.19)] < / du min(r, u) x u~% x min(u, p) < / duu™* <1 < min(r, p).
1 1

I'Since we are using symmetry to only estimate the r-derivative, it would have been sufficient to use a first-
order rather than second-order expansion in (3.7). For expository purposes, however, we prefer to work with the
second-order expansion. As a result of the second-order expansion, both the r and p-derivatives of (3.14)—(3.16)
can be estimated.
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Similarly, we have that

R R
06151 5 [ duld, Gop(ra)|u minu.p) < [ adu 5 1.
1 1

It remains to treat the third summand (3.16). Using Lemma 2.9 and (3.13), it holds that
R R
[(3.16)] < / du/ dv min(r, u) u™% /uv v min(v, p)
1 1

R R
5/ du/ dvu=%2y=9/2 <I1.
1 1

Similarly, we have that
R R
[0,(3.16)| < / du/ dv |0, Gy k,r (7. w)|u™® uv v™8 min(v, p)
1 1

R R
5/ du/ dvu3v79? <1 ]
1 1

In the next lemma, we obtain a lower bound for the diagonal of the Green’s function,
which essentially matches the upper bound from Lemma 3.11.

Lemma 3.12 (Lower bounds). It holds for all 1 < r < R that
Guar(r) 2 (1= %) =1,

Proof. Using the trivial estimate cos(20, ) < 1, it holds that

k(k +1 k(k +1
—d7 + % cos(2Q0n k) < —37 + %
r r
Due to the operator monotonicity of the inverse, it follows that A;} » = A} ». As a
result, it follows for all r € [1, R] that
Gn,k,R(rv r) Z GO,k,R(rv r)'
Using Lemma 3.9 and R > Ry > 1, we obtain that
1 R1+2y _ r1+2y ) R1+2y _ rRZy
_ _ a2y _
GO,k,R(r’r) - 1 +2]/ R1+2y_l (r r ) ~ R1+2y l (r 1)
r
> (1- —) r— 1,
(=)o
which yields the desired estimate. ]

We now state and proof our last estimate for the Green’s functions, which concerns
the limit as R — oo.

Lemma 3.13 (Convergence of Green’s functions). For all L > 1, it holds that

L L
(3.17) lim dr/ dp |Gk r(r, p) — Gy r(r.p)| = 0.
1 1

R,R'—o0

Our argument is based on a weighted energy estimate.
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Proof. For expository purposes, we separate the proof into four steps.

Step 1. Setup. Due to the limit and symmetry in R and R’, we may assume that R’ >
R > L. We further fix p € [1, L] and let 0 < 1 < 1 remain to be chosen. We then define
the weighted difference w = wy, kg r',p: [1, R] — R by

R\7
(3.18) w(r) = (=) (Gukr (. p) = Go k7. p).
A straightforward calculation shows that w solves the initial-boundary value problem

(3.19) {(_ 02 + &40 cos (20, 1)) w(r) = =201 dw(r) + (1 = mr2w(r),
| w(l) = 0. w(R) = Ger(R.p).

From Lemma 3.11, it also follows that
(3.20) [w(R)| < lpl <L and [d,w(R)| < 1.

Step 2. Weighted energy estimate. In the second step, we prove the energy estimate

R R
(3.21) / dr((arw)2 + @ cos(20n k) w2) <L+ r)/ dr (3,w)?.
1 1

In order to prove (3.21), we multiply the ordinary differential equation in (3.19) with w
and integrate by parts, which yields the identity
R 2 k(k+1) 2
dr((arw) + 2 cos(2Qp k)W )
(3.22) 1

R R
=w(r)8rw(r)|f:1 —277/ dr r_lwa,w+n(1_n)/ dr r2 w2,
1 1

Using the boundary conditions in (3.19) and the estimates in (3.20), the boundary terms
in (3.22) can be estimated by

lw(r)d,w(r)|E | = [w(R)d,w(R)| < L.

The second and third terms in (3.22) can be estimated using Cauchy—Schwarz and Hardy’s
inequality. This completes the proof of (3.21).

Step 3. Positive definiteness. In this step, we show that
R k(k +1 R
(3.23) / dr((a,w)2 + % cos(20n k) wz) +L> / dr ((9,w)? + r2w?).
1 r 1

In order to utilize Lemma 2.9, we need to replace w with an element of H, ([1, R]). To
this end, we let y: R — [0, 1] be a smooth cut-off function satisfying y|[—1/4,1/47 = 1 and
XIR\[=1/2,1/2] = 0. We then define & by

(3.24) () = w(r) — X(%)wm)
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and note that W satisfies the boundary conditions w(1) = w(R) = 0. Using (3.20), it
follows that

R
/1 dr((0,@ — 8,w)* + r~>(d — w)?)
(3.25)

1 (R —R\2 [
< (_2/ drx’(r ) +/ drr_z)w(R)z <R 'w(R?<R'L*<L.
R? /4 R R/2

The desired estimate (3.23) can now be derived from Lemma 2.9 (applied to w) and (3.25).

Step 4. Conclusion. Provided that 0 < n < 1 is sufficiently small, (3.21) and (3.23)
yield

R R
/ drr2w? < / dr (0, w)*> +r2w?) < L.
1 1

By restricting the domain of integration to [1, L], inserting the definition of w from (3.18),
and recalling that p € [1, L] is arbitrary, it follows that

L
sup / 0 (G gk (. P) = Gk (1 P2 S LIFTR.
pel1,L]1J1

Together with Holder’s inequality, this implies the desired estimate (3.17). ]

3.2. Control of Gaussian measure

We first recall a special case of Mercer’s theorem (cf. Section I11.5.4 in [12]), which allows
us to utilize our Green’s function estimates (Lemma 3.11).

Lemma 3.14. Forall 1 <r,p < R, it holds that
IEgn,k,R [W(r) W(p)] = Gn,k,R (rv P)

Proof. We rely on the representation of the Gaussian measure g, ¢ g from Remark 3.2.
From this representation, it follows that

o0
1
EgcxW V(O] = ) 55 em(r)em(p) = Gk p). .
m=1""m
Equipped with Lemma 3.14, we now have all ingredients for our proof of Proposi-
tion 3.3.

Proof of Proposition 3.3. Using the very definition of the C%%¥([1, R])-norm, the esti-
mate (3.1) can be reduced” to the two estimates

(Y ([ \P7/P
(3.20) Egn,k,R[IESl:ER(rl/ZH)] e VP
[ () — ¥ (p)l e
62 ol e (g o oen) | 5P
r#s

2In fact, (3.27) is stronger than the required estimate, since it contains the factor max(r, p) ¢ instead of
max(r, p)_l/z_e.
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It suffices to treat the case p > 1071, since the case p =< 10! then follows from
Holder’s inequality. The argument that follows is a combination of Mercer’s theorem
(Lemma 3.14), the Green’s function estimate (Lemma 3.11) and Kolmogorov’s continuity
theorem (Lemma A.2).

