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Abstract

We prove the invariance of the Gibbs measure under the dynamics of the three-
dimensional cubic wave equation, which is also known as the hyperbolic d>‘3‘-m0del.
This result is the hyperbolic counterpart to seminal works on the parabolic ¢>§-m0del
by Hairer (Invent. Math. 198(2):269-504, 2014) and Hairer-Matetski (Ann. Probab.
46(3):1651-1709, 2018).

The heart of the matter lies in establishing local in time existence and uniqueness
of solutions on the statistical ensemble, which is achieved by using a para-controlled
ansatz for the solution, the analytical framework of the random tensor theory, and the
combinatorial molecule estimates.

The singularity of the Gibbs measure with respect to the Gaussian free field brings
out a new caloric representation of the Gibbs measure and a synergy between the
parabolic and hyperbolic theories embodied in the analysis of heat-wave stochastic
objects. Furthermore from a purely hyperbolic standpoint our argument relies on key
new ingredients that include a hidden cancellation between sextic stochastic objects
and a new bilinear random tensor estimate.

X B. Bringmann
bjoern@ias.edu

Y. Deng
yudeng @usc.edu

A.R. Nahmod
nahmod @math.umass.edu

H. Yue
yuehaitian @shanghaitech.edu.cn
1 School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA
Department of Mathematics, Princeton University, Princeton, NJ 08540, USA
3 Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA

Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA
01003, USA

Institute of Mathematical Sciences, ShanghaiTech University, Shanghai, 201210, China

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00222-024-01254-4&domain=pdf
mailto:bjoern@ias.edu
mailto:yudeng@usc.edu
mailto:nahmod@math.umass.edu
mailto:yuehaitian@shanghaitech.edu.cn

1134 B. Bringmann et al.

Contents
I Introduction. . . . . . . . . . L 1135
1.1 Earlierresults . . .. ... ... ... ... ... ... 1136
1.2 Earlierideasand methods . . . . . ... ... ... .......... 1140
1.3 Settingand mainresult . . ... ... ... ... ... . ... 1146
1.4 Mainideas . . . . . . . . . .. 1148
1.5 Openproblems . ... ... .. ... .. ... ... . ..., 1155
1.6 Overview of thepaper . . ... ... ... ... ... ....... 1156
2 Prelimininaries . . . . . . . . ... 1157
2.1 Parameters . . . . ... .. 1158
2.2 Basicdefinitions . . . . . . ... o e 1158
2.3 Function spaces and linear estimates . . . . . . . ... ........ 1160
2.4 Multiple stochastic integrals . . . . . . ... ... ... ... ... 1162
3 Ansatz and local well-posedness . . . . .. ... ... .. ... .. ... 1165
3.1 The caloric initial data and initial value problem . . . ... ... .. 1167
3.2 The explicit stochastic objectsinu<y . . . .. ... .. ... .. .. 1169
3.3 The nonlinear remainder v<y and cancellations . . . ... ... .. 1170
3.4 The para-controlled components X (<11)v and X (<21)v ........... 1177
3.5 Mainestimates . . . ....... L. J 1184
3.6 Proof of local well-posedness . . . . ... .............. 1187
4 Global well-posedness and invariance . . . . . ... ............ 1193
4.1 Globalbounds . . . . .. ... .. ... ... 1194
4.2 Stability theory . . . . . . . . ... 1200
4.3 Proof of global well-posedness and invariance . ... ... ... .. 1203
5 Integer lattice counting and basic tensors estimates . . . . .. .. ... .. 1206
5.1 Lattice point counting estimates . . . . . . .. ... ... .. .... 1206
5.2 Tensors and teNSOT NOTMS . . . . . . . . ¢ v v v v v v v o e e 1212
5.3 Basetensors estimates . . . . . . ... ... 1213
54 Thecubictensor . . . . . . ... ... o it i 1215
5.5 Thequintictensor . . . . . . . . . . ... v 1219
5.6 The sine-cancellation kernel and tensor . . . . . ... ... ... .. 1224
5.7 Tensor and p-moment estimates reductions . . . . . . ... ... .. 1235
6 Algebraic and graphical aspects of stochastic diagrams . . . . .. ... .. 1238
6.1 Parabolic stochastic quantization . . . . . . .. ... ... ...... 1239
6.2 Linear and cubic diagrams . . . . .. ... ... ... ... ..... 1248
6.3 Quinticdiagram . . . . . . . ... 1251
6.4 Heat-wave quintic diagram . . . . . ... ... ... ... ...... 1257
6.5 Sextic diagrams and the 1533-cancellation . . ... ... ... ... 1261
7 Analytic aspects of basic stochastic diagrams . . . . .. ... ... .... 1269
7.1 The renormalization constant and multiplier . ... ... ... ... 1269
7.2 The linear and cubic stochastic objects . . . ... ... ... .... 1272
7.3 The product of blue and green linear evolutions . . . . . ... ... 1274
7.4 The quintic stochasticobjects . . . . .. .. ... ... ....... 1279
7.5 The heat-wave quinticobject . . . . . ... .. ... ... ...... 1284
7.6 A sextic stochasticobject . . . . . ... ... L 1295

@ Springer



Invariant Gibbs measures for the three dimensional cubic NLW 1135

8 Bilinear random operator . . . . . . . ... .. 1303

9 Linear random operators . . . . . . . . . . . ... ... 1311

9.1 Linear random operator involving the quadratic object . . . . . . . . 1311

9.2 Linear random operator involving the linear and cubic objects . . . 1318

10 Para-controlledcalculus . . . . ... ... ... ... ............ 1325

10.1 Probabilistic Strichartz and regularity estimates . . . . .. ... .. 1328

10.2 Interactions with one linear stochastic object . . . . ... ... ... 1333

10.3 Interactions with the quadratic stochastic object . . . .. ... ... 1341

11 Analytic aspects of higher order stochastic diagrams . . . . ... ... .. 1354

11.1 The linear-cubic-cubic stochasticobject . . . . . .. ... ... ... 1355

11.2 The cubic-cubic-cubic stochasticobject . . . . . .. ... ... ... 1369

11.3 The linear-linear-quintic stochasticobject . . . . . . ... ... ... 1376

12 Proof of main estimates . . . . . .. ... ... ... ... ... ... 1384
Appendix A: The nonlinear stochastic heat equation with sharp

frequency-cutoffs . . . . .. ... Lo 1396

A.l Preparations . . . . . ... ... ... 1396

A2 Mainestimate . . . . . ... .. ... 1397

Appendix B: Merging estimates, moment method and time integrals . . . . . . 1404

Acknowledgements . . . . .. ... e 1407

References . . . . . . . . . . . 1407

1 Introduction

In this article, we study the (renormalized) cubic nonlinear wave equation in three
dimensions. We begin our discussion with the corresponding Hamiltonian, which is
formally given by

Hlu, d,u] /d LTG0 +/ (™ o0 (1.1)
— Z — 40— ). .
o= LM\ T 2 o\ 4 2

Here, T3 := (R/2xZ)? is the three-dimensional torus, :u*: is the Wick-ordered quar-
tic power, and oo - u? represents an additional mass-renormalization. We further de-
fine the canonical symplectic form

a)((uo,ul), (vo, v1)> - fT3 dx(um)l —ulv()). (12)

The nonlinear evolution equation corresponding to the Hamiltonian A and symplec-
tic form w is given by the (renormalized) cubic nonlinear wave equation. It can be
written as

2 _ — 3. . 3
{(a,+1 Au=—wd—co-u  (t,x)eRxT, 13

(M, <V)_la[lzi)|t=0 — (¢COS’ ¢sin),

where :u>: denotes the Wick-ordered cubic power and ¢, ¢¥": T3 — R. We note
that the initial condition is written in terms of (V)~18,u, which is for notational con-
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1136 B. Bringmann et al.

venience (see Sect. 3). Furthermore, the Gibbs measure corresponding to the Hamil-
tonian H and symplectic form w is formally given by

udu(qscos, ¢Sifl) — 271 eXp ( _ H[¢COS, <V>¢sin]>d¢cosd¢sin'n (14)

We now state a formal version of our main theorem, but postpone a rigorous version
to Theorem 1.4 below.

Theorem 1.1 (Global well-posedness and invariance, formal version) The cubic
nonlinear wave equation (1.3) is almost surely globally well-posed with respect to
the Gibbs measure . Furthermore, the global solution leaves the Gibbs measure
invariant.

We briefly discuss both the physical and mathematical significance of Theorem
1.1, but postpone more detailed discussions to the following subsections. From a
physical perspective, the interest in our main theorem stems from its connections to
quantum field theory. In fact, the Gibbs measure from (1.4) is essentially identical to
the so-called @g-measure, whose construction was one of the crowning achievements
of the constructive quantum field theory program (see e.g. [59, 60]).

From a mathematical perspective, the interest in our main theorem and its proof
stem from connections to several areas of mathematical research. At its core, Theo-
rem 1.1 concerns a refined understanding of how randomness gets transported by the
flow of a nonlinear equation which involves probability theory, and partial differen-
tial equations. Such study of propagation of randomness under nonlinear evolution
equations is in itself of independent interest and also plays an important role in math-
ematical wave turbulence [40, 45] and singular parabolic SPDEs [62, 65, 74]. In our
proof, we further utilize methods from combinatorics (see Sect. 11), elementary ge-
ometry (see Sect. 5), harmonic analysis (see Sect. 10), random matrix theory (see
Sect. 8 and Sect. 9), and nonlinear Fourier analysis which permeates much of the

paper.
1.1 Earlier results

In this subsection, we give a broad overview of the relevant previous literature. A
more detailed discussion of several individual articles is postponed until the next
subsection (Sect. 1.2).

1.1.1 The ®4-models

Many of the most significant contributions in constructive quantum field theory, sin-
gular SPDEs, and random dispersive equations concern the so-called CI>3-models. The
starting point of our discussion is the energy

B 91> IVol? | lgl*
H(qﬁ)_/;rddx(T—i— 5 +T)' (1.5)
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Invariant Gibbs measures for the three dimensional cubic NLW 1137
Dimension Measure Heat Wave Schrédinger
d=1 [Iwa87] [Fri85, Zhi94] [Bou94]
d=2 [Nel66] [DPDO03] [Bou99] [Bou96]
d=3 [GJ73] [Hail4] This article Open
d=14 [ADC21]
d>5 [Aiz81, Fro82]

Fig.1 (Colored online) Existence and invariance of the Gibbs measure for the cubic stochastic heat, wave,
and Schrodinger equations

In (1.5), we omit the possible renormalization of the potential energy term, since its
precise form depends on the dimension d. Equipped with (1.5), we formally define
the <I>§—measure as

2 2 4
“dd>j‘,(¢)=2‘1exp<_/ddx<ﬂ+|v¢| +ﬂ>>d¢.” (1.6)
T

2 2 4

In addition to the Qg-measure, the energy in (1.5) induces three different evolution
equations, which are called dynamical <I>3—mode1s:

(1) A Langevin' equation, which is given by the cubic heat equation with space-time
white noise,

(2) areal-valued Hamiltonian equation, which is given by the cubic wave equation,

(3) and a complex-valued Hamiltonian equation, which is given by the cubic
Schrddinger equation.

The main problems then concern the construction of the d>$—measure, the probabilis-
tic well-posedness of the three evolution equations, as well as the invariance” of the
dei-measure under the three evolution equations. We now discuss parts of the litera-
ture on @fi—models, which is also illustrated in Fig. 1.

The construction and properties of the <I>2,-measure were extensively studied by
constructive quantum field theorists. The construction of the @?-measure?’
elementary and, for example, can be found in [10]. The @g and @‘;-measure were first
constructed in [82] and [59], respectively. For a more detailed overview of the rele-
vant literature on this construction, we refer the reader to the introduction of [61] and

is rather

To be more precise, the cubic stochastic heat equation corresponds to the overdamped Langevin equation
induced by (1.5). The energy (1.5) also induces an underdamped Langevin equation, which is given by a
damped stochastic wave equation, see e.g. [93, Sect. 1.1].

2The Gibbs measure of the wave and Schrodinger dynamics only slightly differs from the @j—measure.
In the wave setting, the Gibbs measure is given by a product of the <I>3—measure and a Gaussian measure,
see e.g. (1.4). In the Schrodinger setting, the Gibbs measure is given by the complex-valued instead of
real-valued @fl—measure.

3The reason why the <I>‘l‘-rneasure was not studied by many constructive quantum field theorists is that it
corresponds to a field theory in (1 4 0)-dimensional Minkowski space, which is just the time-axis.
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1138 B. Bringmann et al.

the monograph [60]. Aizenman [1] and Frohlich [52] proved the marginal triviality of
the CDfl -measure in dimension d > 5. In recent seminal work, Aizenman and Duminil-
Copin [2] also proved the marginal triviality of the (real-valued) (Di-measure. In
the complex-valued setting, which is most important for the Schrédinger equation,
marginal triviality (as in [2]) is expected to hold but has not yet been proved. For par-
tial progress, which addresses the small coupling regime, we refer to [6, 9]. Loosely
speaking, marginal triviality implies that the <I>2 -measure in dimension d > 4 essen-
tially yields a Gaussian measure, for any renormalization of the potential energy term
in (1.5) giving rise to a well defined measure. In particular, this invalidates the ques-
tion regarding the invariance of the @é—measure under the dynamical d>§ -models. We
note that it is still possible to study the triviality of the dynamics (see e.g. the discus-
sion in [67]), but we view this as a separate problem from the invariance of the Gibbs
measure. Recently, there has also been tremendous progress on the derivation of the
<I>3 and related measures from many-body quantum systems [53-55, 75, 76], which
goes beyond their construction.

The parabolic <I>§—models, i.e., the cubic heat equation with space-time white
noise, was first studied in one and two dimensions in [70] and [35], respectively.
In three dimensions, the probabilistic well-posedness was first shown by Hairer
[65] using the theory of regularity structures. The probabilistic well-posedness has
now also been shown using para-controlled calculus [27, 62] and renormalization
group methods [74]. The invariance of the <D§-measure under the parabolic 613‘3‘-
dynamics was first obtained by Hairer and Matetski [69]. More recent articles, such as
[3, 61,78, 79], address the stochastic quantization in the spirit of Parisi and Wu [98],
i.e., the construction of the <I>§‘-measure using the parabolic @g-model as explained
in Sect. 3.1 below.

The hyperbolic CI>3-model, i.e., the cubic wave equation with initial data drawn
from its associated Gibbs measure (and/or space-time white noise), was first studied
in one dimension by Friedlander [51] and Zhidkov [117]. In two dimension, the in-
variance of the Gibbs measure was stated as a theorem in [13, Theorem 111]. For a
complete proof, we also refer the reader to [88]. In three dimensions, the invariance
of the Gibbs measure is the main theorem of this article.

In the case of the cubic Schrodinger equation, the invariance of its associated
Gibbs measure was proved in one and two dimensional tori in seminal works of Bour-
gain [10, 11]. In three dimensions, this question is a famous open problem, which will
be briefly discussed in Sect. 1.5 below.

1.1.2 Invariant Gibbs measures in other dispersive settings

In one and two spatial dimensions Gibbs measures can be constructed on tori not just
for dbfi but also for CD;,7 +1 with p > 5 odd, which contain (defocusing) Wick ordered
interaction polynomial potentials :u”: (or :|u|1’_1u:) in (1.5). The construction of
such measures also stems from seminal works of Nelson [82, 83] in the context of
quantum field theory (see also [60, 102]). A concise exposition of the construction
can be found in [87, 88].

Regarding the dynamics (see Fig. 2), in one dimension, the invariance of such
Gibbs measures with respect to the dynamics of the corresponding Wick ordered

@ Springer



Invariant Gibbs measures for the three dimensional cubic NLW 1139

Dimension | Nonlinearity Wave Schrédinger

|u|?u [Bou99] [Bou96]

d=2
[u[*"u [Bou99] [DNY19]

d=3 ) B >2: [Bou97|

(Vs * [ul2)u g z [1) ; {gngoi(])] B>1—c: [DNY2]]
' B >0: Open

Jul*u This article Open

Fig.2 Invariance of the Gibbs measure for wave and Schrodinger equations

nonlinear Schrodinger equation with p-th power nonlinearity was proved by Bour-
gain in [10]. In two dimensions, the invariance of such Gibbs measures under the flow
of the corresponding Wick ordered nonlinear wave equation with p-th power nonlin-
earity was proved in [13, 88] via a linear-nonlinear decomposition, known nowadays
as Bourgain’s trick (or as DaPrato-Debussche’s trick [34] in the stochastic commu-
nity). However for the Wick ordered nonlinear Schrodinger equation with p-th power
nonlinearity, the invariance of its associated Gibbs measures in two dimensions (in
the strong sense as in [11]) does not follow from the same type of arguments. Indeed,
in [43], the second, third and fourth authors of this paper introduced the method of
random averaging operators to obtain this result which will be discussed in Sect. 1.2.3
below.

Gibbs measures on tori can also be constructed for (suitably renormalized) Hartree
nonlinearities (Vg * |u|*)u, where the interaction potential Vg behaves like |x|~@=A)
(see e.g. [12, 21, 91]). Their invariance under the flow of the corresponding Hartree
nonlinear wave and Schrédinger equations was also studied. This was done in the
Schrodinger case in three dimensions for 8 > 2 by Bourgain* in [12] and for (say)
B > 0.99 by the second, third and fourth authors of this paper in [44]. In the nonlinear
wave case this was achieved by Oh, Okamoto and Tolomeo in [91] for 8 > 1 and
by the first author of this paper in [18] for any 8 > 0. The case of 0 < 8 < 1/2 is
of special significance since the Gibbs measure is then singular with respect to the
Gaussian free field (see [21, 91]) just as the case in this paper.

In addition to the nonlinear wave and Schrodinger equations with odd power-type
and Hartree nonlinearities discussed above, invariant Gibbs measures have also been
studied in several other settings. For instance, there has been research on invariant
Gibbs measures for derivative nonlinearities [24, 37, 113], quadratic nonlinearities
[63, 93], exponential nonlinearities [92, 94, 105], radially-symmetric settings [14—16,
36, 112], KdV and generalized KdV [10, 30, 90, 101], fractional dispersion relations
[104, 106], and lattice models [5].

For integrable equations, one can also construct and study the invariance of
weighted Wiener measures associated to higher order conservation laws than the
Hamiltonian. There has been substantial activity in this regard and we do not go

4In [12], Bourgain treats also the two dimensional case where the results hold for any 8 > 0.
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1140 B. Bringmann et al.

Equation 2D wave 2D Schrodinger 3D wave 3D Schrédinger
Gibbs measure 0— 0— -1/2— —1/2—
regularity sg—

Prob. critical -3/4 -1/2 -3/4 -1/2
regularity s,

Fig.3 Probabilistic critical and Gibbs measure regularities for 2D and 3D wave and Schrodinger equations

into further details here, but refer the interested reader to a few references such as
[42, 56, 57, 80, 81, 111, 115, 116, 118, 119] for some examples.

1.2 Earlier ideas and methods

In this subsection, we describe some of the main ideas from the previous literature in
more detail.

1.2.1 Scaling heuristics

The notion of probabilistic scaling was introduced in [43, 45] by the second, third and
fourth authors of this paper. It provides a guiding principle when studying nonlinear
dispersive equations in the random or stochastic setting, just as what the ordinary (de-
terministic) scaling does with the corresponding deterministic well-posedness prob-
lems. The idea is to compare the (expected) regularity of the nonlinear evolution with
the linear evolution (or noise), under the assumption that all the frequencies are com-
parable, and determine the threshold where the nonlinear evolution becomes rougher
than the linear one; see [43, 45, 46] for details.

In [45] it is proved that any nonlinear Schrodinger equation with odd power non-
linearity is probabilistically locally well-posed at any probabilistically subcritical
regularity. We expect the same guiding principle to work for other dispersive equa-
tions, including the wave equation (albeit with some additional twists, see Remark
1.2). In this regard, one can calculate that the probabilistic critical index for (1.3) is
spr = —3/4, while the regularity of the Gibbs measure initial data is at H ~1/2= (see
Fig. 3). Thus (1.3) is probabilistically subcritical and expected to be locally well-
posed.

Remark 1.2 Unlike the Schrodinger case, there are extra obstacles for nonlinear wave
equations, linked to high-high-to-low interactions, which may result in the actual
probabilistic well-posedness threshold being strictly higher than the scaling predic-
tions. For example the 4D quadratic wave equation is probabilistic critical in H /2,
but one actually expects probabilistic ill-posedness already in H~'~, due to high-
high-to-low interactions. Note that such discrepancy also exist and is well-known in
the context of stochastic heat equations and rough path theory. See [85, Remark 1.8]
for a related discussion.

Remark 1.3 We emphasize that the deterministic scaling-critical regularity of nonlin-
ear dispersive equations is often calculated using the L?-based Sobolev spaces H*.
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Invariant Gibbs measures for the three dimensional cubic NLW 1141

Since random initial data also lives in the L°°-based Holder-spaces C*, one may
also compare the probabilistic scaling-critical regularity s, with the deterministic
scaling-critical regularity in Holder spaces, which we denote here by sg . In most dis-
persive settings, it turns out that sg is too low even for probabilistic well-posedness.
For related, more detailed discussions, we refer the reader to [46, 50].

1.2.2 The para-controlled approach

We first discuss the para-controlled approach of [62] in the context of singular
parabolic SPDEs. We focus on the parabolic @?-model which, in the sense of the
parabolic scaling from [65, Sect. 8], is subcritical. It is formally given by

(3 +1—A)d=—:03 —00-®++/2dW  (5,x) € (50, 00) x T,

1.7
o =, (1.7)

S=s0

where dW denotes space-time white noise, 5o € R is the initial time, and ¢ : Tf’c — R.
We use s € R for the parabolic time-variable since ¢ € R is reserved for the time-
variable of wave equations.’ Due to the smoothing effects of the heat propagator, the
precise structure of the initial data in (1.7) is not important, and we only assume that
¢ eCy 1/2—e (T3). Instead, the difficulties in (1.7) stem from the stochastic forcing
dW. It can be written as

AW () = Y &AW (), (1.8)

neZ?

where (W(n)), .73 are standard complex-valued Brownian motions satisfying the
constraint Wy(n) = Ws(—n). The parabolic space-time regularity of dW is (2 +
3)(—1/2—) = —5/2—, where the time-dimension is counted twice and the three spa-
tial dimensions are counted once.

The first step in the analysis of (1.7) is the analysis of linear and cubic stochas-

tic objects. We define the linear stochastic object ¢ as the stationary solution to the
stochastic heat equation

(O +1—A)F =~2dW. (1.9)

Since the heat equation gains two derivatives and dW has regularity —5/2—, the
linear stochastic object € has regularity —1/2—. We also define® the cubic stochastic

. 0,90 . .
object " as the stationary solution to

@ +1-8)23° =) (1.10)

5The reason for using different variable names is that the stochastic objects in this article involve both heat
and wave propagators (see Sect. 6.4).

6The renormalization in (1.10) only contains the Wick-ordering, but does not contain the additional renor-
malization in (1.7). This is because “oo - ®" cancels double-resonances, which occur in terms such as

ogoQ 9o . . . . . . Q\3
¢ %4, but not the single resonance which occurs in the cubic nonlinearity (: ) .
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1142 B. Bringmann et al.

Since the heat equation gains two derivatives and § has regularity —1/2—, the cubic
stochastic object has regularity 243 - (—1/2—) =1/2—.

The next step in the analysis of (1.7) is the analysis of the nonlinear remainder W,
which is defined as

Q
=09+ % (1.11)

Due to (1.7), (1.9), and (1.10), the nonlinear remainder W satisfies

o} [e) 2
(0 +1-8) 0 =—3%"(= %%+ v) -39(- %"+ v)

3
(- +9) oo (3-%P+w), a1

oy, =& = 200) + % (s0).

Q9 Q\2. : . . . 0 .
where ¢ ::( ,) : is the Wick-ordered square. While subtracting ¥ and adding
o)
o,?’,o has removed the lowest regularity terms on the right-hand side of (1.7), (1.12)

Qo
still cannot be solved using a direct contraction argument. Since *s has regularity
—1—, the Duhamel integral of the high x low-interaction

o
%5® (xp _ °°) (1.13)

has regularity at most 1— (see Definition A.2 in Appendix A for the notation of the
bilinear para-products used here). As a result, we also expect that W has regularity
at most 1—. However, this regularity is insufficient to even define the high x high-
interaction

S

25 O, (1.14)
which prevents us from closing a direct contraction argument for W. The main idea
of the para-controlled approach of Gubinelli, Imkeller, and Perkowski [62], which
was first applied to the stochastic heat equation in [27], is to separate the treatment of
(1.13) and (1.14). To this end, the nonlinear remainder is written as ¥ = X + Y, where
Y is a smooth nonlinear remainder with regularity 3/2— and X is a para-controlled
component with regularity 1—. Namely the para-controlled component X absorbs the
contribution of (1.13) and solves’

-

(o]
(@ +1 —A)X:—3o‘\:'o®(— °‘~§~’°+X+Y). (1.15)

Together with (1.12), (1.15) also determines the nonlinear evolution equation for the
smooth nonlinear remainder Y. In order to control the high x high-interaction in

"In [27, 62], the equation for X is further simplified using commutator estimates for the Duhamel integral,
but we omit these (important) aspects from our discussion.
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Invariant Gibbs measures for the three dimensional cubic NLW 1143

Fig.4 Random structure of the - ;
cubic stochastic heat equation Regularity | —1/2— | 1/2- 1- 3/2-
Object Q oge X Y

(1.14), it is rewritten as

Q0 Q0 Q0

SOV = W OX+ WY (1.16)

. . Q9 . .- . .

Since the sum of the regularities of “¢ and Y is positive, the Y-term in (1.16) is

easy to estimate. While the regularity of X is insufficient to control the X-term in
(1.16), (1.15) yields detailed structural information on X, which is sufficient to con-
trol (a renormalization of) the X-term in (1.16). Ultimately, it is possible to solve the
system of heat equations for (X, Y), which yields the well-posedness of (1.7) and the
decomposition

(@]
=9 -1 x+v. (1.17)

For the convenience of the reader, we collected the terms in the treatment of (1.7) in
Fig. 4.

While the para-controlled approach was initially developed for parabolic equa-
tions, Gubinelli, Koch, and Oh [63] applied similar ideas to the three-dimensional
quadratic wave equation with space-time white noise. On the surface, the random
structure of the local dynamics in [63], which consists of explicit stochastic objects
and para-controlled terms, looks similar to (1.17). However, the required estimates in
the dispersive setting are quite different from the estimates in the parabolic setting.
For instance, the Schauder estimates in [62] are replaced by (multilinear) dispersive
estimates in [63], which are much more delicate. The para-controlled approach to
wave equations was also used in [18, 91, 93] and, as further discussed in Sect. 1.4
and Sect. 3.4, will also be used in this article.

1.2.3 Random tensors and random averaging operators

The random tensor theory was developed in [45] by the second, third and fourth au-
thors of this paper to understand at a granular level the propagation of randomness in
the context of dispersive equations. This theory can be viewed as the dispersive coun-
terpart of the existing parabolic theories [62, 65, 74] mentioned above. In [45] it was
applied to nonlinear Schrodinger equations with power nonlinearities to obtain prob-
abilistic local well-posedness in the full subcritical range relative to the probabilistic
scaling as described in Sect. 1.2.1. Furthermore, the solution constructed using this
framework has an explicit expansion in the Fourier side in terms of multilinear Gaus-
sians with random tensor coefficients.

The method of random averaging operators developed in [43] and mentioned in
Sect. 1.1.2 is a precursor of the random tensor theory. It controls to the first order
the propagation of randomness beyond the linear evolution. The idea is to include the
high-low interactions in the ansatz, but instead of putting them in a low regularity
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space in the ansatz, as it is done in the para-controlled calculus,® one writes them as
an operator applied to the high frequency linear evolution of the random initial data.
This operator, whose coefficients are independent with the modes of the linear evo-
lution, contains the randomness information of the low frequency components of the
solution, which is carried by two operator norm estimates in an inductive argument.
More precisely the random averaging operators take the form

P (utin) —Z Z Py (Pyuiin) = ZPN(PNulln) and

N LKN

(PN(PNMIIH) Z Z hnn’ 8n’>

(n')~N L&KN

(1.18)

where N and L are the frequencies of the high and low inputs, the subscript » means
the n-th mode, the g,/ are i.i.d. Gaussian random variables and the Fourier kernel
matrix hN L of Pnr is 1ndependent9 with Pyujn and carries the random information
of P<pu.

To understand the random structures at a finer level, one is naturally lead to study-
ing multilinear expressions of the form

,
Z hnnlnz--~n, ngn,-, (1.19)
j=1

1,012,501
(nj)~Nj, j=1,...r

and their associated random (r, 1)-tensors h = hy, n,...n, » Which depend on the low
frequency components P<yu of the solution and are independent with the product
of Gaussians ]_[;=1 gn; that lives in the high frequencies (namely N; (1 < j <r),
which are all 3> L). The random tensor terms like (1.19) describe all possible mixed
high-low interactions in the nonlinear evolution of the random data. The final random
tensor ansatz of the solution contains a finite expansion of such random tensor terms
and a smooth remainder. The regularity of the remainder can be determined by the
order of the expansion, which is possibly large but finite given any fixed subcritical
equation. The key in propagating this explicit random structure under the flow is to
control the appropriate operator and £ norms of the random tensor / in the ansatz
by an inductive argument. See [45] for details.

We remark that, in this paper, it is possible to use the random tensor theory in the
proof of local well-posedness. However, due to the subcritical nature of (1.3), plus
the smoothing effect of the wave propagator, the various terms we encounter here will
have better regularity than in [45], hence the full power of the random tensor ansatz
is not needed for the current (hyperbolic CD‘S‘) problem. In fact, trying to introduce the
inductive ansatz of [45] will make the proof conceptually more intricate by unraveling
the finer random structure of the remainder (yielding also better estimates), but such

8See Sect. 1.2.2 for a more detailed explanation of [62] in the parabolic setting and of [63] in the wave
setting.

9Independence between the high frequencies of the linear evolution and the low frequencies of the nonlin-
ear part was first used by Bringmann in [19].
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ODE Theory

Fig.5 (Colored online) Globalization

fine structure is not necessary for our main purpose, so we did not choose this option
here. On the other hand, our proof does rely heavily on the tensor norms and estimates
developed in [45], see Sect. 1.4.2 for further discussions.

1.2.4 Globalization

While the methods discussed in Sects. 1.2.2-1.2.3 yield detailed structural informa-
tion on the corresponding local dynamics, we are ultimately interested in proving both
global well-posedness and invariance (as in Theorem 1.1), which requires additional
ingredients.

The general strategy for proving global well-posedness and invariance, which is
known as Bourgain’s globalization argument [10], is illustrated in Fig. 5 and consists
of the following four steps:

(D) First, one defines a truncated Hamiltonian, the corresponding truncated evolu-
tion equation, and the corresponding truncated Gibbs measure. Due to ODE-
methods, the truncated Gibbs measure is invariant under the truncated evolution
equation.

(IT) Second, one uses the invariance of the truncated Gibbs measure to obtain global
bounds for the truncated dynamics. In this step, it is essential that the global
bounds are uniform in the truncation parameter. Furthermore, the global bounds
have to control not just the solution itself, but also the individual components of
the ansatz (such as X in (1.15)).

(IIT) Third, one proves the global well-posedness of the full evolution equation using
the global bounds from Step (II) and stability arguments.

(IV) Finally, one proves the invariance of the Gibbs measure under the full evolution
equation using the global well-posedness from Step (III) and the invariance for
the truncated evolution equation.

In many implementations of Bourgain’s globalization argument, the most difficult
aspects concern Step (II). The difficulties are most prominent when the Gibbs mea-
sure is singular with respect to the Gaussian free field, in which case one often works
with a representation of the Gibbs measure which is not preserved by the dynamics.
The difficulties for singular Gibbs measures were first addressed by the first author in
[18] and later by Oh, Okamoto, and Tolomeo in [93] and will be further discussed in
Sect. 1.4.3 below.
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1.3 Setting and main result

After the discussion of the earlier literature, we now proceed with a more detailed dis-
cussion of our main theorem. In order to make rigorous statements, we first introduce
frequency-truncated versions of the Hamiltonian (1.1), the nonlinear wave equation
(1.3), and the Gibbs measure (1.4). For any dyadic frequency-scale N, we define

dx(ﬁ L Ivul <a,u)2)

Hoylu, d;u] = /

T 2 2 2
((P<yu)*: (P<yu)?
+ - dx —74 + Y<N 772 . (120)

Here, (P<y)n is a sequence of sharp Fourier-truncation operators which are defined
in (2.15). The quartic term :(P< wu)*: is the frequency-truncated Wick-ordered quar-
tic power which is as in (2.19). Finally, the renormalization constant y<y is defined
as in Definition 6.2 and diverges logarithmically. Together with the symplectic form
(1.2), the frequency-truncated Hamiltonian H<y induces a frequency-truncated cubic
wave equation, which is given by

(02 +1— Ay
:—PSNI:Z(PSNMSN)3:+V§N~PSNMSN] (t,x) € R x T3, 1.21)
(u<n, (V)‘latqu)L:O = (¢, ¢sin).

In order to define the frequency-truncated Gibbs measure, we first define the three-
dimensional Gaussian free field ¢. At a formal level, it can be written as

2 \v/ 2
“dg(¢)=z—1exp<_f dx(ﬂ +| d >>d¢”, (1.22)
T3 2 2
which is strongly related to (1.6). At a rigorously level, it is defined by
9=LaW( > g—"e”’x), (1.23)
nez’ (n)

where go is a real-valued standard Gaussian and (8n)nez3\{0} is a sequence of
complex-valued standard Gaussians such that g,, and g,, are independent if n| #
+ny and g_,, = g,,. Equipped with (1.23), we define the frequency-truncated Gibbs
measure'? by

{(P<n ™)™

A=y (@, ¢ = Z exp ( - / dx(
- T3 4

Py oS 2 .
+V§N‘%))d(g(@g)((bcos,qﬁsm), (1.24)

10Dye to the (V)_l-multiplier in the initial condition for d;u<y in (1.21), the Gibbs measure in (1.24)
contains the product ¢ ® ¢ and not ¢ ® ({(V)#¢), where (V) denotes the push-forward under (V).
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In [7, 59], it has been provedll that (u<y)ny weakly converges to a unique limit,
which we define as

n=w-limu<p. (1.25)
N—oo

Equipped with (1.21), (1.24), and (1.25), we can now state a rigorous version of our

main result. In the statement, Fy 1/2-¢ refers to the Cartesian product of Sobolev

spaces at regularity —1/2 — €, see (2.22) below.

Theorem 1.4 (Global well-posedness and invariance, rigorous version) For any
frequency-scale N > 1 and (¢, ¢%") € Jt‘x_l/z_E (T3, let u<n be the solution
of the frequency-truncated cubic wave equation (1.21) with initial data u<y[0] =
(¢°°8, 5™, In addition, let . be the Gibbs measure from (1.25). Then, for ji-almost

every (¢, &™) and all T > 1, the limiting dynamics

ult]= lim u<ylt] (1.26)
N—oo —
exists in C?}f;l/zfg([—T, T1 x T3). Furthermore, the Gibbs measure is invariant
under the limiting dynamics, i.e.,
Law,, (u[t]) = p (1.27)

forallt e R.

In addition to the invariance of the Gibbs measure, our argument further yields
detailed information on the random structure of the limiting dynamics u in space-
time. For a detailed discussion, we refer to Sect. 1.4.2 below. We now end this section
with three comments on our main theorem.

(1) Since the infinite-volume limit of the Gibbs measure has been constructed in [49]
(see also [4, 61, 78]) and the wave equation exhibits finite speed of propagation,
Theorem 1.4 can likely be extended from the periodic to the Euclidean setting.

(2) InTheorem 1.4, we do not obtain the flow property for the limiting dynamics. We
nevertheless believe that, after a modification of the stability theory in Sect. 4, our
estimates should be strong enough to yield the flow property (see Remark 4.10
for more details). However, due to the length of this article, we did not pursue
this question in detail.

(3) While Theorem 1.4 concerns only the Gibbs measure, our argument also yields
the probabilistic local well-posedness (see Sect. 3) for the Gaussian free field.
Therefore, this article further improves earlier results on the probabilistic local
well-posedness of the cubic nonlinear wave equation with Gaussian initial data
[95, 96].

'While [7] does not consider sharp cutoffs, the argument only requires minor modifications (see also
Appendix A).
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1.4 Mainideas

We now discuss the main ingredients and novelties in the proof of Theorem 1.4. For
expository purposes, we split the discussion into three separate parts:

(I) representation of the Gibbs measure,
(IT) random structure of the dynamics,
(IIT) and globalization.

1.4.1 Representation of the Gibbs measure

We now describe the properties of the Gibbs measures (u<xy)y from (1.24) which
are most relevant for the proof of Theorem 1.4. There are two different properties
of (u<n)ny which create challenges in the well-posedness theory of the cubic wave
equation:

(a) The spatial regularity of typical samples is —1/2—.
(b) The Fourier coefficients of the samples are probabilistically dependent.

In lower-dimensional models such as in [10, 11, 43], the Gibbs measure is absolutely
continuous with respect to the Gaussian free field, and the probabilistic dependencies
in (b) can mostly be avoided. However, just as in [18, 93], the limiting Gibbs measure
in our setting is singular with respect to the Gaussian free field, and hence (b) is an
important aspect of our problem.

While the challenges resulting from (a) and (b) cannot be avoided, it is possible to
separate them. To this end, we do not directly solve the cubic wave equation (1.21),
but instead proceed as illustrated in Fig. 6. We start with samples (¢°°5, ¢*") from
the truncated Gibbs measure p<y. Then, we solve the frequency-truncated cubic
stochastic heat equation

(3 +1—A)d%y
= —PSNI: :(Pqu)(:SO[s\])3: +VSNPSNCDCSO[S\/']
+ /2dweos (s, x) € (sg, 00) x T3,

cos — ¢cos
<N ls=s9 :

(1.28)

The initial time so < 0 is chosen in (6.29) below and will be further discussed in
Sect. 6.1. For the purpose of this introduction, we encourage the reader to simply
think of so = —1. Then, we solve the frequency-truncated cubic wave equation (1.21),
but with initial data

(u<n, <V)—18,MSN)L=0 = (P (0), ¢*). (1.29)

Due to the invariance of the Gibbs measure under the Langevin dynamics, i.e., (1.28),
the law of (%} (0), @) is still given by j1<y. At a heuristic level, one can think
of the replacement of (¢°°%, $'") by (D5 (0), #¥") as a (highly non-trivial) change
of coordinates. The advantage of the initial data in (1.29) is that, using the para-
controlled approach discussed in Sect. 1.2.2, we now have a detailed description of
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the random structure of ®(0). More precisely, using similar notation as in Sect. 1.2.2,
we write

(PN (0).¢) =0 =, +0_y, (1.30)

e O = ( : (0 ,¢Sin) is Gaussian random data with spatial regularity —1/2—,

e O = ( .5 v (0), 0) is a cubic Gaussian chaos with spatial regularity 1/2—,

eandO_, = (‘IJ?AS, 0, O) is a nonlinear remainder with spatial regularity 1—.

As will be explained below the remark, we refer to O, <>J , and OsN as the caloric
initial data.

Remark 1.5 (Colors and shapes of the caloric initial data) Due to the listed spatial
regularities, the reader may wish to think of the blue caloric initial data O, the green

caloric initial data <>_,,, and the red caloric initial data O_,, as high, medium, and

low-frequency functions, respectively. The choice of colors then matches the visible
spectrum of light, since blue, green, and red light also corresponds to high, medium,
and low-frequencies.

The different shapes of the caloric initial data, i.e., the circle of the blue caloric
initial data O, the diamond of the green caloric initial data <_,,, and the pentagon

of the red caloric initial data O_, have no special meaning. The reason for using

different shapes is to make the paper accessible to colorblind researchers and readable
in black and white print.

We note that, just as the blue caloric initial data O, the stochastic objects of the
heat equation, such as ? and C%(?i , also contain a circle. However, since the blue
caloric initial data only appears next to full arrows (see e.g. (1.32) below), whereas
the stochastic diagrams of the heat equation contain dotted arrows, this should not

cause any confusion.

The motivation behind (1.30) is similar to the motivation behind the caloric gauge
introduced by Tao in [109]. The caloric gauge is used in the analysis of geomet-
ric wave equations and constructed using geometric heat equations. In comparison,
(1.30) yields a representation of the initial data for a random wave equation using
a stochastic heat equation. Since gauge transformations and representations of mea-
sures can be viewed as coordinates, there is a strong connection between both ideas.
This is our reason for referring to O, <_,,, and GO_,, as the caloric initial data.

We also remark that a similar representation as in (1.30) was used in a note of
Hairer [68] for a proof of the singularity of the @‘;-measure.

cQs cosCRScos
.68

12The cosine-superscripts in the stochastic diagrams O and 47,

ing in their definitions is different from the stochastic forcing in the definition of the initial velocity, see
Sect. 6.1.

emphasize that the stochastic forc-
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Fig.6 (Colored online) The caloric initial data

Remark 1.6 Instead of directly using the cubic stochastic heat equation (as in Fig. 6),
the earlier works [18] and [93] relied on the drift measures from [8] and the varia-
tional method from [8], respectively. The present approach offers advantages in the
globalization argument, which will be discussed in Sect. 1.4.3 and Sect. 4.

1.4.2 Random structure of solutions to the cubic wave equation

Motivated by the representation of the Gibbs measure from (1.30), we now consider
the caloric initial value problem

(7 +1—A)uzxy
= —Poy| (Penusn): +yen - Penusy| (L) ERXT,  (131)
(MSN, <V>_lat“§N)’,:O =0 -< N +O§N'

In order to prove Theorem 1.4, we require detailed information on the random struc-
ture of the solution u<y of (1.31). This random structure is expressed through the
ansatz

un =1 -9 — iy +3§, +x0 +x2 +v. (132)

In this introduction, we only give a brief description of the terms in (1.32) and post-
pone a detailed (and self-contained) description until Sect. 3 below. The first four
summands in (1.32) are explicit stochastic objects, which are defined as follows:

e { is the linear evolution of O and has spatial regularity —1,/2—,
. Q?ﬁv is the cubic Picard iterate originating from O and has spatial regularity 0—,

° is the linear evolution of <>_,, and has spatial regularity 1/2—,

<N
e and %N is the quintic Picard iterate originating from O and has spatial regularity
1/2—.

The fifth and sixth terms in (1.32) are para-controlled components, which are
morally'® defined as follows:

e X (<11)v contains high x low x low-interactions between § and two other components
of (1.32) and has spatial regularity 1/2—,
e and X (<2,)\, contains high x high x low-interactions between §, T, and one other

component of (1.32) and has spatial regularity 1/2—.

B3For the precise definition of X (<11)\,

and (3.51) below.

and X (<21)V’ which contain additional terms, we refer to (3.46)-(3.49)
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Regularity | —1/2— 0— 1/2— >1/2
Object 7 ' { $ x® x (@ Y

(A) The random structure of solutions to the cubic wave equation in this article.

Regularity | —1/2— B— 1/2— >1/2
Object 7 ‘\V’ xM Y

(B) The random structure of solutions to the Hartree-nonlinear wave equation with interac-
tion potential V (z) ~ |z|~®~#), where 8 > 0, in [Bri20b].

Regularity | —1/2— 1/2— >1/2
Object 7 e x® Y

(¢) The random structure of solutions to the quadratic wave equation in [GKO24].

Fig. 7 The random structure of solutions to the cubic wave equation in this article, the Hartree-nonlinear
wave equation with interaction potential V (x) =~ |x|~G=A) in [18], and the quadratic wave equation in
[63]

Finally, Y is a nonlinear remainder, which contains all remaining interactions and
has spatial regularity greater than 1/2. In Fig. 7, we list the terms from (1.32) to-
gether with their spatial regularities. For comparison, Fig. 7 also contains lists of the
corresponding terms in [18] and [63].

In the following, we discuss the main novelties of our analysis of the caloric initial
value problem (1.31) and the random structure (1.32).

Lattice counting, tensors, and molecule estimates for wave equations: As dis-
cussed in Sect. 1.2.3, our proof relies heavily on the framework of tensor norms and
estimates developed in [45]. Most of the tensors used here are explicitly defined, and
can be constructed starting from the base tensor h?, which is basically

(W"Yumingny = Hn =n1 +ny +n3, (n) = (n1) & (n2) £ (n3) + 01},

see (5.23) for the precise definition. A large part of the proof consists of estimating
various operator and £> norms of these tensors, which will rely on the merging and
moment estimates from [45], see Lemma B.1 and Proposition B.2, as well as corre-
sponding estimates for the base tensor 4”. By Schur’s lemma, these estimates for /”
then reduce to certain integer vector counting estimates, which are proved by suitable
geometric arguments. See Sect. 5 for details.

In later parts of the proof, we will also encounter higher order (septic and nonic)
stochastic objects and need to estimate their regularity. In principle this could be
done using the tensor estimates as described above, but due to the high order (and
rich structure) of these objects, such an argument would lead to an enumeration of
about 40 different cases, which is way too tedious. Instead, we will adopt the notion
of molecules introduced by the second author and Hani in [40], which wraps up the

@ Springer



1152 B. Bringmann et al.

key information and omits the irrelevant properties of these objects. By doing so we
can reduce the number of cases to less than 10, and then proceed with an algorithmic-
enumeration hybrid method. See Sect. 11 for details.

We remark that, while [45] provides uniform tensor and counting estimates for ar-
bitrarily high order terms in the case of Schrodinger equations, things are not quite the
same for wave equation. On the one hand, the wave case is easier with extra smooth-
ing and larger subcritical range; on the other hand, we currently do not have the
uniform estimates as in [45]. This may be related to the different behavior of disper-
sion relations (such as Galilean vs. Lorentzian symmetry). Another possible reason
is that, due to the smoothing effect for wave, the high-high-to-high and high-high-to-
low interactions behave differently, which is not the case of Schrédinger. As a result,
there are certain terms in the expansion that need special treatments (i.e. those lead-
ing to renormalizations) while in the Schrodinger case all terms are treated equally
and satisfy the same uniform bound. Nevertheless, we believe that it is possible to
establish a wave (or heat) version of the theory in [45] that also takes into account
renormalizations, which would be needed in the further study of random data wave
equations.

Bilinear operator estimates: As said above, most parts of our proof can be done
by utilizing the (linear) operator norms of tensors in the same way as in [45]. How-
ever, there is one place where we need to estimate the bilinear operator norm of an
explicitly defined tensor, say of form

> Griyrylts, vy
ky.ka

G llky xka—k r=Sup{ Hullg = lvllez =1}
I ky ka

b
where Gk, = Z(h ek kaks 8k
k3

with {g,} being independent Gaussians, see Lemma 8.1.

Such bilinear norms are not studied in [45]. One may control them by the corre-
sponding linear operator norms by “concatenating” some of the variables (for exam-
ple we have |G|k, xky—>k < |G llk;k,—k if one views (ky, k2) as one big variable and
u ® v a function of that variable), but the resulting estimates from [45], despite being
sharp for the linear norm, will not suffice for the original bilinear norm.

Instead, we will exploit the bilinear nature of the norm by estimating it directly,
using a variation of the ideas from [45], to obtain improvements upon the linear es-
timates of [45], which are enough for our purposes. Such probabilistic estimates go
beyond the regime of random matrices, and have not appeared in any earlier works to
the best of our knowledge. See Sect. 8 for details.

The 1533-cancellation: In addition to the counting, tensor, and molecule esti-
mates, which control individual stochastic objects and random operators, we also
rely on a delicate hidden cancellation involving multiple stochastic objects. In our
analysis of (1.31), we naturally encounter the square of the cubic stochastic object,
ie.,

(Q?fN)z(t,x). (1.33)
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In Lemma 6.24 below, we prove that (1.33) logarithmically diverges in the sense
of space-time distributions as N — oo. Since (1.33) contains two cubic stochastic
objects, we refer to the divergence of (1.33) as the 33-divergence. The 33-divergence
cannot be removed by a further renormalization, since the renormalization is already
dictated by the construction of the Gibbs measure, which does not encounter a similar
problem.!* Fortunately, in spite of the 33-divergence, the linear combination

6%y 1. )P, (1.x) + (C%)z(t,x) (1.34)

has a well-defined limit as N — oo. Since (1.34) contains one linear, one quintic,
and two cubic stochastic objects, we refer to the cancellation in (1.34) as the 1533-
cancellation. In the nonlinearity of (1.31), it is possible to always group the stochastic
objects together as in (1.34), and therefore the 33-divergence does not prevent the
well-posedness of (1.31).

The heat-wave stochastic objects: In Sect. 1.4.1, we discussed the caloric initial
dataO,<_,,, and O_,, which is constructed using the cubic stochastic heat equation

(1.28). In interactions involving only the blue caloric initial data O, the origin of the
caloric initial data is not important and it is possible to work with any representation
of the Gaussian free field (such as in (1.23)). However, in interactions involving both
the blue and green caloric initial data O and <_,, the origin of the caloric initial data

is essential. In our analysis of such interactions, we utilize long-hand stochastic dia-
grams, which are more detailed than the short-hand diagrams in (1.32). For example,
for the heat-wave quintic interaction term we write

PSN[ {(P<n)%: PSN?SN]
cos cos cos cos cos cos

* 2P g* g

s, o o
oy B o HER :
’o..: .‘.’ cos R cos : cos

#. ............. o e .,{ . }‘.
A ". ., 2 -
o

v,
e, .
s,
e,

% £ F 4
= ORGSR e 0

The long-hand diagrams on the right-hand side of (1.35) will be defined in Sect. 6.
At this point, we only emphasize that the long-hand diagrams contain two different
types of arrows. While the dotted arrows represent the heat propagator, the full arrows
represent the wave propagator.

We note that this aspect of our argument was not present in the earlier works
[18, 93], since the corresponding random shifts of the Gaussian random data have
spatial regularity greater than 1/2.

AR

0,00
147 quick way to see this is by looking at the cubic stochastic object *#* from the stochastic heat
equation, which has spatial regularity 1/2— and whose square is therefore well-defined.
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1.4.3 Globalization

In Sect. 1.2.4, we discussed Bourgain’s globalization argument [10], which has been
a successful paradigm for proving both probabilistic global well-posedness and the
invariance of Gibbs measures. In this subsection, we focus only on aspects specific
to our article and the earlier works [18, 93].

We first focus our discussion on our proof of global bounds, which correspond to
Step (I) in Fig. 5. As discussed in Sect. 1.2.4, our global bounds have to control the
individual components in our ansatz (1.32). As a result, it is natural to try to simply
iterate!> our local theory.

The implementation of this iteration, however, presents a challenge. To illustrate
this, let T > 0 be a small time. Using our local theory, it follows that u < exhibits the
random structure (1.32) on the time-interval [0, t]. In particular, it follows that

usylrl= (?—‘*?{’N ~iy +3%, +x§§+x§}v+y)[r]. (1.36)

Since the right-hand side of (1.36) looks very different from the caloric representation
of the initial data in (1.31), it is difficult to directly establish the desired random
structure on the time-interval [7, 27].

In [18], the first author addressed a similar difficulty using the following three
steps:

(a) First, rewrite the random structure of u<y from (1.32) only in terms of the initial
data u<y[0]. In our context, the random structure would have to be written as a
function of only the sum u<y[0] =O — <., +Q_, and not as a function of the

tuple (O, <, O_y).

(b) Second, show that new random structure of u<y from Step (a) satisfies a semi-
group property.

(c) Third, use the invariance of the Gibbs measure and the semigroup property from
Step (b) to obtain global control of the new random structure.

This strategy is rather general and should, at least in principle, be applicable to many
dispersive equations. However, its main drawback is its computational and notational
complexity, which stems from both Step (a) and Step (b). For more details, we refer
to [18, Sect. 3 and 9].

Instead of the argument of [18], we introduce a new version of Bourgain’s global-
ization argument [ 10], which is also partially inspired by [93]. Our approach consists
of the following three steps:

(a) First, we obtain local bounds on the solution u <y in a certain weaker norm || - || w.
It is important that bounds in || - ||y can easily be iterated in time.

(b) Second, we use the invariance of the Gibbs measure (t<y and Step (a) to obtain
global bounds in the weaker norm || - ||w uniformly in the truncation parameter
N.