First, using Mercer’s theorem (see Lemma 3.14) and the Green’s function estimate
(see Lemma 3.11), we obtain for all 1 < r, p < R that

Egex V) =¥ (0)P] = Eg, i a [ ()] = 2B g, 1 [¥ (D ¥ (0)] + By, , [V (0)°]
= Gn,k,R(rs r) - 2Gn,k,R(rv P) + Gn,k,R(pv p)

(lga;R 107Gk, (1, )| +  max, 10,Gn i, R (T, u)l)lr —p

A

< |r—pl.
Using Gaussian hypercontractivity (Lemma A.1), we obtain for all p > 1 that

E g1V () =¥ (@)1 < /P Ir = pl.

We now let 1 < L < R. Using Kolmogorov’s continuity theorem (Lemma A.2) with ¢ =
1/2—1/pand B = (1 —&)/2, and using that p > 10&™!, we obtain that

( W () — v (p)] )IT“’
max(r, p)° - [r — p|(1=)/2

1<r,p<R:
r#s,
max(r,p)€[L/4,L]

(IW(V)—W(/O)I)P]I/P

—&
Se L Egn,k,R[ sup Ir — p|0=o)/2

1<r,p<L:
r#s

SE ﬁL—é‘ Ll/p+1/2—(l—€)/2 S \/EL—S/4.

After summing over all dyadic L € [1, R], this yields the Holder estimate (3.27). The
growth estimate (3.26) then directly follows from the boundary condition (1) = 0 and
the Holder estimate (3.27). It now only remains to prove the lower bound (3.2). Using
Lemma 3.14, it holds that

Eg,ix [V (1)) = Guie.r(r.1).
Using Lemma 3.12, we directly obtain the desired estimate. n

It remains to prove Lemma 3.5, which concerns the infinite-volume limit of the Gaus-
sian measures.

Proof of Lemma 3.5. 1t suffices to prove the existence of the weak limit

(3.28) Gn k(L) = W-Iim (RL;R)# Gn kR
R—>o0

on C(O(;;”’K([l, L)) for all L > 1. Indeed, once (3.28) has been established, the Gaussian
measure ¢, x can be constructed from (g, ,z))r>1 via Kolmogorov’s extension theo-

rem. From Proposition 3.3, it follows that the Gaussian measures ((Rr;Rr)#Gn k,R)R>1
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are tight on C(%)“ “([1, L]). Due to Prokhorov’s theorem, it therefore only remains to

establish the uniqueness of weak subsequential limits of ((Rr;r)#¢n k,r)R>1. For any
&1 € C2°((1, L)), the law of the random variable

L
(3.29) e ChrL o~ [ ara e

with respect to the Gaussian measure (Rr;R)#gn k,r is @ normal distribution with mean
zero and variance

L L
/ dr f dp G e (1. ) EL.() E1.(9).
1 1

In order to prove the uniqueness of weak subsequential limits, it therefore suffices to prove
the convergence of (3.29) as R — oo. This follows directly from the convergence of the
Green’s functions G, k g as stated in Lemma 3.13. m

4. Existence of the Gibbs measures

In this section, we construct the Gibbs measures. As in Section 3, we continue to work
with the unknown ¥ g from (2.3). In order to distinguish between the Gibbs measures
in ¢ g and Y g, we denote the corresponding Gibbs measures by fi, k. g and Vy kg, respec-
tively. Throughout this section, we primarily work with U, x g, and later convert our result

to /ln,k,R-
In the first definition of this section, we introduce the Gibbs measures corresponding
to the frequency-truncated k-equivariant wave maps equation (2.11).

Definition 4.1 (Frequency-truncated Gibbs measures). Let n > 0, k > 1, R > Ry, and
N > 1. Then, we define

“.D r(;Al?R : (th[\;c)R)_l exp (— Vn(,jl\c,,)R)g-”skaR'

In (4.1), Zfll\;c) g > 01is a normalization constant, g, kg is as in Definition 3.1,

k(k +1
VW) = T )/ ar 7 (p)
and
@2 U Wr) = sin?(Qni + 17 PR <N WR) — 5in%(Qn k)
—sin(20n4) 7' PR, <N ¥R — 0820 k) (r " YR)?.

Furthermore, we also define

->(N) . (N)
kR = ViR ® WR

where w g is as in Definition 3.6.

We emphasize that the quadratic term in (4.2) contains ¥z, and not Pr, <y ¥'R.
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Remark 4.2 (g, i, g versus go,0,r). Even for fixed R > Rp and N > 1, it is not entirely
obvious that the Gibbs measure v, i g from (4.1) is well defined. In order for v, i g to be
well defined, it is necessary that

exp (k(k +1 /‘ cos 2Q,, x)

Vi) € L' (gnir)-
However, this follows easily from the fact that the covariance operator of g, x, g is
- k(k +1) -1
n,lk,R = <_ 83 + 272 cos (2an))

and that, for any fixed R > Ry, (—0?)~! is trace-class on L2([1, R]). From similar con-
siderations, it also follows that

_ k(k+1) (R . _
d”(N)RW )= (Z;%)R) 13XP<——( 5 )/ dr<Sln2(Qn,k+r 'Pr,<NVR)
1

—5in(Qp k) = $in(2 00 ) 1~ P, <w VR ) ) dgo.0.& (VR)-

(4.3)

In other words, the Gibbs measure can also be written with respect to gg,0,g rather
than g, ¢ r. The identity (4.3) is useful when thinking about the invariance of the Gibbs
measure for any finite R > R, but will not be useful in the infinite-volume limit R — oo.

We can now state the main proposition of this section, which contains the construction
of Gibbs measures on finite and semi-infinite intervals.

Proposition 4.3 (Construction of Gibbs measures). Letn >0, letk > 1, leta :=1/2 -,
and let k :== —1/2 — §. Then, we have the following two properties.

(i) (Finite interval) Let Ry < R < 00. As N — oo, v,(lj\]]c) R converges in total variation

to a unique limit v,  r. Furthermore, it holds that o
vk, R(WR) = Zyye g ©P(—Vo i, R(VR)) Ak, R(VR).

(ii) (Semi-infinite interval) There is a unigue probability measure vy i on Cg’a"‘ ([1,00))
which satisfies

4.4) (RL;00)#Vnk = VX_I,IOT (RL:R)# Vn kR

forall L > 1. In (4.4), the limit refers to the weak limit on C(%)a “([1, L)). Further-
more, it holds that

vk (V) = Zk exp(=Vax (V) dgn i (V).

In Section 3, we have previously obtained detailed information on the Gaussian mea-
sures g, k,Rr- In order to prove Proposition 4.3, it therefore primarily remains to control
the Radon—-Nikodym derivative of the Gibbs measures with respect to the Gaussian mea-
sures, which is the subject of Section 4.1. The rest of the proof of Proposition 4.3, which
is presented in Subsection 4.2, relies on soft arguments.
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4.1. Control of Radon—-Nikodym derivative

In the first (and main) lemma of this subsection, we prove an exponential moment estimate
for the potential energy with respect to the Gaussian measures.

Lemma 4.4 (Uniform exponential bounds). Let n > 0, let k > 1, and let Ry < L < R.
Furthermore, let

4. Py
4.5) O=a<1+ 0%+

Then, we have that
Elexp(—q¢ Vi k)] Sq 1.

Proof. In the following, we will simplify the notation by denoting samples by y, rather
than ¥ g. It suffices to treat the case

1

l<gel4—1t
=<t kT

since the range 0 < ¢ < 1 can then be obtained using Holder’s inequality. By using a
consequence of the Boué—Dupuis formula (Lemma A.3), it follows that

108 (E g, n[eXp(—qVi,)) = Eqpe| inf gV +9)
¢eH, ([1,R])

(4.6) n %/ler<(3r§)2 4 Rkt 1):§S(ZQ””‘) gz)}].

Thus, it suffices to obtain a lower bound on the variational problem in (4.6). In the
argument below, the reader should keep the following guiding principle in mind: while
Proposition 3.3 controls arbitrary moments of the Gaussian process ¥, the good term
in (4.6) only controls the second moment of {. As a result, all Taylor expansions should
be performed around ¢.

We recall that the integral density of V,, x (¥ + ¢) is given by a scalar multiple of

Tk (U + ) = sin*(Qn i + ¥ + 171 —sin*(Qn i)
= 5inQ2Qp ) 1Y +§) = cosQn i) r W + 0)%.

We now simplify the expressions in (4.7). Using Lemma 2.9, the first, second, and third
summand in (4.7) can be approximated or estimated by

4.7

4.8) | sinz(Q,,,k +r Y+ ) —sin?(r Ty + r_1§)| S|Onk —nm| < r2,
@9 |sin*(Qni)| S Qni —nw| 172,

@10)  [sinQu ) r (W + O £ 1Qnp —nx|r~ (| + 18D < r 2w + 15D
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We now combine the sin?(r~! (¢ + ¢))-term from (4.8) with part of the last summand
from (4.7). Using Taylor’s theorem, we have that

|sin®(r 'y + r710) — 200820 i) T Y — cos(2Q, k) (r1)?|
< | sin?(r~ Yy + 1) —sin@r ) r Ty — cos(2r710) (r_ll//)2|
+ | sin2r ') r Y — 2c0s(2Q, 1) r_lf”_lw
+ |(cos(2r_1§‘) —cos(205 k) (r_IW)2|
<D+ 11— cos@u )| w1
+ |Gsin@r71) = 2r7 'O r T Y |+ THE + [ Qg — n) YD

4.11)

Using Lemma 2.9, the elementary estimate [sin(x) — x| < min(|x|, |x|?) < |x|*/2, and
Young’s inequality, we obtain for all n € (0, 1) that (4.11) is
Y G 1 R G e G R T 2%
4.12) <252 -l .—4y2 | 31,03 -3 —44

S A YT A Y Ty

By combining (4.8)—(4.12) and using Young’s inequality, it follows that
[T de. (Y + §) = (sin®(r™1¢) — c0s(20 1) (r~10)?)]
@13) <R A T R T P Py
S e P Y.

We now let C,, > 1 be sufficiently large. By inserting (4.13) into the objective function
in (4.6), it then follows that

Egn,k,R[giergg (4Vaser 40+ 5 /1 ’ o (2 + M D200 o

R L
(4.14) > inf {l/ dr (3,0)* + —qk(k +1) / drsin(r—1¢)?
teH, 2 1 2 1

R R
3 n,kT)/ o {2 N k(k + 1) / dr cos(20Q5 k) é‘z
1

2
k(k + 1) / cos(ZQ,, %) é‘2}

415) = Cua Egyy] /1 dr (-2 + 2y P 4ty

We now treat (4.14) and (4.15) separately. In order to estimate (4.14), we first note that
sin?(r~1¢) is nonnegative, which yields

L
—qk(k2+ D / dr sin(r_lf)2 > 0.
1
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Furthermore, as L > Ry and R is sufficiently large, Lemma 2.9 implies that cos(2Q, )
is nonnegative on [L, R]. Together with Hardy’s inequality (Lemma 2.3), it follows that

k(k+1) B cos20,x) k(k+1) cos(Zan)
/dr P /

2 —q ¢

ke +1) % 20, k(k +1) [R
3_(‘7—1)%/1 drm(r—zQ’k)ézz—Mq—l)%/l drr2¢%,

In total, it follows that
1 R
(4.14) > z(1—4k(k+ 1)(q—1)—8c,,,kn)/ dr (3,0)%.
1

Due to our assumption on ¢, we can choose 1 = 1, x4 > 0 sufficiently small such that
1 —4k(k+1)(g—1)—8Cyxn > 0.

Thus, the contribution (4.14) is bounded below by zero. In order to complete the proof, it
therefore only remains to estimate (4.15). Using Proposition 3.3 and our choice of n > 0,
it follows for all ¢ > 0 that

R
7 Egn [ r02 P 4ty
1
R
Sn,k,q,a [ dr(r_z + r—3/2+8 + r—2+6) <. 1
1

which yields the desired lower bound on (4.15). ]

Remark 4.5. As already discussed in the proof of Lemma 4.4, we use a Taylor expansion
of the potential energy around the drift term ¢ rather than the Gaussian term . This is in
sharp contrast to [3], in which the potential energy is expanded around the Gaussian term.

While Lemma 4.4 yields uniform exponential bounds, it does not yield estimates for
increments in the interval size L or the frequency-truncation parameter N, which are the
subject of the next lemma.

Lemma 4.6 (Increments in L and N). Letn > 0, letk > 1, let R > Ry, let2 < L < R,
and let N > 1. We also let ¢ > 0 and p > 2. Then, it holds that

(4.16) Vi = Vaser 220 (gn ) Se pP/2L712FE,

N —
@17) [ 1Va k= Vo =l XPUVi =Vl oD Lo, o Se N~ 2H XP(Cop s R ),
where Cy, i . > 1 is sufficiently large.