151 each step of this iteration, one has to utilize the invariance of the Gibbs measure p <y under the
dynamics of (1.21), which serves as a substitute for a conservation law. However, this aspect is not the
main subject of our discussion.
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(c) Third, we use the global bounds in the weaker norm || - ||w from Step (b) and our
main estimates (from Sect. 3.5) to obtain global control of the random structure.

In our article, the role of the weaker norm || - ||w from Step (a) is played by the nonlin-
ear smoothing norm (see Definition 3.2). In contrast to the argument in [93, (6.95)],
our nonlinear smoothing estimates (Proposition 3.3) rely on multilinear dispersive
effects. See Sect. 4.1 for details.

This strategy is seemingly less general than the strategy of [18], since it is unclear
when a suitable weaker norm || - ||w can be found. If applicable, however, it is much
simpler.

We now briefly discuss our stability theory, which corresponds to Step (III) in
Fig. 5. In the earlier works [18, 93], the stability theory is based on the full initial data
u<n[0]. As can be seen from [18, Sect. 9] and [93, Proposition 6.5 and Remark 6.6],
earlier stability estimates require a tremendous computational effort, which would be
practically infeasible in our setting. In our approach, the stability theory is instead
stated in terms of the three individual components O, <>_,,, and O_,, (see Proposition
4.9), which simplifies earlier methods. For a more detailed discussion, we refer to
Sect. 4.2.

1.5 Open problems

Near the end of this introduction, we discuss some open problems in random disper-
sive equations. While the methods of this paper do not provide complete answers to
either of these open problems, we believe that they address certain aspects.

1.5.1 Geometric wave equations

In our previous discussion of parabolic singular SPDEs, we primarily focused on
the parabolic @3-m0dels. Due to the previously mentioned literature, such as [27,
62, 65, 74], the parabolic <I>3-models are now rather well-understood. Very recently,
several works on singular parabolic SPDEs focused on geometric equations, such as
the geometric stochastic heat equation [26] and the stochastic Yang-Mills equation
[28, 29].

From both a mathematical and physical perspective, it would be interesting to
obtain similar results for geometric wave and Schrodinger equation with random ini-
tial data or stochastic forcing. Some initial progress in this direction has been made
[22-24, 73], but almost all questions in this area remain wide open. We hope that the
different counting and tensor estimates of this article, which were briefly discussed
in Sect. 1.4.2, will also be useful in the geometric setting.

1.5.2 The cubic nonlinear Schrédinger equation in three dimensions

As shown in Fig. 1, the 3D cubic nonlinear Schrodinger equation is now the only
classical @3 measure-invariance problem that still remains open. In fact, we expect
it to be much harder than all positive results in Fig. 1 combined, for the sole reason

that it is probabilistically critical, namely s, = s in Fig. 3. This means that the
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nonlinear evolution is only marginally (if at all) smoother than the linear evolution,
which makes a fundamental challenge in the local theory.

Recently, the second author and Hani have resolved for the first time a closely
related probabilistically critical problem, in the context of wave turbulence, [40]. We
expect the full Gibbs measure problem to utilize all these state-of-art techniques,
including (i) the full random tensor ansatz in [45], (ii) the deep molecular analysis
in [40], and (iii) the caloric data and possible cancellations coming from mixed heat-
Schrodinger objects already exploited in this paper.

1.5.3 Long time dynamics in regimes without an invariant measure

Another challenging problem is to control the propagation of randomness (in various
forms) beyond the short time regime, in the absence of any invariant quantity (such
as a Gibbs measure). For the corresponding parabolic problem there has now been
some significant progress, see e.g. [78, 79], but in the dispersive and wave settings
the picture is relatively less clear. Below we just list a few directions along these
lines:

(1) Wave turbulence: this basically concerns (large) finite-time propagation of statis-
tical quantities, according to some effective (wave kinetic) equations. Recently
some fundamental progress has been made [32, 33, 38—40, 45, 103], including
in particular [41] which achieves the first long-time result in the derivation of
nonlinear kinetic equations.

(2) Quasi-invariance problems: this concerns infinite-time propagation of non-
invariant measures in terms of absolute continuity with respect to the initial
ensemble. We refer the reader to [58, 64, 80, 89, 99, 107, 114] and refer-
ences therein for some examples, but getting to lower regularities is still a chal-
lenge.

(3) Global well-posedness problems: this concerns infinite-time propagation of regu-
larity or of random structure (such as para-controlled terms, random tensors, etc.)
of solutions. Here the prevailing idea has been to apply some form of energy or
modified energy estimate, and some progress in this direction has been made in
the Euclidean setting in, for example, [17, 20, 47, 48, 72, 86, 100] while for the
periodic settings we have [31].

1.6 Overview of the paper

We now give a quick overview of the structure of this paper, which is also illustrated
in Fig. 8. In Sect. 2, we define parameters which are used throughout this article and
recall basic definitions and lemmas from the literature. The heart of our article lies
in the ansatz and local theory (Sect. 3) and global theory (Sect. 4). Despite utilizing
estimates from the body of this article, both sections can be read without reading
the rest of this article. In Sect. 5, we prove several counting and tensor estimates,
which will be used extensively in Sect. 7-Sect. 11. In Sect. 6, which is essentially
self-contained, we address algebraic aspects of the stochastic diagrams. In Sect. 7-
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‘ Theorem 1.4: |

Global well-posedness and invariance |

Section 3: Ansatz
and local well-posedness

Subsections 3.1-3.4:
Ansatz

Subsection 3.5:

Section 4: Global
well-posedness and invariance

Subsection 4.1

Global bounds

Subsection 4.2:

Main estimates

Stability

Subsection 4.3
Subsection 3.6: ubsection

Local well-posedness

al well-
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posedness and invariance
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and tensor estimates graphical aspects of diagrams
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Section 8
Bilinear random
operator

Section 10:
Para-controlled

calculus

Section T:
Analytic aspects of
basic stochastic diagrams

Section 9:
Linear random
operators

Section 12
Proof of main estimates,

Fig. 8 (Colored online) In this figure, we display the dependencies between different sections of this
article. The heart of our article lies in Sect. 3 and Sect. 4, which are self-contained

Sect. 10, we estimate basic stochastic objects, bilinear operators, linear operators, and
para-controlled operators. These four sections depend heavily on the tensor estimates
from Sect. 5, but can be read independently of each other. In Sect. 11, we estimate
higher-order stochastic objects, and the arguments partially rely on earlier estimates
in Sect. 7-Sect. 10. Finally, in Sect. 12, we prove our main estimates (from Sect. 3.5),
which collect all of our estimates in a few main propositions.

2 Prelimininaries

In this section, we introduce the parameters which will be used throughout this article.
Furthermore, we recall a few basic definitions and lemmas from the literature. The
expert may wish to skip this section and directly continue with Sect. 3 and Sect. 4,
which are at the heart of this article.
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2.1 Parameters

The most important parameters of our argument are 41, &3, €, n € (0, 1), which are
chosen such that

D<e<h kKoK 2.1

These parameters will be used to describe spatial regularities of terms in our ansatz
and frequency-restrictions in our para-products. We also choose additional parame-
ters such that

1 1 1
0 0 b_ —— b— - by —— d
<u<LaKo KoLl ( 2) < ( 2)<<( + 2) <€ an 02
KKl
For notational convenience, we also define
Q:=0""! and Cj:= C;l, where 1 < j <4. 2.3)

While the above parameters are fixed throughout this article, we also introduce posi-
tive constants

a,c, and C, (2.4)

which are allowed to take different values in each estimate. Throughout the article,
the constant o will be chosen depending only on previous choices of «, but never
depending on any of the parameters in (2.1), (2.2), or (2.3). The constants C and ¢
will be chosen depending on b_, b, by, 81, 62, n, and v, i.e.,

C=C(b_,b,by,61,62,n,V) and c=cb_,b,by,51,62,1,v). (2.5)

However, the choice of C and ¢ will never depend on c1, ¢3, ¢3, or ¢4. Since C and ¢
will only be used a finite number of times, it is therefore possible to guarantee that

a<KLc and C L. (2.6)
2.2 Basic definitions

In this subsection, we make the following basic definitions, which are primarily meant
to fix our notation.

(a): Fourier transform. For any smooth function f: T°> — C, we define the spatial
Fourier transform by

)= (Fef)mn) =

—i(n,x)
) ./T3 dxf(x)e 2.7

for all n € Z3. Furthermore, for any u: Rx T3 — C, we define the space-time Fourier
transform by

1 —i —i{n,x
(Frxu)(n, p) = W/;{dt/wdxu(t,x)e tp g =i(n.x) (2.8)
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for all p € R and n € Z>. In the following, we will often write the time-frequency
variable p as +(n) + A.

(b): Sums of frequency variables. We represent sums of frequency variables by
concatenating the indices of the individual frequency variables. For example, if
ni,na2,n3 € 73, we write

nipp:=ni+ny and nx3:=n;+ny+ns.

(c): Norms on Z3. For any n = (n1,n2,n3) € 73, we define

1/2 1/2
in = lInlla = (n3 +n3 +n3)" and  (n):=(1+[nl3)">. 2.9)
We also define the £°°-norm by
Inloo :=max (|n1l, [n2], [n3]). (2.10)

(d): Indicator functions. For any statement S, we write the corresponding indicator
function as 1{S}. For example, if n, n1,n2, n3 € Z*, we write

1 ifng= ,
1{"0=n123}== s @.11)

0 else.

(e): Frequency-projections. We now define the sharp cut-off function 1y : Z3 —
{0, 1}, where N > 1 is a dyadic frequency-scale, as follows:
If N =1, we define

lN(n)=1{|n|OO§1}. (2.12)
If N > 2, we define
1N(n)=1{N/2<|n|oo§N}. (2.13)

Since the zero frequency will not play a role, below we will ignore the discrepancy
between (2.12) and (2.13) and only use (2.13). Furthermore, we define

len(n) = Y 1 (). (2.14)

K<N

Finally, we define the sequences of sharp frequency-truncation operators (Py)y
and (P<y)n as Fourier-multipliers with symbol 1y or 1<y, respectively. To be pre-
cise, we define

Pyf)=1ym)f(n) and Py f(n)=1l<y(n)f(n). (2.15)

The reason for using the £°°-norm instead of the £%-norm in (2.12) and (2.13) is due
to the mapping properties of (Py)y and (P<y)n.

(f): Dependence on multiple parameters: Many of the expressions in this article
depend on multiple parameters, such as frequency-scales (N;) jj.: 1 € 2MNo or phase-

functions (¢ j)f: | € {cos, sin}, where J € N. To simplify the notation, we often ex-
press this dependence by simply writing N, or ¢, respectively. For instance, if a

@ Springer



1160 B. Bringmann et al.

function f: T®> — R depends on the three frequency-scales N1, Na, and N3, we ex-
press this dependence by writing f[N.](x) instead of f[Ny, N, N3](x).

(g): Signs. In linear combinations of dispersive symbols (see e.g. Sect. 5), we
repeatedly fix the corresponding signs. The fixed signs will be written as (&) jenr €
{+, —}N , where N\ is a finite index set. If =£; occurs more than once in the same
proof, it will refer to the same sign, and we also write ; for the opposite sign.

In contrast, whenever we write %, the sign will not be fixed and different occur-
rences of £ may refer to different signs.

(h): Wick-ordering. For any N > 1, we first define

1
2 . E
UfN = W, (216)
nez’

which corresponds to the expectation of || ¢ || iz with respect to the Gaussian free field.

For any f: T3 — R, we further define

{(P<n )%= (P<y ) — 02y, (2.17)
{(P<n )= (P<n f) =302y P<n f. (2.18)
5(P§Nf)4:=(Pst)4—6U§N(P§Nf)2+3aéN. (2.19)

(i): Smooth cutoff-function in time. We fix a smooth, compactly supported function
x: R— [0, 1] satisfying x(t) =1 forallt € [-1, 1] and x(t) =0 for all ¢ ¢ [—2, 2].
(j): Probability theory. If (2, £, P) is a probability space, E € £ is an event, and
A > 1, then the event E is called A-certain with respect to [P if
P(E)>1—c 'exp(—cA), (2.20)
where c is assumed to be as in (2.5) and hence does not depend on A.

2.3 Function spaces and linear estimates

Forany @ € Rand f: T?> — C, we define the Sobolev-norm

1 e =D )| F 0. (221)

neZ3

The corresponding Sobolev space HY is defined as the space of all distributions with
finite HY-norm. Furthermore, we define

H = HY x HY. (2.22)

Definition 2.1 (X*?-spaces) Letu: R x T3 — C. Forany s € R and b € R, we define
the global X*"*-norm by

lielxss ey = ) (11 = )" (Frat) 0 0] 212 - (2.23)
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For any closed interval J C R, we also define the local X**-norm by
lullxsor) = inf{ vl xs.omy: v(#) =u(t) forallt € J}. (2.24)

The corresponding function spaces are denoted by X*?(R) and X**(J), respec-
tively.

For any ¢ € {cos, sin}, we define <p(t(V)) as the Fourier multiplier with symbol
n > ¢(t(n)). Equipped with this definition, we can write the solution of the inhomo-
geneous linear wave equation

(07 —=A)p=F, (6, (V) '09)|,_o= (¢ ¢™),
as

sin((r — t)(V))

i F(t). (2.25)

. t
¢ = cos(t(V))¢® + sin(t (V)" —i—/ dr’
0

The integral on the right-hand side of (2.25) is called the Duhamel integral and, since
it is used repeatedly in this article, we define

sin((r — ")(V))

) F(t). (2.26)

t
TF(t):= / dr’
0
For notational convenience, we also define the localized Duhamel integral
Iy F@t):=x("I[x F]@), (2.27)

where the cut-off function y is as in Sect. 2.2.

In working with X*”-norm, propagators, and the Duhamel integral, it is conve-
nient to work with a twisted space-time Fourier-transform. For any F: R x T3 — C,
n €73, and A € R, we define

Fi(n,k) =F [Fln, A £ (n)), (2.28)
Similarly, if 4, (¢) is a function of n € 73 and 1 € R, we define
hEQ) := Filhl(n, A £ (n)). (2.29)

Equipped with this notation, we can state the following estimate for the localized
Duhamel integral.

Lemma 2.2 (Lemma 4.1 in [45]) Forall F: R x T3 — C, we have the identity
TP (n. ) =/ KT, 0)-(n) ' FE@n,0)do, (2.30)
R
where the kernels K™ (A, o) and K~ (A, o) satisfy

1 1 1 1
k%0 0)] < (_ —>_54 231
KGNS\ T 05008 ) 10 ~ T o) (231
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forall B> 1 and A, o € R. Furthermore, the derivatives KT, o) and 9, K (X,
o) hold the same bound as (2.31).

Remark 2.3 When the precise sign + or — in (2.28) or (2.29) is irrelevant, we some-
times simplify the notation by omitting the superscripts.

We now list a few basic properties of X*-’-spaces.

Lemma 2.4 (Energy estimate) Let J C R be a compact interval containing zero and
let ¢ be as in (2.25). Then, we have for all s e R and b € (1/2, 1) that

”¢”L,°°H;(j><11‘3) + ”<V>_13I¢HL,°°H;(J><T3) + ”‘M Xs:b ()

2 cos sin
S H1T) (16 gy + 167 [ e + 1 7

Xsfl,bfl(J))'
Lemma 2.5 (Time-localization) Let J C R be a compact time-interval of size T :=
|T| € (0,1), let s € R, and let —1/2 < by < by < 1/2. Then, we have for all F €
X502 ) that
br—b
”F”XS-bI(J) St l”F”XL’Q(J)' (2.32)

If instead 1/2 <b) <by <1l and u € Xs’bz(j) satisfies u(tg) = 0 for some ty € 7,
then

o

| s.0, ST X51(7)" (2.33)
Lemma 2.6 (Gluing lemma, [18, Lemma 4.5]) Let s € R, let —1/2 < b’ < 1/2 and
let J1 and J» be compact intervals satisfying Jy N Ja # @. Then, we have for all

F:(J1U%) x T3 - R that

I s g0z S WE g 7y + 1E s 7,)-

2.4 Multiple stochastic integrals

In this subsection, we briefly recall the definition and elementary properties of multi-
ple stochastic integrals. For more detailed discussions, we refer to the textbook [84],
the lecture notes [77], or [18, Sect. 4.6].

We let (2, £,P) be a probability space and let (W;(n)), .73 be a sequence of
Gaussian processes on (€2, £, P) satisfying the following properties:

(1) W,(0) is a two-sided real-valued standard Brownian motion and (W (n)) ,c73\ (o)
is a sequence of two-sided complex-valued standard Brownian motions. To be
precise, we impose the normalization E[| W, (n)|*1=s forall s e Rand n € Z3.

(ii) For all m,n € Z3 satisfying m # =£n, the processes W, (n) and W, (m) are inde-
pendent.
(i) Forall n € Z3, W, (n) = W, (—n).
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For any bounded and measurable set A € R x Z3, we define

W[A] = Z/dW m)1{(s,n) € A},

neZz?

where the right-hand side is understood as a sum of It6-integrals.

Definition 2.7 (Multiple stochastic integrals) Let N be a finite index set and let
f:(Rx Z3)N — C be an elementary function of the form

f((sj»”j)je/\f)ZZQZAI{(Sja”j)jeNG 0% Az_,-},
N jeN

which satisfies the same boundedness and “off-diagonal”-assumptions as in [18,
Sect. 4.6] (see also [84, Sect. 1] and [77, Sect. 4]). Then, we define the multiple
stochastic integral by

/ @ AW, (1)) f((sj.n)) jen) : Zaz,\f [Twiagl @34
nare(ZHN RA jeN jeN

For a general function f € L2((R X Z3)N), the multiple stochastic integral is defined
by a density argument and (2.34).

In the following, we state two lemmas, which will be used repeatedly throughout
this article. The first lemma controls higher-order moments of multiple stochastic
integral and it is a classical result (see e.g. [84, Theorem 1.4.1] or [77, Corollary
5.6)).

Lemma 2.8 (Gaussian hypercontractivity) For all finite index sets N, all f €
L2((R X Z3)N), and all p > 2, it holds that

f [ @ o]’

nne(ZHN R

12
<WVE[| ¥ / ® W, ) (el ]

nNe(Z3)N

The next lemma consists of a product formula for multiple stochastic integrals. To
state it, however, we first require the following definition.

Definition 2.9 (Pairings and contractions) Let N and K be two finite disjoint index
sets. A collection of two-elements sets P is called a pairing of N and K if all sets
in P are disjoint and contain exactly one element of N and one element of K. We
denote the paired elements of N' by N, the paired elements of K by K,, and the
unpaired elements of N UK by U.
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Forany f € Lz((]R X Z3)N) and g € LZ((]R X Z3)’C), and pairing P, we define
the contraction

(f P g)((suv nu)uEZ/{)

Y Y [ @ Qu

) jeny ke, © INp T keKy

< ] ( njx=0 5(51'_Sk))f((sj,nj)je./\/')g((skvnk)kelC)-
{j.k}eP

Lemma 2.10 (Product formula) For all disjoint finite index sets N' and K, f €
L2(R x ZN), and g € L*((R x Z3)*), it holds that

(

/ ® dw,. (nl)f((sj’”J)JEN)>

nNE(Z3)N RN jeN

=Y > QdW,, () (f ®p 8)((Susnu)uers)-

P ny RY yeld

/ ®dW5k ()8 (k. nk)kelC))

ne(Z3)K

The aforementioned reference [84, Sect. 1] contains a proof of a symmetric version
of Lemma 2.10. For a non-symmetric version similar as in Lemma 2.10, we also refer
the reader to [65, Lemma 10.3].

In the following (see e.g. Sect. 6), we will also need multiple stochastic integrals
in two independent copies (W% (n)),.z3 and (W;i"(n))nezs of (Wy(n)),cz3. By
using functions f: (R x 73 x {cos, sin})N — C, Definition 2.7, Lemma 2.8, and
Lemma 2.10 can easily be extended to this more general setting. To simplify the
notation, we also make the following definition. Forany m > 1, ny,...,n, € 73, and
@1, ..., Om € {cos, sin}, we define

SIlnj.gj: 1< j<m] :=2%/ ®dwff(n,~)(]_[ eri’),  235)

[—o0,01™ j=1

where the right-hand side is the multiple stochastic integral of

m
/ N2
P55 gyiny) =22 TT (1) = 00100 =} ) 1is < 00”17,

j=1

We emphasize that SZ[n;, ¢;: 1 < j < m] is (essentially) normalized, i.e.,
2
E[[STnj. 050 1< j = m| [~ 1.
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For any %1, ..., %, € {4+, —}, we also define

m
Stinj i 1<j=m= Y ([esp)STnjg1<j=ml  236)
PlssPm j=1
€{cos,sin}

where the coefficients are dictated by the choice of 4-; and the expressions of cosine
and sine as sums of complex exponentials; i.e. Ctj.cos = 1/2 and Ctj sin = (F,)i/2.

3 Ansatz and local well-posedness

We now examine the frequency-localized nonlinear wave equation

{(8;24‘1_A)USNZ_PSN(3(P§NM§N)31+V§N“§N> 3.0

usN[O] — (¢cos’ ¢sin).

We recall that N is a frequency-truncation parameter, P<y is a sharp frequency-
truncation, :(P<yu< N)3: is the Wick-ordered cubic power, and y<y is an additional
renormalization. Furthermore,

u=n10] = (u=y (©), (V)" =y (0)). (3.2)

As was already mentioned in the introduction, the (V) -1 -operator acting on 0;1 <y (0)
is a notational convenience, which emphasizes symmetry!'© in (the Gaussian parts of)
the random initial data ¢°° and ¢*™".

The main result of this section is the probabilistic local well-posedness of (3.1) on
the support of the Gibbs measure. A qualitative version of our local well-posedness
result can be stated as follows:

Proposition 3.1 (Qualitative local well-posedness) For any 0 < t < 1, there exists
a Borel measurable event Local, C J, V2€ such that the following two properties
hold:

(1) (High probability) It holds that
/L(LOC&II ) >1-— cl_l exp ( - clr_cl).

(ii) (Convergence) For all (¢, ¢*) € Localy, the solutions u <~ of (3.1) converge
in

LRg P (Tl x TP)

as N tends to infinity.

16The significance of this aspect of our formulation will be explained in full detail in Sect. 6.
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While Proposition 3.1 is a significant result in its own right, it will not enter into
our proof of the main theorem (Theorem 1.4) and is stated (and proved) only for
illustrative purposes. Instead, we will rely on a more quantitative version, which is
the subject of Proposition 3.25 below.

In addition to the local well-posedness, our globalization argument (see Sect. 4)
also relies on a nonlinear smoothing estimate. While the solution u<y lives at spa-
tial regularities —1/2—, the Duhamel integral of the nonlinearity has regularity 0—.
The nonlinear smoothing effect will be captured through the following norm, which
provides better LY°L°-control.

Definition 3.2 (Nonlinear smoothing norm) For any closed interval J C R, we de-
fine the nonlinear smoothing norm by

Il llysr) = U”,},f (” v ”(L,wcfmx—fvb)(wa) +w ||X'/2+32*b(JxT3))’

u=v+w

The definition of the N §-norm is motivated by our ansatz from (1.32). The terms
Q?p, %, XD and X@ will be placed in LC N X —€b_ whereas the nonlinear

remainder ¥ will be placed in X /2%%2:% Equipped with Definition 3.2, we can now
state our nonlinear smoothing estimate.

Proposition 3.3 (Nonlinear smoothing) Let M > 1 and let 0 < t <K 1. Then, there
exists a Borel measurable event NSmys ; C FHy Y27€ Such that the following two
properties hold:

(1) (High probability) It holds that
,uSM<NSmM,,) >1— cl_1 exp ( - C]'L'_Cl).

(ii) (Nonlinear smoothing) For all (¢°°5, ¢>Si") e NSmys ¢, all N <M,andall T > 1,
the solution u<y of (3.1) satisfies

HPSAII[I{Oft51’}(:(PfNuSN)3:+y5Nu§N)]H <717
NS([-T,T))

Remark 3.4 The most significant aspect of Proposition 3.3, which will be further dis-
cussed in Sect. 4, is that the formulation does not explicitly involve our ansatz (from
Sect. 3.1-Sect. 3.4). This makes it particularly useful in our globalization argument.

We now briefly describe the remainder of this section. In Sect. 3.1, we briefly dis-
cuss the caloric representation of the Gibbs measure p. A more detailed discussion,
however, is postponed until Sect. 6.1 below. In Sect. 3.2, Sect. 3.3, and Sect. 3.4,
we derive our ansatz for the solution u<y. In Sect. 3.5, we state the main estimates
needed in our local theory. Finally, in Sect. 3.6, we prove the local well-posedness of
the cubic nonlinear wave equation (3.1). More precisely, we prove Proposition 3.1,
its quantitative version from Proposition 3.25 below, and the nonlinear smoothing
estimate from Proposition 3.3.
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3.1 The caloricinitial data and initial value problem

In this section, we briefly discuss the caloric initial data
O, <& and O,

which provides us with a representation of the Gibbs measure p<ps. In order to
promptly continue with our ansatz (Sect. 3.2-Sect. 3.4), we postpone'’ a more de-
tailed discussion until Sect. 6.

The starting point of our construction is an abstract probability space (3, Z, Q)

and random functions (¢<%,, ¢ ): 3 — H, 1/27¢ catisfying

Lawg ( (655 933 ) = m<u.

That is, we represent the (frequency-truncated) Gibbs measure through the law of two
random functions. However, two different properties of (qSCSOAS,I, ¢5§“}V1) make it rather
difficult to directly solve the initial value problem (3.1):

(i) The initial data ( ;OA} ;”}W) only has regularity —1/2—.
(ii) The Fourier-coefficients of ¢, are non-Gaussian and probabilistically depen-
dent.

The first property (i) requires us to use probabilistic methods in our local theory,
since the regularity of the initial data is far below the deterministic threshold for lo-
cal well-posedness. Unfortunately, many of the probabilistic methods for dispersive
equations (see e.g. [43, 45, 63]) require both Gaussian and probabilistically indepen-
dent Fourier-coefficients. To separate the two issues in (i) and (ii), we represent (1<
as the sum of two low-regularity functions, which have good probabilistic properties,
and a high-regularity function, which (potentially) has bad probabilistic properties.
As will be explained in Sect. 6, such a representation can be obtained by solving
the cubic stochastic heat equation (or parabolic (Dg-model) with initial data given by
(@5 2'}‘4) In the following proposition, we record the most important aspects of
the construction.

Proposition 3.5 (Caloric initial data) Ler M > 1, (3, Z,Q), and (9%, 2‘,},,) be as
above. Let A > 1 and let (2, E,P) be the ambient probability space from Sect. 6.
Then, the Gibbs measure 1<) can be represented as

u<m = Lawpg (O -yt OSM (A, ¢C§O;/I))

and we have the following properties:

(1) (Gaussian) The random function O is as in Definition 6.6. In particular, it is
Gaussian, £-measurable, and has spatial regularity —1/2 — €.

17Since Sect. 6 is essentially self-contained, the reader can also skip ahead to Sect. 6 and then return to
Sect. 3.

@ Springer



1168 B. Bringmann et al.

(i1) (Cubic Gaussian chaos) The random function <_,, is as in Definition 6.6. In
particular, it is a cubic Gaussian chaos, £-measurable, and has spatial regular-

ity 1/2 — €.
(iii) (Remainder) There exists an A-certain event Ex € £ ® Z such that, on this
event, the remainder satisfies

SRR

Remark 3.6 (a) As was already mentioned in the introduction, the term “caloric” is
motivated by the connection with the caloric gauge from [109].

(b) The representation in Proposition 3.5 is more detailed than in the work of the first
author [18, Theorem 1.1]. In [18], the form of the cubic Gaussian chaos <_,, is

not essential and it is simply hidden in the remainder O_,, . In the present setting,
however, the precise form of <&_, is crucial for several aspects of our argument.

(c) We note that the remainder O_,, = O_, (A, ¢<%,) in the caloric representation is

A-dependent. In particular, if we want to increase the probability of the event E 4
by increasing A, we also have to change our representation. Fortunately, this does
not create any difficulties in our argument.

Equipped with the caloric initial data (from Proposition 3.5) we now turn to the
cubic nonlinear wave equation. To this end, we let M > N > 1 be frequency-scales
and examine the caloric initial value problem

@ +1 = Ay = =Py (:(Payuzy)’ +yenuey)

3.3
u<y[0]=0 =<, +0_,.
Remark 3.7 In the rest of this subsection, we will mostly consider solutions of the
caloric initial value problem (3.3). However, in some arguments, such as in the proofs
of Proposition 3.1 and Proposition 3.3, we need to consider solutions of both the gen-
eral initial value problem (3.1) and the caloric initial value problem (3.3). Whenever
necessary, we distinguish the solutions by writing either u‘i N or uf}v, respectively.
In the following three subsections, we rigorously derive our ansatz for the solution
of (3.5), which was briefly discussed in Sect. 1.4. While the derivation consists of
several steps, they can be categorized into the following three groups.

(I) Subtract explicit stochastic objects, which correspond to Picard iterates, from
U<N.
(II) Derive the nonlinear wave equation for the remainder v<y and exhibit cancel-
lations.
(IIT) Define the para-controlled components X (511)\, and X (521)\, and the smooth nonlin-
ear remainder Y<y.

From a practical perspective, it is convenient to exhibit the cancellations in Step
(II) before further decomposing v<y into X (<11)v, X (<21)v’ and Y<y in Step (III). Other-
wise, it is more difficult to correctly group the terms together.
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3.2 The explicit stochastic objects in u <y

In order to define the explicit stochastic objects, it is convenient to write the renor-
malization constant y<y as

y<n =Ty + (y=nv —T=n), (3.4)

where "< is the renormalization multiplier from Definition 6.2. The motivation be-
hind (3.4) is that I'< 5 exactly cancels certain resonant terms, so it is easier to base our
stochastic objects on I'< instead of y<y. The remainder y<y — I'<y, which turns
out to be a Fourier multiplier with symbol bounded by ()€, can be treated pertur-
batively. Of course, it would have been possible to directly renormalize the equation
(3.5) using I'<y instead of y<y. However, both the physical and parabolic literature
(see e.g. [25, 60, 66]) prefer local counterterms, thus precluding the direct use of
renormalization multipliers. Inserting (3.4) into (3.3), we now write the equation as

@2+ 1—Au<y
= _P§N< :(PfNqu)3: +F§NM§N> — (y<n —T<n) P<yu<n 3.5)
MSN[O] =0 - 07 M +O§M‘

Throughout the rest of this section, we use our shorthand notation for stochastic
diagrams. The longhand notation, which was already mentioned in Sect. 1.4, will not
be used here. We first define the linear stochastic object { as the solution to

@+1-nMF=0, fl01=0. (3.6)

To simplify the notation, we also define ?5 v =P< ~T. Similarly, we define the linear
evolution of the green caloric initial data by

O +1-AM)f, =0,  f,01=0 . (3.7)

The two stochastic objects in (3.6) and (3.7) correspond to the zeroth Picard iterate
of (3.5) which initial data given by only O or &_,,, respectively. As we will see in

Sect. 7 below, the spatial regularity of ?5 y 18 —1/2— and the spatial regularity of
?< u 18 1/2—. To simplify the notation, we also define

Wy S(y) and A ER,) (3.8)

We emphasize that the right-hand side in (3.8) contains the Wick-ordering ((2.17)—
(2.18)) but does not contain the renormalization multiplier I'<y. The reason is that
I'<y is designed to cancel a double-resonance, which cannot occur in the quadratic
or cubic stochastic object. We now turn to higher-order Picard iterates. To this end,
we define the cubic stochastic object by

@} +1-0) =P A, Wo=o. (3.9
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In contrast to ?< ~» we emphasize that ‘%N is not the low-frequency projection

of a limiting stochastic object. In particular, the two stochastic objects q?ﬁ and
P< NQ?};, where K > N, are not equal. As we will see in Sect. 7 below, the spa-
tial regularity of q?ﬁ/ is 0—. Finally, we define the quintic stochastic object by

3@ +1-0, =Py (382, -Tan) G0 eRXT
¥, 101=0.
(3.10)

We note that a factor of three has been included on the left-hand side of (3.10), which
simplifies the combinatorics below. As we will see in Sect. 7 below, the spatial regu-

larity of §B, is 1/2—.
3.3 The nonlinear remainder v<y and cancellations

Equipped with the explicit stochastic diagrams from Sect. 3.2, we now write the so-
lution u <y as

un =9 - — .y +39, +v-n. (3.11)

Using the definitions of ?, ‘%N s ?< v » and %N, it follows that v<x solves the non-
linear wave equation

(3241 — A<y
— Py [3‘\&N (3 §, — Pl + PSNUSN)
+F§N<_Q?5N — oy 3§, + PfNU§N>
+(—q?fN — Ponty 3%, +P§NUSN)3
+(yn — FSN)<?§N ~ ¥~ Panioy 3%, + PvafN)]' G2

and has initial data given by v<y[0] = O_,,. In the rest of this subsection, we exhibit
cancellations in the right-hand side of (3.12).

In [63], Gubinelli, Koch, and Oh already observed a cancellation in products of
?< » and (the para-controlled component of) the nonlinear remainder v<y, which

was also used in [18, 91, 93]. Throughout this article, we refer to this cancellation
as the sine-cancellation, since it crucially relies on the sin((r — ¢'){V))-multiplier in
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the Duhamel integral. In Lemma 5.15, we present a new perspective on the sine-
cancellation, which links it to a certain complete derivative. Our reason for mention-
ing the sine-cancellation here is that, since it is used in several earlier works, it may
have already been on the reader’s mind. For the derivation of our ansatz, however, the
sine-cancellation only plays a minor role (despite its importance in our estimates).
Instead, we will now focus on another cancellation.

As shown in Lemma 6.24 below, the expectations (or resonant parts) of the linear
x quintic and cubic x cubic-stochastic objects are ill-defined. More precisely, both
expectations

B[y ¥, ad  E[YY] (3.13)

diverge logarithmically as N — oo. This divergence cannot be removed through ad-
ditional renormalizations, since the renormalization is already dictated by the con-
struction of the Gibbs measure. While the individual expectations in (3.13) diverge
as N tends to infinity, however, the linear combination

E[6f., ., + ¥ ] G.14)

has a well-defined limit. Thus, there is a major cancellation between the linear
x quintic and cubic x cubic-stochastic objects, which we now call the 1533-
cancellation. As mentioned in Sect. 1.4, the 1533-cancellation is one of the main
novelties of this article. While the proof of the 1533-cancellation is postponed until
Sect. 6, we give a heuristic motivation.

Remark 3.8 (Heuristic argument for the 1533-cancellation) For a typical sample
(ug, u1) of the Gibbs measure <y, it is well-known that the Wick-ordered square
(P< nuo)?: is well-defined (with uniform control in N). This follows easily from the
construction of the Gibbs measure (see e.g. [7, 78]) and can also be obtained from
our representation of p<y (see Proposition 3.5). As long as we believe in the invari-
ance of the Gibbs measure, i.e., our main theorem, this suggests that :(P<yu<y )%
is well-defined for all # € R. After inserting our ansatz from (3.11) and using the
binomial formula for Wick-polynomials, we obtain that

v ¥, + ¥, (3.15)

=(P<yu=n ()’
_(V;N +2?§N (% +P5N?§M) (3.16)
—2%_y P<nv<n (3.17)

+299, (= Penioy +3%, + Pavvan)

2 (3.18)
_<— PSN?fM +3$§N +P§NUSN> .
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Based solely on the explicit formulas for our stochastic objects and the sine-
cancellation, one can prove that (3.16) is well-defined. While v<y has regularity
1/2—, and one may therefore be worried about the product in (3.17), this term can
be treated as in the previous literature [18, 63]. Finally, the terms in (3.18) are clearly
well-defined, as the sum of the regularities is positive. Thus, we therefore expect that
the left-hand side

oty ¥, + ¥ %

is well-defined. Of course, this motivation does not constitute a proof, since it already
presumes the validity of our main result.

A second heuristic argument for the 1533-cancellation can be obtained from the
wave kinetic equation. In fact, (3.14) is just the sum in k of the quantity

E[6 £y (.0 - F B, (k) + | F O k)‘z]. (3.19)

Let ug‘j\;‘ be the solution to (1.31) with initial data O, then (3.19) is just the first
order term (that converges to a constant multiple of t when N — 00) if one expands
E(t, k) :=E|F; (ug?\;‘)(t, k)|2 as a power series in time 7:

E(t, k) =E(0,k) + (3.19) + O(12).

Now, the wave turbulence theory predicts that in the limit N — oo, the energy pro-
file £(¢, k) should asymptotically be £(¢, k) ~ ¢(N~'t, N~'k) where ¢ solves the
corresponding wave kinetic equation

hp(t,2) = Z/ 8(z — 21— 22 — 23)8(Izl — e1lz1] — €2]z2] — €3]23))
€;e{t} lzl,lzj1=<1
J

y o(t, D)t z1)e(t, 22)(t, 23)
|k|

x[ ! ‘l € i ]d dzyd
— — — 710220z23.
lzlp(t,z)  lzilet,z1)  lz2le(t,z2)  lz3le(t, z3)
(3.20)

Moreover, as N — oo, we can check that the initial data ¢(0,z) — |z|_2, while
@(t,z) = |z|~% is a stationary solution to (3.20). Thus it is expected that £(z, k)
should be constant in time to the top order, hence (3.19) should vanish to the top
order, and so should (3.14). As the top order term in (3.14) is at most logarithmic in
N, the lower order terms will converge and thus (3.14) has a well-defined limit.
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In order to state the evolution equations concisely, we first introduce additional
notation associated with the 1533-cancellation. We define

elY 0 =E[Ty .0, 0.0,

By = [q?pN .00 (. x)], (3.21)
Can () =600 + €50 1),

We note that, due to the translation-invariance of the random initial data, the func-
tions Q(l :3) ), Qﬁ(s :3) (t), and €<y (¢) do not depend on x € T3. In order to isolate the

divergences in ?<N % and Q?p Q?}?V , we now want to decompose them as
¥ - (?SN Yoo )> +ely) and
B = (R - e
=N k=N

After inserting the decomposition (3.22) into the evolution equation (3.12), we obtain

(3.22)

new terms involving either QS}\?) or Qﬁ(j/’\?). In order to utilize the 1533-cancellation,

we have to group all new terms together and ensure that QZ(I ) and 6(31\?) never occur
individually, but only in combination with their correspondlng stochastic objects or
through their linear combination €<x. In order to prove this algebraic result, it is
convenient to make the following definition.

Definition 3.9 (Symbols) We define the set of basic symbols by

=79 1. B0} (3.23)

For each symbol ¢ € &” and dyadic scale N, we define {<n as the random function
obtained by adding the subscript “<N " to the stochastic object. For example, ¢ =

leads to t<y = ?fN and ¢ = Q?p leads to t<y = Q?};] . We also collect objects with
regularity at least 0— in 68 and 1/2— in 611’/2, i.e., we define

& ={¥ 1. B0} aa &l={i, o] 629

To avoid confusion, we remark that the set 6’1’ 12 will only be used in the proofs of
our main estimates (see Sect. 12), but not in their statements.
In addition to the symbol notation from Definition 3.9, we also introduce a modi-

fied product ITZ 5, which subtracts the desired multiples of Q(Slj’\f) and Qf(;’\?).

Definition 3.10 (Modified product) We let N > 1, ¢V € &°, and ¢@,¢® e &}.

Then, we define a symmetric modified product TT*% N (gf}v, g“f}i,, gf},) as follows:

My (Lo F0) =T () 50).
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%N) <N % % _2¢(l % =N’
B el TS 2
<NQ?P{<3> ire® =¥, &%
=Py el TENTPA A
(Q?p)’ B3I
(§°) -5 ”);f}v ire® Y,
Y2l irc®.c® 29,

Cilfvfi?,ci% ife® £9. 5(1)’4@’;(3)#@.

S
HiN(? <N~ Y é‘<12J

2 .03
HEN(?<N §<N §<N

)=¥
)=
)=1
2y (7 YY)
o)
):
):

(q?p q?p &
e (O ¢ <55

1 2 3
My (e 50 ¢S

Remark 3.11 In Definition 3.10, we only considered products involving at most one
factor of ?< ~ - While products with two factors of ?< » also occur in our nonlinear
wave equation for v<y, they will not be rewritten using the modified product notation.

We now prove the following lemma, which concerns the algebraic structure of the
third, fourth, and fifth summand in (3.12).

Lemma 3.12 (Grouping) There exist two maps
A6 -7  and A3 6P x &) x &k 17, (3.25)

which map combinations of symbols to absolute constants, such that the following
algebraic identity holds:

39y ( ~ Y — Py +39, + P§NU§N)2

3
+( =, = Peniizy + 3%, + Pevven) (3.26)
—18C5 .y — Cav D Ai)Een (327)
lest
- Y Y AN, (R 8.68). 68

(Weah ;(2)@(3)56”
Furthermore, there exists a map
.Zl LS Z,
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which also maps symbols to absolute constants, such that

(v<n —FSN)PSN<?5N _Q?fN ~Tew +3%N +USN>

=—(y=v —T<n) Y Ai(@)<n. (3.29)
reGt

The first term in (3.27), i.e., —186(51,’15)P§ N?<  1is still divergent, but it will ulti-
mately cancel with a term in the first summand of (3.12). From the proof, one can
easily work out the precise values of the maps A1, A3, and Zl. However, since the
precise values are completely irrelevant for our argument, we do not keep track of
them.

Proof The second algebraic identity (3.29) is trivial and we can explicitly choose

(A(®)- D(F). A (i)- A (). D(e)) = (- 1.11.5.-1),

The proof of the first algebraic identity follows from a simple (but tedious) calcula-
tion. Due to the central importance of this identity to our work, we present the full
details. To simplify the notation, we denote the linear space spanned by all summands
(3.27) and (3.28) by £, i.e.,

£ :=span ({QSNPSNCSN: e Gb}
ulPaviiy (6 c8cR): ¢V et c@ @ est]).  330)

In the following, most calculations will be performed up to elements in £, which we
denote by writing mod £. For the first summand in (3.26), we obtain that

39y ( ~ Y — Poniy, +39, + PSNvSN)Z
=30, (P 271, ()

"HS?sN %N(_Q?}:N - PSN?SM + P§NU§N> mod £.

For the second summand in (3.26), we obtain that

(—Q?fN — Pyt 3§, + PfNqu)3
- _(%)3 +3(q?§)2(_ Pnioy +3%, + PSNUSN) mod £.
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By adding both expressions and grouping terms together, we obtain that
3 (O, Peviiy +3%, + Pavvan)
+( ~ Y — Pyt +39, + Pszvvszv)3
=38 () + [ (8.) +9(8) . 631
159, %, + ()]
+[ (189 ¥, + 3(‘*%)2)( — Penioy + Penvey)| mod .

For the first summand in (3.31), we have that

2
3?51\1 (Q?};v) 230:(53}\?) <N +3H2N<?5N’Q?§v’q?§)
= —189:(51}3) <N +3Q:SN?§N +3H2N<?§N’%’%>
=-18¢’., mod L.

This yields the main term in (3.27). The remaining three summands in (3.31) are all
elements of £. Indeed, for the second summand in (3.31), it holds that

279, (%N)2+9(Q?§)2%N
[, (8,) 20+ (F) -0,

+9cv PP, € £

For the third summand in (3.31), it holds that

158, %, + (F)
18] (T 8, -2 )9 |+ | (90)" - 30200 |+ 30 e e

For the fourth summand in (3.31), it holds that
2
(18?51\/ %N _{_3((%\,) ><_ PfN?SM + PSNva)
=18|:<?<N %N — Q:(Sl;\?))<_ PSN?SM + P<NU<N)i|

+3[(<q?§>2 B ¢§§)>(_ PNy + PvafN)}
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+3Q:§N< - PSN?fM + P§NU§N> e L.

As aresult, (3.31) can be written as in (3.27) and (3.28), which completes the proof.
O

After applying Lemma 3.12, the equation for v<y takes the form

@7 +1— Ay
= pr[9‘V°§N Y, -y +rv P, - 18@:‘51;3)1051\,?54 (3.32)
+P_y [3‘\&, Poni_y + r<N?<M} (3.33)
—P<y [3‘\&N P<yv<y + FstfN} (3.34)

1 2 3
+ Y Y A @) Py (¢.68.68) 639)
;('>e6’7§(2),§(3)€6’6

+Cay Y AN P<yien + (yan —T<n) Y Al(§)P<nizn. (3.36)
re6h resh

We emphasize that the first summand (3.32) is rather complex. In fact, each of the
three terms

ravys.  rov§,.  ad P Pag., (3.37)

will cancel a resonant term originating from R& N %N. For the first two terms in
(3.37), this is to be expected, since the cancellation of resonances is the whole purpose
of the renormalization multiplier I"< . For the third term in (3.37), it is a consequence
of the 1533-cancellation.

3.4 The para-controlled components X 9}\, and X (<21)v

Instead of starting directly with rigorous definitions, we first motivate the para-
controlled ansatz for X! and X® with a heuristic discussion. In the previous sub-
section, we derived the evolution equation for the nonlinear remainder v<y and ex-
hibited the 1533-cancellation. Ideally, we would like to control v<y directly through
a contraction argument, but this turns out not to be possible. The nonlinear term in
(3.35) contains the (high x high — low) x low-interaction

I|:P§1<?N 'PNU<N)P§1U<N} (3.38)

The Duhamel integral in (3.38) does not experience any gain through multilinear
dispersive effects. To see the reason for this, let us denote the frequencies of ? s
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Pyv<y, and PSIUSN by n1, ny, and n3, respectively. In the (high x high — low) x
low-interaction, the multilinear dispersive symbol satisfies

[(ni +n2+n3) — (ng) + (n2) — (n3)| S (n1 +n2) + (n3) S1

and therefore cannot yield any gain. In order to obtain uniform control of (3.38) in N,
we therefore need the regularities of ?N and v<y to add to a positive number. Since

?N has regularity —1/2—, this would require that v<y has regularity greater than 1/2.
Unfortunately, this is prevented by at least two different interactions in (3.32)-(3.36),
which will now be discussed.

High x low x low-interactions: We first discuss certain high x low x low-
interactions, which yield contributions of regularity at most 1/2—. For illustrative
purposes, we focus on

I[?N PSIUSNPslsz]. (3.39)

Unfortunately, (3.39) experiences no gain through multilinear dispersive effects. In-
deed, if ny, ny, and n3 denote the frequencies of? , P<iv<n, and P<jv<p, the
multilinear dispersive symbol satisfies

[(n123) — (n1) — (n2) — (n3)| < (n2) + (n3) S 1.

As a result, the only gain of regularity comes from the (V)™ !'-multiplier in the
Duhamel integral. Since ?N has regularity —1/2—, the term (3.39) has regularity
at most 1/2—. While the regularity of (3.39) is therefore too low for a direct con-
traction argument, it exhibits a useful random structure. Indeed, it morally behaves
like the Duhamel integral of ?N . The para-controlled component X (<11>\,, which will be
introduced below, is used to capture (3.39) and similar terms. -

High x high x low-interactions: We now discuss certain high x high x low-
interactions, which will also only yield contributions of regularity at most 1/2—. For
illustrative purposes, we consider

I[:?N?N: P§1v<Ni|. (3.40)

In contrast to the high x low x low-interactions from (3.39), the high x high x low-
interactions in (3.40) benefits from multilinear dispersive effects. The reason is that,
for frequencies n1, ny, and n3 satisfying |n1| ~ |n2| ~ N and |n3| ~ 1, the multilinear
dispersive symbols

(n1,n2,n3) = F123(n123) £1 (n1) £2 (n2) £3 (n3)

are essentially equidistributed over all values < N. Based on this heuristic,'® we ex-
pect a gain of half of a derivative from multilinear dispersive effects and one deriva-

18For the precise details, we refer to Lemma 10.5 below.
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tive from the (V) ~!-multiplier. In total, we then expect that (3.40) has regularity
2-(=1/2=)+12+1=1/2—.

While the regularity of (3.40) is therefore too low for a direct contraction argument,
it exhibits a (different) useful random structure. Indeed, it morally behaves like the
Duhamel integral of :?N ?N :. The para-controlled component X (<2])\, which will be
introduced below, is used to capture (3.40) and similar terms. -

In addition to the high x low x low and high x high x low-interactions above,
which yield contributions of regularity below 1/2, there is a third problematic
frequency-interaction. While its expected regularity is better than 1/2, it still prevents
us from directly closing a contraction argument.

Resonant-interaction: For the discussion of the resonant interaction, we assume
that the para-controlled components X (<11)\, and X (<21)\, have been defined and we now
examine the nonlinear remainder B B

Yoy i=vey — X0 — X2, (3.41)

which is expected to have regularity s > 1/2. In contrast to the para-controlled com-
ponents, the nonlinear remainder Y<y exhibits no random structure and is treated us-
ing only deterministic methods. After inserting the para-controlled ansatz into (3.34),
we encounter the high x (high x high — low)-interaction'?

7 [?N P<) (?N PyY- N)} (3.42)

In contrast to (3.38) above, the resonant product P<y (?N PnY< N) in (3.42) is well-
defined, since Y<y has regularity greater than 1/2. Our issues with (3.42) are of a
different kind, and instead concern only its low regularity. Due to the absence of
multilinear dispersive effects in (3.42), its regularity is equal to

T+ (=12=)+(=1/2=)+s=s5—.

As a result, the regularity of (3.42) is (just barely) too low to close a contraction
argument for Y<u. Fortunately, (3.42) exhibits a random structure, and will also be
included in our first para-controlled component X (<11)v After this informal discussion,
we now proceed with rigorous definitions. -

In order to isolate the problematic frequency-interactions, we dyadically decom-
pose the nonlinear terms in (3.32)-(3.36). For this, we need dyadically-localized ver-
sions of the modified products from Definition 3.10. The precise formulas for the
dyadic components are rather complicated, and we encourage the reader to ignore
these technicalities on first reading.

Opor simplicity, we omitted the renormalization of ?N ?N , which is irrelevant in this term.
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Definition 3.13 (Dyadically-localized modified product) Let N > 1. For all 1 <
N1, Ny < N, we first define

el VL N1 = E[Fy, Pr, ¥, . (3.43)
S INL N2 =E| P, P, P |- (3.44)

For all C(l) c &b, 5(2), §(3) € 68, and frequency-scales N, N1, Na, N3, we define the
frequency-localized modified product as follows:

3.3
3H*5N(PN1?5N'PN2 LN'PNs LN> ::?Nl (PNz LN Py, LN _Q;N)[N%Nﬂ)*
. (1,5)
H;N(PNl?gN’PNZ %N’ Py %;v) ‘=?N| PN2¥NPN3 %N = €N [N1, N2 Py, %;
1,5
—e8 v vaey, §,.

3)
H*SN(PNl?gN* Py, %;v’ PNscsN)

3 1,5 3 .
=Sy, P2, B, Py — eUDIN) Mol Py 8 ire® 2 P,
3. 3) .3 W)
H*SN(PNl?gN'PNz LN'PN3§§N) '=?N1 PN, LNPN355N lfé“()?é %
2 3 2 3 .
M (P Yoy Poae SR Py 8 ) =T, Pryc S Py e & TR 2

ey (7 7 20 2 YY)

=Py, o P, o o, Y - B e N1y, O

O N1, O €D a1, O

1y (Pn, 3 P, 5 P e )

= (P00, O, - €S v 1) e ire® =Y,
My (P, O o e ) 1= P Y Pryc G P e & ire®.c® =P,

1 2 3
H*SN(PNl é,{, PNZQK,, PN3§;12/>

1 2 .
= Py ey Py e 2 Py e G FUNERENA S

Equipped with Definition 3.13, we now define the following trilinear para-product
operators, which capture the bad interactions from our informal discussion. In con-
trast to Definition 3.10 and Definition 3.13, we allow for two linear evolutions in
our arguments. The reason is that, once we restrict to specific frequency-interactions,
fewer of the renormalization or cancellation-terms in (3.32) and (3.34) are relevant.
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Definition 3.14 (Trilinear para-product operators) We make the following three defi-
nitions:

(1) High x low x low-interactions: For {®,¢® e 68, we define

hi, 10,1 2 3 Z 2 3
H;NO 0(?51\]7{;13/7;()) 2N(?N]7PN2§213/’PN3§())
N1,N2,N3=N:

Nz,NsSN{7

Furthermore, we also define

rihilo. 10(?<N N $ ) = > 1 (?N2 P, % — eI, N3]>

Ni,N2,N3<N:
Na,N3<N/
hi,lo,lo .
Y (?szv v ”SN) = Z Py, Ty, Prsvsn.
Ni,N2,N3<N:
Na,N3<N/

(2) High x high x low-interactions: For ¢® e {%, v}, we define

hl o lO(?<1v ) ?<N §(3)> Z ?Nl ?Nz PN@§(3)

Ni,N2,N3<N:
min(Ny,Ny)>max(Ny,Np)"
N3<max(Ny,N2)"

(3) Resonant-interaction: For any function Y : R x T> — R, we define

res <?<N’?<N’ P<NY)
Z Z Z [(I{N13§N§}+1{N235N{7})

Ni,N2,N3<N: Ni13,N23 ny,n,n3eZ3
N3>max(Ni,N»)"

3
x (TT 100 ) 1o (13) Ly (n29) By, )R, (nz)PN3?(n3)e"<"123~x>]

j=1
Remark 3.15 (On I'Ireg ) In the definition of the resonant-interaction Hrj;v, we omitted

the Wick-ordering of ?N ?N but double-count the case when both Nj3 < N and

Ny3 <N 1" Both of these choices, which simplify the notation in our treatment of
XD below, are made primarily for convenience. As it turns out, both contributions
essentially correspond to terms with at least two resonances between n1, ny, and n3
(instead of just one resonance), which are easily estimated.

Equipped with the tri-linear para-product operators from Definition 3.14, we can
now state the para-controlled equations. As dictated by (3.41), we decompose

vy = X0 + X2 + Yan. (3.45)

@ Springer



1182 B. Bringmann et al.

The notation for the para-controlled components is chosen in agreement with [45],
since X (<11)\, and X (<21)\, are related to (1, 1) and (2, 1)-tensors, respectively. We first

define the evolution equation for X (<11)\, by

@ +1-8x1

— — 6Py Il (?SN o 3, - Ponty, + vSN) (3.46)

Y AP ) Pyt (R e B 6D (3.47)
(@ O]

+A1(?)¢§NP§N?§N + A (?)(J@N - FfN)PfN?SN (3.48)

—3Py TS, (?SN oy Ve N) (3.49)

and impose the initial condition
xD 0 =8x" 0 =0. (3.50)

Secondly, we define the evolution equation for X (521)\/ by

@ +1-0)x2 = —3P5Nn1§;1;i’1°(?51v oy 39, — Pty + USN) (3.51)

and impose the initial condition

X2 0)=3,x2,0) =0. (3.52)

It remains to state the evolution equation for Y<x, which is essentially determined by
the evolution equations for v<y, X (<11)v’ and X (<21)\, In the evolution equation for Y<y,

however, we will make use of the para-controlled structure of X (<l])v and X (<21)V through

the double Duhamel trick. That is, we will be inserting the Duhamel integral of the
right-hand sides (3.46)-(3.49) and (3.51) instead of X}, and X&) , respectively. In
order to emphasize the double Duhamel trick in our notation, we now introduce the
following two operators.

Definition 3.16 (Para-controlled operators) We define two operators X(glz)v and Xg\,
by

XU =X [ven, Yyl =7 [(3.46) + (3.47) + (3.48) + (3.49)], (3.53)

X2, =X v, Yyl =1 [(3.51)]. (3.54)

From the definition, it is clear that XS}V can be written as the sum of explicit
stochastic objects, linear operators in v<y and Y<y, and bilinear operators in v<y.
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Similarly, ij)v can be written as a sum of explicit stochastic objects and linear op-

erators in v<y. Before stating the evolution equation for Y<y, we also expand the
symbols from Definition 3.9.

Definition 3.17 (Para-controlled symbols) We define the set of para-controlled sym-
bols by

&P = {?, W, i PxD, X2, Y}. (3.55)

Furthermore, we also define

&) =9 iy B x0.x2 7). and

(3.56)
6?/2 = {?SM’ % XM, x®@, Y}.

Similar as for 6’1’ /20 the set Gf ) will only occur in the proofs but not the state-
ments of our main estimates (see Sect. 12).

Equipped with both the para-controlled operators (Definition 3.16) and symbols
(Definition 3.17), we can now write the evolution equation for the smooth nonlinear
remainder Y<y. It is given by

@} +1—A)Y<y
SIS S T
hi, lo, 1 hi, hi, I
So(mE ) (2. 2 86, |

+3P§N[(V)<N PSN?SM _ (Znt;i}i]o,lo n H};i}\llli,lo) (?SN’?SN, PSN?<M)1| (3.58)

(3.57)

3Py [%N X0 - (znl;i}\l/o,lo " H};i}\}lli,lo) (?sN Fon ng)v)] (3.59)
. [3% %2, — (6o 43 (7, 9, %3
+FSN<3%N — PSN?SM + v§N>:|
hi,lo,lo hi,hi,lo res
=3Py | Wy Yen — (2023 + T2y + TSN ) ( Ty Ty Yen (3.61)

Y AR Oy (my - ) (. Qe ) G

2 3 P -
@ ¢« )EGO

(3.60)
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D A(e D@ D) Py iy (Pent®, Peng @, Py ®)

1 2 3 =P
M @ ¢ ( )Eb()

(3.63)

+eay Y A P<nlen + (yen —T<n) Y A(§)P<nizn. (3.64)
reah reah

From the derivation of the ansatz, we obtain the following reformulation of the
nonlinear wave equation (3.5).

Proposition 3.18 (Para-controlled reformulation) Let M > N > 1 and let (v<y,
xO X8 Yay) satisfy

ven = X0 + X2 + Yoy

and be a solution of the para-controlled nonlinear wave equations (3.46)-(3.52) and
(3.57)-(3.64). Then,

“5N=?—q?f —Vem +3$ +X(1 X(z) +Y<n

solves the nonlinear wave equation (3.5).

1) %@

Remark 3.19 In the following, we often refer to (v<y, XSN, Ne Y-n) as the solu-

tions of the para-controlled nonlinear wave equations.
3.5 Main estimates

In this subsection, we state the main estimates of our local well-posedness theory. For
expository purposes, the estimates are split over four separate propositions. In the
first proposition, we state probabilistic Strichartz and regularity estimates for Xgl)\,

and Xf}v In the remaining three propositions, we state our estimates of the nonlinear
terms in the evolution equation for Y<y. The three propositions treat (3.57)-(3.61),
(3.62), and (3.63)-(3.64), respectively. In other words, we distinguish terms which
contain two, one, or zero linear stochastic objects.

Proposition 3.20 (Probabilistic Strichartz and regularity estimates for X(IN and
X(Szl)\,) For all A > 1, there exists an A-certain event E5 € € such that the fol-
lowing estimates hold: For all j = 1,2, N > 1, T > 1, and all closed intervals
0e J C[-T,T], we have that

HXS}V VN, YiN]H n HX(” [v<n. Y<N]H

X100 () e

(3.65)
< AT (14 osn 10z, + Y en I ) )-
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Remark 3.21 (On the X ~!-*-norm) The right-hand side of (3.65) only contains the
X~b_norm of v<y. In our local theory, this aspect of Proposition 3.20 is rather
irrelevant, and (3.65) would be just as useful if the X ~!*-norm is replaced by the
much stronger X '/>=31:2_norm. In the global theory (see Sect. 4), however, the bound
by weaker norms is essential. In fact, our globalization bounds (Proposition 4.1) are
based on a Gronwall-type inequality, which only works if there is at most one high-
regularity norm on the right-hand side of (3.65). In contrast, Proposition 3.23 and
Proposition 3.24 utilize more than one high-regularity norm, and will be revisited
below (see Lemma 4.6).

We mention that the proof of (3.65) relies heavily on the parameter condition
81 > n (see the proof of Lemma 10.4.(1)). While the parameter §; appears directly
on the left-hand side of (3.65), the parameter n is hidden in the definitions of the
X(jl)\,-operators (see Definition 3.14 and Definition 3.16).

‘We now turn to the main estimates for the smooth nonlinear remainder Y<y . After
each proposition, we point the reader to the sections of our article which are most
relevant for the proof. We first start with terms involving two linear stochastic objects,
i.e, (3.57)-(3.61).

Proposition 3.22 (Terms involving two linear stochastic objects) For all A > 1,

there exists an A-certain event E5 € £ on which the following estimates hold for
alM >N >1,T > 1, and closed intervals 0 € 7 C [T, T].

(1) (Explicit stochastic objects) It holds that

H P<y [9(\)1]\, &EN —Toy (Q?ﬁ +?§N> 18¢09 Py,
hi lo, hi,hi, 1

_9(2n<1No 4y 0)(?51\;,?51\,, %N)}

+H PSN[(\&N PnT_y — (2 0+ s l°>

x <?SN’?§N’ P<N?<M)}

<AT*“.

X—|/2+52.b+—1 (J)

X*l/2+82,b+71 (j)

(ii) (Para-controlled calculus) It holds that

1 hi,lo, 1 hi, hi,1 1
98,0~ s ) (L. )

X—1/24+8.04-1(.7)

HS(VZNXQ) _( rqhi-lo. 1o_|_3n}2]\tjn lo)<?§N’?§N’X(§21)V>

+F5N(3$§N — PSN?fM +U§N)

X—1/2H02.b4-1( 7y
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< AT (14 osn 1) + 1Y ineinngg))-

(iii) (The Y -term) It holds that

|2 e — (2 T 4 115 (R o Vo)

X-1/2+52.b4-1( )
< AT*||Y<n 17248507y

The explicit stochastic objects in (i) are studied from an algebraic perspective
in Sect. 6 and estimated in Sect. 7 and Sect. 11. The para-controlled calculus in
(i1), which concerns random operators containing Xgl)\, and Xf}v, is performed in

Sect. 10. This estimate also heavily relies on operator-norm estimates of our tensors
(Sect. 5). Finally, the linear random operator in Y<y from (iii) is treated in Sect. 9.1.

Proposition 3.23 (Terms involving one linear stochastic object) Forall A > 1, there
exists an A-certain event E 4 € € such that the following estimates hold: For all N >
1, T > 1, closed intervals 0 € J C [T, T], and ;(2), §(3) € &7, it holds that

hi,lo, 1 2 3
(e =) (5 23)

X 1/248.04-1( 7 (3.66)

< AT(1+ Ioenlyvs + 1Y<n Biima ) )-

The argument leading to (3.66) primarily depends on whether two, one, or none
of the arguments ¢ and ¢ coincide with the cubic stochastic object q?p The
three cases are treated using either explicit stochastic objects (Sect. 7), linear random
operators (Sect. 9.2), or bilinear random operators (Sect. 8), respectively.

Proposition 3.24 (Terms involving no linear stochastic object) For all A > 1, there
exists an A-certain event E 4 € € such that the following estimates hold: For all N >
LeW c@ ¢® e & and ¢ € &b, it holds that

H nZy <P5N§(1), P_ng®, P§N§(3)>

X~1/2+02.b1-1( ) (3.67)
< ATa<1 + ”UfN”?(—l,h(j) + ||Y§N||3Xl/2+62.b(j))
and

o
H(’,‘SA@SNHxil/mz‘brlu)§AT (14 Iosnllgirsngg ). (G:68)

H (VSN — FSN)CSN HX—1/2+52~b+—1(j) < AT“(l + ||v5N||X1/2—5,.b(J)). (3.69)

The most difficult case in Proposition 3.24 is the first estimate (3.67) for 5(1) =
(@ =¢0 = Q?p As was already discussed in the introduction, the corresponding

nonic stochastic object is rather involved and estimated using the molecules from
[40].
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3.6 Proof of local well-posedness

In this subsection, we prove the qualitative local well-posedness (Proposition 3.1)
and the nonlinear smoothing estimate (Proposition 3.3). To this end, we first state the
following quantitative local well-posedness result.

Proposition 3.25 (Quantitative local well-posedness) Let A > 1 and M > 1. Then,
there exists an event Ey o € € @ Z such that the following property (i) holds, and
properties (ii) and (iii) hold on the event Epf 4:

(i) (High probability) The event Ep  is A-certain with respect to P ® Q.
(i) (Para-controlled solutions) For all 0 <t < A=® and all N < M, the solution
u<n of the caloric initial value problem (3.5) and the solutions (v<n, X(<11)v

@
x2.

3.19) exist on [—1, T] x T3. Furthermore, they satisfy the estimates

Y<n) of the para-controlled nonlinear wave equations (as in Remark

”qu ”X*'/sz-”([fr,r]) =CA,
HUSN HXI/Z—(SI.I:([iTJ]) <CA,
7

max | X7} <Ca.

“ (LXC X 12810y (g 7)) =

H Yoy ||X1/2+52~b([—r,r]) =CA.

(iii) (Difference estimates) Forall ) <1 < A~® and all Ny, Ny < M, the differences

satisfy
||MSN1 —U<n, ||X—1/2—é.b([_r’f]) =< min (Nl’ N2)70a
H V<N, — V<N, Hxl/z—él.b([_t’t]) < min (Nl ) Nz)_e,
. . . —0
max [x2, - x2 | (L2 Ax 1231y (g, g = D (N1, N2) 7,

|| Yoy, — Y<n, ||X1/2+52.b([_1.).[]) < min (Nl, Nz)_e-

To avoid confusion, we note that the constant C in Proposition 3.25 cannot be
removed by re-adjusting A. The reason is that the remainder O_,, = O_,, (A, ¢}
of the caloric representation is A-dependent, which would then have to be re-adjusted
as well.

Before we prove the quantitative version (Proposition 3.25), we prove that it im-

plies the qualitative version (Proposition 3.1).

Proof of Proposition 3.1 As discussed in Remark 3.7, we now introduce the solutions
u‘i » and uf}u of the general and caloric initial value problem, respectively. To this

end, let M > 1 be arbitrary, let (3, Z, Q) be a probability space, and let ( ;015/1’ 2‘1‘”)
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be random functions satisfying
LaWQ ((¢COS <bSlIl )) = U<py.

Furthermore, let A > 1 remain to be chosen and let O, $_ ), and O_, =Q_,, (A

¢o%) be the caloric random initial data from Proposition 3.5. In particular, it holds
that

Lawpgg (O = ., + 0., ) =Lawg (655, %3)) =p=w.  (G.70)

Let N < M be a frequency-truncation parameter. We denote by uq; y the unique
global solution of (3.1), where the initial data (¢°°5, ¢Si“) denotes any element of the

Sobolev space Fy 1/2-¢ . Furthermore, we denote by ucal the unique global solution
of (3.5), where the initial data is of the caloric form O — & + Q..

Since solutions of the frequency-truncated nonlinear wave equation (3.1) are
uniquely determined by (and depend continuously on) their initial data, (3.70) im-
plies that

M

MsM( ﬂ {”uiNl <N2||L°°J€ 12— ”]X,ﬂ.3)_mln(N1 No)~ 9})
N1, Ny=1
M
=(P®Q)< ﬂ [”“C;le. szlvzHLooﬂ 126 (g g3y = MIN(VT, N2) ™ })
Ni,Ny=1
(3.71)

We now choose the parameter A, which was previously unspecified, as A := t~7.
Due to Proposition 3.25, there exists an A-certain event E4 € £ ® Z such that, on

this event, the estimate

1 1 -0
”M?N1 uc<aN2 ”X 1/2-eb([—7,7]xT3) = <min(Ny, N2)~

holds for all Ni, N» < M. Due to the embedding X ~1/27¢b — L;’Oﬂ;l/z%, our
choice of A, and (3.71), it follows that
M
¢ 0
M5M< m {”uSN] <N2 ||L°°Jnf’_'/2 “([—1,7]xT3) = mln(Nl’ N2)~ })
Ni,Ny=1
>1—c; exp(—ci7). (3.72)

In order to prove the desired conclusion, it only remains to pass to the (limiting)
Gibbs measure . To this end, we recall from (1.25) that the frequency-truncated
Gibbs measures <) converge weakly to the limiting Gibbs measure (. For any
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fixed N > 1, it then follows from (3.72) that

N
M( ﬂ {HuiM <N2HL°°]( 126 (g 11X T?) Smin(Nl,N2)9}>

Ni,Ny=1
N
. 6 0
>
= Mh—I>nooMSM<N Q l{HugNl uly, [ 2o ;1€ .17y = miR(NL N2) ™ })
1,IN2=

zl—cl_lexp(—clt"l).

Next, we want to let N tend to infinity. To this end, we note that the intersection over
all frequency-scales N and N, satisfying 1 < Ny, N < N is decreasing in N. Since
all probability measures are continuous from above, it follows that

o0
“( ﬂ {””21\/1 <N2”Locﬂ 12€ (g oy = MIN(NT, N2) ™ 6})
Ni,Nr=1

N
— 1 ¢ -6
_le]oo“<NQ li””gm <N2”L°<>;e*‘/2 “(eropers) = MIn(N, N2)© })

1,IV2=

>1-— cl_lexp(— c1tcl).
By choosing
o
. -6
Locale = () [, =, e ger e repsy < minCN1, N2y,
Ni,Nx=1

we obtain the desired conclusion. Il

We now present the proof of the quantitative local well-posedness result (Proposi-
tion 3.25).

Proof of Proposition 3.25 The argument is based on our main estimates (Sect. 3.5) and
the contraction mapping principle. We first define the ball

Ba 3={(U§N,X(<l1)v7x(<21)v’Y§N) HU<NHX1/2 B1b([— rr])<CA

[X<x lemeistnxin-siyg e = €4

[xSh =CA,

(LeCy > ax 12810y ([~ 7)) =

” Yoy ” X1/2H0b ([ r]) = CA].

@ Springer



1190 B. Bringmann et al.

Furthermore, we define the malp20

1 2
T§N[05N7 X(SI)V’ X(S])Vv YgN]

xM X®@ Y 1 2
=( ;N’ sN’TsN’T§N>[”SN’X(§1)\17X(§1)V’YSN]

(1) 2) ) 1
Ty =18 05+l TE =X ey, Yand,
@
T;(N = Xg}V[USN, Y<y], and

Ty =Ty +I[GSD+ G5 +...+(64)].

Similar as for O and &_, ' y denotes the linear evolution with initial data O_,.

We now prove that Y<y maps B4 back into itself, i.e., that Y<y is a self-map on
B4. To this end, we first restrict to an A-certain event Ey 4 € £ ® Z on which the
statements in Proposition 3.5, Proposition 3.20, Proposition 3.22, Proposition 3.23,
and Proposition 3.24 are satisfied. Then, we pick an arbitrary element

1 2
(USN’ X(Sj)\p X(fl)V’ YSN) eBa.

Due to the triangle inequality and the definition of YT, it suffices to estimate Tf;v) ,

ng), and YL . Using Proposition 3.20 and the upper bound on 7, YX ](;) and YX 1(3)

can be estimated by

X
o |y

” (LRC > nX 1200 b) (1,7
< A_L,b+fb(1 + ||U§N||§(—1.b([_r,r]) + ”YEN”XI/ZMZ-”([fr,r])) (3.73)

<3C?A3h+ P <cay/a.

Thus, it remains to estimate Ti’ n-Since C > 1 is a sufficiently large, the contribution
of O_,, can be estimated using Lemma 2.4, which yields

205 avoid confusion, we note that Y < actually only depends on v<y and Y<, but not does not depend

Ton | < C/4] Oy |y, < CA/A. (3.74)

x2t2b(—re]) T

on X (<11)V or X (<21)V This is because in all terms of the evolution equation for Y<, previously involving the

para-controlled components X (<1])\, and X (<21)\, we utilized the double Duhamel-trick to replace them with
the para-controlled operators ng)v and Xg}v
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From our main estimates (Proposition 3.22, Proposition 3.23, and Proposition 3.24),
it also follows that

” 7 [(3.57) £ (358)+... + (3.64)] H

X]/2+52’b([—f,1’])

= CATH (1t Joanvng_p o + 1Y2n ] ) (375

X1/2+52’b([—‘[, .[])

<3CTATb+"P <cA/4.
By combining (3.74) and (3.75), it follows that

Y
H Yy quzwz,bqﬂ,ﬂ) <CA)2. (3.76)
This completes our proof of the self-mapping property of T<xy on B4.

The contraction property of Y<y on B4 follows from similar arguments as the
self-mapping property. It only requires to replace the main estimates (Proposition
3.20, Proposition 3.22, Proposition 3.23, and Proposition 3.24) by minor generaliza-
tions. For example, instead of an estimate of

( N Ht;}\lzo'lo) (?<N, Y<n, YfN)

as in Proposition 3.23, we require an estimate of

G (R

Since the validity of each minor generalization is an easy consequence of our argu-
ments (in Sect. 6-Sect. 11), we omit the standard (but notationally tedious) details.
This completes the contraction mapping argument and, as a result, the proof of (ii).

The difference estimates from (iii) also follows from a minor modification of our
previous argument. In all of the frequency-localized estimates in the body of our
article (Sect. 7-Sect. 11), we exhibit a gain in the maximal frequency-scale. After
possibly restricting to another A-certain event, it follows>! that

||M§N1 —U<N, ”X*I/Z*E-b([—r,r]) + HUSNI — V<N, ||X1/2_51'b([—1,f])

+ Z ”X(sjl)v] - X(sjl)\'z | (LeCy > Ax1/2-01b) (—1,7])
j=12

+ ” Yoy, —Yan, ” X120 ([—7,7))

— . —6
§C7A71:b+ b(mln (Nl, Nz) + lv<n, — v<n, lx—16 + 1 Y<n, — Y§N2||X1/2+52.b).

Since 0 < 7 < A~®, a continuity argument yields the desired conclusion. |

2IThe right-hand side contains a gain in t since the linear parts of the evolution do not depend on the
frequency-truncation parameters Ny and N,.
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Finally, we present the proof of our nonlinear smoothing estimate (Proposition
3.3). The argument mostly relies on ideas already present in the proofs of Proposition
3.1 and Proposition 3.25.

Proof of Proposition 3.3 As in the proof of Proposition 3.1 and as discussed in Remark
3.7, we first convert the statement regarding the Gibbs measure (1 <7 into a statement
regarding the caloric initial data. To this end, let A > 1 remain to be chosen, let
(3, Z,Q) be a probability space, and let (qbcoS ““ V)3 — Hy Cl/2e
functions satisfying

be random

Lan (( CSO;,[, ¢§m )) =U<M.

Furthermore, let O, &_,,, and O_, = O_,, (A, ¢<%,) be the caloric initial data from

Proposition 3.5. Finally, let ucal be the unique global solution of the caloric initial
value problem (3.5). In order to prove the nonlinear smoothing estimate, it suffices to
prove that the event

cal
NSmM A

= ﬂ ﬂ {H P<NI[1{O =t= r}( (P<Nucal ) +7/<Nuca] )] HM([—T,T]) = Ta}

T>1N=1

satisfies
(Pe@)(Nsm§f! 1) 21— exp(— 7). (3.77)
We now choose
A=17" (3.78)

Then, Proposition 3.25 implies that there exists an A-certain event E4 € £ ® Z such
that, on this event and on the time-interval [—z, t], the identities

I A PRE. RSN
(3.79)

are satisfied, (Us N, X (<11)v’ X (<21)v’ Y- N) solves the para-controlled nonlinear wave
equations, and the estimates in Proposition 3.25.(ii) are satisfied. Inserting the de-
composition (3.79) into the nonlinearity and arguing as in the derivation of our ansatz
(Sect. 3.2-Sect. 3.4), we have that

Pen| (((PanuZh) +yanusty )]

=-PA + PEN[3‘V°§NQ?‘;N - rfN?EN} (3.80)
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+{(3.46) + (3.47) + (3.48) + (3.49) + (3.51)] (3.81)
+{(3.57) N (3.64)}. (3.82)

Using Lemma 2.5, Lemma 7.5, Proposition 7.7, and (3.78), it follows that

”I[l{Ogtsr}‘\?/fN}

(LPC NX—<D)(~T.T])

(3.83)

+” PSNI[l{O <1< f}(3<V°5NQ?fN - FSN?SN)]

<Ath+bT* <T%/3.

LPECNX=eb)(~T,T])

We note that the quintic object can be estimated at regularity 1/2 — € instead of —e,
but this is not used in our nonlinear smoothing estimate.?> From a (minor variant of)
Proposition 3.20, the estimates in Proposition 3.25.(ii), and (3.78), it follows that

[z[tfo=r=cjasn]|
(LPCNX~=<D)([-T,T])

gAfm—hTa(l + Iv<n y-rogo.0p + ||Y5N||X1/2+52,b([0’ﬂ)) (3.84)

<T%/3.

Finally, from our main estimates (Proposition 3.22, Proposition 3.23, and Proposition
3.24), the estimates in Proposition 3.25.(ii), and (3.78), it follows that

[z[tlo=r=r}G82)] Hxlﬂwzvh([—r,ﬂ)

< AT T (1 ooy + 1Y B2 go o)) (3:83)
<T%/3.

By combining (3.83), (3.84), and (3.85), we obtain that the event NSmf‘fI{t’A is A-

certain. Due to our choice of A from (3.78), this implies (3.77). O

4 Global well-posedness and invariance

In this section, we prove our main theorem (Theorem 1.4). In Sect. 4.1, we obtain
global bounds for the para-controlled components. The main ingredients are our main
estimates (as in Sect. 3.5) and a global version of our nonlinear smoothing estimate
(Proposition 3.3). The latter is proved using a variant of Bourgain’s globalization
argument [10]. In Sect. 4.2, we prove a stability estimate. In comparison to [18, 91],

220f course, the better regularity of the quintic object is heavily used in the proof of our quantitative local
well-posedness result (Proposition 3.25).
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the main novelty is that the stability estimate is stated in terms of the individual
components of the caloric initial data. In Sect. 4.3, we combine the global bounds
and stability estimates to prove our main theorem (Theorem 1.4).

4.1 Global bounds

The stability theory presented in the next subsection is based on our quantitative local
well-posedness result (Proposition 3.25). In particular, it involves the caloric initial
data (from Proposition 3.5) and the para-controlled components (X (<]1)v1’ X (<21)v1’ Y- M).
In order to insert the global bounds into our stability theory, they need to control the
para-controlled components. This is the subject of the next proposition.

Proposition 4.1 (Para-controlled global bounds) Let M > 1, A>1,andletO, <,
and Q_,,(A) be the caloric initial data from Proposition 3.5. Then, there exists an
event Glby 4 € € ® Z such that the following properties are satisfied:

(i) (High probability) It holds that

P®Q)(Glbya)>1—cilexp(—c349).
s 3

(i1) (Para-controlled global bounds) On the event Glby a, the solution u<p of the
caloric initial value problem (3.3) and the solutions (v<p, X(<11)v17 Xf}w, Y<m)
of the para-controlled nonlinear wave equations (3.46)-(3.52) and (3.57)-(3.64)

exist globally. Furthermore, they satisfy

max (H“SM Hx—l/z—e,b([o’T])a V<M HXI/Z—BI,I:([O’T]),

HX(szl)VI ” (Leey* I ax 12510y (0,7])° H Yem ||X‘/2+52-b([0,T])>
< Csexp (C3(AT)S)
forall T > 1.

Remark 4.2 Proposition 4.1, whose proof utilizes the invariance of the frequency-
truncated Gibbs measure, establishes the global propagation of randomness. More
precisely, it proves that the decomposition

u=n =% -, — 1. +39, + XU}, + X8, + Yoy @.1)

holds for all time and that, again for all time, all terms in the decomposition have the
same regularity as in the local theory. We emphasize that the global random structure
in (4.1) depends on the caloric representation of the Gibbs measure, since the three
components O, <>_, , and O_,, appear individually.??

23The red caloric initial data QO._,, is hidden in the initial condition Y<[0] = Q..
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In the earlier works [18] and [93], the random initial data was represented us-
ing the drift measure [8] or the variational approach [7] of Barashkov and Gubinelli,
respectively. Similar as in this article, the random structure in the local theory of
[18, 93] relies on a representation of the Gibbs measure which consists of a Gaussian
free field and a random shift. In contrast to this article, however, the random struc-
ture in the global theory is stated without explicit reference to the representation of
the Gibbs measure (see e.g. [18, Proposition 3.1] or [93, Proposition 6.5]). This re-
quires a significant computational effort (see e.g. [18, Sect. 9] or [93, Proposition 6.5
and Remark 6.6]) which, due to the larger number of stochastic objects, makes this
approach practically infeasible in our setting.

The proof of Proposition 4.1 occupies the remainder of this subsection. As a step-
ping stone, we first prove a global version of our previous nonlinear smoothing esti-
mate (Proposition 3.3).

Lemma 4.3 (Global nonlinear smoothing estimate) Let M > 1 and let A > 1. Then,

there exists a Borel measurable event NSmESl)A - %;1/275 such that the following

two properties hold:
(i) (High probability) It holds that

MSM(NSm%{)A) >1—c;! exp (— c2A%).

(ii) (Nonlinear smoothing) For all (¢<°5, ¢*™) € NSmﬁ)A and all T > 1, the solution
u<y of (3.1) satisfies

H PfMI[( {(P<prit<p)*: +y§Mu5M)] H < AT,
NS([0,T])

Remark 4.4 The basic idea behind the proof of Lemma 4.3, which is to prove global
bounds using local bounds and invariance, goes back to Bourgain [10].

Remark 4.5 (Comparison with Proposition 3.3 and Proposition 4.1) In contrast to
our earlier nonlinear smoothing estimate (Proposition 3.3), the estimate in Lemma
4.3 does not require the restriction to times 0 <t < t in the integrand. However,
while the (local in time) nonlinear smoothing estimate from Proposition 3.3 holds for
all frequency-truncation parameters N < M, Lemma 4.3 only holds for N = M.

In contrast to Proposition 4.1, Lemma 4.3 refers to neither the caloric initial data
nor the para-controlled components. As a result, its proof is more tractable through
invariance-based methods. The drawback is that, since it does not refer to the para-
controlled components, Lemma 4.3 yields less precise information on the solution.
In particular, it only controls the nonlinear part of the evolution at regularity 0—.

Proof of Lemma 4.3: Since the unspecified parameter « occurs in both Proposition 3.3
and Lemma 4.3, we denote the parameter from Proposition 3.3 by «’. Throughout this
proof, we denote the time-variable of the Duhamel integral by 7 and the time-variable
of the integrand by ¢’
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We first define the event

) ._ (gh
NSmM’A = ﬂ NSmM’A’T,
T>1

where

1 . o
Nsmgt%,)A,T = {(¢cos’ ¢sm):

From our definition in (4.2), we directly obtain the nonlinear smoothing estimate in
(ii). As a result, it only remains to prove the that N Sm%[l)A r has high probability, i.e.,
the estimate in (i). To this end, we fix any 7 > 1, let J € N remain to be chosen, and

set T :=T/J. Then, we decompose

PsMI[<5(P5MM§M)3Z+V5MM§M)] SAT“}. 4.2)

” N3([0,T])

Peu T| (:(Papusan)s +y<pu<u ) @) |0

J-1 4.3)
=3 Penz [l{jt <t <(j+Dr} ( {(Pepttt=p)™: +y§Mu§M)(t’)](t).
j=0
From a change of variables, it follows that
PeuT[1jr =1 < (G + D} (:(Papezw)® +yamuy ) )| ©
4.4)

=PeuT[1{0 = = o} ((Pamusa)’s +yemusu ) + j0) | = o).

Using (4.3), (4.4), and the time-translation invariance of L?L; and X*?-norms, we
obtain that

H P<y1 [( :(PgMusM)S: —I—ngusM)(;’)](t)

NS([0,T])
J—1
=Y |Pewz[tfo<r <7}
j=0
x(:(PSMusM)3: +y5MuSM)(t/ +jr)](t — 1) (4.5)
NS([0,T])
J—1
<> PSMI[I{Og <t}
j=0
x(:(PSMufM)3: +y§Mu§M)(t’ +jr)](t) .
NS([-T,T])
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Using (4.5), a union bound, and the invariance of < under u <), we obtain that

—1/2— 1
MSM(«%X / G\NSmgi,)A,T)

J—

1
SZM<M<HP<MI[1{O§/ <t}

j=0

x({(Pauan)® +yapuzn ) '+ j0)] 0

> AJ ! T"‘)
NS([-T,T))

SJ'H§M<‘

PSMI[l{O <t <t}

x(:(PSMusM)3: —H/SMMSM)(/)](t) > AJ—lT“). (4.6)

NS([-T,T])

As mentioned at the beginning of the proof, we denote the parameter from Proposi-
tion 3.3 by o’. We now choose o = o’ + 2 and J = AT?. Using Proposition 3.3, it
follows that

MfM(HPgMII:l{OSt/St}

x ((:(Papusn)s +yzyusn ) ()]0 > A" T“)
NS([-T,T])
x(:Papuzan)s +yzmuzu )] > T“’)
NE([-T.T])
fcl_l exp (cl_lrfcl) = cl_1 exp (—c T A).
Inserting this back into (4.6), we obtain that
—1/2—€ (gl -1 2 C1 A€l
p<m (Hx \NSmy,;", 1) <c; AT?exp(—c; TV A). 4.7
By choosing c» = c¢z(c1) sufficiently small, (4.7) implies that
—1/2— 1 —1/2— 1
MSM(]fx / €\Nsm§5’)A) < ZMSM(J{x / E\I\ISIHES,)A,T)
T>1
< c;] exp (— 2 A%).
This completes the proof. g

The next ingredient in our proof of the para-controlled global bounds is the follow-
ing nonlinear estimate, which is a modification of Proposition 3.23 and Proposition
3.24.
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Lemma 4.6 (Terms with one or zero linear stochastic objects revisited) Forall A >
1, there exists an A-certain event E 4 € £ such that the following estimates hold: Let
N=>1,letT >1,let0e J C [0, T] be aclosed interval, and let v<y, Y<y: [0, T] x
T3 — R satisfy

vey =X wen, Yen ]+ X2 [u<n] + Yoy. 4.8)

Let0e J C [0, T] be a closed interval. Ifg(l) :? and g‘(z), 5(3) € Gb, it holds that

hi,lo,lo @ .03
H (HEN - HSN ><?<N §<N’§<N>HX_1/2+52*}’+_1(L’7)

(4.49)
< AT“(I + ||U§N||3vg([0,T])) (1 + ||Y5N||x1/2+f‘zv”<7>)'
If¢M,¢@ ¢ e &b, it holds that
m @ O
H I—I<N (§‘<N7 é‘sN’ ) H —1/2482.b4+=1( 7
(4.50)

= AT (1+ o Wysgo.rp ) (1+ I¥en i) )-

Remark 4.7 The most important aspect of (4.49) and (4.50) is that the right-hand side
only grows linearly in ||[Y<p || y1/2+5,.5.

Since the argument is extremely similar to the proof of Proposition 3.23 and
Proposition 3.24, it is postponed until Sect. 12. Equipped with Lemma 4.3 and
Lemma 4.6, we are now ready to prove Proposition 4.1.

Proof of Proposition 4.1 In this proof, we will only restrict to events from Lemma 4.3
and A-certain events, which both satisfy the probability estimate in (i). As a result,
we focus our attention on the verification of the estimates in (ii).

Using Lemma 4.3, we obtain (with sufficiently high probability) that

lucw = (F =y +1.)] <7

NS([0,T])

for all T > 1. After possibly restricting to an A-certain event, it follows from our
estimates for explicit stochastic objects (Proposition 3.5, Lemma 7.4, Lemma 7.5,
and Proposition 7.7) that

H”<MH
=Mlvsqo.ry

wem = (¥ = oy + e )|

N([0,T]) ?SM ”M([o,n)

4.11)

8([0,7 H i* H 0,7
M NA([O0, ]) =M N%g([ ,T])

forall 7 > 1.
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Wenow fix T > 1,let J e N,and set T :=T/J. Forany 0 < j < J, we define
Aji=A+|Y<u| o+ 1OF+ 1= A)Y<rmt| 1208140 ip)-
j <M X122 (10, jz]) t <M || x—1/2+8.b ([0, jz1)

For all 0 < j < J — 1, we obtain from the gluing lemma (Lemma 2.6) and time-
localization (Lemma 2.5) that

Ajr1SA+ ” Oy ||=;(;/2+52 + ” (312 +1- A)YSM ”X*1/2+52-b*1([0,(j+1)f])

<A+ ” (8,2 +1- A)YSM ”X—l/2+82,b—l([o’jr]) @4.12)
+](3F +1—A)Y<n | x-1208201 e 1y
SA;+ (07 + 1= A)Yam| v ooy

Now we argue as in the derivation of (3.57)-(3.64), but without (immediately) insert-
ing the para-controlled ansatz in terms with only one or zero linear stochastic objects
(i.e. we take the sums in (4.19)-(4.20) over 68 instead of 66’). In this way we can
write the evolution equation for Y<js as

(07 +1—A)Y=y (4.13)
_ (15)
=— Py [9‘V<M &EM —Tn®Y, —18¢5) Py,
_ 9(21—11;1}‘140,10 + H};ih},}i’lo> (?ﬁM , ?fM’ $;M>i|

+3P5M[‘V)SM o — (2112;};"0 + n‘;ﬁ"") (?<M e ?<M)} (4.15)

(4.14)

—3P_y [‘\}1 WXy = (e mEe) (9,8, XSL)] (4.16)
Py [3 SV (61‘[2}340’10 + 31'1‘;1;3;’1") (?SM e Xg}u)
+ FSM(3$§M - ?SM + USM)1|

—3P-y [‘VZM Yeu — (2100 + 0 4 1%, ) (P ey Y<M)} (4.18)

4.17)

Y AP Pay (ML~ IR (5 S)  @19)

;(2),§(3)663

Y AW @O Py (Paug ), Pat®, Poc®)
(W @ (Besh

(4.20)
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+Cam Y AIQP<miam + (vem —Tem) Y Ai(@) Pemim. 4.21)
tesh te&h

After possible restricting to a further A-certain event, we now assume that our main
estimates (Proposition 3.22 and Proposition 3.24) and the modified version (from
Lemma 4.6) are satisfied. We can then control (4.14)-(4.18) using the estimates in
Proposition 3.22, (4.19)-(4.20) using the estimates in Lemma 4.6, and (4.21) using
the estimates in Proposition 3.24. As a result, we obtain that

137 +1—A)Y<p “x—1/2+52-b-1([0,(j+1)r]>

. (4.22)
<AT® (1 +[vem| M([O,T])) (1 +[Y<m HX1/2+52'b([0,(,/+1)r]))'
By combining (4.11), (4.12), and (4.22), we obtain
Ajs1 <CA;+CT+7P AT (14 A)), (4.23)
where C = C(81, 82,1, v, b, by) > 1. After choosing
—1/(b+=b)
T = <4CA5T5°‘) i ,
iterating (4.23) and recalling the definition of A; yields
1
|| YSM || }(1/2+52,b([07 g S C3 exp (EC3 (AT)C3) . (4'24)

This proves (a slightly better) version of the estimate for Y<ys in (ii). The desired
estimate for X (<11)v1 and X (<21)v1 now follows directly from Proposition 3.20, (4.11), and
(4.24). Finally, the desired estimates for u<y and v<ys follow directly from the tri-
angle inequality and the estimates for X (<11)v1’ X (<21)v1’ and Y<p. 0

Remark 4.8 In the proof of Proposition 4.1, we first obtained bounds on the nonlinear
remainder v<ys using invariance (as in the proof of Lemma 4.3) and then upgraded
the bounds using our main estimates (as in Sect. 3.5). A similar approach was previ-
ously used in [93, Proposition 6.9], see e.g. the invariance-based bound [93, (6.95)]
and the following analysis of [93, (6.96)]. The main difference between our proof of
Proposition 4.1 and the proof of [93, Proposition 6.9] is that our nonlinear smoothing
estimate utilizes multilinear dispersive effects, whereas [93, (6.94)] only controls the
Wick-ordered square pointwise in time.

4.2 Stability theory
In this subsection, we prove a stability estimate (Proposition 4.9). Together with the

global bounds from Sect. 4.1, it will be used to prove the main theorem.
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Proposition 4.9 (Global stability estimate) Let M > 1, let A > 1, and let O, &y,

and Q_,,(A) be the caloric initial data from Proposition 3.5. Then, there exists an
event Stbly 4 € € ® Z which satisfies

P Q)(StblM,A ) >1- c4_] exp (— c4A®)

and such that, on this event, the following implication hold for all T > 1:
Let (vf M, X (<11)v1’ X (<21)v1’ Y- M) be the para-controlled components with frequency-
truncation parameter M, let B > 1, and assume that

max <”M§M Hx—l/z—e,h([oyT])’ }USM ”XI/Z—al,h([OyT]),

H X(slz)w I (LeCy > nx 12810 (0,7])°

XS]

L iy go. 7y | V<M ||X'/2+52»b<[0,T1>> = B.
Furthermore, let 1 < N < M be a frequency-scale satisfying
Cyexp (C4(ABT) )N <1.

Then, the solution u<y and para-controlled components (USN, X (<11)v’ X (<21)\,, YSN)

with frequency-truncation parameter N satisfy

max <||“<M —U<N ”X*l/?*ésb([O,T])’ |USM —U<N ||x1/2*5|»b([0,r])’

=M SN”<L?°Ci/2‘“mx‘/z—b‘lvbmo,rn’

@ _ @
[ X< = X<n @ inx12-0by (0,11

|Y<m — Y<n “X1/2+52-”([O,T])> = Caexp (C4(ABT)C4>N_0'

Proof Fix any T > 1, let J € N remain to be chosen, and set t := 7/J. We now
define a sequence by Do := N~% and, forall 0 < j < J,

Dj = N‘G + || U<M — U<N ||X1/2751'b([0,jr])

+[@F + 1= D) wam = V=W y-12-510m1 0

(4.25)
+ ” Yoy —Yen ||X1/2+52'b([0,jr])
+ || (3,2 +1-A)Y<y —Y<n) ||X1/2+52~b*1([0,jr])'
In the following, we assume that
D;<B (4.26)
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for all 0 < j < J. Since our final estimate (4.31) yields a stronger estimate on D,
the assumption (4.26) can be verified by using the same estimates as below and a
continuity argument.?*

Forany 0 < j < J — 1, it follows from Lemma 2.4, Lemma 2.5, and Lemma 2.6
that

Dii SN+ @] +1—A)(vem — ”SN)“X*VHI-bfl([o,<j+1>r]>
+ H (8,2 + 1— A)(YfM - YSN)“X71/2+62‘b71([0,(j+1)f])
SDj+ [ +1—A)(vem — vgN)||Xfl/Hl,hfl([j,y(m),])

+ H (812 +1-A)Y<p — YSN)“X*‘/2+52-”*‘([jr,(j+1)r])
4.27)

bi—b 2
SDj+ 7P @F + 1= A)vzm = v=W) | x-1251 041 (o 4 12

+ @ + 1= A)(Y<pr — Y<p) ”X*'/2+521b+*'([jr,(j+1)r])

bi—b 2
SDj+ @ + 1= M) vzm = v=w) | x-12-51 00100 4 1)1

+ b P “ (3,2 +1-A)Y<py — Y§N)“X—|/2+52,b+—|([0’(1-_‘_1)1])-

We recall that the evolution equations of Y<j and Y<y are given by (3.57)-(3.64)
with frequency-truncation parameters M and N, respectively. Due to the identities

the evolution equations of v<p and v<y are given by the sums of (3.46)-(3.49),
(3.51), and (3.57)-(3.64) with frequency-truncation parameters M and N, respec-
tively. As already described in the proof of Proposition 3.25, a minor modification of
our main estimates yields an A-certain set E4 € £ on which

H (8t2 + 1— A)(UsM — va)HX_I/2_81‘17+_1([0,(j+1)1’])
+ ” (8,2 +1-=2A)Y<y —Y<n) ||X—1/2+52.b+—|([0’(j+1),])

o 5 5
SAT (1 + ”vfM||X1/2—61,b([0,(j+1).[1) + ”USN||X|/2_51’h([0,(j+1)‘5])

. (4.28)

5
+ ”YfM||X1/2+62.b([0)(j+1)r]) + ”YSN||Xl/2+82,h([0’(j+1)r]))

X (N_9 + [lvem —ven |‘X1/2*51~]’([0,(j+1)t])

+ || Yoy — YSN”x1/2+52~”([0,(j+1)r]))'

24Alternatively, we could have defined a stopping time Ty < T such that the upper bound by B holds on
[0, T], replaced all intervals [0, jz] by [0, jt] N[0, Tk], and verified through our estimates below that
Ty = T. However, this would be a significant burden on our notation.
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By combining the global bounds from our assumption, (4.26), (4.27), and (4.28), we
obtain that

Dj41 <CDj+CAT*t™ "B Dj 4, (4.29)

where C = C (81, 82,1, v, b4+, b) > 1 is a constant. We now choose

—1/(b+=b)
7= (ZCAT“BS) - (4.30)
After inserting our choice of t into (4.29) and iterating, we obtain that
D; =€)’ Dy
o p5\1/(b+—b) —6
< exp (INO)T (2CAT* B) v 430

C
< Cyexp (TS(ABT)C“)NQ.

Due to the definition of Dy, this yields the desired difference estimate for v<p —v<p
and Y<p — Y<n. The difference estimate for X (<11)v1 -X (<11)v and X f}w -X (<21)v then fol-
lows from (a minor modification of) Proposition 3.20. Finally, the difference estimate
for u<py —u<y follows from estimates for explicit stochastic objects (Lemma 7.5 and

Lemma 7.7) and the estimates for the v, X M x@ and Y -components. O
4.3 Proof of global well-posedness and invariance

Equipped with the para-controlled global bounds (Proposition 4.1) and stability the-
ory (Proposition 4.9), we now prove our main theorem (Theorem 1.4).

Proof of Theorem 1.4: We first prove the global well-posedness, i.e., the global exis-
tence of the limiting dynamics. Using time-reversal symmetry, it suffices to prove for
all T > 1 that

li { cos’ sin ](71/276 :
p f&;“( (¢, ¢™) € JHty
. —-0/2
”“SM —U<N, |‘CP}€;1/2—6([0’T]XT3) < min (N] , Nz) (4.32)
for all Ny, Ny > K}) ~1.
Here, u <y denotes the unique global solution of the frequency-truncated cubic wave

equation with initial data (¢°%, ¢*'"). For any frequency-scales K < L, we define

Diffx .7 := [(¢COS, ¢sin) c ﬂx_uz_gz

—0/2

lu<nvy = <na ] 0 172 g0 7, < min (N1, N2) (4.33)

forallKgN],Nsz}
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Using the continuity from above of general probability measures, using the weak
convergence from (1.25), and using that Diffgx ; 7 is closed in F; 1/ 276, it follows

that

LHS of (4.32) = lim lim ( Diff ; 7 )

(4.34)
> lim lim lim sup,ufM(DiffK’Lj )

K—o00L—>0 p_eo

As a result, it suffices to prove that for all A > 1 and all T > 1, there exists a
frequency-scale Ko = Ko(A, T) such that

uw(DiffK,L,T) > 1 — 2eqexp ( - C4A"4) (4.35)

for all frequency-scales M > L > K > Kj.
Similar as in our proof of local well-posedness (Proposition 3.1), our proof of
(4.35) relies on the caloric initial data. To this end, let O, <>.J,, and .y be as in

Proposition 3.5. Then, it holds that

MSM<DiffK,L,T) - (]P’@Q)({O — &, +0., eDiffg 17 })

We now let the events Glbys, 4 and Stbly 4 be as in Proposition 4.1 and Proposition
4.9, respectively. Using the corresponding probability estimates, it follows that

(P@Q)(Glby,aNStblur,a ) = 1= 2csexp (- cad).
As aresult, it suffices to prove the inclusion
Glby, NStbly4 < {O =&, + 0., €Diffk 1.7 | (4.36)
for all frequency-scales M > L > K > K. As long is Ko = Ko(A, T) is sufficiently
large, this follows directly from the global bounds (from Proposition 4.1.(ii)), the
stability estimates (from Proposition 4.9), and the triangle inequality. This completes

the proof of global well-posedness.

It now only remains to prove the invariance of the Gibbs measure. To this end, let

f1 #:27¢ = R be bounded and globally Lipschitz, let T > 1, and let 7 € [0, T].

In order to prove invariance, it suffices to prove that
By £ (ule)| =Eu[ £ (uto]) ] (4.37)
Using the definition of the limiting dynamics u, it follows that
e [r00)] = i . rocntn]

For any fixed N > 1, the frequency-truncated solution u <y [¢] depends continuously
on the initial data. Together with the weak convergence of the Gibbs measures from
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(1.25), it follows that

Jim B[ f(usnle))| = tim gim B, | fusir]) |

- N—o0 M— 00

Using our estimate from the proof of global well-posedness, i.e., (4.35), it follows
that

lim lim E/LsM[f(ugN[t])]ZA}EnwEﬂgM[f(uSM[t])]

N—00 M— 00

Since the frequency-truncated solution u<ys[¢] preserves the Gibbs measure, it fol-
lows that

lim EMSM[f(uiM[t])]=A/Ili_r)noo]EM§M[f(u5M[0])]

M—oo
= gim B, [F(0em)

After again using the weak convergence of the Gibbs measures from (1.25), this com-
pletes the proof of (4.37) and hence the proof of invariance. O

Remark 4.10 (Flow property) Often one wants to prove that random dispersive equa-
tions satisfy the so-called flow property (see e.g. [106]). Let ®<y[¢] be the flow cor-
responding to the frequency-truncated nonlinear wave equation (3.1). From Theorem
1.4, it then directly follows that

M({(d)cos’qjsin) c %;1/2*5:

. cos sin)y _ , Ccos 4 sin e = =1.
N,llvl/rgoote[s_u}“),T]||q)§N[t](¢ x4 ) Pon [t](¢ @ )”ﬂxl/z 0}> !

We believe that, using a non-trivial modification of our arguments, it should be pos-
sible to also obtain the generalized version

M({(¢COS’ ¢sin) c }(;1/2_61 lim sup
| <neltx] ... D<n, [1:1](0°, ‘Psm) (339)

— @ ylt]. . oy [111(9°, ¢*") ||J¢;1/2—e = 0}) =1

for all k € N. Using the generalized version (4.38), one should then be able to prove
the flow property for the limiting dynamics in Theorem 1.4.

In order to prove the generalized version (4.38), one should first generalize our
ansatz from a single to multiple frequency-parameters. For example, instead of the
single-parameter cubic stochastic object from (3.9), the generalized ansatz

<N
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should contain the multiple-parameter cubic stochastic object

k
%1.Nz,...,Nk:rl.rz.....u ZI[Zl{tj_l S t S t]}PSN/ i =N; ]’
j=1

where g := 0. Equipped with a generalized version of our ansatz, one should then
prove the corresponding generalized versions of our main estimates (Proposition
3.20, 3.22, 3.23, and 3.24), local estimates (Proposition 3.25), and stability estimates
(Proposition 4.9).

As can be seen from the above discussion, the necessary modifications needed for
a proof of (4.38) would significantly increase the length of this article. As a result,
we do not further pursue the flow property.

5 Integer lattice counting and basic tensors estimates

In this section we make some preparations for the proof, namely we introduce some
counting estimates for integer lattice points and prove the basic random tensor es-
timates for the base tensor (Sect. 5.3), the cubic stochastic tensor (Sect. 5.4), the
quintic stochastic tensor (Sect. 5.5) and the sine-cancellation tensor (Sect. 5.6). Once
established, these estimates will be used as a black box throughout the proofs of the
estimates in Sects. 7-11 below.

5.1 Lattice point counting estimates

We start with some basic integer lattice point counting bounds which have appeared
already in the literature (see for example [18]) but which we record for the sake of
completeness in the following three lemmas.

Lemma 5.1 (A basic counting lemma) Given dyadic numbers A, N, and a € 73 sat-
isfying |aleo ~ A, we have the following lattice point counting bounds:

sup#{n € Z? : |nloo ~ N, |{a +n) + (n) —m| <1} <min(A, N)"'N3.  (5.1)

mez

sup#{n € Z> : |nloo ~ N, |{(a +n) + (n) —m| <1} < N2, (5.2)

mez

Proof Since the ¢> and £*°-norms on Z> are comparable, the conditions |a|s ~ A
and |1n|oc ~ N can be replaced by |a| ~ A and |n| ~ N respectively.”> The proof
of the estimate (5.1) is same as Lemma 4.15 in [18]. The estimate (5.2) is the same
as the estimate (5.1), except the case when A < N, so we only consider (5.2) with
A < N. Since |(§) — |&]| <1 for all &£ € R3, the (-) in (5.2) can be replaced by | - |
after increasing the implicit constant.