Proof. We first prove the estimate for the increment in L, i.e., (4.16). Using Taylor’s
theorem, the density 7, i, g from (2.7) satisfies

1Tt (W) < | sin®(Qnie + 17" W) —sin(Qu i) — sin(2Qu i) r 'y
—cos(2Qu ) (r M Y)?| < Ity P
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Using the definition of V}, ¢ 1 from (2.6), Holder’s inequality, and Proposition 3.3, this
implies

L
VakL = Vas.Ls2llLe(gir) < /L/ dr 1) Lr (s )
2

L L
< dr ”r—lw”3 < p3/2/ dr r—3/2+a < L_1/2+Ep3/2.
/;‘/2 L3p((ln,k,R) L/2

This completes the proof of (4.16). It remains to prove (4.17). To this end, we first prove
for all Yz € CO/2757127¢([1, R]) that

(4.18) |(V,,(,IZ,)R —Vase ) WR) Se R¥Z N7V Yg |l consoe12-e1 -

Indeed, it follows from Holder’s inequality and Lemma 2.10 that

R
N _
|(Vn(,k,)R —Vaik,R)(WR) < / drr ' |Pr<n VR — VR S | PR, <N YR — VRIL2(1.R])
1
<e R1-e N~1/2+e lvr ||C0,1/2—a,0([1,R]) <e R3/2 N~1/2te v r ||Co,1/2—e,—1/2—s([1’R]).
Using (4.18) and that C,, ¢ . > 1 is sufficiently large, it follows that

(N) (N)
|||Vn,k,R - Vn,k,R| eXp(|Vn,k,R - Vn,k,RD”Ll’(g,,)k)R)

Se N7V IR g conramecti-equ r))

Chke nr—
X exp (2—(’; N 1/2+e R3/2||1//R ||Co,l/z—s,—l/z—s([l,R])) ‘

Lp(Q-n,k,R)

Cy,

< N_1/2+€ exp (% R3/2||WR ||Co,l/z—e,—l/z—s([l’R])) ‘

~E&

L?(gpk,R)

Thus, the desired estimate follows from Proposition 3.3 (and exponential moment esti-
mates for sub-Gaussian random variables). [

At the end of this subsection, we record the following corollary of Lemma 4.4 and
Lemma 4.6, which is used to control the normalization constants.

Corollary 4.7. Letn > 0 and let k > 1. Then, it holds that

(4.19) ]Egn,k,R [exp(_Vn,k,L)] ~ 1
uniformly for all Ry < L < R.

Proof. The upper bound in (4.19) follows directly from Lemma 4.4. Using Jensen’s in-
equality and Lemma 4.6, we also have that

Egn,k,R [exp(_Vn,k,L)] = €Xp ( - ]Egn,k,R[Vn,k,L]) zZ 1,

which yields the lower bound in (4.19). [
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4.2. Proof of Proposition 4.3

Equipped with the estimates from Subsection 4.1, we now present the proof of Proposi-
tion 4.3.

Proof of Proposition 4.3. We first construct the Gibbs measures for finite intervals, i.e.,
we first prove (i). Due to Corollary 4.7, it suffices to prove that

. N
(4.20) Jim | exp(=Vsk,R) — exp(— Vi 1o s 0 = ©

To this end, we let ¢ = g € (1, 00) satisfy (4.5) and let ¢’ be its Holder-conjugate. Using
the elementary estimate

lexp(—x) —exp(—y)| < |x — ylexp(|x — y[)exp(—x), Vx.y €R,
and Holder’s inequality, it follows that

|| exp(=Vy k,r) — eXp(_Vn(,Il\cl,)R) HL‘(gn,k,R)

< | Wakr = V3 Rl exp(Vaser = Vi kD exp=Vai ) 11y 4 0
< Wik = Vo rl expVasek = Vi D o, o o 1 XP(Vik RN 20 (g0
By using Lemma 4.4 and Lemma 4.6, it follows for all £ > 0 that
11V = Vi rl exp Wik = Vi kD Lt (g o o 5P Vit L0
Snkre N7V

This completes the proof of (4.20).

‘We now construct the Gibbs measure on the semi-infinite interval, that is, we now
prove (ii). Using Lemma 4.4, we can define

dvn,k (V) = Z;,lk CXP(—Vn,k W) dgn,k ).

In order to prove (4.4), we introduce auxiliary probability measures. To be more precise,
we let Rg < R’ < R and define a probability measure v, x g,z on Co**([1, R]) by

dvp kR (WR) := Z i m.g XP(— Vi k. R (WR)) dGn k R(VR).

We note that the difference between v, ¢ g g/ and v, g g is that the potential energy is
only integrated over [1, R’] rather than [1, R]. We now claim forall 1 < R’ < R < oo and
all & > 0 that

4.21) vk R.R = VnkRIITV Se (R)TH2FE.

In order to prove (4.21), we first recall from Corollary 4.7 that Z,, x g g’ ~ 1 (uniformly
in R and R’). As a result, it holds that

Ve, R, R = Vje.RIlTV < | eXp(=Vi ke, R) — eXp(=Vi i, R L1 (g0 1 )
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We now choose any ¢ = g € (1, 00) satisfying (4.5), and let ¢’ be its Holder-conjugate.
Using the elementary estimate

|exp(—x) —exp(—y)| < [x — y[(exp(—x) +exp(—y)). Vux,y €R,
and Holder’s inequality, it follows that
Il exp(=Viuie,R) — eXP(—=Va ke, R L1 (g, .0)
S Vo, = Vi, r | (xp(—= Vi i R) + exp(_Vn,k,R/))“Ll(gn,k,R)
S WVakr = VakRllLa (g, ) - 1 €XP(=Vak,R) + eXp(=Va k. R L4 (g 4. 2)-

After using Lemma 4.4 and Lemma 4.6, this completes the proof of the claim (4.21). Due
to (4.21), it now only remains to prove that

4.22) (RL;00)# Vn k00,7 = W-Iim (RL;R)# Vi k,R,R'»
R—o0

where the limit refers to the weak limit on C(OO’;‘ “([1, L]). In order to prove (4.22), it

suffices’ to show that

lim [ f(RL;rYR)exp(—Vaui,r(VR)) dgn i, rR(VR)

—00

4.23)
- / F(@i00¥) xp(—Vo g r (9)) A ()

for all L, R’ > 1 and bounded and Lipschitz continuous f: C(O(;)a"‘([l, L]) — R. Since

Q{L;R = %L;Rl (e} %RI;R and Vn,k,R’ (WR) - Vn,k’Rl (%R’;RWR), the left-hand Side Of (423)
can be rewritten as

/ FRLRYR) XD(—Vo s r (VR)) Atk R (VR)
= [(f0%L;R')(%R’;RwR)eXP(—Vn,k,R'(%R/;RWR)) dgu k,R(VR)

- / ((f 0 Rrir) - xp(—Vi k) - W) AR5 ok D)V R).

Similarly, the right-hand side of (4.23) can be written as
/ F(RLioo¥) exp(—Vosor (V) dgim i (1)
- / ((f 0 RLir) - exp(—Vik.z)) (V) A(RRro0)s g i) W )-

As aresult, (4.23) is equivalent to
lim [ ((f o RL;r) exp(—=Voi,r)) W) A(RR;R)#Gn 1, R) (VR

(4.24) Rooee
- [ ((f 0 Reir) - exp(—Vi k) (Vi) AR R0 i) R).