Z5We will use this fact throughout the paper when convenient without any further explanation.
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Since the integer vectors are 1-separated, it follows that
#{nelZ:|n|~N, |la+n|+n| —m| <1}
SLeb((g €R ¢ [~ N, lla+&l+1g1 —m| S 1)).
We now decompose the above Lebesgue measure in the following way:
Leb ({£ R : [~ N, lla +£] +1§] —m| < 1))

S Y Leb(ER g~ N, la+ gl =mi+O(), &l =m2+O(D})

mi,my€L
mi-+my—m|S1
lmy—mz|Slal~A

SA- sup Leb({g RO :fg|~ N Jatgl=mi +O(). [E|=m2+O(1)}).

my,my€el

Using the above decomposition, it will suffice to prove that

Leb ({6 € R : ]~ N, a+&| =m1 +O(1), [§] =m2 +O(1)})
(5.3)
< min(A, N)~!N?

which directly follows the same argument in the proof of Lemma 4.15 in [18]; we
omit the details. g

Lemma 5.2 (A box-counting lemma) Given dyadic numbers A, N, and a € 7 such
that |a|so ~ A, let ¢ € 73 be arbitrary. Then, we have the following lattice point
counting estimate:

sup#{n € Z° :nloo ~ N, n — oo <A, [(a+n)+ (n) —m| <1} SN2 (5.4)

mez

Proof By our assumptions we have that |a| ~ A, |n| ~ N, and |n — | < A. We then
argue essentially as in the proof of Lemma 5.1, but use the following estimate for the
Lebesgue measure:

Leb ({£ R : 6]~ N, 1§ —¢| S A, lla+&| % Ig| —m| < 1))

S Y Leb(EeR g~ N, Jatgl=mi+O(), &l =m2+O(D))
my,my€eZ
[myxma—m|<1
lma—1¢1I<A

<A sup Leb({g €R3:|E|~ N, |a +&|=m; +O), |£] =m2+(9(1)}>.

my,moyel

0
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The next lemma, improves upon (5.1) provided the two vectors n and n + a satisfy
what in [43, 44] is called the I"-condition. The I"-condition needed in our case is with
respect of the | - |oo-norm but we still call it I"-condition. More precisely, given I" € R,
we say that two vectors ny, ny € z3 satisfy the I"-condition if

either |n1leoc =T <[n2lec OF [n2]o0 =T < |nifoo- (5.5)

Lemma 5.3 (The I'-condition counting lemma) Given I" € R, dyadic numbers A, N,
and a € 72 such that |a|s ~ A, we have the following lattice point counting bounds:

sup#{n € Z* : [nloo ~ N, [{a +n) £ (n) —m| < 1, [nloo = T > |n + aloo)
meZ (5.6)
< N%logN.

The same bound holds if one assumes |n|oo <T < |n 4+ d|o.

Proof 1f A > N /100 then (5.6) follows directly from (5.1); so below we will assume
A < N/100. In particular (n) ~ N ~ (a 4+ n), so by symmetry we only need to prove
(5.6).

Denote by a = (x4, Ya, 2a) € 73 and byé=(x,y,2) € R3. Now we define

S:={E R’ : Eloo~ N, |f(E) =m| S 1, Eloo = T = |§ +aloo, |x] = Iyl I2l},

where f (&) := || — |€ + a| (for the positive sign case the desired estimate can be
obtained by (5.2)). By the symmetry, it will suffice to count all integer points in S.
For 8 € 22 N [N~10, 1] (with the understanding that [8, 28] is replaced by [0, 28]
when § = N’lo), we define
4 ’
S5 = {seS: 5 _S+a =2sin<M) e[s,za]},

&l 1§ +al 2
where Z(&€, & + a) is the angle between the vectors £ and £ + a. Now let us focus on
& in Ss. Since |a| ~ A < N/100 ~ |£|/100, we have that § < 1/10. Define the unit
vectors £/|E| =& = (x',y',7) and (a +&)/|la +&| =&" = (x”,y", "), we claim
that if § > N!0, then

max(|y" — y"|, 2" = 2"[) = §/100 (5.7)

in Ss. In fact, suppose the contrary, then |y’ — y”| < §/100 and |z’ — z”| < §/100.
Since |&" — &”| > 8, we have |x’ — x”| > §/2. But x’ and x” must have the same
sign because |x| = |&|co > 104 > 5|x,], and we also have |x'| > 1/2 because |x| =
|€|oo = |€]/2. Since (x, ¥', z') and (x”, y”, z”’) are both unit vectors, we then have

N2 _ 17\2 N2 N IN2 2
5/2 < x| = & Z G 1007+ @)= 61— @)
1 ]+ ]

<40y =yl +1' = ") = 8/25,

which is a contradiction.
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By further dividing S; into 4 subsets, we may assume y’ — y” > §/100 in S5. Now
let (x, z) be fixed, we shall count the number of y € Z such that & = (x, y, z) € S;s.
Note that all the relevant inequalities in y involve only algebraic functions of y, thus
they can be reduced to finitely many polynomial inequalities in y, and thus the set
that y belongs to can be written as the union of at most < 1 intervals. Moreover since

VfE) = é—l - I§+ZI and 9y f(§) =y’ — y” = §/100 on each of these intervals, we

see that the length of each such interval is < ™!, thus the total number of choices for
integers y is <min(8~!, N), with the upper bound N being trivial.

Now it remains to count the integer choices of (x, z) for (x, y, z) € Ss. We may
assume x, # 0 as otherwise we must have |x| = I" and then (5.6) follows easily. By
the law of sines we have

IX2a — 2Xa| = 1§ x a| =1&| - |a| - sin(£L(§, a))

5.8
E':'a' sin(Z (&, & +a)) SN?-6. o8

By assumption [x| = |£]ec =T > |x 4 x4 > [x| — |x4], so the number of the integer
choices of x is at most |x,|; when x is fixed, by (5.8) we know that the number of
integer choices of z is at most 1 4+ N28/|x,|. Thus the number of integer choices for

(x,y,2) 18

2

N2§
< |xq] - (1 + ) -min(N, 8" < N2

|xal

In summary, we have that the number of the integer choices of (x, y,z) SN 2in Ss
with any fixed §, and summing over ¢ yields the desired bound in (5.6). g

In the following two lemmas we prove the basic atomic estimates that will be used
in later proofs, especially in Sect. 11. Lemma 5.4 contains the estimates for a single
nonlinear interaction, which corresponds to a single “atom” in the sense of Sect. 11
(and as in [40]), and may involve 2, 3, or 4 unknown vectors. Similarly, Lemma 5.5
contains estimates corresponding to two connected atoms, which involve at least 2
and at most 7 unknown vectors. They are listed separately, because in some cases
they provide better bounds than if one simply applies Lemma 5.4 twice.

Lemma 5.4 (Lattice point counting I) Given 2 < g <4, £; € {£} and dyadic num-
bers Nj > 1 (for 1 < j <q), and (nex,m) € 73 x R, consider the set

q
M, = {(nl,...,nq) €(ZHT: (nj) ~Nj, D (Fjnj=nex,

j=1
51}.

Assume that (nex) ~ M, and that nex = 0(M = 1) when g = 4, qlso denote NV >
... > N9 be the decreasing rearrangement of N j» and define +) correspondingly.
Then we have the following bounds.

(5.9)

q
> (&Ej)inj)—m
j=1
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(1) If g =2 we have
max(N@)2, (N@y¥py—Y, i +® = 5@,
#tMa S (5.10)
(N2, if+M =1,

If we moreover assume 1 = Fo and that the two vectors n| and ny satisfy I'-
condition (5.5), then we have

#My < (NP)M. (5.11)

(2) If g =3 we have
#M; S (NN med(NP, N, M)~ S(NPIINHY2 (5.12)

(3) If g =4 we have
#My S (N@P (NI (NDY?, (5.13)

If we moreover assume |(£1)n1 + (E2)n2| S L, then we have
#My4 S LNy -+ Ng)*(max(N1, N2)) ™! (max (N3, Ng)) ™. (5.14)
(4) Summarizing (5.10), (5.12) and (5.13), we have

#My S(Np--- N2 - (N ifg<3; (5.15)
#My S (Np--- N - NO D)=L if g =4. (5.16)

Proof Except in the proof of (5.14), by symmetry we may assume Ny > Ny > ---,
so N =N ;. First (5.10) follows directly from (5.1) and (5.2) with N replaced by
N3 and A replaced by M. As for (5.11), by the definition of | - |, we may assume
[(n)Y =T > |(n2)!] or |[(n2)!| > T > |(n;)}]| where (-)! represents the first coordi-
nate. In either case we have |(n2)1| e[l — OM),T + O(M)], so (n2)! has <M
choices. The other coordinates of ny each has < N, choices, so (5.11) is true.

Next we prove (5.12). Let |nex — (£3)n3| ~ R, then for fixed n3, the number of
choices for (n1,ns) is < N23 (min(N3, R))’1 by (5.10), while the number of choices
for n3 is < min(N3, R)>. Now, if M < N3, then R < N3 and med(N®, N® | M) ~
N3, so

#M3< > R N3RS NING:
RSN3

if M > N3, then R ~ M and med(N(z), N®, M) ~ min(N3, R), so
#M3 < N3 - N3 (min(Na, R)) ™.

Either way we have proved (5.12). Now (5.13) is a consequence of (5.12) because we
may first fix n4 which has N f choices, then apply (5.12) to get

#M4 SN; - N5 N3
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Next we prove (5.14). By symmetry we may assume N1 > N, and N3 > Ny. First
we may fix the value of (&1)n| 4 (£2)n2, which has at most L3 choices. Once these
are fixed, we then apply (5.10) for (n1, n2) and (n3, ng) separately to get

#Mg <L (NFHNLHWNT+NLTHY S L3 (NNZLTY - (NSNZLTY
= L(N1N2N3Ng)* (N N3) ™!

since N1 2 max(N,, L) and N3 2 max(Ny, L). This proves (5.14).
Finally, it is clear that (5.15) follows from (5.10) and (5.12), and (5.16) follows
from (5.13), since

(NOPNO2ND) < Ny N> (NP NN D)=
SNy Ng? NNy~ m

Lemma 5.5 (Lattice point counting Il) Given g,r > 1 such that q +r <4, &, j:/j €
{£} (for1 < j <gq)and :l:’]f € {£} (for 1 < j <r), and dyadic numbers Nj, M; > 1
(for 1 <j<gq)and Lj > 1 (for 1 <j <r), and (nex,nly,m,m’) € (Z3)? x R?,
consider the set

/ ’ 3 .
Mq,,z{(nl,...,nq,zl,...,z,,nl,...,nq)e(Z yatrte

(nj)~Nj, (n) ~Mj, (€;)~Lj,

q r q r
D Epn+ Y EN = e Y (En+ > (EDe; =nl,,

j=1 j=1 j=1 j=1

=1,

q r
D ENm) + Y EDL) —m
j=1 j=1

q r
S )+ Y D) —m| < 1}. 5.17)
Jj=1 j=1

Denote by NV > ... > N the decreasing rearrangements of Nj, and similarly
define MY) and LY. Then we have that:

#My, S(Ny---NyMy -+ MyLy - L2 (NI Dy=1
ifq+r=4,qg>1,r=2; (5.18)
#My, SNy NgMy -+ My Ly e L2 (N Dy =1
ifg=3, r=1, (5.19)
#My, S(Np---NyMy - My Ly - S L)E (N Wy =1 My=1)
ifq+r<3, q,r>1. (5.20)
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/
ex?

m = m’. In fact, for fixed choice of £ := (¢1,...,£,;), the number of choices for
(n1,...,n4) depends on the value of £ and (Nj, £}, nex, m), so we may denote it
by Ge,N; 4 nex,m then we have

Proof First, we shall reduce to the case where N; = M;, +; = :t/j and nex = n

#Mq,r = E geij»:tj,ncx;m ‘ge,Mj,i/j,ngx,m’
l

1/2

1/2
2 2
< (ngz,N,-,ij,nex,m) (de,Mj,i;.,ngx,m/>
J4 L

Therefore, if we can prove (5.18)—(5.20) with M replaced by N etc., then by sym-
metry we also have the same estimates with N; replaced by M etc., and so by taking
geometric average we obtain (5.18)—(5.20) with both N; etc. and M etc.

Now we may assume M; = N; etc. By symmetry we may assume Ny > --- > N,
and Ly >--->L,,s0 NV = N; and LY = L ;. Most of the desired bounds directly
follow from applying (5.15) or (5.16) once or twice. Indeed, if g = r = 1, then (5.15)
implies #M; 1 < N12L1 because n/] is uniquely fixed once n1 and £; are fixed. Simi-
larly, if (g, ) = (1, 2) then (5.15) implies #M » < (N1L»)%Ly, and if (g,r)=(1,3)
then (5.16) implies # M3 < (N1L{L>L3)%. Moreover, if (g,r) = (3,1) then we
first apply (5.16) for (n1,n2,n3,£1) and then apply (5.15) for (n},n},n}) to get
#M,1 S Ni(N2N3)? LY (N2N3)>Ni = NP (N2 N3P L.

We are left with the cases where g =2 and r € {1, 2}. If r = 1, let (nex — (£3)€1) ~
R, then either R < N; or R ~ N|. Moreover, for fixed £, the number of choices for
(n1,na,n'y,nb) is < NS(min(N2, R))~2 due to (5.10), while the number of choices
for £1 is < (min(Ly, R))3. Therefore we have

#Ma1 S D N(min(Na, R)™2- (min(Ly, R))® S NENJLy,
R<N; or R~N|

which can be directly verified by enumerating the cases (namely, when R ~ Nj, or
L1 < R < Ny, or R <min(Ly, Ny)). Finally, if ¢ = 2 and r = 2, then we may first
fix £, which has < L% choices, and reduce to the case (¢, r) = (2, 1). This gives the
bound

#Myy SNENSLIL < NF(NiLiLy)>.
In any case this provides the needed bounds for (5.18)—(5.20). O

5.2 Tensors and tensor norms

Before proving our basic tensors estimates in the next subsections, we recall the def-
inition of tensors and L?-based tensor norms that will be used in this paper. In what
follows we will use capital letters such as A to denote a set of indices and we will
denote by ng = (n; : j € A) tensor variables. The presentation follows [45] where
these were first introduced.
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Definition 5.6 A tensor h = h,,, is a function (ZHA — C, with nu being the input
variables. The support of h is the set of na such that h,, # 0. These tensors may de-
pend on other parameters, suchast € R or (A, 1) € R x R4, in which case we will
write respectively hy, = hy, (t) or hy, = hy, (A, X;). Note that unlike [45], the ten-
sors we will use here are not random; however the norms in which they are estimated
are the same as in [45].

A partition of A is a pair of sets (B, C) such that BUC = A and BNC = @. For
such (B, C) define the norm || - |lng—ne by

||h||3w,c=sup{2 > g Zng

nc np

Z'Zﬂg' —1}

By duality we have that

Z hnA Znp * Ync

np,nc

len3| —Zb’ncl —1} (5.21)

”h”nbjﬁnc = sup {

hence |hllng—nc = hllnc—sng- If B =3 or C = & we get the Hilbert-Schmidt norm
I+ lln, defined by

2 2
Al = thny .
na

Note that trivially |h|l,y—ne < |hlln, . Finally, for a tensor h,, , (L) depending on A,
we define the norm || - ”L%[ﬂg—)nc] by

W O 22105 e = Vs Gl e | 12 (5.22)
5.3 Base tensors estimates

In this subsection, we introduce the base tensor 12, \nyns» Which describes the basic
relations among the spatial frequencies () j=1,2,3 of each component in the nonlin-
earity and the spatial frequency n of the solution u, and estimate the corresponding

Hilbert-Schmidt and operator norms. The base tensor hnnln ,ns 18 given by
3
Y inany = In @) - ] v ) - Hn =nioz} - 1{|Q 1. n2.n3) —m| < 1}, (5.23)
j=1

where N and N;’s (j € {1, 2, 3}) are dyadic numbers, m € R, and

Q(ny1,nz,n3) ;= (n123)

HMW
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For convenience we often relabel n =: —ng, N =: Ny and rewrite the base tensor
(5.23) in a symmetrized form:

3

P = [ 1) Uno 4 mas =0} 1{l2 —mi <1}, (524
j=0

where here Q2 has been rewritten as Z?zo(:l: ).

Lemma 5.7 (Base tensors estimates) We consider the base tensor h? defined as in
(5.24) with the dyadic numbers N;’s (j € {0, 1,2, 3}) and m € R. Then we have the
following estimates:

(1) Let J € {0, 1, 2,3} satisfy #J = 3. Then we have

noninanz ~

1R"11% S (med Np~t- [T N, (5.25)
jeJ

and

, min(Ng, N1, N2, N3)

hh 2 < (NoNiN>N- :
I (NoN1I NN No N1, Na. Ns)

noninan3 ~J

(5.26)

(2) Let J C {1, j2, ja} satisfy #J = 2, where {j1, j2, j3, ja} = {0, 1,2, 3}. Then we
have
1n117 SCmed NyTHTN S (r]nei;uv‘,'rl w621

’1j1”j2’1j3—>nj4 ~ ieJUlj
JEJU{ja} jeJ jeJ

and

b2 <(N:N:-N:)2. N1
”h ||njlnj2nj3—>nj4 ~ (Nll N]ZN]3) (]E{Ijlll,aj)z(,j%}Nj) . (528)
(3) Let us further localize the tensor to |nj j,| = Injj,| ~ Nj j, = Nj;j,. Then we
have
W12, oy, S MENCNy Njy )™ min(N s, Njy i)™ (N N ). (5.29)
Proof First, (5.25) and (5.26) follow from (5.13) and (5.16) respectively. Then
(5.27) and (5.28) follow from (5.12) and (5.15) after applying Schur’s test to the
tensor norm. Now consider (5.29). Without loss of generality, we suppose that
(1> J2s J3, ja) = (1,2,3,0) and Np = max(Ny, N2) < max(N3, No) = Np. Since
X — min(x, y)’1 cx3is monotonically increasing in x > 1, it suffices to prove that

11{|n12] ~ Nio}° | <min(Ny, Ni2) ™' - min(N3, N3g) ~! - (N1 N3)3.

niny—>n3ng ~
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Invariant Gibbs measures for the three dimensional cubic NLW 1215

To this end, using Schur’s test we have that

{12l ~ N2} B2 12 e S (sup Y~ im0l ~ Nao} - B2 ans)

n0:13  piny
n9123=0

X ( sup Z 1{|”12| ~ NlZ} 'h30n1112n3)'

R piy
n0123=0

For the first factor, by the lattice counting estimate (5.1) in Lemma 5.1, we have

sup Y {Inzol ~ Nao} - bl inams

n0123=0
Ssup sup > |y (ny)  (nors) —m'| < 1}
m'eZ nho.n

3
n30l~Nso 1111~N1

<min(Ny, N))~L - N7

Similarly, the second factor can be bounded by min(N3o, N3~ 1. N 3. which together
with the bound of the first factor yields (5.29). O

Remark 5.8 In Lemma 5.7 we can minimize the right hand sides of (5.27) and (5.25)
by making J contain the two indices j’s in (5.27) and respectively the three indices
J’s in (5.25) such that N;’s are the smallest, in which case (5.25) and (5.27) are
equivalent to the counting estimates (5.13) and (5.12) in Lemma 5.4.

5.4 The cubic tensor

In this subsection, we prove estimates for cubic tensors, which correspond to stochas-
tic objects such as ‘? (see Sect. 6.2). In Lemma 5.9 below, the cubic tensors ~ and
H correspond to the cubic nonlinearity and its Duhamel integral, respectively.

Lemma 5.9 (The cubic tensor estimates) Suppose that Ny, Na, N3, Nip3 are
dyadic numbers and L1, Ay, A3 are real numbers. Let Npax = max(Ny, Na, N3),
Nmin = min(N123, N1, N2, N3) and x (t) be a Schwartz function. Define the tensors
hnn1n2n3 (t, A1, A2, A3) and Hnn1n2n3 (t, 1,22, A3) by

hnnlnzn3 (tv A1, A2, )\3)
3

Iy (n;
=1{n=n12} - Ly, (n)< I1 M) (5.30)

il (nj)

X ([)ei(i(”l>i<"2>i(”3>+)»1+kz+k3)t’
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1216 B. Bringmann et al.

Hnn1n2n3 (tv AL, A2, )\3)

3

I3 (1) Iy;(nj) (5.31)
Zj> <H (nj) )

= l{n :n123} .
j=1

t
x / dt’ x ) x (¢") - sin((r — t’)<n>)ei(i(m>i<n2)i(n3>+)»1+kz+)»3)t" (5.32)
0

Then there exist two functions Aj = Aj(k, A1, A2, A3), j = 1,2, such that

I (k>b+_1A1 (A, A1, A2, )\3)”1& S Niaxs
, (5.33)
1A)7 A2 (s A1 22, 23) 112 S Nia
and that we have the following bounds for the shifted space time Fourier transform
of (5.30) and (5.31),

~ Nmin \ 4
anninans s Aty A2, A3) lamymany S A1 (hs At A2, 23)Nis - (o) 2, (5.34)
Nmax
~ < Nmin %
||Hnn1nzn3 ()‘*’ AL, A2, )»3)||nn1n2n3 ~ AZ()\s A1, A2, )\3) : (—) s (535)
Nmax
~ _1
”hnnln2n3 ()"7 AL, A2, )\3) ”nng—mc ,S Al ()\‘1 A1, A2, A3)N123 ' NmaZXv (536)
~ _1
||Hnn1n2n3 ()\'7 A1, A2, )MS) ”nng—)nc ,S AZ()W A, A2, )L3) . Nmazxa (537)

for all partitions (B, C) of {1,2,3} where C # &. Furthermore, the 9; and 8;\_/.
derivatives of h and H satisfy the same estimates as h and H themselves.

Proof First, by the definition (5.30) of &, and definition (2.28) we have that

hnn1n2n3 (A, A1, A2, A3)

_ 3 (5.38)
=1{n=n13} Iyyn) - XA—A —Ay— 23— Q) (l_[ 1N_/-(nj))»
j=1

where Q = £(n) & (n1) &£ (ny) &= (n3). Then by the definition (5.23) of the base tensor
and the Minkowski’s inequality, we have

~

||hnn1n2n3 ()‘" )‘1, )\2, )¥3)||nn1n2n3

S A1(A, A1, A2, A3)(N1N2N3) ™ sup ||hb||nn.n2n3, (5.39)
mez
|m|,§,Nmax
where
AlOo A2, 03) = ) X =k —ha —h3 —m)]; (5.40)
mezZ
|m|SNmax
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Invariant Gibbs measures for the three dimensional cubic NLW 1217

note that here we have replaced (n j)_l Iy;(nj) by Nj_l, a simplification which will
be also used multiple times below. Define A := A1 + A3 + A3, then (5.40) implies that

|A1] S min(l, Npax - (A — A)7D), (5.41)
whence

AP AL 0 A Az Al S NE T2 bt o= Ay 30T D),
2 »(5.42)

S Na

max”’

which is the first inequality in (5.33). Now, without loss of the generality, we may
assume N1 > N> > N3. By applying the base tensor estimate (5.25) in Lemma 5.7,
we have

12”2 < med(Na, N3, Ni23) ™ - (NaN3N123)> < N3 N2N,

nninani ~

< Nizs - (N123N{N2N3)* - Ny«
By the symmetry of (1, n1, n2, n3) in the base tensor h?, the above inequality implies

1h®)2 < Nunin - (N123N1NaN3)? - N L

nninan3 ~

which proves (5.34).
Second, by the definition (5.31) of H, definition (2.28) and Lemma 2.2 we can
write

~

Hnn1n2n3 ()‘7 ALy A2, )‘-3)

3

I Iy, (n;
:K(A,M+A2+A3+Q)~1{n=n123}-1\72;73;’1)-(1_[ %)
j=t

where © = +(n) £ (n1) £ (n2) = (n3) and K(A, A1 + A2 + A3 + ) is as defined in

Lemma 2.2 and Remark 2.3. Based on the above expression of Hy; 5505 (A, A1, A2, A3)
and (2.31), we can do%® a level-set decompositon of Q2 to obtain that,

1

H <
1E lninany S ’% VA E (A + A2+ A3 +m))

‘m|SNmax

3
I, (1) Ly;(nj)
x [1{n=npst-1 sz—m<1~L~( /7) :
H { 123} {| | < } (n) /l:[l (n/) nninon3
Defining
1

Ay, A1, A2, A3) = Z Y

meZ
|m‘sti\X

At +r+A3+m))’

26This type of level-set decomposition of € will be frequently used later.
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1218 B. Bringmann et al.

we then have that

IH lnnynany S 1A20 Aty 22,231+ sup 1A lungngns - (N123N1NaN3) ™1 (5.43)
Z
|m‘",1§ENmax

which proves (5.35) by the base tensor estimate (5.25) in Lemma 5.7. Furthermore,
it is elementary to show that

Ax (A, A1, A2, A3) S10g(Nimax) - (A) ™" - min (1, Npax (A £ A) ) (5.44)

(where again A := A1 4+ A + A3), which is the same as (5.41) for A; but with an extra
(0)~! factor on the right hand side and at most a log(Nmax) loss. Then we can prove
the second inequality in (5.33) in the same way as the first one, by repeating (5.42).
Finally, the proofs of (5.36) and (5.37) follow in the same manner, where one uses
(5.27)~(5.29) in Lemma 5.7, instead of (5.25). The 9, and 9, estimates also follow
in the same way because all derivatives of ¥ and K satisfy the same bounds as these
functions themselves. O

Corollary 5.10 Suppose ¢; € {sin,cos} for j =1,...,3 and Ni,..., N3, Ni23 are

dyadic numbers, and let Nmax = max(Ni, Ny, N3). Consider the cubic tensor
Hyninyny (1), which arises from the cubic stochastic object Q?}D and is defined as

Hnnlnzn3 @) :Hnn1n2n3 [N1, N2, N3, N123, 91, 92, 931(2)

3
1np. (1) Iy (nj)
-t (1)
j=1 (5.45)
! 3
/ / . / /
x ([ @ x oy -since = ) [Ty tn,):
0 j=1
Then we have that,
-l 1/2 —1/2
o I Huymans A 2 gy S Nida - Nanal T, (5.46)
P1,92,93
€{cos,sin}
~ —1/2
D I o A 2y S Nmad -7 (5.47)
P1,92,93
€{cos,sin}

for any partition (B, C) of {1, 2,3} with C # &. Here the L%[nng — nc] norm is
defined in (5.22).

Proof By the definition as in (5.45), we see that Hy;,,n,n, (f) can be written as a linear
combination of Hyp nyns (f, A1, A2, A3) as in (5.31), by setting A = A = A3 =0 and
choosing the £ signs. The desired bounds (5.46) and (5.47) then directly follow from
(5.33), (5.35) and (5.37). O
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Invariant Gibbs measures for the three dimensional cubic NLW 1219

5.5 The quintic tensor

In this subsection, we will study the tensor estimates for the quintic stochastic ob-
jects such as % (see details in Sect. 6). Similar as in Sect. 5.4, the tensors & and
H in Lemma 5.11 correspond to the quintic nonlinearity and its Duhamel integral,
respectively.

Lemma 5.11 (The quintic tensor estimates) Let Ny, ..., N5, N34 be dyadic numbers
and A, M1, ..., A5 be real numbers. Let Nmax = max(N1y, ..., Ns). Define the tensors

hnonl.uns (tv Alyenns )\'5)

5
18534 (n1234) (1—[ Lw; (”J')) Qi1 E(s)+h +5)

(n234) (nj)

= 1{no = n12345} Ly (n0)
j=1

t
< ([ @ xOx(sin((c = ) ) S ),
0
(5.48)
Hnonl‘..n5 (t, )‘-1 s e )‘-5)
5

TNy (n234) (1—[ Ly, (nj)>

tro=mases} - == (n))

j=0
t
x (fdr’x(t)x(t’) sin (1 — ') (ng) ) et EmIEMs)Fhi+1s)
0
y

x (/dt”x(t/)x(t”) sin ((¢' —t”)(n234))e””(i("”i(””ﬂ"“”““»’““))).

0
(5.49)
Then there exist two functions Bj = Bj(A, A1, ..., As), j = 1,2, such that
13T B A )2 S N
) (5.50)
KA Bo(hs Ay o As) I g2 S Niaxs
and that we have
”h(k’ )Ll’ T )L5)||n0nl~~~n5
1
No - min (N3, N3, Ny, No34)2
S T Bi(A, A1, ..., As) (5.51)

™ max(No, N1, Ns)% max (N2, N3, Ng)2

_1

,SNO'Nmazx'B]()\a)\l,--~,)¥5)y
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1220 B. Bringmann et al.

< Nomin(Ny, N1, N2, Ns)%(N3N4)%

[hG s eas)|, S “Bi(A, A, ..., As5)
o N>max(No, N1, N2, Ns)?
when Ny ~ Np3q4, (5.52)
~ _1
NH G Ao 2) [ s S Nimax - Ba(hy A, hs), (5.53)
”h()”’)\l’"")LS)“nOnAeans
1
< NENs~% - {max(No, Na, N3, Na)~ +max(Na, N3, No, Ns) "2} (339
X Bi(A, A1, hs),
”H()"}“l’"")L5)||nonA%an5

< (NoNs)™? - { max(No. No. N3, Ng)~2 + max(Na, N3, Na, Ns) 2} (5:55)
X By(h A1, ... hs),

for any partition (A, B) of {1,2,3,4}. The same bounds hold for all 9) and 9y,
derivatives of hand H.

Proof First consider (5.51). We may use sinz = eiz_zl‘?fiz to rewrite sin((t —t'){n234)).

Then by definition (2.28), Lemma 2.2 and (5.48), we have up to a linear combination
that

5

1N234(n234) . <1—[ 1Nj(nj))

Bagny.ns s Ay ooy As) = 1{no = niozas) - 1, (no) -
RO { b 1w (n234) izl (nj)

XKA—=x —ds—Q o+ i3+ 20+Q"). (5.56)

Similarly, by expanding also sin((z — ¢'){n¢)), we have up to a linear combination
that

5

~ 1 n Iy, (nj)
Hugny..ns A A1, .o hs) = Hng =n1a3ss) - Nzi;;;)w : (l—[ (; _>J )
j=0

X f KA, o) - K(c—X —A5—Q M+ A3+ + Q) do, (5.57)
R
where in the above formulas

Q' ==£(no) £ (n1) £ (ns) £234 (n234), Q" =Faza(nnza) £+ (n2) £ (n3) £ (n4).
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Invariant Gibbs measures for the three dimensional cubic NLW 1221

By a level set decomposition and using Lemma 2.2 (and replacing (n j)_l 1y, (nj) by
Nj_l as above), we have that

1RO Aty s A8) llngny s

s X 1
my,my€e”l 0\ A — —m 0‘ Z 1)‘,/ _m2>
|ml|‘|m2‘,§Nmax (558)

Zhnonlnzmns' n23402N30N4

na34

bl
no--ns

5
x (]_[ N)™' Ny -
=1

where hf’:()nl’l%zlns and h2234n2n3n4 are two base tensors as defined in (5.23) with the

conditions [m| — Q'| <1 and |my — m| — Q"] < 1 respectively. We define

1
Bi(A, A1, ..., A5) = )
Z ()»—M—)»s—m1><)»—23:1)»j—m2)

my,my€eZ
‘ml|v|m2‘,§,Nmax

and then

5
llnnyns S 1B1G Ars o 29) - (J TN Nagy
/=t (5.59)

Z nonn3ans n234n2n2n4

na34

- sup
mi,my

ng--ns

By Lemma 5.7 and the merging estimate (Lemma B.1) we have that

5
-1 -1
(l_[ Nj) 'N234'
j=1

Zh"0"1n234n5 “Mnysanynang

n234

np---ns

5
— 1
S (1_[ N ) N234 ||hn0n1n234n5 ”’70"1"5_)”234 Ilhn234n2nxn4””2”3’14’1234 (560)
j=1

No - min(N2, N3, Na, Na3a)'/?
max(No, N1, N5)!/2 - max(Na, N3, N4)1/2

< Ny - max(No, ..., N5)_1/2,

1A\

which proves (5.51). Furthermore, it is elementary to show that
|B1] S (10g Nina)” - min(1, Nypax (2 — A1),

where A1 := A1 + A5, which is again similar to (5.41), so by repeating (5.42) we
obtain the first inequality in (5.50).
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1222 B. Bringmann et al.

The proof of (5.52) is similar to the above proof of (5.51). By Na ~ Nj3a
and (5.26) in Lemma 5.7, we get that ||hn0nl,1234ns||,10,”,1234,15 < (NoN1N2Ns) -
min(Ng, N1, N, N5)]/2 max(Ng, N1, Ny, N5s)~ 172, By Schur’s test and using the
fact that (12, 13, n4) has at most (N3N4)* choices in the support of hnzawznam once
n34 is fixed, we obtain that ||hnmnznm4||,12,,3,,4_>,,234 < (N3N4)*/2. Therefore, the
estimate (5.59) and the merging estimate prove (5.52).

Next, similarly as with (5.58), for the tensor ﬁ(k, A, ..., As), we have that

5
LH (o 2t A8) gy ns S 1B s ) - ([ [ N Ny
j=0

(5.61)
z :hn0n1n234n5 n234nNn3n4
na34 no---ns
where hnonlnmn5 and hn234n2n3n4 are the same as in (5.58), and

Bo(A, A1, ..., A5)

= Y | -
= 5 .
my,my€el o —A1— )"5_m1)<0_2j:1)‘j_m2>
[myl, ‘m2|<dex

The same arguments above then prove (5.53), and it is elementary to show that
|B2| < (10g Nma)* (1) ™" - min(1, Niax (A — A1) ™),
where again A := A1 + As, which then implies the second inequality in (5.50).

Now we turn to (5.54) and (5.55). By the same argument above, it suffices to prove
that

Zhnon1n234n5 “Myyzananang

na34

nonaA—>ngns
> 1 (5.62)
ST N - Naaa(NoNs) ™2
j=0

X {max(No, N3, N3, N4)_% + max(Na, N3, Ng, NS)_% }

Here we shall apply the merging estimate (Lemma B.1). By choosing the order of
(kD h®) in Lemma B.1, we are able to get

LHS Of (5 62) < mm (||hn0n1n234n5 ”nx—)ny : ||hn234n2n3n4 ”nz—)nw )

” nonn34ns ”nX/—)ny/ : ||hn234n2n3n4||nz/—>nwr) (563)
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Invariant Gibbs measures for the three dimensional cubic NLW 1223

where 0 e XN X', 5eYNY', and Z € {&, {2}, {3}, {4}} and Z' = Z U {234}. By
Lemma 5.7 we have

1
14 lny—ny < NoN1N23aNs - (NgNs) ™2, (5.64)

nonna3qns

and moreover we have

1 _1 _1
||h£0nl,,234,,5 llnxy—ny < NoN1N23sNs - (NoNs)“2(N, 2 + Ny ?) (5.65)
if min(Ng, N5) > max(N,, N3, Ny); the same holds for (X', Y’). In fact, if | X| =1
(or |Y| = 1) then the stronger bound (5.65) directly follows from Lemma 5.7; if | X | =
|Y| =2, then Lemma 5.7 already implies (5.64), and when min(Ny, N5) > N23q4 we
have the improved estimate (5.65), because we are in the case A = N when applying
Lemma 5.1 after using Schur’s bound, which then gains an extra factor of either N, 1
or Ny L

Next consider the relevant norms of /,,3,non3n,- If Z = & then Z' = {234}, and
hence

_1
”hn234n2n3n4 ”nZ/—)nW/ 5 N2N3N4 : maX(Nz, N3a N4) 2, (566)
If not, say Z = {2}, then we have

it
17n3manzng llng—snw S N23a N3Ny - max(Naza, N3, Na)~ 2 567

1

S NaN3Nyg - max(Na, N3, Ny)~ 2

if N34 < Na, and

Wrnsamsnsnallny—nys S NaN3Ng-max(N3, Na)~2 ~ NaN3Ng -max(Na, N3, Na)~2

(5.68)
if N34 > N, (this last inequality (5.68) is due to the same reason as above when
applying Lemma 5.1). Now putting together the above bounds by choosing between
(Z, W) and (Z', W’) appropriately, we can get that

LHS of (5.62) S (No -+ Ns) - Nazg - (NoN3) ™2

Nl—

- (max (max(N2, N3, N4), min(No, Ns))) ™ 2,

which then proves (5.62). The 9, and 8;\1. derivative estimates follow just like in
Lemma 5.9. 0

Corollary 5.12 Suppose ¢; € {sin,cos} for j =1,...,5 and No,..., N5, N34
are dyadic numbers, let Nmax = max(Ny, ..., Ns5). Consider the quintic tensor
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Hy...ns (t), which arises from the quintic stochastic object % and is defined as

Hnonlu.ns(t)
2 lNI (nl) ( 1 A / 1
= tfmo=masss} - [T 722 [ 0t 20 )sin (@ = ) tnl)r )
Jj=0 / 0
1 ‘ 4
x %%(ﬂ)( 0/ de” % ()" sin (7 = 1) (n234)) j]j[zgoj "n,))-

(5.69)
Then we have

1A Hgeons O 120 sy S Nemad (5.70)

~ _1 1
16" Hgens GO 12 g gms) S Niax (NoNs) ™2 - { max(No, Na, N3, Na) ™2
+max(N. N3, Na, Ns) "2}, (5.71)
for any choice of ¢; and any partition (A, B) of {1, 2,3, 4}.

Proof This follows from Lemma 5.11 in the same way that Corollary 5.10 follows
from Lemma 5.9. O

5.6 The sine-cancellation kernel and tensor

In this subsection, we study the sine-cancellation tensor, which occurs in the quintic
stochastic object with one pairing (see e.g. Sect. 6.3). The estimates of this tensor rely
on a cancellation originating from the sine-function in the Duhamel integral which
was first observed in [63]. Before introducing the sine-cancellation tensor, we first
introduce the simpler Sine-kernel.

Definition 5.13 (The sine-cancellation kernel) For any frequency-scales K and L
and any r € 7, we define the sine-cancellation kernel Sine: R — R by

Sine(t, r) = Sine[K, L](¢, r)

Z , (n1) (n2)
nl,nnlzzezZr':

Remark 5.14 The choice of using K and L as notation for our frequency-scales in-
stead of Ny and N; is deliberate, since using N1 and N, would be confusing in the
symmetrization below.
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Invariant Gibbs measures for the three dimensional cubic NLW 1225

Lemma 5.15 (Symmetrization of the sine-cancellation kernel) For any frequency-
scales K and L and any r € 73, it holds that

Sine[K, L](t, r)

_ 1 [ (n1) — () .
= an ,122623: _IK(”I)lL('U)m sin (1 ((n1) — (n2>)):| (5.73)
1 [ (n1) + (n2) .
+Zn gﬁ _M(m)h(m)m Sln(f(<n1)+(n2)))] (5.74)
R
1 r .
-3 2 (1K<n1)1L(nz)—1L<n1>1k(nz))COS(Z()”;)) smf;i’;”)] (575)
n1,712€Z3: B
niy=r

Furthermore, on the support of the indicator function 1 g (n1)1 (ny) —1p(n1)1g (n2),
the vectors ny and nj satisfy the I'-condition (5.5).

Remark 5.16 As part of our proof of Lemma 5.15, we utilize a hidden total derivative
in the Sine-kernel, which was not observed in the earlier literature [18, 63].

Proof The identity for the Sine-kernel follows from direct calculations. As this calcu-
lation is important in our proof we shall detail it below. From the identity cos’ = — sin,
we obtain that

sin (¢(n1)) cos (1(n2))

Sine(t, r) = Z 1g(n)lp(n2)

2
s (n1) (n2)
niy=r
cos (z(n1)) cos (t(n2)
=— ) 1K<m>1L<n2)at< ( 5 )> ( > ). 576
5 (n1) (n2)
ny,ny€l’:
niy=r
By symmetrizing in 71 and n», it follows that
(5.76)
1 cos (1(n1)) cos (t(n2))
=—= 1 1 0
> Z [ k(n)1(n2) z( e )
nl,nzeZ3:
nip=r

+ 1. (n)1g(n2)

cos (t(n1)) a,(cos (Nm)))}

(n1)? (n2)?
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1
-3 X [1K(n1)1L(n2)(a,<°°S(’<”1>))COS(I<'122>)

2
n na
n1,na€Z3: < > ( >
niy=r

N cos (t(n1)) 8,<COS (t(nz))>] (5.77)

(n1)? (n2)?

1
T3 > [(1K(n1)1L(n2)—1L(n1)11<(n2))

nl,nzeZ3:
l’l[2:r

(5.78)

cos (t(n1 )) 5 <cos (t(nz)) >j|

X .
()2 T\ (m2)?

After performing the 7-derivative, the term (5.78) contributes (5.75) in the desired

identity. Thus, it remains to consider (5.77). Due to the product rule, we can convert
the summand into a total derivative, which yields

_ 1 cos(t(nl))cos(t(nz))
(5.77)_—5 Z [1K(n1)1L(n2)at< Y )2 >:| (5.79)

ni ,n2€Z3 :
np=r

Using a product-to-sum rule for trigonometric functions, we further obtain that

1
~5 Z |:11<(n1)1L(n2)3I<COS(I<>"21>)Cos(t(nz))ﬂ

(n (n2)?

ni,na€Z3:
niy=r

1 1 1
—_ lgm)lL(n2) —=-—5
DN e ar
nl,nzeZ :
np=r

x 0y ((cos (1 (m) = (n2))) +cos (i (m) + <n2>>))].

After performing the 7-derivative, this leads to the terms (5.73) and (5.74) in our
desired identity.

Now we consider the support of the indicator function 1x (1)1 (n2) — 1 (n1) X
lg(np). If K = L this is clearly zero by symmetry; suppose K # L, say K >
L by symmetry, then 1g(n1)lz(n2) is supported in |ni|eoc > K > |n2]|00, and
17 (n1)1g (n2) is supported in |n2|s > K > |n1|00, which is what we need. O

We now prove a direct estimate of the Sine-kernel which, while not as powerful as
Lemma 5.18, will sometimes be easier to use.

Lemma 5.17 (Direct estimate of the Sine-kernel) For all frequency-scales K and L,
all r € Z3, all times t € R, and all ) € R, it holds that

log? (2 4+ max(K, L, |A]))
t
max(K, L, |A])

t
V dt’ Sine[K, L1t — ', r) ™ | < (5.80)
0
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Proof We distinguish the cases |A| > max(K, L) and |A| < max(K, L). If [A] >
max (K, L), we obtain from the definition of the Sine-kernel that

! o 1 1
[ arsinetk. L~ e [S @07 X Tkttt
0 , (n1) (n2)
ny,no€l’:
nip=r

N

) (WK L2 min(K, L)?
S

Thus, it remains to treat the case |A| < max(K, L). After using Lemma 5.15 and
performing the #'-integral, it follows that

t
‘ / dt’ Sine[K., L]t — ¢, r) ™
0

1
< 2172 1 1 .81
SNK2L ; 23 k(1L () s S (5.81)
nl,VlzGZ:
npp=r
1
+ (K 2L 2 max(K, L) Z 1K(n1)1L(n2)1+|(nl)+<n2>ﬂ| (5.82)
nl,n2€Z3Z
npp=r

+(tymin(K, L) 'k ~'L~!

x>y [|1K(n1>1L<nz)—1L<n1)11<(nz>| (5.83)
i1*:l:2n],nzeZ3:
nip=r

1
“TF [n1) £1 (m2) izAJ'

Since all three summands (5.81), (5.82), and (5.83) are symmetric in K and L, we
now assume that K > L. Using Lemma 5.1 and a level-set decomposition of (n1) —
(n2), the first summand is estimated by

(5.81) < (1) log(2 + K) (r) K ~>L > min ({r), L)_1L3
< (1) log(2 + K) max ((r), L) K 2
< (t)log2+ K)K !,

~

Using Lemma 5.1, the good sign in (n{) 4+ (n3), and a level-set decomposition of
(n1) + (n2), the second summand is estimated by

(5.82) < (1) log2+ K)K'L72L? < (1) log2 + K)K .

It remains to treat the third summand (5.83). We further distinguish the two cases
(ry 2 L and (r) < L. In the case (r) 2 L, we utilize Lemma 5.1 and a level-set
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decomposition of (n1) £1 (ny), which yield

(5.83) < (¢ IL‘ZZ Z [(lK(m)lL(nz)-i-1L(n1)11<(n2)>

il iz ni ,l’leZ2 :
niy=r

1
“1¥ [{n1) £1 (n2) 2 ?»l}
< (1) log2+ K)K ™"

In the case (r) <« L, we first note that L < K < max(L, (r)) < L. As a result, it
follows that K ~ L. Together with the support property in Lemma 5.15, it follows
that

(5.83) < (1)K 3

x 3 3 Yl =Tzm —rlaor farlas <T <t = rloc)

t1.%2 ) npe73:

ni2=r
1
X .
L+ [(n1) £1 (n2) 2 2
(5.84)
By Lemma 5.3 and a similar level-set decomposition, it follows that
(5.84) < (1) log? 2+ K)K !,

which completes the estimate of the third summand (5.83). O
Lemma 5.18 (The sine-cancellation tensor estimates) Suppose No, N3, ..., Ns,

N34 are dyadic numbers and A, A3, L4, A5 are real numbers, define Nmax = max(No,
N2, ..., N5). Recall the Sine kernel defined in Definition 5.13. Define the tensors

B s (223, Aa, As)

nonznans
In;(nj)
= 1{no = naas} - Ly, (no) - (1‘[ : )J ) it (£(ns)+1s)
j=3
t

(/dt X)X (@) - Sine[Naza, NaJ(t — 1, nag)el” E31E ("4)H3+m),

0
(5.85)

@ Springer



Invariant Gibbs measures for the three dimensional cubic NLW 1229

HSM® (£, 23, A, A5)

nonizngns

1N (no 5 1N( /)
— t{ng = nzus} 25O TT = /dr XX -sin (¢ = ) (o)

j=3
. (5.86)

x eit’(i<115)+kg)(/dt/lx(t/)x(t//)

0

- Sine[Naza, Na1(t' — 1", naa) ei'”(i("”i(”“)“ﬁ“)).
Then there exist two functions Cj = Cj(A, A3, A4, A5) for 1 < j <2, such that

111G A3, 2 29) 2 S

nlax’
, (5.87)
[[{A)"F Ca(r, A3, A, )»5)||L2 Niaxs
and that we have
—_~ _1
|Asine (A, A3, Ag, )\5)||non3n4n5 5 NONmazx <C1(X, A3, A4, A5), (5.88)

3 1
= min(No, N5)2(N3Ny)?2
hSme (A3, Ag, A < Ci (A, A3, Ag, As),
Il Ay A3, Aas As) lngnznans S Ns - max(Na. Nazs) 1(A, A3, Ag, A5)

(5.89)
”Hsme()L 235 Ady A5) lnonanans < dex Cor(A, A3, Agq, A5), (5.90)
—_ _1
||h51ne(k’)"3a)"41)"5)HHOI1A*>HBVH ~ N N dezx : Cl()\")\'S’)\'4’)\'5)’ (591)
— 1
| E5me (23, 24, 25) | s S (NONS)™2 - Nina - C2(h, 43, Aa hs), - (5.92)
—_ _1
||hsme()h’ A3, A4, A5) Hnonsﬁnﬂ“ S No(maX(No, Ns) - max(N3, N4)) 2
Ny ' CLh, A3, g, 0s), (5.93)
— _1
HHsme()h A3, A, )"5)}‘}’10"5*)”3714 S (max(No, Ns) - max(N3, N4)) 2
Ny ' Co(h, 23, 04 hs), (5.94)

for any partition (A, B) of {3, 4}. The same bounds hold for all 9; and 9, ; derivatives
of these tensors.

Proof In the proof below we will also fix a dyadic number N34 and insert the indicator
function 1y,,(n3 + n4); note that summing over N34 introduces a log(Nmax) factor,
but this can easily be absorbed by slightly adjusting the definition of C;. Similarly,
we will ignore all possible log(Nmax) factors that may occur below.
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—_~

By (2.28) and Lemma 5.15, we can decompose the tensor (A%0€),, 1 ins (A, A3, Aa,
As) into A7), D and A©, where hnom,w,5 = h,(lfj),,gnwi (A, A3, Aa, As) for () €
{(=), (), (0)}, and

Ignsnans = O K (= As % {ns) & (no) Fasa ((n234) — (n2)),

nonzn4gns
n2€Z3

A3 + Ay t234 ((n234) — (n2)) & (n3) + (n4)))

x 1{no = n3as } 1n, (0) 1ns, (n3 + n4) 1,3, (n234)

5
_ 1 . i
.lAb(WZ)'<n234> <n2>( || AU(nJ))* (5.95)

(n234)2(n2)? (nj)

Irsnins = D K(h— ks % (ns) £ (n0) Faza ((n234) + (n2)),

n0n3n4n5
l’l2€Z3

A3 + g 234 ((n234) + (n2)) £ (n3) £ (n4)))

x 1{no = n3as} Iny (n0) 1 n3, (13 + n4) - 153, (n234)

(n234) + (n2) (li[ Ly, (nj)>

1 .
ERARTERCITHERS § TR

W nans = O, K (=25 % (ns) % (no) Faz4 (n234) + (n2)),

n0n3n4n5
np EZ3

A3 4 Ag 234 ((n234) & (n2)) £ (n3) £ (n4)))

x 1{no = n3as} 1, (n0) 1 ny, (n3 + n4)

Ly, (1234) - Ly (22) = Ly (1234) - Ly (n2) (ﬁ Ly, (n,-)>
(n234)2(n2) i3 (nj) 7/

Similarly we can decompose P/I\g‘?e into H), H® and H® components. We will
focus on the discussion of A~ and H) in parts (1)—(3) below; for the other two
components we will only point out the points of difference in the proof in part (4).

(1) Start with the formula (5.95) for (=) Similar to the proof of Lemma 5.11,
define

1
Ci(A, A3, A4, A5) == . (5.96)
2 (h—As—m1)(h— Y 7_34; —m2)

my,my€e”Z
‘ml|~|m2‘,§Nmax
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then in the same way as (5.50) we can prove the first inequality in (5.87). By level set
decomposition we then have

1 ngnsnans
< (N3NgNs) ' C1(n, 23, Aa, As)

5

1{no = nz4s} Ln, (n0) 1y, (n3 + ng) l—[ 1y;(n;)
=3

sup
ml,m2€Z

x 1{|Q —ma| <1}

. < Z Iy, (12) 1 Ny, (n234)

na

[{n234) — (n2)] /
— . 11| — 1
<”234)2 <n2>2 {| m1 = }> non3ngns

(5.97)

where
Q= =+(no) £ (n3) = (n4) £ (ns5), Q' ==%(no) £ (ns) Fa3s (n234) — (n2)). (5.98)

For simplicity, we will define the tensor inside the | - || norm sign to be 7—[,(1;,33,, ans-
The idea is to examine the support of H(~) together with the size |H(7|.

Clearly 77 is supported in the set where (nj)~N;(je{0,3,4,5}), In3+n4g| ~
N34, and ng = n34s and |2 — my| < 1. Moreover, by Lemma 5.1 and the restriction
| —mi| <1, we know that

|7—l,ﬁg,33,,4,,5| < N2_2N2_33;N34 - (min(Na, Na34)* + min(Na, N234)3N3_41) P
< max(Ny, Nazg) L.
As such, we have that
1 gnsngns S (N3NaNs) > CEmax(Na, Ns) ™) - )~ 1, (5.100)

(ng,n3,n4,n5)

where the summation is taken over the support of (™) described above. This sum-
mation can be trivially bounded by (N3 N4 min(Ny, Ns))? which together with the
first factor in (5.100) proves (5.89) for R,

Leti € {0, 3, 4, 5} be such that N; = min(Ng, N3, N4, Ns). If max(Nz, Na34) 2 N;
then Lemma 5.4 already implies

18 gngngns < (NsNaNs)“>Cf - max(Na, Naza) ™2 - (NoN3NaNs)?

noningns ~
N.
e
max(Ng, N3, N4, Ns)

which is what we need. Now suppose max(Nz, N234) < N;, then we shall fix (n;, n;),
where {i, j} € {{0, 5}, {3, 4}}. Using the bound |n; =71 ;| ~ N34, we apply Lemma 5.1
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to get that

12 < (N3N4N5)“2C? - max(Na, Nazg) "2 - NSN3, - N

non3ngns ~ max

—1
N34

<SNGNTIN)

2
i max Cl ’
which is more than what we need. This proves (5.88) for h).