3To see this, one only has to realize that (4.23) with f = 1 implies the convergence of the normaliza-
tion constants Z, x g g as R — oo. Once the convergence of the normalization constants is established, the
equivalence of (4.22) and (4.23) is clear.
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Since the identity (4.24) follows directly from the weak convergence of the Gaussian
measures (Lemma 3.5), the Lipschitz continuity of V,, x g/ (for any fixed R’), and the
exponential moment estimates (Lemma 4.4), this completes the proof. ]

5. Dynamics

In this section, we address the dynamical aspects of Theorem 1.2. In Subsection 5.1,
we prove the global well-posedness of the equivariant wave maps equation in weighted
Holder spaces. We emphasize that, as previously discussed in the introduction, the well-
posedness theory does not rely on any probabilistic properties of the initial data. In Sub-
section 5.2 and Subsection 5.3, we prove the invariance of the Gibbs measure for the finite
intervals [1, R] and the semi-infinite interval [1, 00), respectively. The main ingredients are
the finite-dimensional approximation from Subsection 2.5 and finite speed of propagation.

5.1. Global well-posedness

In this subsection, we prove all necessary ingredients for the global well-posedness of the
equivariant wave maps equation (1.1). In the unknown ¥ from (2.3), the initial-boundary
value problems on the semi-infinite and finite intervals are given by

Py — 32y = —r "Wk (rTMY), (1) € R x (1, 00),

51 | _lw(t, 1) =0, t €R,
limy oo™ W(t,r) =0, t € R,
(wv atl//)(ovr) = (WO, wl)(r)v re (I,OO),
and
YR — YR =—r"" Mok 7'YR),  (1,r) eRx(L,R),
52) Yr(t,1) =0, t eR,
Yr(t, R) =0, t eR,
(YR, 9:Yr)O0,7) = (VR,0, YR,1)(T), r € (1, R).

Here, the nonlinearity N,  is as in (2.4).

Proposition 5.1 (Global well-posedness of (5.2)). Let 1 < R < oo, let o € [0, 1), and
let —1 < k < 0. Then, (5.2) is globally well-posed in (C(?’“’K x C~L%%)([1, R)]) and the
unique global solution v satisfies, for all t € R,

(5.3) “(WR» 0 I//R)”(c(?y"‘vkXc—l,oz,;c)([l,R]) < (t)llc‘ ”(I/fR,O’ 1//R,1)”(C(‘))v“”‘xc—l,a,x)([l,R])+(l>2-

After obvious modifications, a similar estimate also holds in the semi-infinite case R = oo.

The condition k¥ > —1 is only imposed in order to satisfy the growth condition as
r — oo in (5.1). Due to Proposition 5.1, we can introduce the global flows

U = (Wo, ¥)) : R x CI*¥([1,00)) x C™H4*([1, 00))

(5'4) 0,0,k —1,0,k
— Cy ™" ([1,00)) x CT**([1, 00))
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and

Ur = (Wro.Yr1): R x CI* ([1, R]) x C™H%*([1, R])

(5.5) 0k ek
— Co 7 ([1, R]) x C™5([1, R,

corresponding to (5.1) and (5.2), respectively. Before we turn to the proof of Proposi-
tion 5.1, we record the following estimates for homogeneous and inhomogeneous linear
waves. In addition to the proof of Proposition 5.1, these estimates will also be used in
Subsection 5.2 below.

Lemma 5.2 (Linear estimates). Let 1 < R < 0o, let o € [0, 1), and let k < 0. Then, we
have the following estimates.

() (Linear wave estimate) For all g o € C%**([1, R]) and t € R, it holds that
[VRroCer(r £ 1)l coerqi,ry + 10:(¥R,0(er(r £ )| c-1exq1,R])
< (O Wr.0ll cows q1.r))-

(i1) (L®°-based Duhamel estimate) For all T > 0, F € L*®°([-T,T] x [1, R]), and t €
[T, T), it holds that

| Duh[F] ()|l cowx((1,r]) + [0 DUh[F](2)[| -1 (1, RY)
S EKTMF Nl oo -1, 71x11,R) -
(iii) (L2-based Duhamel estimate) Assume that o < 1/2. Then, it holds for all T > 0,
te[-T.T), F € L;L%([—T, T] x [1, R]), and @ < 1/2, that
| Duh[F](?) || coex1,ry) + 10: DUh[F](0) || c-1.0 11,R))
S OIF N 2q-r.rix0,r)-
After obvious modifications, similar estimates also hold in the semi-infinite case R = oo.

Proof. We separate the proofs of (i), (ii), and (iii).

Proof of (i). The estimate of the C %%*-norm follows directly from the Lipschitz con-
tinuity of eg and eg(r) = r for all r € [1, R] (as stated in Lemma 2.5). Since

0 (YRro(er(r £1))) = £0-(Yr0(er(r £1))),

the C ~1:%*_estimate for the time-derivative follows directly from the C %% -estimate.
Proof of (ii). We first prove the C %%*-estimate. To this end, we first bound

t r+(@—s)
| Dun[F](r, )| = | / ds / ap (&xF)(s.p)
0 r—(—s)

t r+(—s)
<\ [ " ant] 1) plirm
0 r—(t—s)

< || F |l Lo -1, 7)x[1.R) -
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For any r, 7’ € [1, R], we further estimate

| Duh[F](¢, r) — Duh[F](z, )]

t r+(t—s) t r'+(t—s)
- (/ ds/ dp (ERF)(s. p) —/ ds/ 4o (Ex ) (s.p)
0 r 0 r

—(t—s) I—(t—s)
t r+(t—s) t r—(t—s)
< \/ ds/ ap (€xF)(s.p)| + (/ ds/ 4o (ExF)(s.p)
0 r’'+(t—s) 0 r'—(t—s)

< 4lt||r = r'[II(ERF)(s, p)llLoo((-T,TIxR)
< 4[t||r = r'| | Fll oo (=7, T1x[1,R)) -

Since k& < 0, this completes the proof of the C %%*-estimate. In order to prove the C ~1:*¥-
estimate for the time-derivative, we first observe that

t r+(@—s)
i / ds / dp (€8x F)(s. p)
0 r—(t—s)

t r+(—s) t r—(—s)
— 3, / ds / dp (8xF)(s. ) — b, / ds / dp (B F)(s. p).
0 r 0 r

Due to the definition of the C ~1**¥_norm, which contains an integral, the estimate of
the C ~1%X_norm of the time-derivative can be deduced similarly as the C %% -estimate
above.