The proof of (5.90) for h) (plus the second inequality in (5.87)) also follows
similarly. In fact, we shall define

Ca(A, A3, Ag, A5)

mi,my<el
[my |v|1m2E§Nmax

which then satisfies the second inequality in (5.87) by repeating the arguments in the
proof of Lemma 5.11, and also gives the bound (5.90) for 4~ by making the level
set decomposition similar to (5.97) and applying the bound for 7£(~) obtained above.

(2) Now we turn to (5.91); the proof of (5.92) follows the same lines as above,
which we will omit. By the same reduction above, it suffices to prove that

/ do
B (A —0) (o —As—mi)(o — Y _3hj —ma)

_ 1 1
”H( )||n0nA—>an5 5 NON3N4N5 ' (NONS) 2 'Nmazx~ (5101)

Here again we will use the upper bound (5.99) of () and Schur’s lemma. If A =
{3}, B = {4} (the other case A = {4}, B = {3} being similar), then Schur’s bound and
the assumption |n3 + n4| ~ N34 implies that

IH ) ngns—nans

< max(Na, Naza) ™' min(No, N3, N34)¥/? min(Ns, Na, N34)*/?

< max(Na, No3a) ™' min(No, N3)/2Ny* N3/ - min(Ns, Ng) 2N, >N, .2

N34

= NoN3N4Ns - (NoNs) ™12 - max(No, N3) ™12 max(Ns, Ng) ™12 ———=
max (N2, Ny3a)

_ —12
< NoN3N4Ns - (NoNs) ™2 - Nyl 2,

which is what we need. If instead A = @, B = {3, 4} (the other case A = {3, 4},
B = @ is similar), then Lemma 5.4 already gives

_ _ — —1/2
1 g nsnans < max(Na, Nasa) ™' NoN3NyNs - Ny ' N5 /2,

which is enough if Npax ~ No or Ny or Na3a; otherwise we have Ny, Na, Noza <
Nmax, then it must be that N3 ~ N4 ~ Npax, hence in applying Schur’s bound and
counting (n3, n4, ns5) we may first fix ns and then apply Lemma 5.1 to get

_ -1 3/2 3/24,—1/2 _ £;3/2
”H( )”Ytoﬁnwws §N34 'N34 'N3 N34 — 3

_ —1/2
< NoN3N4Ns - (NoNs) V2 Noal?,

which is also adequate. This finishes the proof of (5.91) and (5.92) for h).
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(3) Next consider (5.93) (together with (5.94)). Again it suffices to prove that

A
IH lngns—nany S NoN3NaNs - (max(No, Ns) - max(N3, No)) 2 - Ny 1. (5.102)
This follows directly from the pointwise bound (5.99) and the fact that the base tensor
h? satisfies that

non3n4ns

1
12° lngns—nsns S NoN3NaNs - (max(No, Ns) - max(N3, Na))~ 2,
which is proved using Schur’s bound and Lemma 5.1. This proves (5.93) and (5.94)
for h(7).

(4) Finally, we demonstrate how the same proof applies to the terms 2 and h© .
In fact, the only difference is that the tensor #(~) will be replaced by H ™) and H©,
which are defined as below. The tensor ) is defined as

Hflgr)l3n4n5
5
= 1{no = naas } 1y (0) Ly, (3 +na) [ | 1y, ()
j=3
(5.103)
(n234) + (n2)
17|92 — <1t 1 1 MRl - VAl
X {| m2| = } (% Ny (n2) N234(n234) (}’l234>2 <n2>2
{129 ) < 1}>
and H© is defined as
Heonsnns
5
i=1{no = n3as | 1n, (70) 1 v, (3 + na) 1_[ Iy, () - 1{|Q —my| <1}
j=3
(5.104)
: (Z 1 (n2) 1 vy, (n234)
ny

y LNy (n234) - 1, (2) —211\/2(}’1234) 1y (2) . 1{|Q(O) —mi| < 1})
(n234)=(n2)

where € is as in (5.98), but Q) and Q© are defined as
Q) = +(n) + (ns) Faza ((n23a) + (n2)),

QO =+ (no) £ (ns) £234 (n234) £ (n2))

with some arbitrary choices of =+ signs. Clearly %™ and H©) have the same support
as H(), so it suffices to prove that they also satisfy the same pointwise bounds (5.99)
as %), which then guarantees that the same proof will go through.
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The estimate for () follows from Lemma 5.1, because of the favorable sign in
(n234) + (n2); in fact by (5.2) we have

IHSE) s S Ny 2N3ga (N2 + Nosg) - min(Na, Nazg)? < max (N2, Nasa) ™!,

which is just (5.99). The estimate for HO  on the other hand, follows from Lemma
5.3. In fact, exploiting the I' condition in the support of 1y,,,(1234) - 1n,(n2) —
1n,(n234) - 15,5, (n2), and using (5.6), we have

IH mans| S N3 ' N33h - min(Na, N23a)* 10g(Nmax) < max(N2, Noza) ™" 10g(Nmax).

which is just (5.99), where the log Nnax loss can be absorbed by slightly adjusting
the definition of C; (or C;). This completes the proof (the 9, and SA_ ; derivatives are
dealt with trivially as before). O

Corollary 5.19 Suppose ¢; € {sin,cos} for 3 < j <5 and No, N3, ..., N5, Na34
are dyadic numbers, let Nmax = max(Ng, Na, ..., N5). Consider the Sine tensor
H;(l)r;gnws (t), which is defined as

HEne | (t, 23, A, As)

non3n4ns

5

1, (n0) 1—[ Ly, (nj)

(no) (nj)

= 1{no = nass} -
j=3
t
X /dt’ x (O x (@) -sin (¢ — ') (no)) ¢s(t'(ns))
0
"

X (fdt"x(t’)x(t”)'Sine[N234, No)(t" — 1", n34) ws(t"(n3))</)4(l"<n4>))-

0
(5.103)
Then we have that
~ —1/2
1437 Hagnynans O 12 momsmans] S Nemad (5.106)
~ _1 —1/2
107 Hagngnans O 2 ngmg s ngnsy S (NON3) ™7 - Nmal 2, (5.107)
s
[I{(A)"+ Hnon3n4ns (A) ”Li[nons—>n3n4]
(5.108)

1

2 ,szl,

S Nrenax : (max(No, Ns) - max (N3, N4))

for any choice of ¢; and any partition (A, B) of {3, 4}.

Proof This follows from Lemma 5.18 in the same way that Corollary 5.10 follows
from Lemma 5.9. 0

@ Springer



Invariant Gibbs measures for the three dimensional cubic NLW 1235

5.7 Tensor and p-moment estimates reductions

We start by explaining how a multilinear estimate in X*?-spaces can be reduced to
a tensor estimate. This (standard) reduction will be used in the proof of several esti-
mates (see e.g. Proposition 8.3, Lemma 9.3 and Proposition 9.6); but only explained
in detail here. To illustrate this reduction, we focus on a bilinear estimate

X120 5 120 x=1/20:=1 () yy3) s Py, [?N] PNszPNsm]. (5.109)
In a first step, we decompose w» and w3 into a superposition of time-modulated

linear waves and insert the decomposition into the Duhamel integral. More precisely,
we write

wj(t, x)—Z > /dk et CEITID I 2) G ET (0 m ), (5.110)
+; nJ€Z3
where maxy; ||(kj) (n )1/2 J(Aj,nj)lle Zz ~ lwjllxi/26. In order to closely

match (5.110), we also write

? Z Z gm :|:lll ni) 1(n1x) (5.111)

€Z3

Equipped with (5.110) and (5.111), we write

_1
(V)72 Py [ Ty, Pratwa P ]

Z fdAZ/dA3 [l{no—nm (l_[lN (n]))
+q,40,43

% <n0>71/2<n1>71 . ei(:l:l(n]):tz(rlz):t3(n3>+)»2+)»3)l . ei(no,x)

ng,ni,np,n3€Z3

X g+ 0252 (o, m2) - D5 (3, ma) |. (5.112)
In a second step, we bring the expression in (5.112) into a tensor form. To this end,

we use the cubic tensor /1,n,n,n; (7, A2, A3) defined in above (5.30) with A; =0 and
then (5.112) can be written as

1
(V)72 P, By, Prswz Prs

Z fdkz/dkg [<n0>_1/2<n1>_1
1,12,43

no,ni,ny,n3€Z3

X Rngmingns (£, A2, A3) - ' 10%) . gibi -@i2<xz,nz>~@i3(xa,ns)].
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Using Zn()"l"z’“ (A, A2, A3) asin (5.38) with A1 =0, ngp = —n and Ny = N123, except
now that we the fix signs & in Q by 4; (j = 1, 2, 3), we obtain that

]:(W)*% Py, [?Nl Py, w2 Py, w3]) (Fo0(no) +2,n0)

/dkg/dkg [(no)‘”z(m)‘l (5.113)
+q, :|:1 +9,43

no,ny,np,n3€Z3
=~ £, o~ ~
X hngningns (hy A2, A3) - g, - w2 ™2 (Ao, n2) - w3 3()»3,113)]-

In a third and final step, we now estimate the expression in (5.113). We may fix
the choices of 4= (0 < j < 3) as there are only 2% choices, then we have

(9174 B Prsn ] o) 0

< / dAodAs
R2

gnl 1552 (Mg, n2) W33 (A3, n3)]

2
L6,

> [0 0 T 20 Rugmnans G 22, 23)

202
L6

— _1 —b_—1
N NoNaNo) TR sup [(Ga) ) T
A, A3€R

X H Z<A>h+_l Znonlnzng ()L: }L29 )\3)8111
n

02, <02 126 ]

3
x/dexzdx3 [T60" 221w Ggnpl| 2
") "

—h_—1 175
< sup [((Azmg» O Do g inans (s A2 A3)gm |, ‘8, ﬁm]

A2, 3€R n ny 2%ng

3
-1 1
X N; (NgN2N3)™2 - l_[ ||wj||X%,;,~
=2

In order to estimate the operator norm in (5.109), it therefore suffices to control

()‘>b+7] En0n1n2n3 ()h A2, )\3)gn1

—(b-—3
H((MW@)) L2, <G~ s,

(5.114)

Note that we have now reduced the estimate for (5.109) to the estimate for (5.114),

which involves the E,le X E,ZB — Zﬁo bilinear operator norm of certain tensors with

parameters (A, A2, A3).
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Next, we explain how to estimate the L’ moments of suprema or integrals of
random variables over a continuous set of parameters such as (5.114). This argument
is equivalent to the meshing argument in [45] but is more suitable for our purpose
here as most of our estimates are stated in terms of L?, moments instead of A-certain
events like in [45].

Take (5.114) as an example. The goal is to estimate (see for example Proposition
8.3)

E((5.114)7)"/7 (5.115)

for all large enough p; here the main obstacle is the Lij’ 5, horm in (5.114) be-
cause Minkowski’s inequality does not allow us to control the L([Z)Li; 5, orm by
the Lij’th, norm.

However, let g := (b— — %)’5, then by Sobolev embedding, we have

IF @, A2, A3 Lge SIEA 22,0300+ 11Vig s F(A A2, A3) [l 14 (5.116)

A.A3 A.A3

for any complex valued or Banach space valued function F. This basically allows us
to control the ng’ 5, horm by the Lzz’ 5, horm with one extra derivative, but since
any (X, A2, A3) derivative of T satisfies the same estimates as i1 itself, in fact we only
need to treat the contribution corresponding to the first term on the right hand side of
(5.116).

Now, assuming the above considerations, we take p > ¢ and apply Minkowski
inequality to get,

E((5.114)7)"/7

<[ @226~ | S A g G 22, 23D

Gy <G~ NLoL] L3
<) a2y Py, (A, A2, 23)8
~ e " B x> I 121l
n3 Ap Az HAT@
ba—1 ~ p 1/p
S ASUP 0‘) + (EH Zhnomnzn_g ()"a )"25 A3)gn| ZZ ><€2 ) ) ‘Lz. (5117)
2,13 n ng A

Note that on the right hand side of (5.117) we are taking the L moments for
fixed (A, Az, A3), instead of taking L? moments of some supremum in (A3, A3).
This is the reduction we need, since then by the level-set decomposition of h (as
in the first part of the proof of Lemma 5.9), the LP moment for fixed (A, X2, X3)
in the last line of (5.117) can be controlled by A (4,0, X2, k3) (defined in (5.40))
times the same L/ moment but with the base tensor h” replacing h. Since
(NP1 A (R, 0, Ag, M)z S < N€ . by (5.33), one is finally reduced to controlling

max

the L2 moment

1/p
42 ><E2 —>£2 ] ’ (5.118)

| 0o
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This completes the reductions of this subsection since proof of the tensor estimates
such as (5.118) is the subject of other sections of this article (see Proposition 8.3 for
an estimate of (5.118) and Lemma 9.3 and Proposition 9.6 for similar estimates).

6 Algebraic and graphical aspects of stochastic diagrams

In this section, we describe explicit stochastic objects, which are defined directly
as Picard iterates of the nonlinear wave equation. In contrast to the para-controlled
components and nonlinear remainder, the explicit stochastic objects do not require
the solution of a fixed point problem.

In Sect. 6.1, we discuss the Gibbs measure and the associated caloric initial
data (from Proposition 3.5). To this end, we discuss the stochastic quantization
of the Gibbs measure through the (stochastic) nonlinear heat equation, i.e., the
parabolic @g-model (cf. [27, 61, 62, 65, 69, 78, 79]). In this context, we also
introduce our notation for the stochastic diagrams of the nonlinear heat equa-
tion. In the remaining subsections, we describe the stochastic diagrams of the cu-
bic nonlinear wave equations. As already mentioned in the introduction, we will
utilize two different sets of graphical notations, which are called shorthand and
longhand diagrams, respectively. The shorthand diagrams for the wave equation,
which have already been described in Sect. 3, will include ? Q?p and %
From a type-setting perspective, these diagrams are relatively small and will be
used in our ansatz and contraction arguments (see Sect. 3). In order to keep the
notation in our ansatz manageable, however, the shorthand diagrams will actu-
ally contain sub-terms which are not reflected in the shorthand notation. For in-
stance, as already seen in (3.10), the quintic diagram % will also contain terms
with one or two pairings. In contrast, the longhand diagrams contain all infor-
mation on both pairings and renormalizations. For example, the longhand dia-

Ziijg ’Q;g "Q?'

describe the terms in % with zero, one, or two pairings. From a type-setting per-
spective, it is difficult to include the longhand diagrams in mathematical formulas.
As a result, they have not been used in our ansatz (Sect. 3). However, the longhand
diagrams are incredibly useful in precise estimates of higher-order iterates. Without
this notation, it would be much harder to exhibit the 1533-cancellation (Proposition
6.21), which is the main result of this section.
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6.1 Parabolic stochastic quantization

In this subsection, we discuss the properties of the caloric initial data (as in Propo-
sition 3.5) and the Gibbs measure. As described in the introduction, the Gibbs mea-
sure is given by the product of the CD%‘-measure and the Gaussian free field g. Both
measures can be viewed as invariant measures for nonlinear and linear stochastic
heat equations, respectively. Since the stochastic heat equations will be used to rep-
resent the initial position and velocity of the wave equation, which are propagated
through the Fourier-multipliers cos(z(V)) and sin(¢(V)), we label the two stochastic
heat equations using the super-scripts “cos” and “sin”.

In the following, we denote the time-variable in the heat equations by s € R, since
the variable ¢ is reserved for the time-variable of nonlinear wave equations.

6.1.1 The linear and nonlinear stochastic heat equations

We let (2, &, P) be the probability space from Sect. 2.4 and let (Wfi“(n))nezs be
an independent copy of the Gaussian process (W, (n)),c7z3 from Sect. 2.4. We also
define the Gaussian process

W (x) = Z WS (e 6.1)

neZ3

The It6-derivative dWSSin (x) yields a real-valued space-time white noise. The an-
cient?’ linear stochastic heat equation with space-time white noise forcing is then
given by

(8 +1—A)p"" =v2dWS" (5, x) e R x T°. 6.2)

The reason for the +/2-factor lies in Lemma 6.1 below. In order to solve (6.2), we
introduce the heat propagator (e_S(l_A))Szo. On the torus T, the heat propagator is
given by a Fourier multiplier with symbol exp(—s(n)?), i.e., it is defined by

]:-<e—s(1—A)f> (n) = e—S(n)zf/‘\(n). (6.3)

Then, a stationary solution?® of (6.2) is given explicitly by

@i (5, x) = /2 Z |:(/S e—(x—t)(ﬂ)zdwgin(n)>ei’1x:|, (6.4)

neZ?

It is easy to see that (6.4) is well-defined as a space-time distribution. For us, the most
important property of ®%"(s, x) is its law for any fixed time s € R.

Lemma 6.1 (Law of ®%") For all s € R, it holds that Lawp(®¥"(s, -)) = ¢.

27In contrast to (6.5) below, (6.2) is satisfied for all times s € R, and we use the word “ancient” to empha-
size this fact.

28That is, the solution is a stationary process, its distribution is constant in time.
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Proof Let s € R be arbitrary but fixed. Then, we can write @sin(s, x) = Y onezs (é:_;l) X

e X where

N
on = ﬁ<n>2/ e~ DM qyysin ).

—00
Using the properties of W™, it is easy to see that

(1) go is a real-valued Gaussian and g, is a complex-valued Gaussian with indepen-
dent and identically distributed real and imaginary parts for all n # 0,
(i1) g, and g, are independent as long as n # +m,
(iii) and g, = g—n-

Thus, it only?” remains to prove that E[|g,|>] = 1. Indeed, it follows from It’s isom-
etry that

N
Bllga P1=20n)? [ 726700 1, 0

—00

This completes our analysis of the linear stochastic heat equation (6.2) and we
now turn to the nonlinear stochastic heat equation. To this end, we let W% (x) be
an independent copy of the Gaussian process WSSin (x), which was introduced above.
Furthermore, we let sg € (—00, 0) be an initial time. The upper bound sg < 0 stems
from Definition 6.6 below, where we evaluate the nonlinear heat equation at s = 0.
On a formal level, the nonlinear stochastic heat equation is then given by

(83 +1- A)q)cos — _(CDCOS)3 — 00 - ©COS 1 \/5 dweos
(s, x) € (50, 00) x T3, (6.5)

Ccos — ACOS
P 5=5) = 9.
Here, the term “oo - ®°% ” represents a renormalization. In order to give a rigorous

meaning to the renormalized equation (6.5), we introduce the frequency-truncated
nonlinear stochastic heat equation

(0 + 1= A)BLy = —Pen (:(Pan @) +yan @y ) + v/ 2dWe

(s, x) € (sg, 00) x T3, (6.6)
COS _ CcOS
<Nls=s9 — .

Here, the term :(P§ N CI>C°S)3: is the Wick-ordered cubic nonlinearity. The addi-
tional (logarithmic) renormalization constant y<y and multiplier I'<y, which were
already used in Sect. 3, and are defined in the following definition.

29The law of the sequence of mean-zero, Gaussian random variables (gx),, .73 is uniquely determined by
(E[gmg"])m,neZ3 and (]E[g—mg"])m,nez3' Due to (i), (ii), and (iii), both E[g;; g, ] and E[gn gn] are zero
for most choices of m, n € 73. Indeed, it follows from (ii) that, if n # £m, then E[g, gn] = Elgngn] =0.
Furthermore, it follows from (i) and (iii) that, if n # 0, then E[g, ¢,]1 = E[g—,gn] = 0. Thus, we only have
to compute E[g_, g, ] and E[g;, g, ], which both equal E[|g, \2].
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Definition 6.2 (The renormalization constant and multipier) For all N > 1, we de-
fine the renormalization constant y<y and renormalization multiplier I' <y by

y<n =T'<n(0),

3
Favm =61y Y ([[1axenpemp?). O

ml,mz,m3eZ3: Jj=1
mi3=n

We emphasize that the nonlinearity in (6.6) coincides with the nonlinearity in the
frequency-truncated wave equation (6.38) below (and encountered in (3.5) above).
This is important for our analysis because otherwise the (frequency-truncated) Gibbs
measures would not agree. We now define the energy function

1 2 2\, ! 4
Ean@) =3 [ ax(#002+19600F) + 5 [ ariPaver
3 4 3 68)
1 ) ®.
+§VSN/ dx (P<n )" (x).
3

For future use, we also isolate the potential energy V< in (6.8), which is defined as

1 1
Ven @)= /T v (Pan ) @) g v fT A (PP, (69)

Using the definition of E<y, we can rewrite the nonlinear stochastic heat equation
(6.6) as the Langevin equation corresponding to E<y. More precisely, (6.6) can be
written as

{a@gﬁ, =~V E<n(®DN) +V2dW  (1,x) € (19, 00) x T, 6.10)

Cos — 4CO0s
CDSN |t:t() =

Here, V2 refers to the gradient with respect to the L?-metric. In addition to the
evolution equation (6.10), the energy E<y yields a frequency-truncated version of
the <I>‘3‘—measure. On a formal level, it is given by the expression

Aot _y (@) =“Z_) exp(— E<n($))do™.

Despite issues related to the infinite-dimensional Lebesgue measure d¢, which can
not be given a rigorous meaning, we can give a rigorous definition of dbg, < based
on the Gaussian free field and the potential energy V<y.

Definition 6.3 (The frequency-truncated <b‘3‘—measure) For any dyadic scale N, we
define

A3, _y (@) := Z_Y exp (— Van())dg(@).

The following lemma follows directly from standard methods for stochastic dif-
ferential equations (see e.g. [71, 97]).
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Lemma 6.4 (Invariance of the frequency-truncated <I>‘3‘-measure) For any N > 1,
the frequency-truncated nonlinear stochastic heat equation (6.6) is globally well-
posed. In addition, the CI>§, <y -measure is invariant under the flow.

While Lemma 6.4 has important consequences for a fixed frequency-scale N, it
does not yield any information regarding the limiting behavior as N — co. Before
proceeding with the analysis of this limit, we need to introduce our graphical notation
for the stochastic heat equation.

6.1.2 Graphical notation for stochastic heat equations

We now introduce our graphical notation and start with the linear stochastic heat
equation (6.2). We use a black dot to represent the stochastic forcing term in (6.2).
More precisely, we write

& & /2 awsin, 6.11)

Utilizing the dot notation, we represent the (stationary) solution osin (s, x) as

§
H
H

1= @ (s, x) =«/§< / e T dWﬁi“> (x). (6.12)

—00

The densely dotted arrow represents the Duhamel integral for the linear heat equation.
The bottom dot together with its subscript represents an evaluation in space-time at
(s, x).>" In the following analysis, it is often more convenient to work with the spatial
Fourier transform of ¢Si“, which is represented as

§
H

= F (P (s, ))(n) = V2 / e (TR AW ). (6.13)

We emphasize that our change from physical to frequency space is only marked by the
subscript of the orange dot, which requires no additional components in our graphi-
cal notation. We now turn to the nonlinear stochastic heat equation (6.6). While the
solution of the linear equation (6.2) is exactly given by the stochastic object in (6.13),
the solution of the nonlinear equation (6.6) will only be approximated by stochastic
objects. Similar as above, the stochastic forcing term is represented using a black dot
and we write

S © 2 awees, (6.14)

30T, emphasize the significance this dot, it is colored in orange (in the online version), but the coloring is
not necessary to distinguish between the different longhand diagram.
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Using our previous graphical representations for the Duhamel integral and evalua-
tions, we can represent the zero-th Picard iterate by

CcQs

S
::ﬁ/ e~ 6D qyyeos (). (6.15)
—00

In preparation for Sect. 6.3 below, we prove the following covariance identity.

Lemma 6.5 (Covariance identity for the linear heat evolution) For all ¢,¢’ €
{cos, sin}, s, 5" € R, and n,n’ € Z3, it holds that

9 4
Q 9 1 oo 2
E| T 7 | =808y e e~ ls=slin) (6.16)

Proof The argument is a minor variant of the proof of Lemma 6.1. Using It6’s isom-
etry, it holds that

’

¢ ¢
2 R
E| & i :21E[(/ de(n)e—(s—r)<n>2>
i : .
s/
: ( / dW‘p/(n/)e‘(S'—f)<n’)2>i|
1 (., ./)
= 28n4n'=0 8p=¢' f e e~ 6= =" =) (n)?
—0o0
| e
= 8p+n'=0 (S(p:(/,/ (n)2 [s—s"|(n)
This completes the proof. .

Since the nonlinear stochastic heat equation (6.6) contains the Littlewood-Paley
operators P<y, it is convenient to include frequency-truncations directly inside the
stochastic diagrams. To this end, we define

CcQs

K

Py =Pyl (6.17)

(e}
=]
3

In the cubic Picard iterate of (6.6), we only take into account the Wick-ordered cubic
nonlinearity, since the y<y-term is designed to cancel double-resonances, which only
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occur at higher orders. Then, we write

COs COosS COSs
% R &
: <Y
3 :=/e—<s—f>(1—A>PSN :( §<N): W) dr . (6.18)
P<N D

—0o0

Here, the multiplication symbol at the joint in (6.18) represents the Wick-ordered
cubic nonlinearity. We emphasize that, just like the linear stochastic object, the cubic
stochastic object is stationary in time. In frequency-space, the cubic Picard iterate of
the nonlinear heat equation is given by

G QP
. 3
+ 0 =2 Y [(le(n]))
<N 3 P—
ny,ny,n3€l J=
ni23=n

3 p 3
X / ®dej°S(nj)( / dr e~ =DM’ He("‘-/)<"-f>2>:|.
[—co.sPP /=1 max(sy,52,53) J=1

(6.19)

In order to concisely state the evolution equation for the nonlinear remainder, we

now introduce shorthand diagrams for the linear and cubic longhand diagrams in
(6.17) and (6.18). We let

cos ..’0. E .0"’
cos €08 cos KRR
A 0,00 ®
fvG0= T, and 0= & . (620
< .
In order to solve (6.6), we now make the ansatz
cos €0sCRScos
0Q0
N x) =9 (5,0 = TE (5, 0) + WER (s, x). 6.21)

Then, the nonlinear remainder llli"l\s,(s,x) is a solution to the forced nonlinear
stochastic heat equation

cos €0$ QS cos 3 cos 3
cos (o} 090 cos Q ’
(3S+1_A) SN=—Pn|:| oy — Ey PNV ) (S )

cos cuscsscos
+ v<n ( Sy — ¥yt P ;",@)} (6.22)
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and has initial data

) ) cos COOS:'SS.COOS
WEN | Ly =0 = @ o)+ ED (s0) (6.23)
Here, ¢°°* is the initial data from (6.6).

As is well-known, (6.22) cannot be solved (uniformly in N) through a direct con-
traction argument. The properties of the caloric initial data (as in Proposition 3.5),
which will be defined momentarily, therefore can only be derived from recent ad-

vances in singular SPDEs [27, 62, 65].
6.1.3 Caloricinitial data

We now use the solutions of the stochastic heat equations to define the caloric initial
data. For this, we need to evaluate the solutions at a single time, which we have
chosen as s = 0. Of course, this choice is purely notational, and any other fixed time
(such as s = 1) would also have worked. Before we define the caloric initial data, we
introduce additional notation. We define the combination of sine and cosine-based
linear stochastic objects by

cos sl 9 Q 9
0=(8.8) ad T=|T.T| (6.24)
Second, we define the evolution at s = 0 by
O = and O = . (6.25)

(x) (n)

In our analysis of the wave Picard iterates, the “box” will primarily appear as an
internal node (rather than at the bottom) of our stochastic objects (see e.g. (6.53)),
which is our reason for choosing black over orange. We now define the blue and
green caloric initial data.

Definition 6.6 (Blue and green caloricinitial data) Forall N > 1, we define the linear
and cubic Gaussian chaoses by

CcQs cQs cQs

F, R A
Ox):= : and O y(x) = A ,00. (6.26)
& - ox
(x) O

(x)

In other words, the blue and green caloric initial data are obtained by evaluating
the linear and cubic stochastic objects of the heat equation at time s = 0. Since the
linear and cubic stochastic objects are defined explicitly in terms of W and W™,
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but do not depend on the initial data ¢°°* in (6.10), the same holds for the blue and
green caloric initial data.

The elementary regularity properties of O and <>_, are recorded in the next
lemma. However, the regularity information alone is far from sufficient for our anal-
ysis, and more intricate estimates will be proved throughout the rest of the article.

Lemma 6.7 (Regularity of blue and green caloric initial data) For all p > 2, it holds
that

1/
IE[H 0 ”g;l/z—exc;l/z—e] T<p' (6.27)

and

1/p
]E[ S}\llp H (O H gi/z—e XC;/z_E] S P3/2- (6.28)

Remark 6.8 As previously described in (3.2), our initial conditions for the nonlinear
wave equation (3.1) are phrased in terms of (u, (Vy~18,u)|,—0, which explains why
the cosine and sine-components in Lemma 6.7 are controlled at the same regularity.

Proof From Lemma 6.1, which also applies to the linear evolution in ®°°*, we obtain
that

sin

Lawp ( Cos)zLawzpv( O)=y.

For any ¢ € {cos, sin}, it then follows from Gaussian hypercontractivity that

2/
E[|O]5n] " sp = 5p.

neZ3

This completes the proof of (6.27) and it remains to prove (6.28). From Definition

6.6 and (6.19), we obtain that <_,, =0 and

3
Som=22 Y > [(1‘%1% )))
-

No,N1,N2,N3<N g ny.ny,n3eZ3:

no=niz3
> ; 2 3 2
X / ®dWstos(”j)( / dr er(n0> He—(f—Sj)(ﬂj> )el(no,x)].
[—o0,03 /=1 max(s],52,53) j=1
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To simplify the notation, we set Npax = max(No, N1, N2, N3). Using Gaussian hy-
percontractivity, we obtain that

|z, [([Twe)

no,nl,nz,n3eZ3:

no=ni23
3 0 3 p 2/p
cos/,, d 7(n)? l—[ e—(r—xj)(nj)z ol (n0.x)
x ®dwy_/ (n) rer] e
[—00,0P3 /= max(sy,52,53) j=1 *

SpPNy Z [(ﬁ 1N_,(nj))
j=0

no,nl,nz,n3€Z3:
no=nja3

0
; 2
X / ds1ds2d53< / dret ()’ 1_[ e_(f_‘vmnf)z) i|
[—o0,013 ;

max(sy,52,53)

<PINE max(]i[zv ) 3 (ﬁle(nj))

j=0 no,ni,na,n3eZ3:  Jj=0
no=ni23
NI;dX
This frequency-localized estimate directly implies (6.28). 0

It only remains to define the red caloric initial data. To this end, we let A > 1 be
a parameter, which dictates the bound on O_, (A, $°**). We now choose the initial

time as
so=s0(A):=—A"C <0, (6.29)
where C >> 1 is any large’! constant.

Definition 6.9 (The red caloricinitial data) Forall A> 1, N > 1, and ¢°° € C;l/z_g,

we define
OSN(X; A’¢COS) :=< cos (O X 50, ¢cos) 0)

where \Ilgol‘\", is the solution of (6.22) with initial time s = so(A) and initial data ¢°5.

31The value of C is irrelevant for our argument and essentially arbitrary. As explained in the proof of
Proposition 3.5, the choice of sy = s9(A) is linked to the local theory of the nonlinear stochastic heat equa-
tion [27, 62, 65]. One can require all (parabolic) random objects to be of size AF in their respective norms,
where k denotes the degree of the random object. Then, the local theory dictates that C is sufficiently large,
say, C = 10, but yields local well-posedness on events with probability ~ 1 — exp(—Az). Alternatively,
one can require that all random objects in the local theory are of size A°, where 0 < § < 1. Then, it is
possible to take C = 1, but the event now only has probability ~ 1 — exp(—A€), where 0 < ¢ = ¢(8) K 1.
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We note that, since s has been set to zero, O_, (x; A, $°*) is a function of only

the spatial variable x € T>. The red caloric initial data also depends on the parameter
A > 1 (through the initial time sp) and on the initial data ¢°° from (6.10).

It remains to prove Proposition 3.5, which contains the most relevant properties of
the caloric initial data.

Proof of Proposition 3.5: By definition, it holds that
O =0y + 0L, (4,655 = (9230, ), &0, 1)),

where ®%, is a solution of (6.6) with frequency-truncation parameter M, initial
time so = s0(A), and initial data ¢<, and %" is as in (6.4). By using Lemma 6.4
and Lemma 6.1, it follows that

Lawpgg (o — O+ O (A, ¢;°;4)) = Lawpgg ((q>°§°;4 0, x), @ (0, x)))
=H<Mm-

The properties (i) and (ii) simply refer to the definitions of O and <_,,. As a result,

the only non-trivial part is the estimate of O_, (A, Z),). This estimate essentially

follows from the established well-posedness theory for the nonlinear stochastic heat

equation [27, 62], which represents W%, as a para-controlled component at spatial

regularity 1— and a smooth nonlinear remainder at spatial regularity 3/2—. The only
technical difference lies in the sharp Fourier-cutoffs in (6.6) and the necessary modi-
fications are sketched in the appendix (Appendix A). O

6.2 Linear and cubic diagrams

In this subsection, we study the linear and cubic stochastic diagrams for the nonlinear
wave equation. As explained at the beginning of this section, we will introduce both
the shorthand and longhand diagrams.

6.2.1 The linear evolution

We first recall that the linear wave equation is given by

) _ . 3
:(3t+1 Mu=0  (t,x) eRxT?, (6.30)

u’t:() = s, 81”’1:0 — <V)¢sin.

As discussed in Sect. 3, the initial condition is phrased in terms of (u, (Vy~19,u),
which allows a more symmetric treatment of ¢°° and ¢™™. The solution of the linear
wave equation (6.30) is then given by

u = cos(1 (V)¢ + sin(r (V))¢*". (6.31)

Due to our representation of the Gibbs measure through the caloric initial data (Propo-
sition 3.5), we are interested in solving the linear wave equation with initial data given
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by O, <.y, and O_,. Similar as in Sect. 6.1, we represent the linear evolutions by

?, %SN, and %SN. (6.32)

To be more precise, we define

the stochastic diagrams

% = cos(t{n)) On) + sin(t(n)) S(n), (6.33)
$§N = cos(t(n)) <>7 NOR (6.34)
iN = cos(t(n)) O_(n). (6.35)

We remark that both the green and red linear evolution only contain a cosine-term,
since the sine-portion of the initial data vanishes (see Definition 6.6 and Definition
6.9). The three diagrams in (6.33), (6.34), and (6.35) are the longhand diagrams for
the linear evolution. In addition to the longhand diagrams, we also work with the
shorthand diagrams

T, x) = SF Ty (6.x) = iN, and f_, (t.x):= iN, (6.36)

which were previously introduced in Sect. 3.2.

In the analysis of the nonlinear wave equation, we will encounter probabilistic
resonances in products containing multiple factors of 7. To address the probabilistic
resonances, we will make use of the following covariance identity.

Lemma 6.10 (Covariance of linear evolution) Forallt,t’ € Randn,n’ € 73, it holds

that
E[SF SF ]:am/:ow. (6.37)

n)
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Proof The argument is a minor modification of the proof of Lemma 6.1. From the
definition of the stochastic diagram, we obtain that

0
F-va 3 e | awsamen,

@=cos,sin

0 ’ "2
> ey [ awd e,

' =co0s,sin

2 s

It follows that
11 1]

= % (ewoewwne](f

! — oS Qi —o0
©,¢'=cos,sin

0 0

AW (n)e* ™) - ( /

—00

de’(n’)e“"”z)D

8” e o
=<T17>20 Z Sp=g(t(n))@"(t'(n))
@,@'=cos,sin

=8n+n/:o# ((cose () cos(e’ () +sin(t () sin(t’(n)) )

cos((t —1')(n))

=4y +n'=0 n) 2

This yields the desired identity (6.37). g
6.2.2 The cubiciterate

We recall from (3.5) that the frequency-truncated nonlinear wave equation with
caloric initial data is given by

@ +1—Mu<y
= _PSN( (P<yu=n)*: +FSN“§N) — (y<n —T'<n) P<yu<n (6.38)
u<n[0]=0 =<, + 0.,
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In Sect. 3.2, we previously introduced the short-hand diagram Q?p The correspond-
ing long-hand diagram is given by

N |

: L[ sin(@—)(Y) SF i
$§N _/dt — 5 Py IV I (6.39)

0

By inserting the representation of O from Definition 6.6, we obtain that

3 .
1§N =leym)(m)™" Y 2 [(HITITE’;/))

(Pl,(P?,(PS n1,n2,n3€ZS: Jj=1
€fcos,sin} "y 0

t

3
x(/dt/sin((t -t (n)) H(pj(t/(nj))) SInj,@j: 1<j=< 3]].
0 j=l
(6.40)
Here, the multiple stochastic integral SZ[n, ¢;: 1 < j <3] is as in (2.35). We again
emphasize that the longhand diagram is only a different notation for the shorthand

diagram, i.e.,

W (t.x) = LN . (6.41)

6.3 Quintic diagram

We first recall from (3.10) that the shorthand diagram %N is defined as the solution
of

3@2+1-0)FP, =Py (ﬁ&Nq?fN — FgN?)

(t,x) e R x T3, (6.42)
F01=0.

To avoid confusion, we emphasize that a combinatorial factor of three has been in-
cluded on the left-hand side of (6.42), which is consistent with the 3% N Q?ﬁ, -term.
In order to utilize the renormalization in (6.42), it is simpler to first study just the
nonlinearity (without the Duhamel integral). To this end, we first use the product for-
mula for multiple stochastic integrals (Lemma 2.10), which yields a decomposition
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of 3P<y ((V)s N q?ﬁ/ ) into three terms. Using longhand diagrams, this decomposition

el N R
O N e N

1
7

In (6.43), the pairings of two leafs are marked by combining the two vertices and ad-

(6.43)

justing the corresponding arrows. In addition, the resulting “‘double” vertex is colored
in full. The first, second, and third summand in (6.43) contain zero, one, and two pair-
ings, respectively. The equation also contains two combinatorial factors of six, which
are due to the possible number of equivalent pairings. Taking into account the co-
variance identity (Lemma 6.10), the longhand diagrams are given by the following
formulas. The quintic diagram with zero pairings is given by

q\gf/p_l o Z Z 1§N(Vl234)<li[1</v(nj))
Q\$/P— = (nazq) \1 L1 (nj)
<N Geos s el j=1

n=n1234s

x( I1 soj(t<nj>)) (6.44)
j=15
t
x </dt’ sin ((t —t’)(n234>)( [ go;(t’(n,-))))
o j=2.3.4

xS8Ilnj,@j:1 §j§5]i|.

In (6.44), the frequency n is associated with the lower left vertex, the three frequen-
cies ny, n3, and ng are associated with the three higher vertices (from left to right),
and the frequency ns is associated with the lower right vertex. A similar numbering
will also be used in all following diagrams. The quintic diagram with one pairing is
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"Qé

5 .
=lave) 3% [ISN(MM)(HI?ZE?’))

(n234) N4
77777 @s N1yl €Z3 j=1
e{cog ) A

given by

t

xsol(r<n1>>( [ arsinfe = roma)( ] go,-<r’<n,>>))<ps<r<ns>> (6.45)

0 Jj=2,3.4

X 8p1=ps0n1+n=0SL[nj, ¢j: 3= j < 5]}

5
=l<y(n) Z Z Z |:1<N(7’l234) 1<N(’122)<1—[ ISN('nj))

n234 <n2> . (}’l]>
P3,94,95 . 3 =3
{cos,sin} n3,ng, n5EZ T ny€ls J

n=nsss

t
xsos(r<ns>>( / ' sin ((t = ) n234)) costta =) ([T 05 tn)) ))

0 j=3.,4
(6.46)

xS8Ilnj,@j:3=<j 55]:|.
In the step from (6.45) to (6.46), we calculated the sums over n; € 73 and 01,9 €
{cos, sin} by using the 6y,—¢, and J;,4n,=0-factors and by using the identity
cos (#(n2)) cos (t'(n2)) + sin (t(n2)) sin (' (n2)) = cos ((t — 1')(n2)).

Finally, the quintic diagram with two pairings is given by

1
7

1< 1< 1< 1<
() Z Z Z [ N(n234) 1<y (n2) 1<y (n3) N(7124)

2
gricomsind neeZs my e (na3a)  (n2) (n3) (na)

n=ns
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t
X (/dt’sin ((t = 1')(n23a)) cos((t — 1) (n2))@3 (¢ (n3)) cos((1 —t’)(n4>))

0
x S8Z[ns, (p3]i|. (6.47)

We now take a deeper look at the difference of the resonant part (6.47) and the
renormalization in (6.42). To this end, we first make the following definition.

Definition 6.11 (-dependent version of I'<y) Foranyt € R and n € 7, we define

3 .
Fen0)=6-loy() Y []‘[L?;)cos(unj))] (6.48)

nl,nz,n3€ZS: Jj=1
ni23=n

We note that I' <y (n, 0) agrees with I' <y from (6.7).

We now prove the following explict formula for the renormalized resonant part of
the quintic nonlinearity.

Lemma 6.12 (The renormalized resonant part of the quintic object) Forall N > 1,
it holds that

1
18 Kx?— Fonw 1

(6.49)
=Ty, 1)(n)" ' SZ[n, cos]
t
— Z [(/ dt'T<y(n,t —1")(3:9) (t’(n))) SZIin, (p]].
pefcos,sin} 0
Proof The desired identity (6.49) is equivalent to
18 Kf7’ =I'<n(@n) $ —T'<n(n, t)(nY1 STZ[n, cos]
* <N
(6.50)

t
- > [( / dr/ngv(n,r—t’)(azso>(r’<n>>)SI[n,go]]

@e{cos,sin} 0

We first recall the expression for the quintic object with two pairings, which is given
by (6.47). Due to the constraint on n3 € Z>, we simply replace n3 by n and denote @3
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by ¢. We also introduce the auxiliary frequency ne := —n334 = —np4 — n and then
switch variables (n2, n4, ng) — (—na, —na, —ng). This yields that

T
N7

l<y(mj)\ 1<
=18 1<y (n)(n)”" Z > [(l‘[ _<’1;/()”2/)> <N (n6)
j

, L\ D (ne)
p€{cos,sin} no,n4,neE€L’: j=2,4
no46=n

t
x( /0 i’ cos((t — ') n2)) cos((¢t = 1) (na)) sin((t = 1) (ne) (¢’ (n))) SZIn. w]}

l<y(n) Z Z |: l—[ 1<N(”j)
:18 N — ( — )
(n) . - (nj)?
pe{cos,sin} y ng neeZ?: Jj=2,4,6
n46=n

X </t dt’ cos((t — t')(n2)) cos((t —t')(ns))
0
x 3 ((cos((t - f/)(n6)))§0(t/(”))) ST[n, w]]- (6.51)

By symmetrizing the sum in the triple (n2, n4, ng), we can perform the replace-
ment

cos((t — 1) (n2)) cos((t — t')(n4))dy (COS((t - t’)<n6>))

~ S T eosw—tyimn).

j=2,4,6
By recalling Definition 6.11 and integrating by parts, we obtain that

t
©5H=m~" > [ /O dr’af(rgmn,z—r/))w(t’(n))SI[n,w]]

@e{cos,sin}

=m)~" Y Tanme((n) STin, ¢]

@e{cos,sin}

— ™" Y Tan(n,0p(0) STin, ¢]

@e{cos,sin}

t
- > [ /O dt/F<N<n,r—r’)(atw(r/(n))sz[n,go]]

@e{cos,sin}
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=I-y(n) SF —T<y(n,1)(n) "' SZ[n, cos]

t
- > [ fo dt’FSN(n,r—r’)(azgo)(r’(n))sz[n,w]],

pe{cos,sin}

which completes the proof. g

In our previous Lemma 6.12, we obtained a detailed description of the resonant
part of the quintic nonlinearity. In the following analysis, however, we will usually
work with the Duhamel integral of the resonant part (6.49) and not the resonant part
itself. For notational purposes, it is convenient to depict this Duhamel integral using
a new stochastic diagram.

Definition 6.13 (The resistor) We define the resistor as

18 =7 18?7 F<N . (6.52)

In addition to the longhand diagram for the resistor in (6.52), we also represent the
right-hand side of (6.52) as 183.

Remark 6.14 We call the stochastic diagram in (6.52) the resistor, and use the same
arrow as for resistors in electrical circuits, because this term is already renormalized.
As a result, the Gaussian process O defined in (6.24) wants to “resist” being propa-
gated, but is only partially successful.

The definition (6.52) is pleasant from a conceptual perspective. From a practical
perspective, however, it is unwieldy. Instead, we will be working with the following

representation, which is a direct consequence of Lemma 6.12.

Corollary 6.15 (Exact representation of the resistor) For all N > 1, it holds that

t
18 §<N :—(n)_z(/ dt’sin((t—z’)<n>)r§N(n,r’))SI[n,cos]
) 0

— (n)"! [(/ dt/ dr” sin ((r — 1) (n))

@€{cos,sin}

x Tyt —1")(09) (1" (n))) SI[n, (p]i|.
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6.4 Heat-wave quintic diagram

In this subsection, we examine heat-wave stochastic diagrams. In the previous sub-
sections, our stochastic objects contained either heat propagators (Sect. 6.1) or wave
propagators (Sect. 6.2 and Sect. 6.3), but not both.>> In contrast, the heat-wave
stochastic objects simultaneously contain both heat and wave propagators. The heat-
wave stochastic objects occur naturally due to our caloric representation of the Gibbs
measure which, in turn, is needed due to the singularity of the Gibbs measure. For the
analytical aspects of the heat-wave stochastic objects, we refer the reader to Sect. 7.5
below.

We now let M > N and examine the heat-wave quintic term % v P< g v - Us-

ing the definition of the caloric initial data O and <> (from Definition 6.6), we obtain
that

P (R Poniy )
G Q0

ORI cos

30 .
(} 2 p #“ p # A *
(N o o R o A K
s, s, ", A o
e, e, e, o
%, %, %, H K
", 6 ", ", H o

ENZRNEN;
(6.53)

Just as in (6.43), the pairings of two leafs are marked by combining two vertices and
adjusting the corresponding arrows. In the last diagram of (6.53), we only indicate the
dependence on N, since the corresponding expression will be the same for all M > N
(see (6.56) below). The heat-wave longhand diagrams are given by the following
expressions. For the heat-wave quintic object with zero pairings, we have that

cos

cos : cos

cos cos cos.

R
HG
0,2 ot
oN s No)
- a~
f o

.
*,

R
=23 1_y(n) > > [( I1 ISN(”j))lgN(”234)( I1 lfM(”j))

Nlyenns nsez3: $l-9s Jj=15 Jj=2,3,4
ln=n152345 €{cos,sin}

4
x (T 1es = cos) )i (tm)) cos(rnasa) s (ns)

j=2

32Strictly speaking, the stochastic integrals SZ in Sect. 6.2 and 6.3 contain heat propagators, but this does
not enter into our analysis.

@ Springer



1258 B. Bringmann et al.

0
/ édwg(”j) /dr( 1_[ eSj(nj>2>

—00,015 7 ! max(sy.s3.54) 4 =1+

et (] e )} (6.54)

j=2.3.4

For the heat-wave quintic object with one pairing, we have that

cos cos

=23 1_y(n)

4
x Z Z Z |:15N(n2)1§N(n234)(1_[ ISM(}’l])) (655)

3. 3 ¥3,94,95 =3
n3,n4,ns€Z3: ny€Z j=3
n=n3is €{cos,sin}

X 1w (ns) (n2) ™ (H 1, = cos} ) cos(t(n2)) cos( (n234))s 1 (n5))

j=3
5
/ ®dW (nj) / dfe n22 ) (1_[ e~ (T=s)n)) )‘Y5<n5)2:|.
[—00,0]3 j=3 max(s3,54) j=3.4

Finally, the heat-wave quintic object with two pairings is given by

=2y Y Y [ISN(nm)( [T 1ev@) )2 (656)

n3€Z3: ny,ngeZ’ j=2,3,4
n=ns

X cos(t(nz)) cos(t(na34)) cos(t(ng))

0
X/ Wcoq(ng)/d‘r er (n2)?+(n234)+ (n4)) —(t—s3)(n3) ]

—0oQ
53
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In (6.56), we were able to replace 1<j(n3) by 1<y (n3) due to the restriction n3 =
n. In particular, the resonant part (6.56) no longer depends on M (as long as M >
N).

Similar as in Lemma 6.12 above, we rewrite the resonant part in (6.56) using
the I'< y-multiplier. For this, however, we need the following final generalization of
F<n.

Definition 6.16 ((¢, s)-dependent version of I'<y (1)) Foranyt eR,s <0,andn €
73, we define

3
Fen(n,t,5):=6-1<y(n) Z []_[ <1<N(n]) cos(t(n;))e* ") )] (6.57)

nl,nz,n3eZ3: Jj=1
ni23=n

We note that T'<y(n, t,0) agrees with I'<y (n, t) from Definition 6.11.

Lemma 6.17 (Resonant part of the heat-wave quintic diagram) For all N > 1, it
holds that

0
=F§N(n,t)(n)71 SZ[n,cos] — «/E/ dW®m)T<n(n,t,s)

0 0 .
+ \/§<n>2/ dWSCOS(n)(/ dr FSN(n’ f, _L,)e—(t—s)(n) )
—o0 s

Remark 6.18 Surprisingly, the first summand in Lemma 6.17 exactly cancels the first
summand in Lemma 6.12. However, this cancellation turns out to not be essential for
our argument and will not be used.

Proof We recall the representation of the heat-wave quintic object from (6.56). We
then note that n3 € Z3 is fixed as n3 = n. As before, we introduce the auxiliary
frequency-variable ng := —ns34 = —n4 —n and then switch variables (n3, n4, ng) —
(—no, —ny4, —ng). For notational convenience, we also relabel the s3-variable as s.
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This yields

=V2 18- 1y(m) Y

nz,n4,n6623:
n246=n

=V218-1x() Y [(H

nz,n4,n5€Z3:
n246=n

[T 1en0rcostein) ) m) = (na) 2

j=2,4,6

j=2.4.6

l<n(nj)
=

(nj

0 0
X/ dWCOS(n)</ d_L,er((n2>2+(n4)2)er(n6>ze_(r—s)(n)2)]
K
00 s

cos(t(n ,-)))

0 . 0 2 2 2 2
X/ de‘”(r;)(/ dr e g, ()= )}
oo N

By symmetrizing in the triple (n2, n4, ng), we can perform the replacement

gr<<nz>2+<n4>2>3t(ermﬁ)z) N %Bf( H er<n;>2).
j=2,4.6

Using Definition 6.16 and integration by parts, this leads to

V2-18-1ov(n) Y [(]’[

nz,n4,neeZ3:
no46=n

0 0 2 2 2 . 2
X/ deOS(n)(/ dp T2+ <6r<n6> )e—<r—s><n> )]
o N

:\/5 . /;io dW;OS(n)(KO dr 9, (FSN(I’l, t, ‘L’))e_(f_s)(n)z)

0
V2. FSN(n,t,O)f AWES (n)e* )’
—00

0
—ﬁ-/ AW )<y (n, 1, s)
—0o0o

+J§-<n)2fo

—00

@ Springer

j=2,4.6

l<y(nj)
(nj)?

0
dWsCOS(n)</ dt<n(n,t, -,;)e—(r—s)(n)z).
N

cos(t{n ,->))
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After recalling the definition of SZ[n, cos] from (2.35), this completes the proof. [J
6.5 Sextic diagrams and the 1533-cancellation

In this subsection, we examine the resonant parts of sextic diagrams. Our main ob-
jective is to exhibit the 1533-cancellation, whose significance was already discussed
in Sect. 3.3. Recalling the notation and definitions in (3.21) in Sect. 6.5.1, we first
derive an explicit formula for Qfg;\?). In Sect. 6.5.2, we then derive an explicit for-

mula for Q( 3). In Sect. 6.5.3, we combine both explicit formulas and exhibit the
1533- cancellatlon. Finally, in Sect. 6.5.4, we control €<y .

6.5.1 The linear x quintic-object

We now derive an explicit formula for @Sl’\f) . As a result, we are interested in the

expectation (or resonant part) of ? % This expectation is not affected by the

quintic and cubic chaos in (6.43), Wthh even after multiplication with a Gaussian
random variable, always have zero expectation. As a result, we are only interested in
the product of the linear evolution § and the resistor 3. Keeping the same pre-factor
as in Definition 6.13, we write this term as

2
18$§N gsN :18Ij\ §+18Et\§ (6.58)

The first summand in (6.58), which is defined as the non-resonant part of the prod-
uct, can be expressed using multiple stochastic integrals. However, since its expecta-
tion is zero, this explicit representation is not needed here. Indeed, we obtain that

3¢y =367, ¥, | = 18q\ _r,:‘}. (6.59)

In particular, we are only interested in the resonant part of the linear x resistor-object
from (6.58).

Lemma 6.19 (Explicit formula for (’2(511’3)) Forall N > 1, it holds that
3el
<

t t
=_% ZW_Z/ df’/ di”sin ((t — ') (n)) sin (¢ — ") () Ty (n, ' — 1)
0 0

neZ3

1
_ Z |:(n)3 cos(t(n))/ dt’ sin ((z —t’)(n))FSN(n,t’)i|. (6.60)
0

neZ3
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Proof Due to (6.59), it remains to analyze the resonant part of the linear x resistor-
object. Using Corollary 6.15, it can be explicitly written as

G

=— Z =3 cos(t(n )/ de’sin ((t — ') (n)) Dy (n, 1) 6.61)

neZ3

— /dz/ di”sin ((t — ') (n))
(6.62)

€{cos,sin n623

x ‘p(t(n))(8t¢)(t//(n))F§N(n» )

The first term (6.61) coincides with the second term in (6.60). Regarding the second
term (6.62), we first note that

Z @(t(n)) (@) (¢" (n)) = — cos (t(n)) sin (¢" (n)) + sin (¢ (n)) cos (t"(n))

@e{cos,sin}

=sin ((t — ") (n)).

By symmetrizing in ¢’ and 1", we can rewrite (6.62) as

- /dt/ di”sin ((t — 1) (n))

€{cos, sm} neZ’

x w(r<n>)<a,go>(t (n))T<n(n,t’ —1")
t t

= —% Z (Fl)*z/ dt// de” sin (¢t — ') (n)) sin ((t — ¢")(n)) Ty (n, 1’ — ).
0 0

neZ?

This yields the first term in (6.60) and therefore has the desired form. [l

6.5.2 The cubic x cubic-object

We now turn to the explicit formula for ¢ < N ), which was previously defined as

e =5/ ()]

@ Springer



Invariant Gibbs measures for the three dimensional cubic NLW 1263

In order to analyze Qf(j[\? ), we utilize the longhand diagrams. In this notation, we can

decompose the square of the cubic object Q?}D as

VN YN
AT RO

ot AN

YA R

The first three summands in (6.63), which contain zero, one, or two pairings, can be
represented using multiple stochastic integrals (as for the linear, cubic, and quintic di-
agrams). However, since we are currently interested in only the expectation of (6.63),
we do not need to analyze them here. After taking expectations, we obtain that

NN

3.3
O =E 6 <4

<N \

which implies that only the last stochastic object in (6.63) is relevant here. By intro-
ducing the auxiliary variable n := n123, where n1, n;, and n3 are the three frequencies
of the vertices, we obtain that

2

(6.63)

(6.64)
=6

l<y(n) 1<N(ﬂ )
[ (5)2 =N (/ dt/dt sin (z—z)( ))

n,ny,ny,n3€l’: 1<j<3
n123=n
Xsm((t )(n)> l_[ cos((t/—;’/)<n]>))]
j=1,2,3

Using the definition of I'<, (6.64) leads to the following lemma.
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Lemma 6.20 (Explicit formula for Q:S;\?)) For all N > 1, it holds that
(3.3) 1 (! t
nez?

6.5.3 The 1533-cancellation

Equipped with the explicit formulas for @2;@ and CSI’\?), we now exhibit the 1533-

cancellation.

Proposition 6.21 (The 1533-cancellation) For all N > 1, it holds that

t
Coy(t)=-2 Z |:(n)_3 cos(t(n))/0 dt’ sin ((t - t’)(n))FEN(n, t’)i|. (6.65)

neZ3

Remark 6.22 We emphasize that the 1533-cancellation leading to (6.65) is quite dif-
ferent from a renormalization, which requires a modification of the equation. We refer
to Proposition 6.21 as a cancellation because €< is controlled uniformly in N (see

Lemma 6.23), but the individual terms @g;\f) and QZS}S) from (3.21) are unbounded
as N — oo (Lemma 6.24). - -

Proof By definition, it holds that

Coy =6elY) + e

By inserting the explicit formulas for @g;\f) and €(<31’V3) (Lemma 6.19 and Lemma
6.20), it follows that B -

Con(t)

t t
- Z(n)—2/ dﬂf de” sin ((t — ") {n)) sin ((t — ") (n)) Dy (n, 1" —1")
0 0

neZ?

t
) Z (n)=3 cos(t(n))/ dr’sin ((t — 1) (n))T<n (n, 1) (6.66)
0

neZ?
t t
+ Z (n)~2 / dt’/ dr”sin ((t — t')(n)) sin ((t — t")(n)) Ty (n, 1" —1").
neZ3 0 0
We now observe that the first and third summand in (6.66) exactly cancel each other.

As aresult, we obtain the desired identity (6.65). O

6.5.4 The cancellation-constant €y

At the end of this subsection, we examine the behavior of €<y, QS;\?), and Q(j[’\?).
While the next lemma is rather analytic, and therefore conflicts with the alge-
braic spirit of this section, we like to keep it close to our discussion of the 1533-

cancellation.
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Lemma 6.23 (Control of €<y) Forall x € CX(R), it holds that
||X(f)¢§N(f)||Htl—e Sy L (6.67)

Proof By inserting the definition of I'<x (n, ) and relabeling n as ng, we obtain that

Cn(®)
3
= > [(]‘[ vy 02))) (10) ™ (1) 7 (n2) 2 n3) =2
No,N1,N2,N3: oy ny,nzeZ?: Jj=0
Nmax < no=ni23
x cos(t(n )/ dt’ sin (t—t)no l_[cos (nj )]
j=1
= ) CNo,Ni, No, N3l0),
No,N1,N,N3:
Nmax<N

From the definition of €[Ny, N1, N2, N3](¢), it follows that €[Ny, N, No, N3](¢) is
supported on time-frequencies < Npax. Since x € CZ°(R), it therefore follows that

| X (EINo. N1, Nay N3JO) | 1 Sy N [ (1)1 7€INo, N1 Noy N3 1O | -
To obtain the desired estimate (6.67), it then suffices to prove the stronger estimate
|€[No, N1, N, N31(D)] S (1) N’ /. (6.68)

By performing the ¢’-integral and then using the level-set decomposition

3 -1 3
(H\Z(imn,)\) EZ%I{’Z(ij)(nﬂ—m‘fl},
j=0 mez j=0

we obtain that
|€[No, N1, N2, N3](1)|
SN PN2N, NP

3 3 -1

x ) > [(Hle(nj))<l+’Z(:I:j)(nj)‘) }
By et I = (6.69)
€/2

< Netox Ny > NT2NS 2N

xsup Y Y [(]lj)lzv_,(nj))l{‘;(ijﬂnj)—m’51}]-

meZ
:to :l:l *no,ni,ny, n3€Z3
+2,% no=ni23
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Using our counting estimate (5.26), we obtain that

2 xr— —1 2
(6.69) S NtaxNg™ Ninin Ny < Nt /.

This completes the proof of (6.68) and hence the proof of the Lemma. g

In the final lemma of this section, we prove the divergence of Qﬁ ) . While this
lemma will not be used in this paper, it shows that the 1533- cancellatlon is essential
to our argument.

Lemma 6.24 (Divergence of Q:( 3)) Let p: R — [0, 1] be any smooth function satis-
fying pli1a,3/41=1 and ,0|R\[1/8,7/8] = 0. Then, we obtain for all N > 1 that

/ dip(HECD (1) = clog(N) — ¢, (6.70)
R

where 0 < ¢ K 1 is a sufficiently small absolute constant. In particular, 6(3 3 di-
verges in the sense of distributions.

Remark 6.25 (Connection of €2 to the L#L?-Strichartz estimate) The LjL%-
Strichartz estimate for the periodic wave equation is given by

SN 102

. 6.71
LAL4([—1,1]xT3) ™ H,'"(T3) ( )

H Z cos (1 <n))$c°s(n)ei<n,x>

neZ?

As will be shown below, the H, '/2_norm in (6.71) cannot be replaced by the weaker

1/ ~o-Besov norm. This will turn out to be reason for the divergence of 6(3 ),

Proof of Lemma 6.24: From Lemma 6.20 and trigonometric identities, it follows that
0:(3 .3) )

[(L t dt sm((t—t)( ))sin((t—t”)(n))F<N(n,t/—t”):|

% [ /dt / dt”cos (r Y n ))FSN(n,t’—t”):|
1 d d// 2 // 1—1 / i
—5 [ / t/ 1 cos (t—t ") (n )) Nt —1 )}

3,3 3,3),b
= Q(S}\,)’a(t) +eG o).
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We first treat the contribution of €(<3,3),a’ which is the divergent part. By breaking the

symmetry in ¢’ and ¢ and direct calculations, we obtain that

(3.3)a 0y _L o 2 " r_ r_n
eGP =Y (n)Z/O dt/o dt cos((t t)(n))FSN(n,t z)}

neZ3 -

= Z / dt/ dt” cos )>F<N(n I//):|

neZ’3 -
1 / " " }
= dt”"(t —t"ycos (1" (n) )T <y (n,t")
neZ3 '(n) ( )
M1
_ W/ dr (t—t)cos( (n >)F<N(n z)} (6.72)
neZ’3 -

By inserting the definition of I'< into (6.72), it follows that

3)a cos(t'(n))
QZSA?) (1) = /dt(t t)[z Z 151\,(;1)T

neZ3 ny,ny,n3el?:
n=niz3

x( H 1<N(nj)—C0S(t/,(nzj>)>}
j=1,2,3 )

cos(z (n)) ol )

)

(6.73)

t
:/ dr'(t —
0

By inserting (6.73) into the integral against the test-function p from the statement of
this lemma, it follows that

nezd LY(T?)

[ atomeld
/ dt/ dt’'p(t)( Cos(t( ) e
neZ3 ) L4(T3
o o cos(t'(n)) ¢
= dr’ / dt p(t)(t —1') H 1oy (n)——LLei )
/(; ( " ) Z = (n)? LA(T3)
4
e G > LYLA(0,1/41xTY)
As aresult, it only remains to prove that
cos(t (1)) in,x) 4
Yl ——— > clog(N). (6.74)
(n)? LALA(10,1/41xT?)

neZ3
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As already mentioned in Remark 6.25, (6.74) is connected with (Besov-space ver-
sions of) the L;‘L;‘-Strichartz estimate. Indeed, the sequence of function ¢ given

by
PN () = 1oy (n)(n) 2

is unbounded in H; /2 but uniformly bounded in the Besov space le/ 020 In order to
prove (6.74), we let (Pls(m) x be a sequence of smooth Littlewood-Paléy operators (as
opposed to the sharp frequency-cutoffs used in the rest of this paper). By first using
the Littlewood-Paley square function estimate and then the embedding Z% — Z‘}(, it
follows that

4
cos(t ;
5 1w D
a (n)? LAL4([0,1/4]1xT?)
nez’ A
4
Z P;<m< Z ISN(n) Cos(t<2n>)ei<n’x))
nezd (n) LAL4€2 (10,1/4]x T3 x2No)
4
cos(z :
2 P;;n< Yty ) <2n>)el<"’x>>
= (n) LALAE ([0,1/41x T3 x2N0)
1/4 ‘ _ 4
= Z/ dtf3dx Pls(m< Z 1<N(n)—cos<£l)(2n))e’<”’x))
kK 0 T neZ3
For all frequency-scales K < N, it holds that
cos(t(n)) : _1
P;g“< > ummwe“’”))‘ 2t x| < KK

neZ3

As aresult,

4

P18<m< Z l<y(n) —COS,(; n) e”"’”)

1/4
Z/ dt/ dx i
x 70 T nez? n)
1/4
> Z K“/O dt/T3dx1{|t|,|x|<<K_l}

K<«N

Z Y 12 log(N).
K<KN

This completes the proof of (6.74). It only remains to bound the contribution of
Qigl’\?)’b. By first breaking the symmetry in ¢’ and ¢” and then using the change of
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variables t” — t' —t”, we obtain that

@S}\?)’b(t)=— |: / dt/ di” cos (2t — 1" —t")(n))T <y (n, 1" — 1 ):|

=—Z [(L/ dt/ dt” cos (21 — 2l‘/+1”)<n>)F§N(”l,t”):|‘

neZ3

(6.75)

By performing the #’-integral in (6.75), we obtain that

1

t
(6.75) = %ij [W /O dr"((sin (1" (n)) — sin (21 — ") (m)) )= o, t”):|.

By arguing exactly as in the proof of Lemma 6.23, it follows that

sup [€2P ()| < ()
up €2

which controls the contribution of this term to (6.70). O

7 Analytic aspects of basic stochastic diagrams

In Sect. 6, we addressed algebraic aspects of the stochastic diagrams. More precisely,
we derived explicit formulas and exhibited the 1533-cancellation. In this section, we
start our treatment of analytic aspects, such as regularity estimates. We first focus on
basic stochastic objects, i.e., stochastic objects with degree less than or equal to six.
The treatment of all higher-order objects, which requires some of the tools in Sect. 9
and Sect. 10, will be postponed until Sect. 11 below.

7.1 The renormalization constant and multiplier

Before we start with estimates of the stochastic objects themselves, we first examine
the renormalization constant y<y and the renormalization multiplier I'< 7, which are
as in Definition 6.11. Our estimates of y<y and I'<y will be used in the treatment of
the quintic stochastic object (see Proposition 7.7), the para-controlled operators (see
Sect. 10), and higher-order objects (see Sect. 11).

In the next lemma, we prove that the difference of y<y — I'<y remains bounded
uniformly in N, even though y<y and I'<y individually diverge logarithmically.

Lemma 7.1 (Estimate of y<y — '<y) For all frequency-scales N and all frequencies
n €73, it holds that

y<n —T<n(m)| < (n)°. (7.1)
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1270 B. Bringmann et al.

Proof We recall from Definition 6.2 that

3
Pen(m) =6-1<y(m) Y [HISN(n,-xnjrz],

nl,nz,n3EZ3: Jj=1
ni23=n

Y<N = FSN 0).
It trivially holds that [T'<y(n)| < log(N) for all n € Z3. In particular, (7.1) easily

holds for all |z| 2 N, and it remains to treat the case |n| < N. To this end, we first
decompose

ey () —y<n

- Y 3 [(1{n123—n}—1nm (HIN(n])nj )}

N1,N2,N3=N p ny,nzeZ?
(7.2)

We treat the dyadic components in (7.2) separately. By symmetry, it suffices to treat

the case N1 > N> > Nj3. Using the change of variables n3 — n3 + n for the 1{n123 =
n}-term, we obtain that

Z [(l{nm—n}—l ni3 = (l%[ N;(nj){n;) )]

ny,nz,n3eZ’

= Z [nm— (HlN(n])nj )

nl,nz,n3€Z3

x (a3 = m)(m =)™ = Ly, (n3)(n3) ™ )} (7.3)

Using Young’s convolution inequality, it follows that

3| < [ ) 2 e 1)) 2
X [y s = {3 =) = L (r3)0m3) 2
S N{2Na(n) S Ny ).

Since the contribution of the dyadic component is only non-trivial for |n| < N, this
yields the desired estimate. g

In the following, we will often estimate time-integrals of the time-dependent
renormalization multiplier from Definition 6.11. In these estimates, it is convenient
to work with the following decomposition.
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Definition 7.2 (Dyadic components of time-dependent renormalization multiplier)
For all frequency-scales Ny, N1, N2, N3, we define

>, ()
CIN(mo.1) =6-1ny(no) 3 [1_[ Zﬁzj Cos(t(nj>)]’ (7.4)
nl,nz,n3€Z3: j=1 J
no=nj23

where N, denotes the dependence on Ny, N1, N2, N3.
From Definition 6.11 and Definition 7.2, it directly follows that

<y (no,t) = Z C[N«](nog, t).

No,N1,Na,N3<N

Equipped with Definition 7.2, we now state and prove the following integral esti-
mates.

Lemma 7.3 (Estimate of I'[N,]) For all frequency-scales Ny, N1, N2, N3, ng € 72,
t € R, and ) € R, it holds that

4 > ’ —
| / A TN 1. 1 — )™ | < (1) log(Nama) max (Nmax, (1) . (7.5)
0
Furthermore, we have for all x € C°(R) that
i —1
| [ @r v, 06 | 55 0g(Now) max (N, ). 76
R

Proof We only prove (7.5), since the proof of (7.6) is similar. By inserting the defi-
nition of I'[N,], computing the ¢’-integral, and using a level-set decomposition as in
the proof of Lemma 5.11, it holds that

t
’/ df' T[N, 1(no. t — )™
0

S(ONTEN; 2N

TE X [(wm)

meZ :io,:il, ny,na.n3eZ’:
»E3 0 no=ni23

3
x 1{| D @EDing)—m| < 1}(1 + A —m|)‘]
j=0

5(;>N1—2N2—2N;2( 3 (1+|,\—m|)—1)

meZ:
|m‘,§Nmax
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xsup Y Y [(glw,(nj))lhg(ij)(nﬁ—m|51”.

meZ
*o0.%1, nl,nz,n3eZ3:
2,453 ng=ns

The sum over m € Z can be estimated by

>+ r=mD™" S log(Vmeo min (1, Nmax (1)7").
mez:
‘m|5Nmax
Using Lemma 5.4, the sum over ny,ny, n3 € 73 can be estimated by

3 3
NPENANE Yy [(H)le(nj)>1{|ZO(ij)<nj>_m‘51]]
j= j=

*o.%£1, nl,nz,n3EZ3 :

2,43 7 no=igo;
-1
5 Nmax'
The combined estimate yields the desired conclusion. O

7.2 The linear and cubic stochastic objects
In this subsection, we obtain regularity and Strichartz estimates for ? ? > and Q?p
which verify the regularity claims from Fig. 7.(A) in the introduction. We start with
estimates for the linear evolutions { and ?s M-
Lemma 7.4 (Regularity of linear evolutions) Forany T > 1 and p > 2, it holds that
E |: sup ‘
N

Furthermore, it holds that

? P r 1/2
< TY. 7.7
=N H (L?C;l/z_eﬂX1/26’1’)([—T,T])i| ~ P 77

1/p
P
E| su P ” < pi2re, 7.8
|:M,1\?: <Niaw <L,°°Cx‘/“nX1/2-f<b><[T,TJ)] ~P 78
M>N

Proof From Lemma 2.4, it follows that

” PsN?SM HXI/Z_&[’([—T’T]) <T¢ ” Oy ||J€.;1/2—e.

?SN HX*]/Z—e,b([_T’T]) ST ” O Hﬂ;l/Zfe and

Using Lemma 6.7, it follows that

E[sup‘
N

-y V<P ang
SN | x-1/2-eb (=T, T]) ~
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I/p
E[ sup H P<N?<M H < P27,

M>N

x1/2— eb([ T T])i|

which yields the desired estimates in X*-’-spaces. Similar as in the proof of Lemma
6.7, the desired bound in L°C:-spaces follows from a standard argument involving
Gaussian hypercontractivity and translation-invariance. For this reason, we only treat
the blue linear evolution §. We let ¢ = g(€) > 1 to be chosen and obtain, using
Sobolev-embedding in space-time, that

%]

TN H vy~ 1/2- q,

Loy e (- TT]><’]I‘3) LILY(~T,T1xT3)"

Using Minkowski’s integral inequality and Gaussian hypercontractivity, we obtain
for all p > ¢ that

4/ 12— Vr
s (Gt
|: ? LILL(—T,T1xT3)

<TN4/qH vy~ 1/2- e? ‘

LILILE([—T, TIxT3 x Q)

SP]/QTNM"H( —1/2— e?

LILIL2 (=T, TIxT3xQ)

Using spatial translation-invariance, Minkowski’s integral inequality, and the embed-
ding X0f < LX®L2, it follows that

1/2TN4/qH vy~ 1/2- e? ‘

LILILZ ([~T,TIxT3x Q)

127 nA/a —1/2—€
=p/°TN H(V> ?N LIL2L2 ([T, T1xT3x Q)

172
< pll2p NHag H —1/2—¢ ‘
~P (v ? LIL2([~T,T]xT3)

1/2
sptertrinm) 4]
SpUTN E[? x-12—eb(-1,T]) |

By choosing g = 8¢~!, using our previous X*?-estimate (with € replaced by €/2),
and summing over all dyadic scales, this yields the desired conclusion. t

We now turn from the linear evolutions to the cubic stochastic object.

Lemma 7.5 (Regularity of cubic stochastic object) Forall T > 1 and p > 2, it holds
that

1/p
< p3rre. (7.9)

EI:S]l\llp Hq?ﬁ !

(L,Ooc;fmvahﬂ([—T,T])}
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Proof We only treat the case T = 1, since the general case follows from minor mod-
ifications, and we now restrict all statements to the space-time interval [—1, 1] x T3,
We only prove the X!/27€%+ estimate since, similar as in the proof of Lemma 7.4,
the L{°C, € estimate then follows from Gaussian hypercontractivity and translation-
invariance.

Similar as in (6.40), the cubic stochastic object is given by

Y= > |:<1_[1<N(nj)n] )lﬂox>

$1,92, W%E,m ni,na, n3€Z

{cos,sin} no=n1i23 (7.10)
3

t
x(f sin t—t)no l_[ )SI[n/ @;: l<]<3]i|
0

Using a dyadic decomposition and the tensor from Corollary 5.10, we can write (7.10)

Y= > ¥wl

No,Ni,N2,N3<N

In this expression,

Yiv.

> > | Hugninans[Nw, @1 (0)e' "0 STnj, g2 1< j < 3]]
(p{]C(()izs(fI:}e no,ni,nz,n3 EZ%
(7.11)

N, denotes the dependence on the frequency-scales Ng, N1, N2, and N3, and
@4 denotes the dependence on the phase-functions ¢1, @2, and ¢3. Using (7.11) and
Corollary 5.10, it follows that

E |: HQ?D[N*] j(*fvh-# ]

<N 2EII]EI.X Z Z /d)” 2b+} n0n1n2n3[N*s§0*]()¥)}2

R
PLPLPIE u0 1 ny myeZd

{cos,sin}
-2
]\II'T'IZD(e
Using Gaussian hypercontractivity, this directly implies the desired result. O

7.3 The product of blue and green linear evolutions

We now turn to the product of { and ?5 v » Which is a quartic stochastic object. While

this product does not occur in our ansatz for the solution, it naturally occurs in the
nonlinearity. As we saw in Lemma 7.4, the regularities of  and ?< y are —1/2 —¢
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and 1/2 — e, respectively. While the product { - ?S y cannot therefore be controlled
using only the individual regularities, it can be controlled using more detailed infor-
mation on the linear evolutions.

Lemma 7.6 (Product estimate for? . ?SM) Forall T > 1, p > 2, and frequency-
scales K| and K», it holds that

p

1/p 5
< p?reK; A
e -ty 2

E[sup %, Praian |
M

Our choice to use K1 and K> to denote the frequency-scales is deliberate. In the
proof, we will replace K1 and K> by N7 and N334, but in applications, we will replace
K1 and K> by Nj and N,.

Proof We only treat the case T = 1, since the general case follows from minor mod-
ifications. We also set Ny := K and N34 := K. Using the definition of O and <_,
(Definition 6.6), we obtain that

?Kl PKZ?gM

= Y > 1N1(m)w(r(nl))e“"mSz[nm]}

p1€{cos,sin} ;73

4
X Z |:1N234(n234)(1—[ 1§M(nj)) cos ([(n234))ei<n234,x)

no,n3,ny€Z3 j=2

4 0 4
2 2
x/ (g)dW,C.OS(nj) dret ) (l |e_(’_‘”)("f> )}
(=00,0P ;25 K j=2

max(s2,s3,54)

4
- Z Z |:1N234(n234)1N1(n1)<H1511/](11]'))
j=2

p1€{cos,sin} ny,ny,n3,n4€Z3
x @1 (t(n1)) cos ((na34) e’ M1234-%) (7.12)
x / AW (n)AWE (1) dWE (n3)dWES (ng) €111

(—00,01*
0

4
X / dret 1234 ( H e‘(f—5/><"j>2)}
j=2

max(s2,83,54)

+3 Z 1{n12=0}1N234("234)1N1 (n1)

ni,na,n3,n4€L’
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4
X ( l_[ 15M(nj)) (}’l2>_2 cos (t(nl)) cosS (t(n234)) (7.13)
j=2

x ot (134,x) / deos(n3)dW§4°S(n4)
(—00,01?
0

4
% /dtet(<n2)2+<n234)2)(ne—(f—f/')<nj)2)i|'
j=3

max(s3,54)

We now separately estimate the non-resonant and resonant parts (7.12) and (7.13)
separately.

The non-resonant part (7.12): We first dyadically localize the frequencies nj, n3,
and n4 in (7.12), which leads to

4
> > [1N234(”234)< [ty (”j))(/)l(t(’ﬂ)) cos (1 (n234))

@1€{cos,sin} ny,ny,n3,n4€Z3 Jj=1

x ! (m2s) / AW (1) AWE () dWES (n3)dWES (ng) €111

(7.14)
(00,014
0 4
X / dre‘f(n234)2<1_[e(TSj)(nj>2>j|'
max(s2,53,54) j=2
Using Gaussian hypercontractivity, it follows that
2/p
p
]E[”(7'14)||L,°°C;”2‘€([—1,11)]
4
SP NG D [(n1234)12€ Dss23) ([T 1 1)) (7.15)
ni,n2,n3,ns€Z3 Jj=1

0 4 2
X / ds) ...dsg e’ (/ dret(n)’ l_[ e_(f—s.i)m_/)z) i|
(700,0]4 maX(Sz,S3,S4)

j=2

‘We note that

0 4
/ dref(n234)2 l_[e—(f—sj)m/')z

max(s2,53,54) =2

0
N A2 _
< max / dre~ =)0 < max(Na, N3, Ng) 2
=234 ),
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which implies

0 4 2
(/ | e—(r—s,»><n,»>2>
max(s2,53,54) =2
4

0
<max(N,, N3, N4)_2(/ dret! T(n234)? l_[ e—(r—sj)mj)z)_
m

ax(s2,53,54) i=2

(7.16)

By first using (7.16), then performing the sy, 52, 53, 54 and t-integrals, summing in
ny, and finally summing in n,, n3, and n4, we obtain that

4
(7.15) < p*N& . max(Na, N3, Na)"2N332 ( I1 Nj_z)
j=1

4
X Z |:(n1234>_1_261N234(n234)(l_[ Iw; (n-j))i|
j=1

ni,n2,n3,n4€7Z3

4
4N1f1afo2€ max(Nz, NS, N4)_2N£;,i ( l_[ N;z)
=2

~.

4
x Y [1N234<n234>(]_[1N_,(n,-))]
j=2

no,n3,ny€Z3

< PPNG N2 max (N2, N3, Ng) ™!

max

< PNy max(Na, N3, Na) ™' <.

This yields the desired estimate for the non-resonant portion (7.15).
The resonant part (7.13): We first replace n| by —n; and use a dyadic localization
in ny, n3, n4, and n34, which leads to

4

3 [1N234(n234>1N34<n34)(1‘[IN,(nj))<nz>‘2

no,n3,n4€”’ Jj=2

X COS (t (nz)) cos (t (r12341))e"(”3“”c> / WCOS (n3)dWg, ™ (n4)
(—00,0]2

0
4
% fdref(<”2>2+<”234>2> ( H e—(r—sn(nj)z)]‘

j=3

(7.17)

max(s3,s4)
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Due to the symmetry in n3 and n4, we can assume that N3 > N4. Using Gaussian
hypercontractivity, we obtain that

» 2/p
E[”(7'17)“L?OCII/Z_G([—LU)]

4
§p4N§1axN2—4N3—41—2e Z |:]N34(n34)<1_[ 1Nj(f’lj))

n3 ,n4€Z3 Jj=3

x/ dS3dS4< Z LNy (1234) 1, (12)
(—00,0?

anZ3

0 4 2
X/ dfef(<n2)2+<nz34)2) He—(f—sj)(nj)2> :| (7.18)
j=3

max(s3,ss)

In the exponential factors in (7.18), we first use (n2) > N2 /2 and (n234) > Np34/2.
Then, the square of the sum over n, can be estimated as follows,

max(s3,s4)

0 4 2
D Ingy (n234) 1w, (n2) dret (1) +(n23)%) I1 e‘”‘s-f”"ﬂz)
j=3

nyeZ3

0 4 5
§N26 (/ dreiT(NV3+N5y) 1_[ e(rs_/)(nﬂz)
max(s3,54) i3

0 12 0 L (N2 N2 ! 2
< N26 (/ d-geZ’N2> (/ drea™ Nt N5,) 1_[ e~ (75 n)) >
—00 max(s3,s4)

j=3

0 : 4
Ng (/ dre1T(MV3+N5) He_(r_sj)(”j>2)'
max(s3,54) plie

A

By integrating in s3, s4, and 7, and finally summing over n3 and ng4, it follows that

(7.18) < p*NEuy max(Na, Naza) 2Ny, "2 N; 2N, 2

4
x 3 [1N34<n34)(1"[1N,,(n,-))]
ni,ng j=3

§p4N€

max

max(Na, Naza) 2NZ 2 N5t

Since N34 < max(Nz, No34) and, due to our assumption N3 > Ny, N3g S N3, we
obtain that

—2 322 -1 - -
Ny max (N2, N23a) N3y 2 N3 S Ny max(Na, Nasa, N3) ™' S Nl

max

This contribution is (better than) acceptable. Il
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7.4 The quintic stochastic objects

In the previous subsections, we already estimated linear, cubic, and quartic stochastic

objects. In this subsection, we estimate the quintic stochastic object %N.

Proposition 7.7 (Regularity of the quintic stochastic object) Forall T > 1 and p >
2, it holds that

1/p
p
E| su H&F H < po2re, 7.19
|:Np N ectt<nxi-engry)  ~F (7-19)

In our estimate of the quintic stochastic object %N, we need to distinguish be-
tween the zero, one, and two pairing cases. To this end, we use the longhand diagrams
from Sect. 6.3, and write the quintic stochastic diagram as

N2 1°
3, (1,x) =3 q\¢/9 +18 t$/p +18 % : 7.20
¥ .0 i z (7.20)

<N

We recall that the third summand in (7.20) is called the resistor, which is also repre-
sented using the shorthand diagram 3 and has been defined in Definition 6.13. Our
argument now splits into three steps, which address the three terms in (7.20).

Lemma 7.8 (No pairings) Forall T > 1 and p > 2, it holds that

r q\sf/p 14 q1/p
q\i/p < pPre, (7.21)

E | sup

L (LRCY e nx1/2=eby ([~ T, T])

Proof We only treat the case T = 1, since the general case follows from minor
modifications and we restrict all of the statements below to the space-time interval
[—1,1] x T3. We only prove the X '/>=¢:>+ estimate since, similar as in the proof of
Lemma 7.4, the L{°C j/ 27¢ estimate then follows from Gaussian hypercontractivity

and translation-invariance.
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Similar as in (6.44), we write

Y s
;N _ Z Z [151\1(”234)(1—[1<N(nj))e,-<n0,x>

n n;
05 oy ez, & 134 N )

{cos,sin} no=n12345

t t
X (/0 dt//o dt” sin ((l‘ _ l‘/)(no)) sin ((t/ _ t//)(n234))<p1 (7.22)

(o) TT o600 Jos(etns))
j=2,3.4

xS8Zlnj, ;: 1§j§5]].

Using a dyadic decomposition and the tensor from Corollary 5.12, we write

0 1
iiﬁ — > siﬁ [N«], (7.23)

No,Ni,...;N5,Npza<N

where

N7
q\i/p [Ni]= Z Z |:H’10ﬂ1...n5[N*, (0*](t)ei<"0’x)
¢

L P5€ no,ni,..., }'15€Z3

{cos,sin}

x SIlnj, ¢j: 1< j 55]}, (7.24)

N, denotes the dependence on Ny, Ny, ..., Ns, and N»34, and ¢, denotes the depen-
dence on ¢, ..., ¢5. Using Corollary 5.12, we obtain that

IR
E O’\i/p [N,] < Ny NI SN (7.25)

max max-*

x1/2-eby |
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Together with Gaussian hypercontractivity, this implies the desired estimate. O

We now turn to the one-pairing case in which me make crucial use of the sine-
cancellation.

Lemma 7.9 (One pairing) Forall T > 1 and p > 2, it holds that

- SF/Q p =41/p
ﬁi/p < p3Pre. (7.26)

E [ sup

L (LRCY P nx1/2=6b+) (=T, T])

Proof We only treat the case T = 1, since the general case follows from minor modi-
fications and we restrict all statements below to the space-time interval [—1, 1] X T3.
We only prove the X!/2~€b+ estimate since, similar as in the proof of Lemma 7.4, the
LC ;/ 27¢ estimate then follows from Gaussian hypercontractivity and translation-
invariance.

The argument is essentially the same as in the proof of Lemma 7.8, but uses the
sine-cancellation tensor instead of the quintic tensor. Similar as in (6.46), we write

1208

*/p |: 1<y (n234) [ oy 1=n(n))

S I [Tl

¢§N (P{";C,c('ﬂszt,srlpg}e P TI n5€Z3: (n234> <j:0 (l’l/) )
’ no=n345

t t
X ei(”o’x>< /0 dr’ fo dr”sin ((t — t") (no)) sin ((¢' — ") (n234))

xcos (1" = ) ( T 0i("n)) )os (r’(ns.)))

j=3.4

xSI[nj,(pj:3§j§5]:|. (7.27)

Using a dyadic decomposition and the tensor from Corollary 5.19, we write

1 1
?i? _ Z ﬁi; [N], (7.28)

<N No,Ni,...,N5,Na34 <N
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where

ti/p [N= ) > Hat® s [N, @1 (1) 0

nonizngns
LP4,P5€ 3.
(0{3(:30;8?3} no,n}lb.;r?;él :
xSIlnj,@;:3<j 55]i|, (7.29)
N, denotes the dependence on Ny, Ny, ..., N5, and N234, and ¢, denotes the depen-

dence on ¢3, ¢4, and ¢s. Using Corollary 5.19, it follows that

_ SF/p ’ -
E ﬁi/p < NI-2Nzlre < N (7.30)

max max*

x1/2-€by |

Together with Gaussian hypercontractivity, this implies the desired estimate. d

It now only remains to treat the resistor 3, which is the (renormalized) two-pairing
term in the quintic object.

Lemma 7.10 (The resistor 3.,) Forall T > 1 and p > 2, it holds that

» 1/p
} < plPTe. (7.31)
[-T.TD

E[s]%p H 3

(LPC e nx1/2-eb)(

Proof We only treat the case T = 1, since the general case follows from minor mod-
ifications. We only prove the X!/2=€b+ estimate since, similar as in the proof of
Lemma 7.4, the L{°C j/ 27¢ estimate then follows from Gaussian hypercontractivity
and translation-invariance.

From the definition of 35 v (Definition 6.13), it follows that

183, =7118 ﬁizp F§N$SN
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Invariant Gibbs measures for the three dimensional cubic NLW 1283

From Lemmma 6.12 and Definition 7.2, it follows that

1
sace-o

= — Z |: F<N(no 1)e! 10:%) SI[no,cos]]

n0623

- > [( / dr’rfmo,t—r/)<a,go>(t/<no>))e””°~x>Sz[no,w]}

pe{cos,sin} pgez3

= Z Z [ T[N ](no, t)e! 0% SI[no,cos]] (7.32)

No,N1,N2,N3<N nyez3

- Y Yy ([ armwaens - o)

€{cos,sin} Ng,N1,No,N3<N 73
pel{ } noe (733)

x €0 STny, go]].

Due to Gaussian hypercontractivity and Lemma 2.4, it suffices to prove that

E[H > [0 TN 0, e 0 STing, cos] | H e, 1] (7.34)

noeZ3
IE[H > [( / 4 TIN 0.0 — 1) (00) (1 (10}

noeZ3 0 (7.35)
x e 0x) STny, go]]H 12—ebym ]]

S N

max*

Using Lemma 7.3, the first term (7.34) is estimated by

(T3S Y tno) f a2 (20D / X(OTN, Yo, el ot |

+o n()EZ3

N—2+e N 26

max
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which is acceptable. Similarly, using Lemma 7.3, the second term (7.35) is estimated
by

t
(7.35)5151[\\ > [( /0 4t TIN, 10, £ = 1)) (1 (0)))
noEZ3
% &) ST [no, (p]] ‘ ?

Ltszl/Zei|
—1-2
S D (o)

n()GZ3

t 2
| i, =@ o))

S Né—ZE N—2+e

max

S N

max>

which is acceptable. g

Equipped with the estimates of the three summands in (7.20), we can now prove
the main estimate of this subsection.

Proof of Proposition 7.7: This follows directly from the decomposition in (7.20) and
the estimates in Lemma 7.8, Lemma 7.9, and Lemma 7.10. Il

7.5 The heat-wave quintic object

In this subsection, we treat the heat-wave quintic object, which relates to (frequency-
localized) versions of 3£ ~ P< v u - As discussed in Sect. 1 and Sect. 6.4, the rea-

son for referring to <V)§ N P< N?s u as aheat-wave stochastic object is as follows. The
green caloric initial data <_,, is defined as the cubic Picard iterate of the stochastic

heat equation. As a result, the product % v P< P » contains nonlinear interactions
involving both heat and wave propagators.

Proposition 7.11 (Heat-wave quintic object) Forall T > 1 and p > 2, it holds that

]E[ sup ‘PSN[%N PnToy — (21‘1‘2’,50’10 + n‘j;‘;“‘))
M,N: - = = <
M=N

X <?SN ’ ?SN’ P<N?<M)]

5 pS/ZTa’

» 1/p
X1/2+52,b+1([—T,T])i|

where HE’I{,O’IO and HE}{,’I’IO are as in Definition 3.14.
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The following computations are more involved than in previous subsections. The
reason is that, since the interplay of heat and wave propagators is only needed in this
subsection, we did not previously set up all of the corresponding tensor estimates.

In our proof of Lemma 7.11, we utilize the long-hand diagrams from Sect. 6. To
this end, we first decompose

P<y [%N PSN?SM - (znl;i}ilo’lo + H};}\}/ﬁ’lo) <?§N ’ ?SN’ P<N?<M)i|
= > Py, [ Ty, T Phosa Ty ] (7.36)

No,N1,N234,Ns<N:
N234>max(Ny,Ns)

Arguing similarly as in Sect. 6.4, we then write

> e[ b P |

No,Ni,N23a,Ns<N:
N234>max(Ny,Ns)

— cos cos cos
53 X X
No,N1,N23g,Ns<N: Na,N3,Ny<M
Np34>max(Ny,Ns) (7.37)
cos cos - cos b |

.............. H Ne) SR P—
e, H o
", H o

w0 ol ware L

where the frequency-localized stochastic diagrams are defined as follows. The heat-
wave quintic object with no pairing is defined as

cos cos cos

“, i
" |

% § #
u,\? /p [N.]

=25/2 Z Z |:1N234 (n234)( li[ In; (nj)> ( li[ Hoj = COS})

@lyeesP5 QM- 115 j=0 Jj=2
e{cos,sin} 710=n12345

x ") gy (t(ny)) cos (t(n34) @5 (t (ns))
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5 0
/ ® dW;C/ (nJ) / df( 1_[ eSi ("j>2>
(—00,0 Jj= max(s2,53,54) Jj=L5
et (n234)2 l_[ e—(‘f sj){nj) :| (7.38)

j=2,3,4

The heat-wave quintic object with one pairing is defined as

cos cos

5

x Y > > [ ni2=0 1N234(”234)(1_[1N (nj))
§3c£4;(f7§} Mgt el J=0
4
x et 0. (H 1{p; _cos}) cos (1(n1)) cos (t(n234)) @5 (t (ns))

j=3

5 0

QW () / dre ol +ma?) [T ¢=@=sniny s5<n5>2}
(—o0, 0 =3 max(s3,54) j=3.4

(7.39)
Finally, the heat-wave quintic object with two pairings is defined as

=2'21{No = N3}1{ N = Na}1{N4 = Ns}

X Z 1{7’1]2 =ny45 =O}1N234(n234)

no,nl,...n§€Z3:
no=njs

5
X ( H Ly, (nj)> (n2) "2 (na) "2l 10:%)
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0
x cos (t{ny)) cos (f(n234)) cos (t(ns))/ AW (n3)

0 2 2 2 2
y / dp et (12 Hna 2+ (na)?) ,— (e —s3)(n3)? | (7.40)
S

53
We estimate the contributions of (7.38), (7.39), and (7.40) separately. The first

lemma addresses the heat-wave quintic object with no pairing.

Lemma 7.12 (Heat-wave quintic object with no pairing) For all T > 1, p > 2,
and frequency-scales Ny, N1, ..., N5, Na34 satisfying No3a > max(Ny, N5)", it holds
that

— cos cos cos )4 = l/[)

]‘u T
SR
s " o

%, + ®
E U\?/’j T SPPT Ny (141

L X71/2+62‘b+71([—T,T])—

Proof We only treat the case T = 1, since the general case follows from minor mod-
ifications. By Gaussian hypercontractivity, it suffices to prove (7.41) for p = 2. From
(7.38), we obtain for all t € [T, T] that

cos cos. cos

o, 3 .~‘E
o, §

e " o

.

%, 4+ P
U\gf /p [N.]

—5/2 Z by [(nlN (nj))(nl{gaj_cos)

no,ny,...,ns: j=2
no=nj234s E{cos sin}

0

5
1 @ )2
« €l(n0'x)hnon1n234n5 (1) / ®de_,-j () / d‘L’( 1_[ eSitnj) )
(—00,015 j=1 max(s2,53,54) j=15
T(n34)? l_[ e~ (T=sj){nj) iI’
j=2.3.4

where

hnon1n234n§ (t)

=hngninozans [No» N1, N2za, Ns, @1, ¢5](t)
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=1N234(”234)( H 1Nj(nj)>1{no=n1+n234+n5}
j=0.1,5

x (1)1 (t(n1)) cos (t(n234) ) @s (1 (ns)).

We also let E,foonl nyuns be the twisted Fourier transform from (2.29). Due to the or-
thogonality of the multiple stochastic integrals, we obtain that

cos cos cos 2
G R P
o, 5
s, o
0

%, 4+ P
E U\$ /p [N, ]

§N0—1+2522 3 3 [l—[ L, (1))

+0 Y195 pon nseZ?
€{cos,sin} 0o 3

x/dk(( A)26+—D
R

0

X( / dr 1_[ e—(r—S_/)(n_/>zet(n234>2>2>] (7.42)

Jj=2.3.4

X-U/282.b4-1([_1 1))

2 2
7+ 2siln;
hn00n1n234;15 ()\)’ /( 0.0 dsy...dss | | e sj(nj)

e j=15

max(s2,53,54)

By first using (7.16) and then integrating in s1, ..., s5 and T, we obtain that

(=)

/ dsi...dss [] eZSJ'("f)z( / dr J] e ertm )2
(—00,0

j=13 max(sy,53,50) =234

5
< max(Na, N3, No) *Nigs N_2 (7.43)
j=l1

After fixing n,34, the remaining possible choices of njy, n3, and n4 are bounded by

med(Na, N3, N4)* min(Na, N3, Na)* < N3NINZ.

@ Springer



Invariant Gibbs measures for the three dimensional cubic NLW

1289

Together with (7.43) and Lemma 5.9, this implies

5
R, —142 _
(7.42) < max(Ny, N3, Na) *NyzzNg P22 [ V72

j=1

T L % [Mwe

o PP pon nseZ3
€{cos,sin} 0-1 =115

x/d,\( )2
R

< max(Na, N3, No) N5 2N, P22 NN 2

T X T [Mwe

+o  PLP5  ngnynpg.nseZd
€{cos,sin} 0-11,11234- 115

x/dk( )=
R

2
T+
hnoon 1123415 *) ‘ i|

2
T+
hnoonlnzmns *) ‘ i|

< N282%) min(Ng, Ny, Naza, Ns) max(Na, N3, Ng) 2

< Nzt max(Na, N3, Na) ™.

Due to our assumption, it holds that max(N3, N3, N5) = N34 = max(Ny, Ns)".
Since 1 >> 87, €, this yields the desired estimate.

d

We now address the heat-wave quintic object with one pairing, i.e., (7.39).

Lemma 7.13 (Heat-wave quintic object with one pairing) For all T > 1, p > 2,

and frequency-scales Ny, N1, ...,

that

e

3/2 -
/Sp / Tadex

X~ 1/2463.b4 -1 (-T,T])-

Ns, N34 satisfying Na3a > max(Ny, Ns)", it holds

1/p

(7.44)

Proof We only treat the case T = 1 and p = 2, since the general case follows from
either minor modifications or Gaussian hypercontractivity, respectively. Due to the

pairing in n and ny, we implicitly restrict to Ny

= N,. From (7.39), we obtain for all
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t € [—1, 1] that

22y Y Y |:1{n12=0}<1j Ly, 1)

¥3,94.95 no,n3,n4,n5€23: ny,na€Z3
e{cos,sin} no=n345

4
x e' {mo.x) < 1_[ 1{(pj = COS})hn0n111234n5 )

j=3
0
/ ®dWs, ) / dreT(mr+ima) T e(rs,-><n,->zess<ns>2}
(—o0,013 7 max(s3,54) j=3.4

where

hn0n1n234n§ (t)

:hn0n1n234n5 [N()v Nl P N234a N57 ¢5](t)

=1N234(”234)< H 1N,(nj)>1{no=n1+n234+n5}
j=0.1.5

x x(t)cos (t{n)) cos (1 (n234))@s(t(ns)).

We also let E,jfoonlmws be the twisted Fourier transform from (2.29). Using the or-
thogonality of the multiple stochastic integrals, it holds that

X 1/2+82.b4 =11, 1])

<N*1+2522 Z Z [(ﬁlm(nj))

+0 @se{cos,sin} no,n3,ng,nsZ3
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x[de f dS3dS4dS5(A)2(b+_1)( Z 1{n12 =0}(n2) 2|hn0,“,,234”5()»)|

(00,013 ni,na€Z?
(7.45)
0 2
y / dret 2 +ma) [T e~ =snin) es5<n5>2> ]
max(s3,s4) j=34

Under the frequency-restrictions in (7.45), it holds that

0
/ dretUn2) +(naza) 2) 1_[ —(t—sj)(n;)? s(n5)

max(s3,s4) j=34
p (s )
< / d'[g4(N +N334) l_[ N%e? N2
max(s3,s4) j=3.4

where the right-hand side only depends on the frequency-scales (but not the
frequency-variables). This allows us to pull the t-integral out of the sum over
ni,ny € 73 and perform the s3, 54, 55, and T-integrals. As a result, we obtain that

(7.45) S max(Na, N3, Na)~2max(Na, Naza) 2Ny 22 N72 N 2NS 2

X T [(Mwe)

+o0 @s€{cos,sin} ng,n3,n4,n5€%3

2
X/RdMMz(m_l)( Z 1{;112=0}(n2 2|hn0n.n234n5@)|> } (7.46)

nl,n2€Z3

33

We now use Cauchy-Schwarz’” in ny € 73, which costs us a factor of NS , and yields

that
(7.46) < max(Na, N3, Ng) "> max(Na, Naza) 2Ny 22 NSNS 2N2 NS

x> > [1{n12=0}<1i[31Nj(nj)>

+0 @s5€{cos,sin} 0,711,112, n;
ng,ns€z’

x fR dr(r )2(b+—1>‘hnonlnws(x)f]. (7.47)

We now first perform the A-integral and then finally insert the constraint n; = —n>.
Together with a level-set decomposition of the multilinear dispersive symbol as in

33This estimate can be slightly improved by using dispersive effects, but would only yield a gain in |n34],
which would not significantly affect the rest of the argument.
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Sect. 5, this leads to

(7.47) < N2, max(N2, N3, Ng)~2max(Na, Nosa) 2Ny P22 Ny INT2N, 2 NS

max
xsup » Y |:1{n0 :n345}1N234(”234)< [T 1 (n,/))
MEL o . no.nan3, j=02.3.4,5

+234,%5 ny nseZ3
x 1] &0 (no) &2 (n2) 234 (n234) £5 (n5) —m| < 1}} (7.48)

By symmetry in n3 and n4, we may now assume that N3 > N4. Furthermore, as long
as our final estimate has room in Npy,x, we may further restrict (7.48) to the regime
|n34] ~ N34. By using Lemma 5.1 to perform the summation over n, € 73, it follows
that

(7.48) < N2

max
[n34]~N34

max(Na, N3, Na) 2 max(Na, Naza) 2
—1426 — — — — . _
x Ny T2 Ny Ny 2N, 2 NS 2 min(Na, Nag) ™' N3

x Y [1{no=n34s}1N34(n34>( I 1N,.<n,->)]. (7.49)

n.n3, j=0,3,4,5
n4,ns EZ3

The remaining sum over ng, n3, n4, and ns in (7.49) is estimated by
Z [l{no = n345}1N34(”34)< 1—[ Iy, (nj))] < N§4N2 min(Np, Ns)>.
no,ns, j=0,3,4,5
n4,nseZ3

As a result, we obtain that

(7.49) < N202+E) max(Na, N3, Ny)~2 max(Na, Nazq) >
x min(Na, N3g) "' N3N3, Ny !
< NZ2YO max(Na, N3, Na) ™2 max(N2, Naza) ™
x max(Na, N3a)NaN3yN; ! (7.50)
In our estimate of (7.50), we now use that
max (N2, N3g) max(N2, Noza) ! <1, N3amax(Na, Naza) "' < 1,
NuaN;' <1, and  Namax(Na, N3, No)~' <1

As a result, it follows that

(7.50) < N2%2%€) max(N», N3, Na)~\.

max

Due to our assumption N34 2 max(Ny, N5)", this yields the desired estimate. Il
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We now address the heat-wave quintic object with two pairings, i.e., (7.40).

Lemma 7.14 (Heat-wave quintic object with two pairings) For all T > 1, p > 2,
and frequency-scales Ng, N1, ..., N5, Na3a, it holds that

— cos P ~l/p

4
RN

| X-V282.b4 -1 (T, T]) ]

(7.51)

In contrast to Lemma 7.12 and Lemma 7.13, Lemma 7.14 does not require a lower
bound on N334. The reason is that both factors originating from the blue caloric initial
data have been paired.