Proof of (iii). Due to the identity (5.6), it suffices to prove the C %% _estimate. To this
end, we first prove a pointwise estimate. It holds that

(5.6)

Duh[F](t,r)‘ - ( /0 s /r _:_t:) dp (BrF)(s, p))

r+(t—s) 1/2
(5.7) 5/ ds(/ dpl) ICEREN (S, P L2 (1 —s).r4+-—5)D)
0 r—(t—s)
t
< (12 /0 a5 18R )5 Pl 20—y 40—

Furthermore, from the definition of the extension operator €p, it follows that

| (ERF)(s.p) “Lg([r—(t—s),r+(z—s)])

(5.8) = s|

1/2
S (1+527) IF gy S OV IF 3R
By combining (5.7) and (5.8), we obtain that

(5.9) | Duh[F](z, r)| < (O F N1 220,011, RD-
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Similarly, it holds for all I < r’ <r < R that

| Duh[F](¢,r) — Duh[F](z,r)|
t r+(@—s) t r’'+(t—s)
=|[[a[ " Caerico - [as [ Caperis.n)

—(t—s) I—(t—s)
t r+(@—s) t r—(t—s)
< \/ ds/ o (&xF)(s.p)| + (/ ds/ do (ExF)(s.p)
0 r'4(t—s) 0 r'—(t—s)

t
<|r— r’|1/2/ ds[|(BRE) (S P L2 (r +t—s)r+—s))
0

t
+ |r — r/|1/2 [ dS“(%R F)(S, p)”L%,([r’—(t—s),r—(t—s)])'
0
Since r, 7" € [1, R], it holds that

IR F) (s P L2+ —s)r+—s)) T IERFIS O L2r—t—5).r— =) S I F 221, R))-

Thus, it follows that

(5.10) | Duh[F(t,r) = Duh[F](t, )| < |r =" [ FllLi 12 qo.x1,m)-

Since « < 1/2 and k < 0, (5.9) and (5.10) imply the desired estimate. [
Equipped with Lemma 5.2, we are now ready to prove Proposition 5.1.

Proof of Proposition 5.1. We only prove the a-priori estimate (5.3), since the remaining
claims follow from a standard contraction mapping argument. By time-reversal symmetry,
it suffices to prove (5.3) for # > 0. To this end, let ¥ g be a global solution of (5.2). Using
Lemma 2.7, it follows that

(BrYR0)(r +1) + (rVRO)(r—1) 1 (1
2 + E[,

+ Duh[r ' Nk (r RN, 7).

VR, r) = dp(€Yr,1)(p)

—t

Using Lemma 5.2, it follows that

| VR 0V R (cowr x oty a1y
< (¥ (Wro VR (00 ety u,m7) T (2107 Nk (0" R |5 L3P (0.11x11,RY)-

Using the crude estimates p~! < 1 and |V, | < 1, this yields the desired estimate. ]

5.2. Invariance for finite intervals

In the previous subsection, we established the global well-posedness of (5.1) and (5.2).
In contrast to the proof of global well-posedness, however, our proof of invariance of the
Gibbs measure treats the finite and semi-infinite interval separately. In this subsection, we
treat finite intervals.
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Proposition 5.3 (Invariance for finite-intervals). Letn >0, letk > 1, and let Ry < R < oc.
Then, the Gibbs measure Vy g is invariant under the dynamics of (5.2).

In Subsection 2.5, we introduced the finite-dimensional approximation of ¥ g given by
(37 =)W = —Proan (™ N 7' Prosw g ). (1) € R x (1L R),
v, 1) =0, t eR,
v, R) =0, t R,
yM0,r) = Yro(r), 3YE0,r) = Yra(r),  re(l,R).

The main ingredient in the proof of Proposition 5.3 is the following approximation lemma.

(5.11)

Lemma 5.4 (Approximation lemma). Let R > 1 be fixed, let 1 <N < oo, let 0 <a <1/2,
and let k < 0. Then, (5.11) is globally well-posed in (Cy*** x C~V%X)([1, R]). Further-

more, let Yr and WI(QN) be the unique global solutions of (5.2) and (5.11), respectively.
ForallT > 0andt € [-T,T), it then holds that

||(WR5 EM”R)(I) - (WI(QN) 8 1ﬁ(N))(t)”(C(?’WXc—l,a:,x)([LR])

(5.12) ~
=< C(R, T)(l + “(wR,O’ wR,l)||(C(;)’a”cxc—l,ot,K)([l,R]))N .

Similar as in (5.4) and (5.5) above, we denote the corresponding global flow by
U = (W) W) 1 R x g ([1, R]) x C~1*([1, R])
— Co ™ ([1, R]) x C™1*([1, R]).

Proof. Since R > 1 is fixed, we simplify the notation by writing ¥ and ) instead of /g

and wgv), respectively. Due to the soft estimate (2.9) from Lemma 2.10, the global well-
posedness (for any fixed N > 1) follows exactly as in Subsection 5.1. Thus, it remains to
prove the difference estimate (5.12). Due to time-reflection symmetry, it suffices to treat
the case t > 0.

From (5.2) and (5.11), it follows that

¥ =y = —Duhg [r N,k (07 Y) = PRo<n (P Nk 7 PR <n v ).
Using Lemma 5.2, we obtain that
1. 3:9) @) = ., 0y YOl coas e raey 11 R
S o Nak (0 W) — Pro<n (07 Nk (07" PR, <y

5([0,2]x[1,R])"
We now decompose
P Nk (07 ) = Pro<n (07 N (07" PR, <y M)
(5.14) = (1= Pr,<N) (0™ Nu i (p™'9))
(5.15) + Pro<n (0" Nuk (0" ) — p ' Nk (0" PR, <N V)

(5.16) + Pr,<n (07 Nk (0 PR, <N V) — p Ny (07 PR, <n V).
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Using Lemma 2.10, the Lipschitz continuity of N, x, and the crude estimate p~! < 1 for
all p € [1, R], it easily follows that

I 1D 2 q1,ry S RPT(R/NY [V comnqr, v

IG5 2 0,z S B> (R/N) ¥l coaeqr, vy

1162,z S RPN = N coaeqrry-
Inserting this back into (5.13), it follows that

”(1//7 at W)(t) - W(N)’ 8tw(N))(t)”(C(‘))’O‘s"xc—l,a,x)([l’R])
s 02 () [T &2 [ as | -y o))
N N ) C0.2.x([1,R]) ) S N CO.%x([1,R])-

Using Gronwall’s inequality, it follows that
1 3 (1) = (N 9y M) o -ty 11, m)

< CR, T)N™ sup ¥ ($)llcowr(r,rY)-
s€l0,¢]

Together with Proposition 5.1, this implies the desired estimate. ]
Equipped with Lemma 5.4, we can now prove Proposition 5.3.

Proof of Proposition 5.3. Throughout the proof, we let« := 1/2 —§ and x := —1/2 — 6.
We first recall that, as stated in Proposition 5.1 and Lemma 5.4, (5.2) and (5.11) are glob-
ally well-posed on the support of the Gibbs measure and that the corresponding global

flows are denoted by Vg and lilgv). In order to prove the proposition, we have to prove

for all bounded, Lipschitz continuous f: (COO’O"K x C7L%)([1,R]) > Rand all t € R
that

(5.17) E;, o Lf 0 ()] = E;5, [f].
To this end, we let N > 1 and decompose
(5.18) Eg,, [f 0 Ur()] —Es,, [f]1=E;,, [f 0 V()] —E;,, [ 0 ¥R ()]
+Eg, ol 0 UR O] = Egon [0 TRV ()]
+E;m [fo Ve ()] - E.on [f]
n,k,R n,k,R
+ E‘_}(A]?R [f] - Eﬁn,k,R [f]'

The term in the first line of (5.18) can be estimated using Lemma 5.4, the representation
of V, kg from Proposition 4.3, and the moment bounds from Lemma 4.4. The term in the
second line can be estimated using Proposition 4.3. The term in the third line vanishes due
to the invariance of U(A]? R under \IJ(N) which follows from ODE-results. Finally, the term
in the fourth line can be estimated using Proposition 4.3. In total, it follows that

.. _ N >
5, 4 oS © VRO = Es, , o [f1] Spre liminf (V240 45500 =5k gllav) = 0.

which yields (5.17). ]
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5.3. Invariance for the semi-infinite interval

In this subsection, we prove the invariance of the Gibbs measures for the semi-infinite
interval.

Proposition 5.5 (Invariance for the semi-infinite interval). Let n > 0 and let k > 1. Then,
the Gibbs measure ‘_jn,k is invariant under the dynamics of (5.1).

The main ingredients in the following proof are the weak convergence of the Gibbs
measures VU, x g a8 R — oo (Proposition 4.3), the invariance of the Gibbs measures for
finite intervals (Proposition 5.3), and finite speed of propagation.

Proof of Proposition 5.5. Let U and ¥ R be the global flows from (5.4) and (5.5). In order
to prove the invariance of ﬁn,k, it suffices to prove for all# € R and K > 1 that

(5-19) (@K;oo)# \_I'J(Z)# Y)'n,k = (@K;oo)# l_Jn,k»

which are viewed as measures on (C(%’)a’K x CLe#)([1, K]) with := 1/2 — § and k :=
—1/2 — 4. In order to utilize our earlier results, we need to insert additional restriction
operators. To this end, we let L, M > 1 satisfy

K+t|l+1<L<M.
Due to finite speed of propagation, it holds that
(5.20) R0 0 V(1) = R 0 WL (1) 0 QQ;M ° RM:00-

The operator @2 s 18 as in Definition 2.6 and guarantees that the argument of \ilL ()
satisfies the zero Dirichlet boundary conditions. Using (5.20) and the weak convergence
of U, kg (as in Corollary 3.7 and Proposition 4.3), it follows that

(Rr:00)8 V(O = (Rriz 0 VL (1) 0 RY.p1), (Rdtio0)s Vi

= w-lim (R 0 WL (1) © RY.p1)  (Ra:R)# Vn i R-
R—>o0 ’

(5.21)

The second identity in (5.21) involves the weak limit on (C(OO’;X’K x C~L%%)([1, K]). Pro-
vided that R > M, we also have the identity

(5.22) R o WL(1) o @E;M o Rpr:r = Rx.r 0 Wr(D).

which is similar to (5.20). From (5.22), it follows that

(5.23) w-lim (Rg;z 0 WL (1) 0 RY. 00 ) (Ba;R)# U k. = W-Iim (R, R)s VR (1) Uk R-
R—c0 ’ R—o00

Using the invariance of the Gibbs measure for finite intervals (Proposition 5.3), we obtain
that

(5.24) w-lim (R R)4 VR ()4 Vp k. g = W-lim (Rg:R)4 U k. R-
R—o0 R—o0



B. Bringmann 894

By using the weak convergence of U, ¢ g (as in Corollary 3.7 and Proposition 4.3) for a
second time, it follows that

(5.25) w-lim (R R ) Un kR = (RKi00) U k-
R—o0

The desired identity (5.19) now follows by combining (5.21), (5.23), (5.24), and (5.25),
which completes our argument. ]

6. Proof of Theorem 1.2 and Corollary 1.4

In this section, we prove the main results of this article. Due to our earlier lemmas and
propositions from Section 3, Section 4, and Section 5, the remaining proofs are relatively
short.

Proof of Theorem 1.2. We rigorously define the Gibbs measure [, x as the push-forward
of Un,k, which has been constructed in Proposition 4.3, under the transformation

(Yo, V1) = (¢o, 1) := (On i + 1o, r).

From the definition (and Proposition 4.3), it directly follows that fi, x is supported on
the state space S, . Using the change of variables from (2.3), the global well-posedness
of (1.1) and the invariance of the Gibbs measures follows directly from Proposition 5.1
and Proposition 5.5, respectively. ]

It remains to prove Corollary 1.4, which essentially follows from Theorem 1.2 (or
Proposition 5.5) and the Poincaré recurrence theorem.

Proof of Corollary 1.4. Throughout this proof, we work in the unknown ¥ from (2.3). In
this unknown, the linearized equation (1.8) takes the form

k(k +1
(6.1) 37 Yiin — 07 Yin + % c08(2Qp k) Yiin = 0.

To simplify the notation, we let o := 1/2 — §, letx := —1/2 —§, let U be the global flow
from (5.4), and let Wy;, be the global flow of (6.1). By time-reversal symmetry, it suffices
to prove the claim in (1.9) for t — oo. Thus, it remains to prove that

(6.2) inf lim sup ||\_I:’(t)(w03 1;Z/‘l) - ‘_I}lin(t)(l//(;’_v i’_) ” (COak xC—Lak)([1,2]) >0

W) t—oo

holds v, g-almost surely, where the infimum is taken over all (1//6" , w;r ) € (Cé) K
C71e)([1, 00)).

We first show that (6.2) follows from a simpler statement which does not explicitly
involve (wg' , 1+ ). For any ¢t € R and t € [0, 1/4], it follows from the group properties
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of the flows ¥ and @hm finite speed of propagation, and the boundedness of \illin (as in
Lemma 5.2) that

| Wi (=) B @U@ (W0, Y1) = B () W0, Y1) | oty 1372
< [ Biin (D)W + D) W0, ¥1) = Brin (D) Win(t + D)W Vi) comnxctaey@i /2
+ H‘i’lin(—f)‘i’nn(f +OW V) = i) Wy )| (COakxC-Law)([1,3/2])
+ [ G WG ) = FO W0 ) | comercranyisa
S 90 + D@0, ¥1) = Win(t + D@ VD) | comercrany @
+ [ O W0, ¥1) = Cin W VD) | comexc—rany i
As a result, it suffices to prove that

limsup sup  |[Wia(—7)W(2)W(1) (Yo, ¥1)
(63) t—>00 1€[0,1/4]

- \Il(t)(WOa WI)H (COak xC—Lak)([1,3/2]) >0

holds v, x-almost surely. To this end, we let ¢ > 0 be arbitrary and define the event
Ane = {0.91) € (€% 5 M%) ([1,00))