Proof 1t suffices to treat the case T =1 and p = 2, since the general case follows
from minor modifications or Gaussian hypercontractivity, respectively.
In the explicit formula (7.40), we first remove the sum over ng, ny, and ns by

inserting the restrictions no = n3, n1 = —nj, and ns5 = —n4. To simplify the notation,
we further fix No = N3, N1 = N3, and N5 = N4. For all ¢ € [—1, 1], this implies

U\?/Jj A

=21/2 Z [<n2>—2(n4>—zei(n3,x>hn3n2n234n4 (t)

nz,n3,n4€Z3

0 0 2 2 2 2
X/ deos(n3)/ dr et (2230 (1a)) ,— (2 —53) n3) }
00 : 53

where

hn3n2n234n4 (t)
4
= 1Ny, (n234)< 1_[ In; (nj))l{n234 =ny + n3 + n4}
j=2
x x (1) cos (1(n2)) cos (t(n234)) cos (t(n4)).
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We also let ﬁ,fnznmn +(A3) be the twisted Fourier transform from (2.29). It follows
that

BN Z

X—1/2+485.b4—1
0
SN Y [ aa dl3[()»3)2(b+1) (1.52)
+3 nyeZ3 - R
~. 0 2 2 2 2 2
(3 \hi3n2n234n4(ks)\[ dr et (22 ma3a) >+ (ns) )e—(r—saxna)) ]
3

no,n4€Z3

We now estimate the t-integral by

0 0 -
/ d.L-ef(<n2>2+<n234>2+(n4>2)e—(f—Sa)(ns)z5/ d-,;ei(sz"‘szm‘*Nf)e—( 433)1\’32,
S

3 53

which depends only on the frequency-scales but not the frequency-variables. As a

result, we can pull the 7-integral out of the sum over 1, n4 € Z* and perform the t
and s3-integrals. Since

0 0 T (N2LN2. N2 (T=53) A2 2
ds3 dredWVi+Nyy+NpD o= N3
-0 53
(t—s3)

0 0

— T (N2 2 2y _ 2

< max(Nz, Noza, Ny) 2/ dS3/ dredNatNy +Ny) == N5
—00 53

< max (N2, Noz4, N4)741\’3_2
and max(Nj, N234, Ng) ~ max(Ny, N3, Ng), it follows that

(7.52) < max(Na, N3, Ng) 4NN 22 N4

2
XZ Z /Rdm[(mz(m—l)( Z |ﬁi3n2n234n40‘3)|) } (7.53)

+3 n3ez3 no,n4€Z3
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4

‘We now use Cauchy-Schwarz3 in ny, na € Z3 and then apply Lemma 5.9 (see also

Lemma 5.7), which yields

(7.53) S max(Na, N3, No) “*Ny TN, 722N

X Z Z /Rdk3<k3>2(b+—1)|ﬁr:::33n2n234n4 ()»3)|2

£3 ny,n3,n4€23
< max(Ny, N3, No) NN, P22 N (med(Nz, N3, N4)—1N23N33N3)
< max(Nz, N3, Ng)~* med(Na, N3, Na) "' NINJ”NZ. (7.54)
Since med(N,, N3, Ng) 2 min(N3, N4), we obtain that
(7.54) < max(Na, N3, Ng)~* max(Na, Na)NaN;? Ny < max (N, N3, Ny) ™~ +2%2,
This yields the desired estimate. O

Equipped with our previous lemmas, we can now complete our analysis of the
heat-wave stochastic object.

Proof of Proposition 7.11 The desired estimate directly follows from the decomposi-
tion (7.37) as well as Lemma 7.12, Lemma 7.13, and Lemma 7.14. O

7.6 A sextic stochastic object
In this subsection we prove the following propositions, which concerns the regularity
of two sextic stochastic objects, namely the products of two cubic objects and one

linear and one quintic object.

Proposition 7.15 For any dyadic scales N1 < N3, we have
3,3
| P - PP, — €SP, M|

Proof Define M3 3 := PNIQ?}:N . Pqu?fN — QS}\?)[NI» N»]. Start by choosing a pa-

rameter between 1 and v (say ./v) and considering the projections P<Nﬁ./\/13,3 and
=2

< 3TN0V (755
Lococ -ty ~ 2 (7:55)

P>NWM3’3. By Lemma 7.5, we have
=72

173, iz cocoqr.myy S @007

for 1 < j <2, and therefore

HPqu?i 'Pqu?fN

< 3 TY Ne
Lococoq—r.ry ~ ¥ 2

34While this application of Cauchy-Schwarz is rather crude and a better estimate can be obtained through
dispersive effects, it is sufficient for the proof of this lemma.
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which then implies (7.55) for P_ ﬁ./\/l3 3, thus below we will consider P_ f/\/lz 3

only (hence Ni ~ N3). By usmg the reduction arguments in Sect. 5.7, it sufﬁces to
bound E| M 3(t, x)[2 < Ny ' for fixed values of (¢, x).
As in Lemma 7.5, we may decompose Pqu?ﬁv into Q?})[Ml, M>, M3, Mi33 =

N1] and decompose Pqu?fN into q?}D[MA;, Ms, Mg, Msss = N>]. We may assume

My :=max(My, ... Mg) < NZIOO, otherwise we can gain an extra power of M using
(5.46) (with Njp3 and Npax replaced by N, and M) and argue as in the above
paragraph. Now recall from (a dyadic version of) (6.40) and Corollary 5.10 that we
have

N (M. My, M3, Myp3 = Ny1(, x)

= Y Hugnnans (0™ SI(nj, 0;:1<j<3), (1.56)

no,ni,n2,n3

where H,yn 0,5 (¢) satisfies

sup||H||n0n1n2,,3 <My, SUpllHllyy—ny Smax(My, My, M3)™V2 (7.57)
t
for any partition (A, B) of {0, 1,2, 3} with A, B # &. Similarly we have

N’ [Ma, Ms, M, Mysg = N> (. x)

= Z (H’)n(/)nws%(t)ei”O'xSI(nj,(pj:45 j<6), (7.58)

!
n4y,14,15,16

where (H/)ngnwsne (¢) satisfies

SUP I lngninsng S Misqs SUP I Hlnj—ony S max(Ma, Ms. Mo)~ V2 (159

for any partition (A, B) of {0, 4, 5, 6} with A, B # & (and ng replaced by ng)). There-
fore

Pfo(PNIQ%/Pqu?ﬁ,)(Lx)

_ Z Z ei(no+n’0)~x1{ Ino + ng| < Nzﬁ} (7.60)

n0.1Q. MY ... 6
ni+n;=0(v{i,j}eP)

X Hn0n1}12n3 (t)(H/)”E)”MnS”G (t)SI(njv (p] J € 0)»

where P is a collection of pairings, i.e. disjoint two-element subsets {i, j} of
{1, ..., 6}, that does not contain any subset in {1, 2, 3} or in {4, 5, 6}, and O is the
set of indices in {1, ..., 6} not in a subset in P. Moreover the renormalization term
Q:(z g)[N 1, N21, upon decomposing in (M1, ..., Mg), exactly corresponds to the cases
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Invariant Gibbs measures for the three dimensional cubic NLW 1297

where P contains three pairings, we know that M3 3 can be written in the same form
as (7.60) but with P containing at most two pairings.
(1) Suppose P = @, then we have

PSNZWM3’3(I’ x) = Z ei("°+n0)'x1{|no + ”6| < N2\/U}Hn0nl,,zn3 (1)
QNG 50116 (7.61)

X (H/)n6n4n5n6(t)SI(njv Qj - 1<j<6),
hence by Lemma B.1 we have

2
EIPsNzﬁMss(t, x)|

. / 2
S H Z el(”0+"o)‘x1{|n0 +n6| = NZ\/E}H"OHIHZVB (t)(H/)n6114n5n6 (t)”n .
1-+n6

no,l (7.62)
SUHIZ s - 16705 g +nf < Ny V2, H)2
~ noninans 0 ol =12 ny—>nop ngnsne—>n,

< NENS™)? (max(My, Ms, Mg)) ™,

which proves (7.55).
(2) Suppose |P| =1, say P = {{1, 4}} by symmetry, then we have

. /. ﬁ
PSNENM3’3(t’X): Z el(n0+n0)x1{|n0+n(’)| §N2 }Hnonlngng(t)
no,ng.n1 (7.63)

X (H)p —nynsng ST (nj, @ j €{2,3,5,6}),
hence by Lemma B.1 we have

2
ElpiNzﬁMas(t, x)]

. 2
im-x _ / /
<) X e =not i} o O i
no.ng.ng . (7.64)
SIHII? e g+ npl < NYHE L IH |2
~ noninans 0 ol =12 ny—ng nsne—>nyng

< NENVS™)3 (max(My, Ms, Mg))™",

which proves (7.55).
(3) Suppose |P| =2, say P = {{l1, 4}, {2, 5}}, then we have

PsNg/UM3,3(t, X) = Z ei(n0+n0)-x1{|n0 +n6| = Ni/;}Hnonlngng(t)
n0,1Q,N 1,12 (7.65)

X (H/)né,—nl,—nz,l% (t)SZ(n3, ne, ¢3, ¥6),
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hence by Lemma B.1 we have

2
EIPS]\,ZWM?,s(t, x)|

. 2
| X e m =m0+ g OO0y g e ®

mounp 12 B (7.66)
SIH gy - 1€ 0 ng +my] < N Y12 IH 2
< N5 Ny (max(May, Ms, Mg))™,
which proves (7.55). O

Proposition 7.16 For any dyadic scale N| and N; such that N < N>, we have

H Py oy - Pi, §, — €UV N1 Vo] < PITON I (7.67)

Lo (-1,11)

Proof Define the object M 5:= PNl?fN - Py, %N — Qgi)[Nh N3]. Start by con-
sidering the projections P<N wMi s and P>N M1 5; by Lemma 7.4 and Proposi-

tion 7.7, like in the proof of Proposition 7. 16 we can deduce that

H PyY_y - Py, %N

which implies (7.67) for P>Nﬁ./\/l1,5 as N1 < N>. Now we only need to consider
=Ny

< 3TotNl/2+eN—1/2+e
Locdcoq—r.ry ~ P ! 2 ’

P<NﬁM1’5, so we may assume Nj ~ Nj.
=N,

Recall the decomposition of %N in (7.20); we shall refer to the first two terms in
(7.20) as (§B, ) and (1.

(1) First consider the term (%N)o. As in Lemma 7.8, we may decompose

Py, %N into
(§B,)0[Mo=Na. My, ... Ms, Mas].

By the dyadic version, namely expression (7.24) of the term (%N)O’ we write

B oIMd= Y Hypons "0 ST(nj, 9112 j <5),

where M, = (Mo = Ny, My, ..., M5, M234) and by Corollary 5.12, H is a tensor
satisfying

N5~

sup [[H ;. < (max(My, ..., Ms))~\/?te,
t
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_ -1 _1
SUP | H g —npns S (MoMs) 2(My * + max(Ma, M3, My, Ms)"2)

for any partition (A, B) of {1, 2, 3, 4}.
Now we consider two cases depending on whether there is a pairing between T

and $ If there is no pairing, then we have

P iMise )= 30 Ui+ ngl < Ny} 00T ino) = gy (o))
=Ny

X Hiyyons(DST(nj, 9710 < j <9),
thus we can estimate
2
EIPSNZWMLS(I, x)]|

2
S H > 1m0+ npl < Ny} P (1) g (20)1) - Hog g ()

L)

noni---ns
e
< [1{ino + npl < Ny }el om0 g G0N gy IH g s

< NN VYY) (max (M3, My, Ms)) ™V,

which proves (7.67).
The case of one pairing is a bit trickier. Assume ng+n1 = 0 (other cases are either
similar or easier), then we have

P sMisex = Y g+ npl < Ny} 00 (ng) gy (o))
=N
n0.1( N2, . 15
X Hn{),—no,nz,...ns OSZ(nj,@j:2<j<5), (7.68)

thus we can estimate
2
EIPSNzﬁMl,s(t, x)|

2

s ” > 1{ino +ngl < Ny} O (00) " g0 ((00)1) - Hop s (1)
n

ny---ns
< 1 {ino +npl < Ny}l W0 (no) = g (no)t) gy W Dyns— s

— 3/2 — —-1/2 _
SNTINYYNT (N Ms) TR (NG max(Ma, M3, My, Ms) ).

(7.69)
This implies (7.67) if max(Ma, ..., Ms) > N,/ *.
Now, suppose max(Ma, ..., Ms) < N21/1000’ then instead of (7.68), we shall ex-

amine the full expression of M 5 directly and exploit the cancellation structure as
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in Lemma 5.15. By losing at most an Nzl/ 50 factor, we may also fix the values of
ny,...,ns. This allows us to write M/ 5 in terms of the sine-cancellation kernel,
namely, up to a linear combination we have

t
FeMis(t, k) =/ Sine[ My, M;1(t —t', k)e'™" dt’
0

with A being a parameter depending on the choice of (n3,...,ns) and |A| < N21/10.
Lemma 5.17 then immediately implies that
sup |FMy s(t, k)| S Ny /0
k

for each |k| < Nz“/U , which then easily proves (7.67).
(2) Now consider the term (%N)l. Similar to (1) we can make dyadic decompo-
sitions, and now reduce to

(%N)I[M*] = Z Hnbnwws(t)ei'l‘/)'xSI(nj, @;:3<j<5),
(13,114,115
where M, = (Mo = N2, My, ..., M5, M334) and by using (5.106) and (5.108) in
Corollary 5.19, H is a tensor satisfying

N5~

SUp [ H ll..ns S (max(M3, M, Ms))~V/2+e,
t

—1/24 _
Slrlp||H””3”4—>"6n55Mo /24 (max(M3, M4)) ™12+,

Similar to (1), we can consider the no-pairing case where

P sMisexy= Y Uino+ngl< Ny e 0T (ng) g ((no)r)
=2

10,1013, 14,15
X Hn6n3n4ns &)SZ(nj,pj:jel0,3,4,5)
and we have
2
IElPil\,zﬁ/\/ll,s(t,X)l

2
< H > 1{Ino + nhl < Ny} 0T (120) g0 (20)1) - Hyg s (1)
"

nonsng4ns
VY . —1
S im0 +npl < Ny}l ¥ () 90((n0)0) e N H Itz

< NTUNYY) (max(Ms, My, Ms))™V/2,

which proves (7.67).
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As for the one-pairing case, we only consider the hardest case ng + ns = 0. Then
we have

P_sMis@xy= 3 Uino+npl < Ny} 00 (ng) g (o))
=2

1n0,1(,13,14
X Hnb,n3n4,fno (I)SI(H?H n4, (p3a §04)

and we have
2
]EIPSNZﬁMl,s(I,X)I

2
< H > 1m0+ npl < Ny} O (06) " g0 ((10)) - Hop g, —ng (1)

no,n,

< 1m0+ npl < Ny Jel ot x (10) ™ 00((10)0) |0 11 sy i

ning

3

S Nl_l(Nﬁﬁ)3/2N1 12 My P (max(Ms, M) TV mIE,

which proves (7.67) if max (M1, M3, Myg) > N/ 1f max(M,, M3, My) < Ny/'*,
then we can rewrite M 5 using the sine cancellation kernel in essentially the same
way as (1), and using Lemma 5.17 we can again prove (7.67).

(3) Finally consider the resistor term. Since the renormalization term @Sﬁ)[z\/ 1,
N>] exactly equals the contribution where the linear object § pairs with the resistor

3, in studying M 5 we may assume there is no pairing. As such, by Corollary 6.15
and Lemma 7.10 we have

P sMis@.x) =Y Uino+npl < Ny} O0H16 (ng) = gy (o)1)
=12

no.n,
@ I / 4
: Fs(j)\/ (t’ nO)SI(HOa ny, @0, (p())
(p/
where F_Y, is a function satisfying
/ /
@ ¢ 12+
sup [|FZy 2 SIFZy llxor SN, .
t - ny -

This easily implies that
2
E|P5N2ﬁ/\/l1,5(t,x)|

2

non,

< [1{Ino + nhl < Ny} 0¥ () gy (no)t) - Ry (1)
< N51+2e . sup Z (no) 2 < N2’1+2€N0’2(N2ﬁ)3

/7
0
n0:|n0+n6|§N2ﬁ

which proves (7.67). Il
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‘We finish this subsection with a crude estimate on the cancellation constants Q:(I’S)

and Q:SA? ), which will be useful in the analysis of the para-controlled terms X(IN and

X( ) n (see Sect. 10).

Lemma 7.17 (Crude estimates of Q(l ) and €(3 3)) Let T > 1, let N;, N», N be

frequency-scales and let Q:(l 5)[Nl, N> and Qf( 3) [N1, N2] be as in Definition 3.13.
Then, it holds that

€SIV, Mol )| + [€S0 TN, Nal(6)| S max(Ny, N2 T, (7.70)

forallt € [T, T). Furthermore, it holds that

|2 @/ TECDING N | o + [0/ TIEED TN NaT@)] o
<max(Ny, N2)°T%. (7.71)

The first estimate (7.70) will only be applied when N; and N, are not the maximal
frequency-scales and the second estimate (7.71) will only be applied when N; and
N, are extremely small compared to the maximal frequency-scale. As a result, the
losses in max(Np, N>) in (7.70) and (7.71) pose no problems.

Proof We only prove the estimates for QS(I 5)[Nl N>], since the estimates for
€(3 3)[N1 N>] are similar. From the definition of €(<N)[N1 N»] (see also Sect. 6.3),

it follows that Qﬁ( 5)[Nl , No] = 0 unless N; = N,, which will now be assumed for
the rest of this proof Using translation-invariance, Lemma 7.4, and Proposition 7.7,
it follows that

}QQ;VS)[Nl, N2 1(0)| =’E[/T3 dx Ty, (. x) Py, %N (t,x):H
<Ef|f @0, ] 5[] 2

< Nll /2+e Nz_l /2+e pa

]1/2

< max(Ni, N2)*T*.

This proves the first estimate (7.70). Similarly, we obtain from the algebra property
of H? that

|3/ TIEED NG NI |
SE[[T3 dx |2/ Ry, .0 P, B, 0. 0)| Hh}
;)l/z@f dx [ x /TP, B, 0 x)H )1/2

(7.72)

s (EA3M [xa/msy,
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Since (A)b < (n)b (AF |n|)b for all » € R and n € Z3, we obtain from Lemma 7.4 and
Proposition 7.7 that

2 1/2 2 172
725 (E|xe/ Dy 0| ,,) " (Elxene 60| ,,)

5 N1b+1/2+eN2b—1/2+eTa

< NN, T*. O

8 Bilinear random operator
In this section, we analyze (frequency-localized versions of) the bilinear operator
(w2, w3) € X205 XV2P s Py [ 9 PeywaPeyws)] @®.1)

In the method of random tensors [45], operators such as (8.1) are viewed as linear
operators in the (frequency-space) tensor product W, ® Ww3. As will be explained in
Remark 8.2 and Remark 8.4 below, however, this linear treatment does not yield our
desired estimates. Instead, the analysis of (8.1) requires a bilinear treatment, which
extends the ideas in [45]. We start this section with an abstract bilinear estimate,
which will then be applied to (8.1).

Lemma 8.1 (Abstract bilinear estimate) Let D > 1, let h = hupea : (ZD)4 — C be
a tensor supported on a finite set, and let (gp),ezp be a sequence of independent

standard complex Gaussians. Define the bilinear random operator B: £ x £> — (>
by

B(v, w), := Z Nabed &bV Wy -
b,c,deZP

Then, we have for all € > 0 and p > 2 that
l/p
P
E[HB ||€2><€2%€2:|
56 (# supph)e max (”h“ud%bc”h”ac%bd’ 12llag— be Il abe—sa s (8.2)
1/2
Vilac—spalllabi—e: W12y ca) P72

Remark 8.2 By treating B as a linear operator acting on the tensor product v ® w, we
could have estimated

[Bll2xe2sp2 = H > habeags
bezP

a—cd
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From the moment method (Proposition B.2), it follows that

]E[H > habcag
bezZP

While the right-hand side of (8.3) contains a full power of the (3, 1)-tensor norm
|h]la—bed, the right-hand side of (8.2) only contains square-roots of (3, 1)-tensor
norms. In our application (see Remark 8.4 below), the bilinear estimate therefore
leads to an improvement over the linear tensor estimate.

1/
"1 S Gsupp ) max (1Al bed, Wlapca). (83)

a—cd

The main ingredient in the proof of Lemma 8.1 is a 7T *-argument. While a T'T*-
argument is also at the heart of the linear tensor estimates in [45], the bilinear structure
of B affords us greater flexibility in the choice of tensor norms.

Proof For any v, w € £2, it holds that

> ’ > habeagpvewa

a b,cd

Z ( Z habcdhab’c’d’gbg>vcv_c’wdwd’
c,c'.d,d a,bb

Z Becrdar vV wawyr,
c,c.d,d

2
| B, w7 |

where we defined the tensor

Becrdar == Z habeahaly c'a’ 8b8b' -
a,b,b’

As a result, we obtain that

2 2
”B”szez—)Zz = sup sup ”B(U, w)”gZ
loll,2 <1 wll,2<1

= sup sup Y BegdaVeVowalhy. (8.4)
Wl lwl 2=t og @

In order to estimate the right-hand side of (8.4), we decompose the random tensor
B = B¢ qq into its non-resonant and resonant components. More precisely, we de-
compose

Beeaar = Z habeahaty c'ar (8585 — 8p=pr) + Z habedhab ¢'arSp=p'
a,b,b’ a,b,b’

_.r® (]
- Bcc’dd’ + Bcc’dd"

Thus, the components B and B® correspond to the second and zeroth-order Gaus-
sian chaos in B, respectively. Due to (8.4) and our decomposition, it suffices to prove
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the two estimates

p]l/p

2 _
E[ sup  sup ‘ Z Biczdd,vcvc’wdwd/

Hvllﬂfl ”w”(2§1 c,c.d,d

<(#supp ) max (I llaa—velllacsba Wellaasbellapeas )
Vel balltllaba—~c ) -
and
sup  sup ‘ Z Bs,g?dd,vcv_cfwdw_d/ §||h||3bﬁcd. (8.6)

< <
It iwlest!, 57 o

Estimate of the non-resonant part B®: Let v, w € £2 satisfy ||v llp2, llw]l2 < 1. Using
linear tensor norms, it holds that

2) [ ) — __
| > B v Tewa | < 1B leer aar 10T e wa T
c,c’.d,d

2
<1B2) leer—dar- (8.7)

Using the definition of B®@ and the moment method (Proposition B.2), it follows that

BB g0 N sar ]
5 (#:Sllpph)€ max <|| Zhabcdhab’c’d’ bb'cc'—dd'? i Zhabcdhab’c’d’ bee'—b'dd'?
a a
I Z hapeahap e Hb’cc’—>bdd” I Z habeahap e | cc’—>bh’dd/) P (8.8)
a a

The four arguments of the maximum in (8.8) are now controlled separately using the
merging estimate (Lemma B.1). The first argument in (8.8) is estimated by

” Z habedhap c'ar

a

bb'cc'—dd’ < llhabedllabe—dllhabc'a e’ —aar

= ||h||ad—>bc||h”abc—>d- (8.9)

The second argument in (8.8) is estimated by

” Z habedhap'c'a’

a

bec —b'dd’ S ”habcd||bc—>ad”hab’c’d’”ac’—>b’d’
= lIhllad—be A llac—ba- (8.10)
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Due to the symmetry in b and 2’, the third argument in (8.8) can be estimated simi-
larly. Finally, the fourth argument in (8.8) is estimated by

” Z habedhap' e'a’

a

cc'—bb'dd’' = ”habcd lac—sbd ”hab’c’d’ le'—aprar

< Mhllac=pallhllapd—ec- (8.11)

Since all three right-hand sides of (8.9), (8.10), and (8.11) are acceptable, this com-
pletes the proof of (8.5).

Estimate of the resonant part BO: Let v, w € €2 satisfy [[v]lp2, [lwll,2 < 1. Using
linear tensor norms, it holds that

0 — ©) E—
| > B vetowea| < 1By leasea lvewallea 0707 I
c,c’.d,d

0
< 1B Ned—ear- (8.12)

We emphasize that the linear tensor norms of B and B© used in (8.7) and (8.12)
are different, which is essential for the proof and only possible in the bilinear analysis.
Using the merging estimates (Lemma B.1), it follows that

0 n o
”Bcc/dd/”cd—w’d’ = ” Zhabcdhabc’d’
a,b

= ||A|I2

ab—cd-

cd—c'd' = ||habcd||cd—>ab”habc’d’”ub—)c’d’

This completes the proof of (8.6). O
We now apply the abstract bilinear estimate (Lemma 8.1) to our setting.

Proposition 8.3 (Bilinear random operator) Let p > 2, let Ny, N1, Ny, N3 be
frequency-scales satisfying N>, N3 < Ny, and let T > 1. Then, we have the bilin-
ear estimate

P 1/p
E[S};P H (w2, w3) = Py, [?N, Py, w2 Py, w3] HXl/zvb(J)xX1/2‘1’(J)HX—'/2~”+—1(j)]

5 pl/zTOlNG

max

(N, + max(Va, N3)~13), (8.13)
where the supremum is taken over all closed intervals 0 € 7 C [T, T].

Proof We utilize the reduction arguments in Sect. 5.7. Then, it suffices to prove the
random tensor estimate

—3/2 5, —1/2 \—1/2
Nl N2 N3
P . R p 1/p
X EI:H (u)z, w3) = Z hn0n1n2n3gn1 w2(”2)w3(”l3) £2><£2_)£2] (814)
ny,n,n3
S N (V7% 4+ max(N, N3)~13) p!/2,
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where £ is the base tensor from Sect. 5, i.e.,

3

Bugmnsny = ( [T vy ) 1o = mizs} 112 = m| < 13,
= (8.15)

3
Q= Z(i,)(n,-), and meZ.
=0

In the case N, ~ N3, we further insert a dyadic localization to |n23| ~ N23. Using
a standard box-localization argument in no and n3 (see e.g. [108]), we can further
insert the indicator function

3
[]to;mn
Jj=2

into our definition of % in (8.15), where Q; and Q3 are boxes of sidelength ~ N»3 and
at a distance < N, ~ N3 from the origin. In total, we therefore replace’ the tensor 4
by

3
Bugnynzmy i=(1{N2 % N3} + 1{N2 ~ NsH e n23)([ ] 10, 1)) )
. = (8.16)

x (TT 1w ) )Mo = miza 112 = m| < 1.

j=0

Due to the abstract bilinear estimate (Lemma 8.1), the random bilinear estimate (8.14)
can be reduced to the deterministic tensor estimate

—=3/23;—1/2,3,—1/2
Ny NG PN max (g 1l 1
2 /
”h”non3—>n1n2 ”h”nonln2—>n3s ||h||n0nz—>n1n3”h”nonlm—mzv ||h||non1—>nzn3)
< N7V 4 max(Ng, N3V, (8.17)

We now treat the four arguments in (8.17) separately. The most interesting contri-
bution comes from the fourth argument, which will be treated last and is the only
argument requiring the box-localization.

351n the case N3 ~ N3, one can still insert the additional dyadic and box localizations, but they provide no
new information.
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The first argument in (8.17): Using the assumption Ny, N3 < Np and the base
tensor estimate (Lemma 5.7), it holds that

—3/2,,—1/2 ,,—1/2 1/2 1/2
NPNTYANT Y Al

non3—niny nony—nn3

< N—3/2N—1/2N3—1/2(N2N3)1/2(N2N3)1/2

—3/23,1/2 3,1/2

~1/2.
Ny

SN, '°N, SN,
This contribution is (better than) acceptable.
The second argument in (8.17): Using the assumption N>, N3 < N; and the base

tensor estimate (Lemma 5.7), it holds that

NN NG PR s — mama 1 s
<Ny 32 —1/2 1/2(N2N3)1/2( 3/2N )1/2
<Ny 3/4 21/2 N—1/4

—1/4

This contribution is responsible for the N; "' "-term in our final estimate (8.17).

The third argument in (8.17): Due to symmetry in the ny and nz-variables, the
third argument can be treated exactly as the second argument in (8.17).

The fourth argument in (8.17): For expository purposes, we distinguish the cases
Ny ~ N3 and N ~ Nj. In the easier case Ny ~ N3, it follows from our assumption
N>, N3 < N and the base tensor estimate (Lemma 5.7) that

—3/2,.,—1/2
Nl / N2 / N3 ||h||n0n1—>n2n3
<SN;YPNG V2NV max(Na, N3)TV2NY min(Na, N3)

<Smax(Ny, N3)~'/2.

This contribution is better than the max(N2, N3)~'/3-term in our final estimate. Fi-
nally, we treat the case No ~ N3. Using Schur’s test, the box-localization in (8.16),
and the box-counting lemma (Lemma 5.2), it follows that

—1/2

1A llngmy—nans S Nz /N3 min (N2, N3L%) S NN,

As a result, it follows that

=3/2,,—1/2,,—1/2 —1/2—-1/242/3 —1/3

1\]1 /N2 /N / ||h||n0n1—>n2n3 <N / /2+2/ N2 / .
This contribution is responsible for the second summand max(N, N3)~1/3 in our
final estimate (8.17). g

Remark 8.4 As mentioned above, the proof of Lemma 8.3 crucially relies on the ab-
stract bilinear estimate (Lemma 8.1). If we instead try to estimate the left-hand side
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Invariant Gibbs measures for the three dimensional cubic NLW 1309

of (8.14) directly using the moment method (Proposition B.2), which only utilizes
linear tensor analysis, it can only be bounded by

Nf3/2

—1/2,,—1/2
N2 N3 max(”hllno—mlnz"}’ ||h||non1—>n2n3)'

Unfortunately, the base tensor estimate (Lemma 5.7) only yields

—3/2,,—1/2,,—1/2
NN NG gy

2

< NN PN max(Na, N3)Y2 min(Na, N3)

< N1_3/2 max (N2, N3) min(Na, N3)'/2.

Since the total power of all frequency-scales adds up to zero, this estimate is insuf-
ficient from a dimensional standpoint. To avoid confusion, we emphasize that this
issue cannot be addressed through box localization, which yields no improvements
when Na3 ~ Ny ~ Nj.

Using similar arguments as in the proof of Lemma 8.3, we also prove a variant of
our bilinear estimate, which concerns a different (and extremely specific) frequency-
regime. This variant is only used in the proof of Corollary 10.9 and we encourage the
reader to skip it on first reading.

Lemma 8.5 (Variant of the bilinear estimate) Let T > 1, let p > 2, and let Ny, N1,
N2, N3, N1y be frequency scales satisfying

1-1/100 1/100
2 .

Nmax ~ N2, Ni2 2N, , and NySN. (8.18)

Then, it holds that

]E[ sup H (wa, w3)
J

P I/p
= P [PN” <?N' i wz) Fr; w3] Hx1/2vh(‘7)xxovh(j)»x—l/lbr'(J)]

< pPreny B, (8.19)
where the supremum is taken over all closed intervals 0 € 7 < [T, T].

We note that, in contrast to Lemma 8.3, w3 is placed in X 0.0 instead of X1/2:%,

The precise exponents 1/100 and 1/8 in (8.18) and (8.19) are not important and we

only used absolute numbers to avoid introducing a further small parameter.
Proof of Lemma 8.5: By arguing as in the proof of Lemma 8.3, it suffices to prove that
—1 =271
N() N] Nz max (”h ”nong%nlnz (1 ”nonz%nlm I ||non3%n1n2 7 ”nonlnzﬁm s

) —1/4—¢
Vs s WA g s s W g sy ) 5 N 47, (8.20)
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1310 B. Bringmann et al.

where

3

3
gmnans = Iy (112 s 29 Iy i) ([T 1, @0)) (T 10, 9)
j=2

Jj=0

x Hnop =n123}1{|Q —m| < 1},
3
Q= (&))n;), meZ,

and Q; and Q3 are boxes of sidelength ~ N»3. The factor 1y,,(n13) is only included
to match the notation of Lemma 5.7, which will be used in all of the estimates below,
since our frequency assumptions already imply |n13| ~ N13. To simplify the notation,
we set 8 :=1/100.

First argument in (8.20). It holds that

112 < min(No, Ni2) ™' N min(Ny, Nio) ™' N§ < NGNTHP

nony—niny ~

and

Ill5 < min(No, N13)~' Ny min(N1, N2) ™' Nj < NG NT.

nony—nin3 ~~ ~

As a result,
_ — 2 a7— —1438/2
NO lNl 2N Ilh”nong—)nlnz”h”nonz—>ﬂ1n3 S NONﬁ/ N2 ! 5 N2 3 :
Second argument in (8.20): We have that

112 < min(No, N12) ™' N min(N12, Ny) ™' N < NGNTHP

non3—>niny ~

and

]2 <med (No, N1, N3) "' NGN} S NGNTHP.

noniny—>n3 ~

In the last inequality, we used that Ny < N1, implies that N2 ~ N3. As a result,
D 3/2 —1456/2.
NO 1Nl 2NZ 1||h||n0n3—>n1n2”h”n()n]nz—ﬂu ~ N / NﬂN2 : < N &
Third argument in (8.20): It holds that

111 < min(No, N13) ™' Ng min(Ny, N2)~' N} < NG N7

nony—>nin3 ~v

and

A < med(No, N1, N2) "' NN < N3NE.

nonin3—>ny ~

As a result, we obtain that

—1aAr—2 1 142
NG NN gy nyms W llngning—ns < NoN; ' < Ny 2P
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Fourth argument in (8.20): Using the box localization and the box counting lemma
(Lemma 5.2), we obtain that

A2 < min(Np, No3) "' N3 min(N35, N3) < N3 min(N3;, N3).

nonp—nan3 ~

Since Ny3 < max(Ny, N1), we obtain that

el T S NENTZNy ! min (max(Vo, N)*, N )

non1—>nyn3 ~
< NZNT2N5 ! (max(No, N3 (v2)'P

< N4N*1/3 < N’1/3+4’3 5

9 Linear random operators

In this section, we analyze (frequency-localized versions of) the two random linear
operators,

wes Py | Py Pen] ©.1)
and
w > PSN[?SN‘Y’NPSW]. 9.2)

In contrast to the bilinear estimate in Sect. 8, both linear random operators are esti-
mated directly using linear tensor norms. From an abstract perspective, this section
is therefore closely related to similar linear tensor estimates in [45]. From a problem-
specific perspective, however, the situation is rather different than in [45]. As was
already discussed in our introduction (Sect. 1.4) and in [45, Sect. 9.2], each disper-
sion relation requires different tensor estimates, and the tensor estimates entering into
the analysis of (9.1) and (9.2) are one of the novelties of our article.

9.1 Linear random operator involving the quadratic object

We first treat the frequency-localized variants of the random linear operator (9.1). In
our ansatz (see Sect. 3), we isolated several terms involving the quadratic stochastic
object %&N .In (3.57) and (3.58), we encountered the terms

Por[980 8B, o (0 1) - 150 Pt
B 9(2th lolo H};l[\}]n 1o> <?§N , ?51\1’ %Nﬂ

and
3P§N|:(VD§N PSN?SM - <2th o + HEI{IH 10)(?§N’?§N’ PSN?§M>]'
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1312 B. Bringmann et al.

Fortunately, both of them are explicit stochastic objects. The first object is treated
in Sect. 11 below and requires additional ingredients. The second object has already
been estimated in Sect. 7. In (3.59) and (3.60), we encountered the terms

Py [‘V;N x{ - (21'1*;‘,\1,0 o prhihi “’) (?SN Sy Xg])\,)} 9.3)

and

P<N[3(VD<N (2) _( k;]\l]o,lo+ hxhllo)(?<N’?<N’ (2))
+FSN(3&EN+USN)] 9.4)

While the methods of this section would control (9.3) and (9.4) at least for some (but
not all) frequency-interactions, it is easier to directly use the para-controlled structure.
As a result, the analysis of (9.3) and (9.4) is postponed entirely until Sect. 10. The
only remaining term containing % ~ » Which is the subject of this subsection, is

contained in (3.61) and given by

Pey [%N Yoy — (21-[[;,1\1/0,10 + 1-[};1/\1/11 lo + l—Ires )<?§N , ?gN , Y<N>j|, 9.5)

The main estimate of (9.5) is the content of the next proposition.

Proposition 9.1 (Random linear operator involving ‘V’SN) Forallp>2and T > 1,
it holds that

E|:supsup Y= P<y |:(VD<N P_yY
N J -
_ (21-[}2,]\1/0,10 + l'[i‘l\‘,“ lo + Hres )
- 9.6
P 1/p ©6)
(T Ty P | }
= = XV/2H82.b( Ty X~V /2024 =1 ( 7
ST,

where the supremum is taken over all closed intervals 0 € J C [T, T].
The proof of Proposition 9.1 will be postponed until the end of the subsection.
From a notational standpoint, the formula for the random operator in (9.5) is rather

tedious. To simplify the notation, we therefore make the following definitions.

Definition 9.2 (The Quad-operators) We introduce the following two random opera-
tors:
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(1) For all N > 1, we denote the random operator in (9.5) by Quad<y, i.e., we
define

QUODSN(Y)
= Poy [‘VZN Yen — (21500 4+ IV 4+ 2 ) (T T Y<N>]

(2) For all Ny, N1, N3, N3, N13, No3 > 1, we define the frequency-localized variant
of Quad<y by

QUad[N,](Y) := Z |:1N13(n13)11v23 (n23)

n(),nl,nz,n3€Z3:
no=ni23

3
x (H 1Nj (n/)) :?N, (nl)?N2 (n2): ?(n3)gi<"0,x):|_

j=0

In the proof of Proposition 9.1 below, we will see that Quad<y can be written as
a linear combination of the frequency-localized operators Quad[N,] (and additional
easier terms). The main ingredient in the proof of Proposition 9.1 is the following
lemma, which estimates the frequency-localized random operator Quad[N,].

Lemma 9.3 (Estimate of Quad[N,]) Let p > 2, let T > 1, and let Ny, N1, N, N3,
N2, N13 be frequency-scales satisfying the non-resonant conditions

Ni3Z Ny and Ny Z Nj. .7

In the following, all suprema over J are taken over closed intervals 0 € J C
[=T, T]. Then, it holds that

1/p —n/2 -1/2
] < Nrax (Mo " +N; /)Tap'

E[s;p H Quad[N,] Hgl/z_b(j)_)x—l/z,b+fl(j)

If the frequency-scales instead satisfy the double-resonance conditions

Ni3<SN] and Ny SN, 9.8)
then it holds that
E[ sup | Quad[V,][} ., ]”" < NpddeTep.
7 X1/2b(T)— x—1/2b+=1( 7 ~ *¥Ymax

Remark 9.4 The main estimate in Lemma 9.3 concerns the non-resonant case (9.7).
As will be clear from the proof, the estimate in the double-resonance case (9.8) is
almost trivial. We emphasize that Lemma 9.3 does not cover the case of a single
resonance such as Ni3 ~ N and N3 < Nf.
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1314 B. Bringmann et al.

Proof We first treat the non-resonant case (9.7). Using the reduction arguments in
Sect. 5.7, it suffices to prove the random tensor estimate

1/p
/2 1 a1 A —1/2 PN ~ p
Ny ANTINTING /E|:HY»—> Z Rngnynans :8n, 8ny: 52—>52]
nl,nz,n3eZ3
NG (N "+ N3 2) p. 9.9)
Here, the tensor & is given by
3
agmnsns = 1y (013) L (n23) (T L, 00 oo = miza) 1012 = mi < 1),
j=0

Q= Z(ijxnj), and meZ.

Up to the additional dyadic localization of n13 and n23, h agrees with the base tensor
from Sect. 5. After utilizing the moment method (see Proposition B.2 and Remark
B.3), it then remains to prove that

—1/2

Iar—1a—1/2
Ny ""N; "Ny N,

X max (||h||non1n2—>n3s ”h”nonl—mzmv ||h||n0n2—>n1n3s ||h||n0—>n1n2n3) (910)

<N; —n/2 | N_l /2
The four arguments in the maximum of (9.10) can all be treated using the base tensor
estimate (Lemma 5.7). For expository purposes, we separate the remaining argument
into four steps.

Estimate of the first argument in (9.10): Using the base tensor estimate, it holds
that

—1/2 —-1/2
N, /N 1N N, /||h||nonlnz—>n3
<Ny PNTING N2 med(No, N1, N2)*/? min(No, Ny, Na)
< N—1/2

Estimate of the second argument in (9.10): Using the base tensor estimate, it holds
that

—1/2 —1/2

NyINSIN,

—1/2

N,

”h”n()m—)nzm
SN ANTINT NG min(Nas, No, Np) Y2 min(No, Np)*2 (9.11)

x min(Naz, Na, N3) ™2 min(N,, N3)*/2.
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Due to our assumption Np3 2 N?, it holds that min(N,3, Ng, N1) 2 min(Ny, Np)".
Together with the trivial estimate min(N3, N2, N3) 2 1, it follows that
©.11) S Ny ANTINT NG Y min(No, NI min(Na, N3)¥2 < Ny 2
Estimate of the third argument in (9.10): Due to symmetry in the n; and n>-
variables, the third argument in (9.10) can be treated exactly as the second argument.

Estimate of the fourth argument in (9.10): Using the base tensor estimate, it holds
that

—1/2 ,— — 1/2
Ny 2NN NG Rl g oy
SNy PNTING NG med(Ny, N2, N3)2 min(Ny, Na, N3)
< N71/2

This contribution is better than the N, "/2_term from the second and third argument.
This completes our argument in the non-resonant case (9.7).
It remains to treat the double-resonant case (9.8). Similar as above, it suffices to
prove the random tensor estimate
» 1/p
22—%2]

(9.12)
While we could estimate the left-hand side of (9.12) using the moment method,
we can also proceed using the following much simpler argument.3® Using Cauchy-

Schwarz in the n3-variable, it holds that

—-1/2 1/2 v 3%
Ny ANTINS NG /E[HY'_) D hugninons 8m &ns:

nl,nz,n3€Z3

-1
5 Nmaxp'

l/p
—12n -1 =t = 12g | | 5 . P P
NO N N N |:H Y= Z hn0n1n2n3 8n 8ny- (N @2%62]
nl,nQ,n3€Z3
1/p

—1/2 ~1Ny"12R p

<NGANTING NG [H D hugmimns gn &no: nn}
”1’"2623 o

12 1] =12

<N Nl N2 N3 Hh”rlonlnzngp'

Under the constraint ng = n123, the four frequencies ng, n1, n2, and n3 are uniquely
determined by n13, n3, and either one of the frequencies ng, ny, ny, n3. Without
utilizing any dispersive effects and only using the double-resonance conditions (9.8),

36The same estimate can also be derived by first using the moment method and then estimating all tensor
norms by the Hilbert-Schmidt norm. However, we prefer the argument presented here, since it emphasizes
that the moment method is not needed.
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1316

it follows that
—1/2 =1 rr—1 A —1/2
N Nl N2 N3 ”h ||n0n1n2n3

0
—1/2 \,— — —1/2,3,3/2:;3/2 .
SN ANTINT NG PN PN min(Ng, Ny, Na, N3)>/?

_ B L .
<N VANTTR NS NSV min(No, Ny, Na, N3)Y2
S N O
Equipped with the frequency-localized estimate (Lemma 9.3), we now prove the
main proposition (Proposition 9.1).

Proof of Proposition 9.1 From Definition 3.14 and Definition 9.2, it follows that

P Pn?]= Y Y QuadlN),

No,N1,N2,N3<N Ni3,N23
(9.13)

(2me 4+ I (B, oy PaY) = Y 3 QuadlN. ().
No,Ni,N2,N3<N: Ni3,N23
N3 <max(Nyp,Ny)"

(9.14)

In the definition of I'Irse;V (Definition 3.14), we did not include the Wick-ordering of
the product in ?Nl and ?Nz . We split 12y into the Wick-ordered random operators

and deterministic operators by writing

N5 (Ly - T P2
) > (N3 = NJ} + 1{Ny3 < NY'}) Quad[ N, ](Y) (9.15)

No,N1,N2,N3<N: Ni3,Na3
Nz >max(Ny,Np)"
+ Y > (1{N13 < Nj} + 1{Np3 < NJ}) Quad®[N,](Y),
No,N1,N2,N3<N: Ni3,N»3
N3>max(Nyp,Np)"

(9.16)

where we define the deterministic operator

Quad®[N,](Y)
3 R .
— Z |:1N13(n13)1N23(n23)<1_[ 1Nj(nj)) < 2Y(n3)el<no,x)j|.
no,n1,n2,n3€Z%3: Jj=0 n1>
no=n3,n12=0
9.17)

@ Springer



Invariant Gibbs measures for the three dimensional cubic NLW 1317

After subtracting (9.14), (9.15), and (9.16) from (9.13), we obtain that

Quady(Y) = > > ) QuadlN(Y) (9.18)

No,N{,N,N3<N: Nj3: No3:
N3>max(N1,N2)" Ny3>N] Npz>N{

- Y QualN) 9.19)

No,N1,N2,N3<N: Ni3: No3:
N3>max(N1,N2)" Ni3<N) Noz<N/

- Y (N <N}

No,Ni,N2,N3<N: Ni3,N23
N3>max(Nj,Ny)" (9.20)

+1{Np3 < N{}) Quad®[N,](Y).

We now estimate the contributions of (9.18), (9.19), and (9.20) to Quad < separately.
Using Lemma 9.3, the contribution of (9.18) can be estimated by

1/p
p
) ' Z Z ]E[Sgp H D”uD[N*](Y)HX1/2+52.b(j)ﬂxf1/2+52,h+71(J)]
No,N1,Np,N3<N: Nji3: Ny3:
N3>max(N1,N2)" Ny3>Nj Np3>N{

SpT Y Y Y Nea NN N PN 021

No,N1,N2,N3<N: Nj3: No3:
N3>max(Ny,Np)" N13>Ng N23>N1n

Under the frequency-restrictions in (9.21), which guarantee that N3 > Ny, we ob-
tain

e+52—(1/2462)n

NiwaxNo* (Ng "% 4 Ny H)NT € NG o+ N S N

max

The contribution of the double-resonance term (9.19) can be estimated directly from
Lemma 9.3 and requires no further frequency-scale considerations. Finally, we note
that Quad®(Y) is a Fourier-multiplier with symbol

3
n3e> Y [INB(”13)1N23(”23)(H1Nj(nj))ﬁ:|'

nl,n2€Z3Z Jj=0

Under the frequency-restrictions in (9.20), this symbol can be estimated by

3 1
> [11\/13(”13)11\/23(”23)(]11le'(n’))W”

ni ,n26233
n12=0

SN = No}N; > min(Ni3, Noz)?
<S1{N1 = N2}N; 2Ny max(Ny, Ni3) min(Ny3, Naz)?
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SUN; = NpN; P!

SN—1+371_

max

As aresult, the contribution of (9.20) can be estimated directly in L%HX 1/ 2+‘32, which
is stronger than X ~1/2+02,6+=1 O

9.2 Linear random operator involving the linear and cubic objects

In this section, we treat (frequency-localized) versions of the linear random operator

w > PSNn;N<?§N,Q?§,P§Nw). (9.22)

In the evolution equation for Y<y, i.e., in (3.62), we encountered several terms of
this form. If w is replaced by the cubic stochastic object ‘?(N , we obtain an explicit

septic stochastic object, which will be estimated in Sect. 11 below. Thus, it remains
to treat the cases when w is of the form

?SM’ %N’ X(fll)\” Xg\“ or Y<pn. (9.23)

In contrast to Sect. 9.1, the main estimate of this subsection (Proposition 9.6)
concerns all five terms in (9.23). In the first four cases of (9.23), however, it only
covers most (but not all) relevant frequency-interactions. The remaining frequency-
interactions will be treated in Sect. 12 using additional ingredients from Sect. 7 and
Sect. 10. In order to concisely state our main estimate, we first make the following
definition.

Definition 9.5 (High x low x high-interactions) Forany N > 1 and function w: R x
T — R, we define

rh o (?EN 9. Pe Nw) = Y PP Pww. 924

Ni,N234,Ns<N:
N3s<NY,
Ni~Ns>N{

We encourage the reader to ignore the condition N5 > N{7 in Definition 9.5. It
is only included to avoid double-counting and, if N; is sufficiently large, directly
follows from Nj ~ N5. We also point out that, due to the choice of our parameters,
the condition N34 < N7 is weaker than N34 < N 1’7 This weaker condition is needed
for technical reasons. Otherwise, the proof of Proposition 9.6 would require §; <
n, which would be disadvantageous in the regularity estimates of Sect. 10.1, and
therefore we do not impose this condition in Sect. 2.

In the quintic case w = we eventually have to replace the product

<N’

Tv, Pvsw  in(924)by  §y, Pysw — €U [N, Ns).
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From a notational perspective, it is more convenient to perform this replacement later,
as we prefer to not distinguish between the first four terms in (9.23) throughout this
subsection. o

We emphasize that, despite the similar notation, the operators H}L‘}\},“’lo (from

Definition 3.14) and T"3*" in (9.24) are rather different. While high x high
x low-interactions always contains two linear stochastic objects, high x low x
high-interactions always contains a linear and cubic stochastic object. Furthermore,
while the frequency-restrictions in our high x high x low-interactions only impose
Nln < N,, the frequency-restrictions in our high x low x high-interactions impose
N1 ~ Ns, which is much stronger.

Equipped with Definition 9.5, we now state our main estimate.

Proposition 9.6 (Linear random operator involving ?SNC%V) Let T >1and p >

2. In the following, all suprema over J are taken over closed intervals 0 € J C
[=T, T]. Then, it holds that

]E|:supsup ”w = PgN[?<NQ?€vP§Nw
N J - -

1/p
hi,lo,lo hi, 1o, hi p
— <H§N +Iy ><?§Nv igN’ Pst>] HX]/Z—A‘l,b(j)HX—l/Z-HSZ,th—](j):|

<T%p2. (9.25)

Furthermore, it holds that

]E|:supsup HY}—> PSN[(LNQ?{?V PnY
N J - =

1/p
hi,lo,lo q?p p
-y (?gN’ "o P<N Y)] HX]/2+52,b(‘7)‘>X—1/2+52.h+—1(j)i|

<T%p2. (9.26)

We now briefly describe the strategy behind the proof of Proposition 9.6. We first

separate the terms in {_ v Y., containing one or zero pairings. Then, we utilize a

dyadic decomposition and exhibit the sine-cancellation (see e.g. Lemma 5.17). Fi-
nally, we use the quintic and sine-cancellation tensor estimates.

Just as in Sect. 9.1, we simplify the notation for the frequency-localized operators
using additional definitions.

Definition 9.7 (The Lin€ub-operators) For all frequency-scales N34, Ny, ..., Ns,
we define

LinCub® [N, (w)

5
— Z Z |:1{no = n12345}1N234(”234)< 1_[ Ly; (”«i)>

E T €73 $P1:92,93,¢4 i=0
N0 L5115 e{cos,sin} J
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(n234) (]i[ Aq n1>)(/0tdt/sin(r—r)n234 (1))

j=1
x SInj, ¢;:1<j<4lu(, n5)ei(”°’x>]. (9.27)

||:]4>

Furthermore, we define

LinCubs"[N,](w)

=1{N; =N} Z Z [1{n0=n34s}< l_[ 1Nj(”j))(”3)_l<n4>_l

no,n3,ng, nsEZ3 ¥3,94€ j20737435
{cos,sin}

t 4
x (/0 dr’ Sine[Nas4, N21(t —z/,n34)]_[<pj(ﬂ(nj))> W(t, ns)

j=3
xSInj,¢;:3<j<4]e o) | (9.28)
ARSI

where the Sine-kernel is as in Definition 5.13.

Remark 9.8 The superscripts of £in€ub® and L£in€ub*™ in Definition 9.7 are moti-
vated by our notation fo_r the tensors in Sect. 5, which will be used in the estimates of
Lin€ub® and LinCub®™,

Equipped with Definition 9.7, we now state the following (algebraic) lemma.

Lemma 9.9 (Decomposition using Lin€ub-operators) For all frequency-scales N >
1 and functions w: R x T3 — R, it holds that

Pl P — (2 ) (. )

= Z (1{N234>N?ZN5}+1{N1o°N5>Ni7}
No,N1,N2, N3,
N4,N5,Np34<N

+1{Nzs4 > N{, N1~ Ns > NJ}) (9.29)

x Einc‘iub(s)[N*](w)]

+3 Z [(1—1{N234,N55Nf}—1{N234§NI),N1NN5>N1n})

No,N1,N2, N3,
N4,N5,No34<N

x SinQubSi“[N*](w)}. (9.30)
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Furthermore, for all functions Y : R x T3 — R, it holds that

P<N|: <NQ?P P-nY — ]'[hl lo, 10(?§N7q?§/’ P§NY)i|

= Z 1{ max(Na34, Ns) > N} Lin€ub® [N,](Y) (9.31)
No,Ny,N2, N3,
Ny4,N5,N234<N
+3 Y 1{max(Nas, Ns) > N{'} Sin€ub™" [N, ](Y). (9.32)
No,N1,N»,N3,

Ny4,N5,N234<N

Our reason for stating the (equivalent) frequency-restrictions in (9.29) and (9.30)
differently is that the one-pairing case does not require the subtraction of the high x
low x low and high x low x high-interactions and the three frequency-regions in
(9.30) can be treated separately. Due to this, it might have been more natural to sub-
tract the high x low x low and high x low X high-interactions only in the zero-
pairing case, but this would increase the notational complexity of our ansatz.