Sup ”qjlin(_r)l—l}(r)(WOv 1ﬁl) - (WO» WI)H (CO,a,xchl,oz,/c)([lﬁ/z]) 2 E}'
7€[0,1/4]

Using the invariance of v, x (as in Proposition 5.5) and Poincaré’s recurrence theorem, it
follows that there exists a set By k¢ C Ay ke such that U, x(Byk.e) = Vnk(An k) and
such that, for all (¥, ¥1) € By ke, it holds that \il(j)(wo, Y1) € A, k. for infinitely many
integers j > 1. In particular, it holds for all (Yo, V1) € By k. that

limsup sup | Win(—0) P ()P (j) (Yo, V1)
j—oo t€[0,1/4]

- \P(])(Wo, ’»01) “(CO””"XC’I’“”‘)([I,3/2]) =&
and thus (6.3) is satisfied. It therefore only remains to prove that
6.4) im v, g (Ap k) = 1.
el0

Since v,  is absolutely continuous with respect to the Gaussian measure g, x (Proposi-
tion 4.3), it is clear that v, x-almost surely the nonlinearity

$in (2(Qnk + 77 Y0)) —sin(2Qn k) — 27" 0820 k) Vo

is not identically zero on the spatial interval [1, 5/4]. Together with local well-posedness,
this implies that

(6.5) “ \_I)lin(_r)‘_l}(r)(wo’ 1//1) o (1//0» 1//1)” (CO0kxC—1ax)([1,3/2]) >0

holds v, x-almost surely. Using the continuity from below of the probability measure vy, x,
this implies (6.4) and therefore completes the proof. ]
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Remark 6.1. The proof of Corollary 1.4 primarily uses the invariance of ¥, ; under 0,
the group properties of U and \IJ]m, and the boundedness of \I!]m on Cy’ Ol o c—Lak Ip
order to obtain (1.9) on the interval [1, 2] rather than the whole 1nterval [1, 00), we also
used finite speed of propagation. All of these ingredients (except possibly invariance) are
available in many situations, and our proof can easily be generalized to different flows
than ‘iﬁin and other norms than C(? A C Tk

A. Elements of probability theory
In this appendix, we recall results from probability theory. To this end, we let (2, ¥, P)
be a probability space, and let E be the corresponding expectation operator.

Lemma A.1 (Gaussian hypercontractivity). Let g be a Gaussian random variables and
let p > 1. Then, it holds that

1
E[1g1”]"” < VP E[¢2]/2.

We remark that Gaussian hypercontractivity is a much more general phenomenon than
stated in Lemma A.1, since it also applies to polynomials in infinitely many Gaussian
variables. In the next lemma, we recall a version of Kolmogorov’s continuity theorem,
which is used to obtain the growth and Holder estimates in Section 3.

Lemma A.2 (Kolmogorov’s continuity theorem, see [32], p. 182). Let T > 1 and let
(X(t))1<t<T be a continuous stochastic process. Assume that there exist C > 0, p > 1,
and o € (0, 1] such that the estimate

E[|X(1) — X(5)|P]"? < C|t — s|!/7He

is satisfied for all 1 < s,t < T. Then, it holds for all 0 < 8 < « that

_ 1/p
E sup <M)P < ) CTI/P'Hx—ﬂ.
1<s,0<T |t —s|P (1 —279)(1 —28-9)

s#t

We now recall an estimate for the Laplace-transform of Gaussian measures, which is
derived from the Boué-Dupuis formula. For the sake of simplicity, we directly restrict
ourselves to the setting of Section 3 and Section 4.

Lemma A.3 (Consequence of Boué—Dupuis formula). Letn > 0 and k > 1. Furthermore,
let R> Ry, let0 < 8§ < 1, leta = 1/2— 8, and let k = —1/2 — §. Finally, let

V:C%*(1,R]) - R
be continuous and integrable with respect to 4, k r. Then, it holds that
—log (Ey, , lexp(=V(¥))])

= Bl it Vw043 G Ak r O m) |

(A1)
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Proof. In order to use the Boué—Dupuis formula [3, 5, 20], we first introduce additional
notation. Let (2, ¥, €, x.r) be a sufficiently rich probability space, and let W: [0, 1] x
[1, R] — R be a Gaussian process satisfying

Ew, ¢ 2 [W(. 1) ¥ (s, p)] = min(z. s) Gn k,r (7. p)

forall¢,s € [0,1] and 7, p € [1, R]. In particular, it holds that

(A.2) Lawsg, , o (V(1)) = Gnk,R-

We let (¥¢)ef0,1] be the augmented, natural filtration associated with the Gaussian pro-

cess W. Furthermore, we let [} 0([0,1] x [1, R]) be the space of progressively measurable
functions z: [0, 1] — H (1, R]) satisfying

1
/ dr (z(t), An i, RZ(D))r2q1,R) < © Gy k,r-almost surely.
0

For any z € H} 0([0,1] x [1, R]), we define

Z(t) := /Ot ds z(s).

We now let M > 1 be arbitrary and define Vjs := max(V,—M ), which is bounded below.
Using the Boué—Dupuis formula (as stated in Theorem 1.1 of [20]), it follows that

—log (Egy, , zlexp(=Va (¥))]) = —log (Es, , [exp(=Vir (¥(1)))])

1 1
= inf B[ W) + 20004 5 [0 G0 Anin Ol |

zeH

(A3)

Using the triangle inequality and Cauchy—Schwarz, it holds that
(Z(1). A R ZO)Y2 ) < [ &t (20, Anse k2 OV 2 )
0

1 1/2
< (/0 dt (z(t),An,k,RZ(l))m([l,R])) :

Combined with the trivial estimate V3y > V and Z(1) € H(} ([1, R)), it follows that

1 1
it B[Vt (V) 4 200 4 5 [0 0. vz Oz

zeH

1
(A4) = inf B[ V) + Z(0) + 5 (Z0), AnirZ(D) 20

ze

= B[ int (V@ +0+3 A6 Ank O m0) |
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By combining (A.2), (A.3), and (A.4), it follows that
—log (Eq, ;. [exp(=Var (¥))])

. 1
> Egu] it VW0 + 5 (6 Anprt g}
{eH, ([1,R])

By letting M — oo and using monotone convergence, this implies (A.1). ]

At the end of this appendix, we recall the definition of weak convergence for proba-
bility measures on metric spaces.

Definition A.4 (Weak convergence). Let X be a metric space and let X be the corre-
sponding Borel o-algebra. Furthermore, let (Ag)r>1 be a family of probability measures
on (X, ¥) and let A be a probability measure on (X, X). Then, we say that (AR)r>1
converges weakly to A on X if and only if

Jim. [X F(0) dAr(y) = /X £ )

for all bounded and Lipschitz continuous f: X — R.

Remark A.5. In most articles and textbooks, the metric space X is fixed. In this article,
however, X is not fixed (see, e.g., Proposition 4.3). This is the reason for adding the phrase
“on X" in Definition A .4.
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