Proof Let N1, N334, N5 < N. Using the definitions of the linear and cubic stochastic
objects (see Sect. 6.2), it holds that

P<n |:?N1 PN234Q?§V Py wi|

= > > [l{no = 112345}y, (1) vy, (1234) Lns (25)

no,N1 s, nseZ3 P1,92,93,¢4
0 3 €{cos,sin}

[T 1ew@p)inz) (]i[nn e (tn)) 9.33)

j034 J:

, 4
X</o dr’sin ((t — ') (n234)) 11:12% )

—

x 8T[n1, p11S8I[n;, ¢j: 2 < j <4] @(t,ns)ei<"°’x>].

From the product-formula for multiple stochastic integrals, we obtain the decompo-
sition

©3)= > > [l{no = n123as} LNy (1) vy, (n234) Ly (1)

noML....ns €73 PL-02.93.94
0711 5 €{cos,sin}

1_[ 1<N(nj)) (n234) (H ) 1(n1))

j=0.3.4 j=1
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4

x (/tdt/sin( (t — ') (n2sa) ]_[ (n)))) (9.34)
0

xS81Ilnj,@j: 1< j<4] @(t,nS)ei<"°’x>:|

+3 ) > [uno = nass}1{n12 = 0}

RO sy nseZ3 P1:92,93,¢4
07 3 €{cos,sin}

X Iy () gy (1230 Ts (o) ([T 1w 1))
j=0,3,4

4
(n234) (1_[ )1{¢1 =@} ei1(r(n1)) (9.35)
j=1
4

t
x (/ de’sin ((r — ') (n234)) H‘Pj(f/(”ﬂ))

0 i
X SZ[nj,goj: 3<j<4] @(t7n5)ei(no,x)i|_

We first discuss the non-resonant component (9.34), which is treated more easily. Af-
ter inserting a dyadic decomposition in ng, ny, n3, and na, it directly from Definition
9.7 that

(9.34) = Z LinCub® [N, ](w).
No,N2,N3,Ns<N

After summing over all relevant frequency-scales Ny, N34, and Ns, this directly
leads to (9.29) and (9.31). We now discuss the resonant component (9.35), which,
due to the sine-cancellation, requires a more careful analysis. We first focus on the
sum in ny, na, ¢1, and ¢>. Using trigonometric identities and n12 = 0, it holds that

Z 1{p1 = @)1 (t(n1)) @2 (' (n2)) = cos ((t — 1) (n1)).
@1,¢2€{cos,sin}

From the definition of the Sine-kernel (Definition 5.13), it follows that

> [1{n12=0}lNl<n1)1N234<n234>15N<n2>

ni ,n2€Z3

 sin ((t = 1")(n234)) cos ((t — t’)(nl):|

(n234) (n1)?

sin ((t — 1) (n234)) cos ((t — t/)(nl)i|

(n234) (n1)?

- Z [1N234(”234)1N, (n1)

ni ,n234€Z3 :
n1+nz34a=n34

=Sine[Naz4, Ni1(t —t', n34).
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From a notational perspective, it is convenient to introduce the new frequency-scale
N3 and always impose the restriction N, = Np. Then, we obtain that

©935)=3-1{N =N} Y

no,n3,n4,ns€L>

< Y |:1{n0=n345}< [T 1env@p)insrs)ina) ™ (ng) ™!

¥3,94€ j=0,3,4
{cos,sin}
; 4
X (/ dt’ Sine[Noz4, Na1(t — ', n34) l_[(ﬂj(f/<nj>))
0

j=3
X W(t,ns)SIlnj, ¢;:3<j<4] ei<”0’x)]

=3 Z LinCub*"[N,, w].
No,N3,Ny<N

After summing over the relevant frequency-scales N1, N234, and Ns, this leads to the
desired contributions in (9.30) and (9.32). O

Equipped with Lemma 9.9 and our tensor estimates from Sect. 5, we now prove
Proposition 9.6.

Proof of Proposition 9.6: Using Lemma 9.9, we can decompose the linear random op-
erators from (9.25) and (9.26) into £in€ub® and LinCub*"-terms. We first treat the
£in¢ub(5)—terms, which, even equipped with our tensor estimates from Sect. 5, still
require detailed case distinctions. In the end, we treat the Einﬁubsm—terms, whose
estimates require no further case distinctions.

The £in€ub™ -terms: We first treat the random operator in the w-variable from
(9.29). Using the reduction arguments in Sect. 5.7, the moment method (Proposition
B.2), and the quintic tensor estimate (Lemma 5.11), it follows that

p I/p
E[S;P ”w = (9'29)”X1/2‘51~”(J)—>X"/2+‘32~"+“(.:7)1|
,szTa Z (1{N234>N;72N5}~|—1{N1oON5>N;7}
No,Ni,Na, N3,
N4,N5,Noza <N
+1{Nosy > Ni, Ny~ Ns > NJ}) (9.36)
X iy Ng? (max(No, No, N3, Na) ™'/ + max(Na, Na, Na, Ns)™/ 2)N§‘}-

Thus, it only remains to control the dyadic sum in (9.36). In this argument, we dis-
tinguish the contributions of the three indicator functions in (9.36). The contribution
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of the first indicator function in (9.36) is estimated by

> |:(1{N234>N1"ZN5}

No,N1,N2, N3,
Ny4,N5,Na34<N

x N&

maxN32 (maX(No, Ny, N3, Ng)~'/?  max(N,, N3, Na, Ns)‘”Z)N;“]
N Z [(1{1\’234 > N{ > N5} NEEP 2 max (N, Na, N4)_1/2}

No,Ny,Na, N3,
N4,N5,Ny3g <N

< Z Nr;-;?tsl-ﬁ-&—'l/z <1.

No,Ny,Na, N3,
N4,N5,Ny3g <N

We now turn to the contribution of the second indicator function in (9.36). Since
N1 = Ns, it holds that max(Ng, N2, N3, N4) 2 Npax. Furthermore, since Ns > N7,
it also holds that

max(Na, N3, N, N5)~2N2 < max(Na, N3, Ny, Ns)~ /200 < N 727000,

As aresult, the contribution of the second indicator function in (9.36) is bounded by

3 [(1{N1 % N5 > NI}

No,Ny,Na, N3,
N4,Ns,Ny3g <N

x N&

max

Ny? (max(No, N2, N3, No)™"/2 + max(Na, Na, N, Ns)”z)Ng“]

— —(1/2=6
< Z (Nren:fwaz 1/2_’_N§1-&32 ay 1)77) <1

No,N1,N2,N3,
N4,N5,No34<N

Finally, we treat the contribution of the third indicator function in (9.36). In this
frequency-regime, it holds that

Z |:(1{N234>NF,N1~N5>N{7}
No,N1,N2, N3,
Ng,Ns5,Noza <N

x N&

max

Ny (max(No, N2, N3, N)™"/% + max(Na, N3, Ny, N3)~" 2)N§‘]
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Y [1{N234 > NJ, Ni~ Ns > NJINEE 92 max(Na, N, N4)_1/2}

No,N1,N2,N3,
N4,N5,Nyzg <N

< Z Nr;‘;'fl+82_v/2 <1

No,N1,N2,N3,
N4,N5,Nyzg <N

This completes our estimate of the w-operator in (9.29) and we now turn to the Y-
operator from (9.31). Arguing as for (9.36), we obtain that

p 1/p
E[Sgp HY = (9-31)“X1/2+82,b(j)_)x1/2+62,b+l(j):|
Sprt . [1{ max(Nas4, N5) > N} (9.37)
No,N1,N2, N3,

Ny4,N5,N234<N

x N&

max

]véZ(rnax(]\IO7 Nz, N3, N4)_1/2 + maX(NZ: N37 N41 NS)—I/Z)NS_(Sz}'

While (9.37) contains fewer frequency-restrictions than (9.36), the N;S !_factor has

been replaced by Ny 82, which makes a significant difference. Using max(N234, N5) >
N ]'7 , it holds that

max(Na, N3, N4, N5) 2 max(Ny, Na, N3, N4, Ns)" 2 N[ .

As a result, we obtain that

(9.37) < p°T¢ Z [1{max(N234,N5)>N{7}

No,Ni,N2,N3,
N4,Ns,Ny3a <N

x N&

max

(max(No, Ny, N3, Ng)~' /22 NS+ max(Ny, N3, Na, Ns)]/z)]

2o € -8 -n/2 2o

§p T E Nmax(Nmax+Nmax S,p T".
No,N1,N2,N3,
N4,N5,N234<N

The £in€ubs"-terms: As in our estimate of £in€ub(5), we first use the reduction
arguments in Sect. 5.7, then the moment method (Proposition B.2), and finally our

sine-cancellation tensor estimates (Lemma 5.18). Due to the Nn:;,(/ 2_factor in Lemma
5.18, the remaining sum over all frequency-scales can easily be performed. d

10 Para-controlled calculus

In this section, we analyze nonlinear terms containing the para-controlled compo-
nents X and X . The estimates in the following three subsections are used to es-
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timate nonlinear terms which, in addition to the para-controlled components, contain
zero, one, or two factors of ? respectively.

In Sect. 10.1, we prove probabilistic Strichartz and regularity estimates for X/,
Despite their simplicity, these estimates will be sufficient to control nonlinear terms
involving no factors of §. In Sect. 10.2, we estimate products of § with one of

the para-controlled components X! or X Together with previous estimates from
Sect. 7, Sect. 8, and Sect. 9, the product estimates control all terms involving exactly
one factor of { and one para-controlled component. Finally, in Sect. 10.3, we treat the

two random operators from (3.59) and (3.60), which contain the quadratic stochastic
object, i.e., two factors of §. This part of our argument most heavily relies on the

para-controlled structure of X(! and X® and also requires the tensor estimates from
Sect. 5.
Before starting with our estimates, we introduce additional notation. We recall

from Definition 3.16 that both X(JZ)\, and Xf])\, themselves consist of multiple differ-
ent terms (see (3.46)-(3.49) and (3.51)). Since some of these terms require different
arguments, we isolate them using the following definition.

Definition 10.1 (Decomposition of XS;\/ and X(j])v) Let N and Ny, N1, N2, N3,
No3 < N be frequency-scales. Then, we define the following frequency-localized
terms and operators:

(i) The high x low x low-portion of XV is defined as
X[ ) ws]:= 1{Na, N3 < NJ'} Py, T [?Nl Py, w2 Py, w3]‘
(ii) The resonant-portion of XV is defined as
XDISIN wy, w3] = 1{N3 > max(Ny, N2)"}1{ N3 < N/}
x PN, I [?Nl Py,, (PN2 wo Py, w3)].

(iii) The explicit portion of XV is defined as
A= I DDz =P Lo+ 1D en Ty

+18 3 Pu(Ty €PN M10)

No,N{,Na,N3:
Nmafov
max(N;,N3)<N{

-40YY) X PNO(?Nleﬁﬁ)[Nz,Ns](t))],

No,Ni,Na,N3:
NmaXSNa
max(Nz,N3)§N]n

where .Zl, Ai, and Az are as in Lemma 3.12.
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Invariant Gibbs measures for the three dimensional cubic NLW 1327

(iv) The operator version of X® is defined as
X@PIN,, w] = -3 1{N3 < max(Ny, N2)" < min(Ny, N>)}
x PN, T [ :?Nl ?Nz: PN3w].
In the following remark, we emphasize certain aspects of Definition 10.1.

Remark 10.2 In (3.49), we encountered I} (?s v ?S v+ Y<n), which will be esti-

mated using the operator XTSI s, wi] with (wa, w3) = (T, Y). The reason
for treating this term as a bilinear operator in w, and w3, rather than as a linear op-
erator in Y, is as follows: Since Y is viewed as a general element of X 1/2+82,b , it can
behave like (V)~!=%27€ ] In this case, however, the high x high — low-interactions
of { and Y are no better than high x high — low-interactions of general elements

(w2, w3) € X—1/2-€b X1/2+82’h.

We also emphasize that X?-°P contains the precise pre-factor —3, which is es-
sential in Sect. 10.3 below, where a resonance originating from X has to cancel
with the renormalization multiplier I". In all other terms, the precise pre-factors are
not important.

Using Definition 10.1, we can decompose X(Slj)v and Xg\, as follows:
Lemma 10.3 (Decomposition of X(Slj)v and X(SZJ)V) For all N > 1, it holds that

1
X(S;V[UsN, YSN]

-6 ¥ X“)’hi’l"’l‘)[N*,?fN —Pniy +3%, + UEN] (10.1)

No,N1,N2,N3:
Nmax<N
i 2 3
+ ¥ > AT @@ )xniliy, 8 (] (102)
{(2)’c(3>568N0,N1,N2,N3:
Nmax <N
-6 > XOISIN,, §_y s Y] (10.3)
No,Ni,Nz,N3,Nop3:
max =
1),expl
+ XUy, (10.4)

Furthermore, it holds that

X ven]= Y X(z),op[zv*, ~Pniy +3¥, + vSN].
No,Ni,Ny,N3:
Nmax<N

Proof The two identities follow directly from our definitions, i.e., Definition 3.14,
Definition 3.16, and Definition 10.1. To avoid any possible confusion, we only em-
phasize the following two aspects:
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First, the pre-factors in (3.49) and the corresponding contribution (10.3) differ by
a factor of two. The reason is that IT™S}, is the symmetric version of the interaction in

the Duhamel integral of X(1)-res, -
1,5 (3.3) . . (D,expl
Second, the €_ 5 [N2, N3] and 65 ~ [N2, N3]-terms are included in Xs N be-

cause X(D-hio.10 3 K20 are defined using the usual and not the modified product
(from Definition 3.10). g

Due to Lemma 10.3, the rest of this section focuses on the frequency-localized
operators from Definition 10.1.

10.1 Probabilistic Strichartz and regularity estimates

In this section, we control the L?OC;/Z_(S' and X /27915 _porms of X and X® ., This
eventually leads to a proof of Proposition 3.20, which is presented in Sect. 12 below.
We start with our estimates for X1,

Lemma 10.4 (Probabilistic Strichartz and regularity estimates for X)) Ler T > 1
and p > 2. In the following, all suprema over J are taken over closed intervals
0eJ<CI[-T,TI.

(i) For all frequency-scales No, N1, Ny, Ns satisfying N», N3 < N7, it holds that

IE|: sup|J|~+=bP H (w2, w3)
J
(1y,hi,lo,lo P v
KRB, ]
= [Ny, w2, ws] X—Lb(T)yx X—Lb(T)— X 1/2-81:b(7)
1/2 -
Sp / TaNm:x'

Furthermore, it holds that

E[sup ||~ 0P H (w2, w3)
J

1
}_)X(l)ahi,IO,IO[N* wo w3]Hp /p
e XL Tyx X 1T 12Cy > ()
1/2 -
< pPTeNE

(ii) For all frequency-scales No, N1, Na, N3, No3 satisfying N3 > max(Ny, N»)"
and N3 < N?, it holds that

E[sup 1170+ (o, w3)
J

1
— X(l)'reS[N wa, w3] Hp /»
U Tl ame (7)) X P () X120 ()

5 pl/2TC(N—€

max*
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Furthermore, it holds that

E[sup 117007 a2, ws)
J

" » 1/p
> XWISIN, wy, w H
[ * 2 3] X—]/Z—e,b(J) x X1/2+82,h(j) L?oc):/z_‘sl %)

< PPTENE,

(>iii) It holds that

1
E| sup HX(I),exleP /p<p1/2T°‘
v =N laorzeaneeh-r ]~ '

Proof We only treat the case T = 1, since the general case follows from minor mod-
ifications. We prove the estimates for X(D-hi-lo.lo xz(1).res 54 XS}V*CXPI separately.

Proof of (i): Using energy estimates, it holds that

IXO-EIOATN, ), ws] Il x1/2-81.6.7)

—1/2-5
5 Nl 1 ‘ ?Nl PN2w2PN3 w3 L2120
3
—1/2-6§
g |j|1/2N1 / 1 ‘?N] H l_[ ”PNjw/”L?CLfo(J) (10.5)

LELEWD) 55

3

—81 A79/2 A75/2
S |\7|1/21\71e ]NZ/ N3/ ”?”L?OC;I/Z_E(J) | | ||U)j||x—l‘b(h7).
j=2

Due to the high x low x low-assumption, it holds that

1\/15_51]\]25/2]\]3?/2 S N16+57)_51 5 Nn:s)l/z
This completes our proof of the X!/27%1-P_estimate and it remains to prove the
L;’OC;/Zfsl-estimate. Using the reduction arguments in Sect. 5.7 and J C [—1, 1],
it suffices to prove that

3
sup sup  sup IE[HPNOI[?N1 l_[e’<"-i”‘>i-fi<”-/>t+”*f]‘

ny,nzeZ’: tel—1,1112,43€R j=2

Inal,ln3| <N

2 ]1 /2
el

SN €.
This estimate can be obtained exactly as in (10.5).
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Proof of (ii): The argument is a combination of the proof of (i) and®’ a standard
box localization argument (see e.g. [108, Corollary 3.13]). For any box Q C Z3, we
let P be the sharp frequency-projection to Q. Furthermore, for each j =2, 3, we let
Q, be a partition of {n; € Z*: N;/2 < |nj|eo < N;} into boxes of side-length ~ No3.
Then, we can decompose

XTSI s, w3] = XWIS[N, P, w2, Posws]. (10.6)
02 03

02€Q;,03€Q;3:
d(Q2,—Q03) SN2

In (10.6), we can restrict to boxes satisfying d(Q2, —Q3) < Ny3 since otherwise
Py, (P, Pn,wa Po, Pyyw3) = 0. For each j = 2,3, the frequency-supports of
(Pg,; Pn;wj)g;eQ; are disjoint. Together with the Cauchy-Schwarz inequality, this
implies

2

02€Q7,03€Q3:
d(Q2,—Q03) SN2

Pox Pryw2| o [P Praws] yusso )

0=

(X lrerwmlyay,)
02€Q,,03€93:
d(Q2.—03)SN23 (10.7)
1
(X Irervusliye.,,)

02€9,03€Q3:
d(Q2.—03) SN2

SHPNzwz“X— PN3w3”

%—e.b(J) “ X%Mz_b(j).

Due to (10.6) and (10.7), the two estimates in (ii) can then be reduced to

E[ sup 17|77 | i, ws)
J.02,03

> XIS P ws, P w]Hp v
x O, W2, ;W3 Xfl/gfe.b(j)XX1/2+52,b(J)_)X1/2751,b(J)

SpVPTONGE (10.8)

max

371n the proof of (ii), it is possible to avoid the box localization argument. For instance, instead of the
estimate in (10.10), one could use that | PN,y (PN, w2 Py w3)||L§>oL$o < N%IIPN2 wy Py, w3”L°°L1 <
: : X t bx

| Py wall Lo | Py w3l L2 However, since the box localization argument can also be used in the
X X
proofs of Lemma 10.7 and Lemma 10.11, we already use it here.
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and

]E[ sup |J|—<”+—”>”H(wz,w3>

J.02.03
I/p
> XOISIN,, Po,ws, Poywsl|”
# P0T BT ek gy xx 1 () s 120 ()
1/2 —
S PVPT Ny (10.9)

respectively. Since both (10.8) and (10.9) can be obtained using similar arguments
as in the proof of (i), we only discuss the necessary modifications for (10.8). By first
arguing similarly as in (10.5) and then using Bernstein’s inequality, we obtain that

1),res
Hx( )re%[N*, Po, Pn,w3, Pg, Pyyw3] Hx‘/2*51-b(\7)

_%_51
SN

?Nl PN23(PQ2PNzw2 PQ3PN3w3)‘

L2L2(T)

3
_1l_5
SITEN T e ooy [T 1P, Py willgerecy
j=2

3
-4
SITENTING IR g e ) [T 1P Py llxon )
j=2

< 1/2N€—51N3 N%+EN_%_82 ?
N|L7| 1 231Vy 3 I ”L;’CC;IU%(J)

x || Pg, PNzwzllx_%_s,,,(j)llP@ Py, wsllx% (10.10)

by

Due to our assumption N»3 < N, we have max(N2, N3) < N{ or N> ~ N3. In either
case, it then follows from the parameter conditions in (2.1) that

1 1 1 1 8
e=81 3 a2 te T2 e+3n=8) \ate =28 -7
Ny “NypNy Ny SN N; Ny S Nmas »

which implies (10.8).

Proof of (iii): Using our estimate for €<y (Lemma 6.23), Cg;\f)[Nz, N3] and
€(<3]’V3)[N2, N3] (Lemma 7.17), and y<y — I'<y (Lemma 7.1), the argument is again
essentially as in (i). We note that, due to translation invariance and Gaussian hyper-
contractivity, the estimate of (y<y —I'< N)?5  only requires operator bounds on L%

and not on LS°. O

Lemma 10.5 (Probabilistic Strichartz and regularity estimates for X®) Ler T > 1
and p > 2. For all frequency-scales Ny, N1, N2, N3 satisfying N3 < max(N, N2)7T <
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min(Ny, N»), it holds that

1/p
—(b+—Db)p (2),0p p
E[s;p |71 Hw — X [N, w]HXLb(J)_))(I/Zahb(J)}

< pTON=¢ (10.11)

max”’

where the supremum is taken over all closed intervals 0 € J C [T, T]. Further-
more, it holds that

1/p
p
E| s —(b+—h>pH > X@-0p[ N, H
|: ?7p|j| w [Ny, w] X-1b( Ty LoC 0 (7
S pT* Ny, (10.12)

In contrast to Lemma 10.4, Lemma 10.5 relies on multilinear dispersive effects. As
a result, we can no longer (exclusively) rely on Strichartz-type estimates, but instead
use our tensor estimates.

Proof As before, we only treat the case T = 1, since the general case follows from
minor modifications. We first prove the regularity estimate (10.11). The argument has
similarities with the proof of Lemma 9.3, but concerns a different frequency-regime.
Using the reduction arguments in Sect. 5.7, it suffices to prove the random tensor

estimate
I/p
—1/2=8) xr—1 nr— ~ - p
N, / IN1 11\]2 'Ns IE|:Hw > Z Rngninans 28n, 8ny: W(N3) oo ]
ni,ny n3 no

< pNoHA (10.13)

Here, h is the base tensor from Sect. 5, i.e.,
3
hngnnzny = ([T 1wy @2 o = miza} 1 (12 = m| < 11,
j=0

3
Q= Z(i,»)(nj), and meZ.
=0

In fact, (10.13) yields slightly stronger decay in Npax than our desired estimate
(10.11). While the random tensor estimate could be proved using the moment method
(Proposition B.2), it also follows from the following more elementary argument.
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Using Cauchy-Schwarz in the n3-variable, it holds that

R R » 1/p
E ”w = Z Rnoninans “8ny &ny: WN3) » —’5%0

ni,n2 n3

p 1/p
nons

Using the Hilbert-Schmidt estimate from Lemma 5.7, it follows that

S E|:H Z Pngnynans 28y 8ny:

niy,nz

S Pllhllngningns -

1/2-81 -1 1
NO Nl NZ N3||h||I10n1n2n3

SNGPTOUNTING N3N Nl 2 No N1 N2 N3

SNt N3 S N+,

This completes the proof of (10.13) and therefore the proof of the regularity esti-
mate (10.11). Using the proof of (10.13), the Strichartz estimate (10.12) can now be
obtained exactly as in Lemma 10.4 and we omit the details. |

10.2 Interactions with one linear stochastic object

In the previous subsection, we proved that X1 and X(® have spatial regularity 1/2 —
81, which is slightly less than 1/2. From the discussion in Sect. 3.4, it is clear that
this cannot be improved. In particular, the products

PuxUy  and P x8, (10.14)

cannot be defined using only the regularity estimates of XSI)\, and Xg])\, As we will
see in this subsection, however, the products in (10.14) can be defined using the para-
controlled structure of XS}, and X(j},

Proposition 10.6 (Product estimates for { X() and § X®) For all A > 1, there
exists an A-certain event E4 € £ on which the following estimates hold: For all
frequency-scales N, K1, and Ky, all T > 1, closed intervals 0 € J C [-T,T], and
ven, Y<n: J x T? — R, it holds that

(D )
”?K] PKZXSN[USNa YSN]HL?OC;I/Z—e 7 + H?Kl PszgN[vSN] H

( ey

—1/2410:
<AToK; "(1+||u§N||§(,l,,,(j)+||Y§N||X./z+52,b(j)). (10.15)

We chose to denote the frequency-scales in Proposition 10.6 by K; and K3 in
order to not conflict with the frequency-scales in Definition 10.1. The main ingredient
in the proof of Proposition 10.6 is the sine-cancellation (see e.g. Lemma 5.15). We
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1334 B. Bringmann et al.

emphasize that, in contrast to the product (v)s N X(521)v from the next subsection, the
products in (10.14) do not require a renormalization. We start by proving the product
estimates for the different X()-components.

Lemma 10.7 (Product estimates for { X)) Let T > 1 and p > 2. In the following,
all suprema over J are taken over closed intervals 0 € J C [T, T].

(1) For all frequency-scales N1, N2, N3, N4, N34 satisfying max(N3, Na) < Ng, it
holds that

]E|:sup H (w3, wq)
J

1/p
. X(l) hilolop A7 - s 4 H
? [ 3 4] X-Lb(T)x X~ 'b(J)»L“’C 1/2— “7)

< pTNk 1/24107

(i) For all frequency-scales No, N1, Nz, N3, Na, N34, N34 satisfying Ns >
max(Na, N3)" and Ny < N, it follows that

E|:sup H (w3, wy)
J

(1),re P Hr
JES[AT -
[ ?Nl X [Ny; w3, wq] Hx1/26~b(J)><X]/2+52~”(.,7)—>L,°°CX1/26(..7)1|

< pTaN71/2+10n
(iii) For all frequency-scales K1 and K, it holds that

1/p
el o By, P " < ek
N

‘LNC Ve,

The choice of using Kj and K» as frequency-scales in (iii) is deliberate, since,
depending on the precise term in XSI)\}GXPI, K5 is most naturally replaced by either

N34 or No.

Proof We only treat the case T =1 and J = [—1, 1], since the general case fol-
lows from minor modifications. We prove the estimates for X(1)-hi-1o.1o xg(l).res “apq

XSZ)\}eXPI separately.
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Invariant Gibbs measures for the three dimensional cubic NLW 1335

Proof of (i): Using similar reduction arguments as in Sect. 5.7, it suffices to prove
that

sup  sup sup sup E|:H Z [1N234(n234)

rel—1,11%3.%4 py nyez3: A3.04€R

3
nl,n2€Z
In3],In4|<N;

(]‘[m (n))e! @0, (1)

(10.16)

2
H! /25/2:|

4

5 </0zd,sm((t—t)(n234 )?Nz(t nz)(nel(i A ),>):|

(n234) i3

—€ ar—1
SNI N234‘

In order to prove (10.16), we separate the non-resonant and resonant parts. Using the
definition of the Sine-kernel (Definition 5.13), it holds that

> [1N234(n234)(]"[1N (1)) (1)

ny,n€Z3 j=1
8 (foldt/sm (¢ (n;z)”m )?Nz . nz)(ﬁei(ij(ﬂj)+lj)l/)>i|
2
Z Z [11\/234(71234)(1_[ Ly, (”j))
cleon giny 1L /=l
x ¢! 2369 (n V1 ()7 (ﬂz)ilwl(f(m)) (10.17)

X (/tdt/sin((t—t/)(n234 ))ea(t' (n2) <Hel(i nj)+h )z))
0

xsz[n,-,go,-:lsjsz]}

+el e Ny = Nz}(f dt’ Sine[Na34, No](t — 1’ n34)(1_[e’(jE DAzl ))
0

j=3
(10.18)

We now estimate the non-resonant and resonant parts (10.17) and (10.18) separately.
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1336 B. Bringmann et al.

For the non-resonant part (10.17), we have that

E[H(10.17)||§{;1/24/2]

2
Y [11\/234(?1234)(1_[ Ly, (n/)> (n1234)~' 7 (”1>_2<”234)_2<”2>_2:|

ny,np€eZ3 Jj=1

SNCEY 1N234(n234)11v2(nz)(n234)_2(n2)_2}

ny EZ3

SNy Nogg.
For the resonant part, Lemma 5.17 implies that
[1018)]7; < 1{N1 = N2} V553,

which is more than acceptable.

Proof of (ii): The argument is similar to the proof of (i) and we omit the details.
The only additional ingredients are that the sum of the regularities of w, and w3 is
positive, i.e., (—1/2 —¢€) + (1/2 4 §2) > 0, and a standard box localization argument
(see e.g. the proof of Lemma 10.4 or [108, Corollary 3.13]).

Proof of (iii): Together with Lemma 6.23 and Lemma 7.17, the proof for the €<y,
¢, and €5 x e
I'<y)-term.

We now set Ny := K1 and Ny := K». We first decompose the product into its
non-resonant and resonant components. More precisely, we decompose

Ty, (y<v —T<n)T [?Nz]

-terms in is as in (i). Therefore, we only treat the (y<y —

=y > [(]‘[m (n,)) “Hna) 2 (yen —Tan(n2)) €2 (10.19)

PLY2E py nyeZ’ j=1
{cos,sin}

t
x g1 (r{m) ( fo di'sin (1 = 1) (12)) 2t (n2)) ) STl gy 1 < j < 2]}

2
+ [1{nn=o}(]_[1N,(n,-))<m>‘<nz>2(y§N—r§N<nz)) (10.20)
j=1

nl,n2€Z3
13
x (/ dr’sin ((t — 1) (n2)) cos (( — t’)(nz))):|.
0

Together with Lemma 7.1, the non-resonant part (10.19) can be treated exactly as in
(). Thus, it only remains to treat the (purely deterministic) resonant part (10.20). This
argument is similar as for the sine-cancellation (Lemma 5.15), but requires a minor
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Invariant Gibbs measures for the three dimensional cubic NLW 1337

modification due to the symbol of (y<y — I'<n). More precisely, we have that

(10.20)

=N =N} > [( ]_[ Ly, (n)) “r=y —T<nm)

nezd - j=1

(10.21)
x (/l d’sin ((t — ') (n)) cos ((t — ﬂ)@)))}

0

il{Nl 393 [(]‘[m (n)) (ygN—FgN(n))(cos(%(n))—1)].
nezd - j=1
Using Lemma 7.1, we obtain that
(1021)] S N1 = Mo} Ny,
which yields the desired estimate. O

We now turn to the product estimate for the X -term.

Lemma 10.8 (Product estimates for { X®) Let T > 1 and p > 2. Let Ny, N>, N3,

N4, Np3a > 1 be frequency scales such that N4 < max(Np, N3)7 < min(Na, N3), then
it holds that

I/p
X@-0p N, H
[sup HMH? ool Lb(T)—>LC; ()

< pT®max(Ny, N3)~ /251,

where the supremum is taken over all closed intervals 0 € J C [T, T] and N,
denotes the dependence on N34, No, N3, and Ny.

Proof We only treat the case T =1 and J = [—1, 1], since the general case follows
from a minor modification.
Using similar reduction arguments as in Sect. 5.7, it suffices to prove that

sup sup sup sup E ” |:1N234 (n234)(1_[ Iy, (n])) i(n1234.x)
te[—1,1] %4 |ng|<max(Nz,N3)" rgeR 0y e 3

t . .
X?Nl (t,n])(/(; dz’sm((t ”(”234))

(n234)

:?N2 ', n2) ?N3 (t' n3): ¢! <”4>+’\4”/)]

2
B! /25/2:|

< Ny €max(Np, N3) ™' (10.22)
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1338 B. Bringmann et al.

In order to prove (10.22), we separate the non-resonant and resonant parts. By insert-
ing the definition of the Sine-kernel (from Definition 5.13), we obtain that

> |:1N234(”234)(1_[ Iy;(n; )) e (2 n)

nl,n2€Z3

t —
x (/ dt’sm((t i) Ty, @' n2) Ry, (¢ n3): ei(i4("4>+*4)f/>]
0

(n234)

Z Z [1N234(n234)<1_[ N(n,))

$1:92:93 yy noy n3el’ =1
€{cos,sin} 11213

w

X (n234) " Hna) "N nz) el mza)

X @1 (Nm))(/o dr’ sin ((r — l/)(n234))¢2(t'(n2>)§03(f/<n3))€i(i4(”4>+'\4)[/)

(10.23)
xSI[n,-,wjrlfjfi%]]
1{Ni = N2} Z Z |:1N3(n3) (n3) Lot tm3e:x) (10.24)
{cos, sm}nSEZZ

t
X (/0 Sine[Naza, Na1(t — 1/, n3a) @3 (' (n3))e! *4m4) H“)t)SI[n% <ﬂ3]]

PN [1N2(n2) (ng) ™1l 2:¥) (10.25)

p2€ nQEZ3
{cos,sin}

t
X (/0 Sine[Naza, N31(t — 1/, nag)ga (1’ (na) ) e! 4 () +3)1" )SI[nz 902]]

By symmetry in the n, and n3-variables, it suffices to treat (10.23) and (10.24).
Estimate of the non-resonant term (10.23): By calculating the expectation and
performing the sum in n|, we obtain that

a0z, n- ]

3
Z Z |:1N234(n234)<1_[ le (n])>

91,492,903 3 =1
e{cos, qm}n1 n,n3 €L J

X (n1234) " T 1) T2 (na3a) " (n2) " (n3) 2

X

]

t
/ dt’ sin ((t — t/)(n234))(p2 (t/<n2>)(/73 (t/(n3))ei(i4(”4>+)‘4)t/
0
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Invariant Gibbs measures for the three dimensional cubic NLW 1339

3
SNS Z Z [1Nz34(ﬂ234)(1_[1N_,(nj))(n234>_2(n2>_2(n3)_2

92,93 73 j=2
€{cos,sin} n2.n3€ J

X

2
]. (10.26)

t
/ dt’ sin ((t — t/)(n234))(p2 (t/<n2))(ﬂ3 (t/<n3>)ei(i4(n4>+k4)t’
0

By performing the #'-integral and using our counting estimate (Lemma 5.4), we ob-
tain that

(10.26) < N € max (Naza, Na, N3) ™,

which is acceptable.
Estimate of the resonant term (10.24): Using Lemma 5.17, we obtain that

Ja020f, -]

S ) [1N3<n3><n34>—‘—6<n3>—2

@3 E n3 EZ3
{cos,sin}

t
X /dt/Sine[N234,N2](t—t/,n34)</)3(t/(m))e’(i“("“)H“)t

0

]

<max (Noag, N2) 2F Y [1N3<n3><n34>—1—f<n3>—2}

nyeZ3

< max (N234, N2) —2te .

Since N4 < max(N, N3)", it holds that max(N234, N2) ~ max(N», N3). As a result,
this contribution is (more than) acceptable. O

It remains to prove the main result of this subsection (Proposition 10.6).

Proof of Proposition 10.6 Due to Lemma 10.3, X(<11)v and X(Szj)v can be rewritten in

terms of X(D-hilodopar g xxeresppr ] xS and X[, ]. The desired esti-
mate now follows directly from Lemma 10.7 and Lemma 10.8. g

At the end of this subsection, we prove the following corollary of the product
estimate (Proposition 10.6) and Lemma 8.5. It will only be needed in the proof of
Lemma 4.6, which is presented in Sect. 12, and we encourage the reader to skip this
corollary on first reading.

Corollary 10.9 (The ?5N X(Sj])v-operator) There exists an A-certain event E 4 € € such

that, on this event, the following estimates hold: Let T > 1,let0 e J C[-T,T] be a
closed interval, and let N, N1, Na, N3 be frequency-scales satisfying

Ni,N2,N3<N, N»>N/, and N»> Ni.
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1340 B. Bringmann et al.

Furthermore, let v<n, w<n, Y<y: J X T3 — R. Then,

ax

j=1.2

?Nl PNZX(SJI)V[UsN, Y n]Pn;w<p

X—1/24+8.04-1(7)

< AT* max (N1, N2)7€<1 + [losw Hi{*lvb(j) +[ Y ||X‘/2+52-1’(j)> |wen ||X*f<b(;7)‘

Remark 10.10 Our notation for the frequency-scales in Corollary 10.9 is chosen so
that it agrees with our notation in Sect. 12.

Proof 1In the following, all estimates are made after possible restrictions to A-certain
events. We only treat the case 7 = 1 and J = [—1, 1], since the general case follows

from minor modifications.
To prove the desired estimate, we first decompose

?Nl PNZX(SJI)V[USN, Y N]Pnw<py
) (10.27)
= Z Py, |:PN12 <?N1 P, X2y lvsn, YSN]) PN3w<Ni|-
No,N12

We now proceed using two different estimates. Using X ~1/2+92.0 s x—1/2482,b4—1,
our product estimate (Proposition 10.6), and N3 < N3, it holds that

Py, |:PN12 (?Nl PNzng)\][UgN, YfN]>PN3 ng:|

X—1/2+8p.by -1

S

P, [PN12 <?N1 PNzx(SJ,)V[vgN, YsN]) P, w<1v}

2 HVD

5 N(;l/2+82 PN12 (?Nl PNZX(fj])\/'[USNv YSN]) H PNgng ”L;)OL)ZC

N

—1/2+§ 1/24€ ,,—1/2410 2
SNO / 2N12/ N, / nN§(1 + ”USN”X—I.b + ||Y§N||xl/2+52’b) ”

X Wen || goco- (10.28)

If N; > N,, then Ng ~ N2 ~ Nj. Together with our assumptions N, > N]" and
N> > N3, the pre-factor in (10.28) can then be bounded by

—1/2487 3 1/2+€ 7\, —1/2+1 —1/2+1 -
N, /+2N]2/ +eN2 /+07]N§§N]€+52N2 /+0n+E§N1E»

which is acceptable. Alternatively, we can simply rewrite the pre-factor in (10.28) as

Ne+10n

1/2+¢
) s

—1/248
N, /+2(N12/N2
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Invariant Gibbs measures for the three dimensional cubic NLW 1341

Thus, if either Ng > N2l /100 or Njp < N2l - 100, this also yields an acceptable contri-

bution. Therefore, it only remains to treat the frequency-regime

N2 N, N3, No<N,'™, and Npp >N, V1
In this case, the desired estimate follows directly from Lemma 8.5. O

10.3 Interactions with the quadratic stochastic object

We now turn to the interactions of the para-controlled operators with the quadratic
stochastic object <V)< ~ » 1€, two factors of . More precisely, we now estimate

1 hi,lo,1 hi,hi,1 1
R XN = (2mte + ) (7, Py x0Y ) (10.29)
88, 5= (o ) R, T, 552
+l<n (3 %N - PsN?sM + va)- (10.30)

The main estimates on (10.29) and (10.30) have been previously stated in Proposition
3.22. In the following, we prove estimates for the individual components of XS}V and

Xg])\, (as in Definition 10.1), which will lead to the desired conclusions.

Lemma 10.11 (Estimate of (V)gzv X(flj)\,—terms) Forall T > 1 and p > 2, we have the
following estimates:

(1) For all frequency-scales Ny, ..., N5, Nyza satisfying
N34 > max(Ny, Ns)" and N3, Ns<N,,

it holds that
E[ s;p H PNO[ :?Nl ?Ns :

X(D-hilodop s g Hi ]1/;; (10.31)

—l,b(J)Xx—l.b(J)_)Xfl/ZJréz.bJrfl(J)
SJ p3/2T0[N—€

max?

where the supremum is taken over all closed intervals 0 € J C [—T, T] and N
denotes the dependence on N34, No, N3, and Ny.
(ii) For all frequency-scales Ny, ..., N5, N3a, No3a satisfying
N34 > max(Ny, Ns)?, Na>N,, and N3y <N,
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1342 B. Bringmann et al.

it holds that
E[ sgp H Py, [ :?Nl ?Ns :

1/p
(1),res
X [N w3, w4]HX 12— éh(j)xxl/er‘SZb(j)—)X 1/2485.by— l(j):l

5 p3/2T(xN—

max’

(10.32)

where the supremum is taken over all closed intervals 0 € J C [—T, T] and N
denotes the dependence on N34, N34, No, N3, and Ny.

(iii) For all frequency-scales Ko, K1, K>, K3 satisfying K3 > max(Ky, K»)", it holds
that

1/p
1 1 —
e sup [P i 8,2 Prox ] | e

X—1/248.b4 =1 ([_T T

Proof We only treat the case T =1 and J = [—1, 1], since the general case follows
from minor modifications.

Proof of (i): We first decompose the argument in (10.31) into non-resonant and
resonant terms. From the definition of X(1-hi-10.10 44 the definition of the Sine-kernel
(Definition 5.13), we obtain that

Pro| Sy, By XOBORIN, w3, 1]

= > [1N234(n234>(]_[1w (1)) "0 Sy, ¢,y 0, ms):

nQ,..., n5EZ’\3
nO=ni234s
t o osin((t—t)(n
X (/ dr’ ( )t 234))?,\,2 (l’,nz)@3(t/,n3)@4(t’,n4):|
0 (n234)
5
=y 3 [1N234(n234>(]"[11v_,<n,-))
‘”{‘a?ﬁ Sy o€l /=0
x (n234) " 1) " Hng) T ns) el o) (10.33)

t
x </)1(t<n1>)<05(l<n5>)(/0 dr’ sin ((r — t’)<n234))¢2(l’<n2>)@3(t/,n3)@4(t’,n4)>

xSI[nj,goj:j=1,2,5]1|

HNi=M} > [( I 1N_,-(”j))("5)_1€i(no’x> (10.34)

#5€ VA j=0,3,4,5
0,13,14,n5€
{cos,sin} no=n345
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Invariant Gibbs measures for the three dimensional cubic NLW 1343

t
X @5 (WB))(/O dr” Sine[Naza, NoI(r — 1, naa) w3 (r, n3)@4(t/,n4)> SZlns, <P5]:|

i Z 2 [( [T tnop)mp=te@s  035)

3. j=0,1,3,4
ng,n1,n3,n4€L°: J=0,1,3,
{cos sm} no=n134

t
X <P1(t(n1))</(; dt’ Sine[Naz4, N2 (1 — l',n34)@3(l’,n3)1174(l/,n4))

X SI[nl, wl]].

By symmetry in n; and ns, it suffices to treat the non-resonant term (10.33) and the
resonant term (10.34).
The non-resonant term (10.33): We use the quintic tensor from Lemma 5.11,

hnonl‘..n5 (ts }"37 )"4) = hnonl‘..n5 [NO’ R N57 N2347 :l:], cre :l:S](t’ )"31 }"4)7 (1036)

where we set A1 = Ay = A5 = 0. Using (10.36), we can rewrite the non-resonant term
as

1033)= /dk3dk4 >

+1,40,%3, no,ni,ny
j:4 +5 n3,n4,ns

|: i no’x>hnon1...n5 (t, A3, Aa)

—~

X (V)w33 (n3, A3) (V)wi* (na, Aa) STlnj, +;: j=1,2, 5]}. (10.37)

The (V)-multiplier acting on w3 and wy is due to the (n3)~' and (n4)~!-factors
in the definition of the quintic tensor. Due to the frequency assumptions N3, Ny <
NZ" , however, the (V)-multipliers are essentially irrelevant. Using the tensor estimate
reduction argument in Sect. 5.7, it follows that

H(10.37)”

XLy x—1b_s x—1/2+83,b1 —1

SNGPYRNING max | sup | ()T gy~ 612
io,i] """ i5A3,K4ER

n3ng—ng

b1 -
H o H Z hnonl 115()")‘35 A)SIlnj, £;: j=1,2,5] L2i|,
ni,nj,ns 3
(10.38)
Since N3 and Ny are small compared to N7, we simply bound?® the | - [[,13,—n,-nOrm

by the Hilbert-Schmidt norm || - [|,gn3n,- Using the p-moment estimate reduction
argument in Sect. 5.7 and the Hilbert-Schmidt estimate (5.52) in Lemma 5.11, it

380f course, this bound is always possible, but is typically rather crude for large values of N3 and Ng4.
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1344 B. Bringmann et al.

follows that

No_I/ZHZ(N3N4)2 min (No, N1, N2, Ns)!/2

max

E[(10.38)”]1/p < pI2NE
x max(No, N1, Na, N5)~/2NoN; ' N3P N,
PN, NN
Due to our frequency assumptions, this is acceptable.
The resonant term (10.34): The argument is similar to the estimate of (10.33), but

with the quintic tensor replaced by the sine-cancellation tensor. To be precise, we use
the sine-cancellation tensor

piine (t, 23, Ag) = hSine [No, Ni, ..., N5, Nazg, 3, 4, £51(2, A3, Aa)

nonznans nonsngns
(10.39)

from Lemma 5.18, where we set A5 = 0. Using (10.39), we can rewrite the resonant
term as

(1034)= " fR (dhadha ) [€i<n°’x)hfni:;3n4n5(f,)»3,)»4)

+3,%4,%5 n0,n3,1n4,N5
x (Vw3 (13, 43) (V)wy* (na, Aa) STlns, is]}- (10.40)

As before, the (V)-multipliers result from the definition of the sine-cancellation ten-
sor, but are essentially irrelevant. Use the tensor estimate reduction argument in
Sect. 5.7, we obtain that

” (10.40) ”

X—Lby x—1b_y x—1/2+8,b1 —1

5N0_1/2+52N32N4% max sup ()L3)*(b_71/2)<k4>7(b_,1/2)
iO,:‘:] ,,,,, :t5 )»3,)»4ER

n3ng—ng

x H P! H STt (h s, k) STIns, ] LZ]. (10.41)
ns A

As before, we estimate the operator norm || - ||,13n,—n, by the Hilbert-Schmidt norm
Il - ll2gn3n4- Using the p-moment estimate reduction argument in Sect. 5.7 and the
Hilbert-Schmidt estimate (5.89) in Lemma 5.18, we obtain that

1/p _
E[(10.41)”] <pVANE LNy P (N3N
x min(No, Ns)'/2N; ' N3N,
— 5/2.,5/2
<pANSEENT NN

Due to our assumptions on the frequency scales, this is acceptable.
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Invariant Gibbs measures for the three dimensional cubic NLW 1345

Proof of (ii): The argument is similar to the proof of (i). The only additional in-
gredient is a standard box-localization argument (see e.g. the proof of Lemma 10.4
or [108, Corollary 3.13]) and we omit the standard details.

Proof of (iii): Using Lemma 6.23 and Lemma 7.17, the €<y, €3, and ¢2)-

terms in XS}}eXpl can be treated as in the proof of (i). Thus, it only remains to treat
the (y<ny — I'<y)-term. To this end, we first set N; := K, where j =0,1,2,3.
Then, we decompose the product into its resonant and non-resonant components.
More precisely, we decompose

Py, [ D e (v = T=n) Z[ T, ]]

3
= 2 2 [(l_[ ;1)) 1)~ () ™ (13) 72 (10.42)
j=0

PLP203€ o nny naeld
{cos,sin} no=ni23

x (y=n — T<n(13))e' "0 gy (t(n1)) 2 (t (n2))
t
x (/0 de'sin (¢ = 1) (13)) @3 (1(13)) ) STl 01 1 = 53]}

—|—1{N2=N3}

Y 3 [1{;123 =o}(f[ Iy, (1)) (10.43)

PIC€  no.ninp.n3el’:
feos,sin) "0

x (n1) " (n2) " n3) P (yen — Tan(3))e! ™1 (1(n1))
t
x (/0 di'sin (1 = ') (n3)) cos (¢ = 1)(n3)) ) SI[nl,gol]]

+1{N; = N3}

3
x Y > [1{n13=o}(H1N,(n,,~))<n1>—1<nz>—1<n3>—2 (10.44)
j=0

P2€  no.nq,na,n3€Z3:
{cos,sin} 0 1}102:’,132 ’

x (y=n — T<n(13))e’ " 0o (¢ (n2))

x (/0 de'sin (¢ = ') (n3)) cos (¢ = 1)(n3)) ) SI[n2,<p2]].

By symmetry in n1 and n», it suffices to treat the non-resonant component (10.42) and
the resonant component (10.43). Together with Lemma 7.1, the non-resonant compo-
nent (10.42) can be treated exactly as in (i). For the resonant component (10.43), we
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argue similarly as in the proof of Lemma 10.7. More precisely, we obtain that
(10.43)

={No=N}1{M=N3) D > [(Hhv(n,))m Hny) ™

{C(()’; sin) ni,n3€Z3: Jj=13

x (y<n — Ty (m3))e' " ¥ gy (t(n1))

t
x (/0 de'sin (1 = ) (n3)) cos (1 = ') (n3)) ) SI[n1,¢1]]

z_%.l{Nole} [N, = N3} Z Z [(levj(nj))(m)l<n3)4

3. i=1,3
{cos s1n} mon3 €L /

X (yen = Dan (1)) " (1m) (cos (2t (n3) — 1) SI[m,gol]}. (10.45)
Using Gaussian hypercontractivity and Lemma 7.1, it follows that

p 2/p
]EI:”(]OA—S)”X71/2+62.h+—li|
S1H{No = Ni}1{N> = N3}
2
X 3 I e )2 (3 1 (1) ()~ |yen — Den(3)) )
ni eZ3 n3 eZ3
SH{No =N} 1{N2 = N5} N2 N2
Due to our frequency-scale assumptions, this yields an acceptable contribution. [J
It remains to treat (10.30), i.e., the term involving  and X®. Aside from
frequency-localizations, we further split (10.30) into three further sub-terms, which
correspond to the zero, one, and two-pairing case. The contribution of (10.30) in
the two-pairing case is partially but not completely cancelled by the renormalization

multiplier I". In order to represent the remaining error, it is convenient to make the
following definition.

Definition 10.12 (Frequency-localized operator version of I'<y) For all frequency-
scales Ko, K1, K2, Kz and w: R x T3 > R, we define

FPKJw) =18 > |:(l—[1K (kj )) o

ko.k1,ko, k3 €73
o=kiz3 (10.46)

o sin(( =) (k3)) [ cos (= kD)
<[yl e )w(t’kO)]'

Jj=1
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Remark 10.13 The choice of using K; instead of N; to denote frequency-scales is
deliberate, since otherwise the notation in Lemma 10.15 would conflict with the no-
tation in the proof of Proposition 11.2 below.

Equipped with Definition 10.12, we now obtain the following decomposition of
the (VDS N Xgl)\, -term.

Lemma 10.14 (Decomposition of the ‘\&N Xg}\,-term) For all N > 1, it holds that

32 X — (61 +3n0) (R oy X))
+T<n (3%1\, - PSN?SM + USN)

=2, > Py, [3 Ty, Ty, : XEPIN,, wy] (10.47)
wy

No,...,N5,N234<N:
N234>max(N1,Ns)",
Nj<max(Ny,N3)" <min(N,, N3)

+1{No= N4, Ni =Nz, N3=Ns|TP[Na, N, N3, N234]w4:|

+ Z |:F§Nw4 - Z [°P[Ny4, N2, N3, N34l w4}, (10.48)
wy

N2,N3,N4,No34<N:
Na34>max(N2,N3)",
min(N>, N3)>max(N,,N3)7,
Ng<max(Np,N3)".

where the sum in wy is taken over 3%1\/, _PSN?<M ,and v<p.

The purpose of the I'°P-terms in (10.47) is to exactly cancel the two-pairing terms.

Proof This follows directly from Lemma 10.3 and the definitions of HE}\IJO’IO and
pphi-hi.lo B O
=N -

We now separately treat the contributions of (10.47) and (10.48). We start with
(10.47), which contains zero and one-pairing terms.

Lemma 10.15 (Estimate of the zero and one-pairing parts of mzv Xf}v) For all
T > 1and p > 2, it holds that

E|:sup sup H Z Py, |:3 Ty, s X@OP[N,, wy]
N j N() ,,,,, N5,N234SN:
N234>max(N1,Ns)7,
N4<max(N,,N3)"<min(N,,N3)

+1{N0=N4, N1 =N, N3=N5}
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l/p
P
op
x T'™P[N4, N2, N3, N234]w4} H X—1~17(J)*>X—'/2+52vb+—1(J):|

< P

The only reason for summing over all admissible frequency-scales Ny, ..., Ns,
N334 in Lemma 10.15 (instead of fixing the frequency-scales) is that it preserves the
symmetry in n| and ns as well as in n, and n3.

Proof We only treat the case T =1 and J = [—1, 1], since the general case follows
from minor modifications. We first decompose the product into resonant and non-
resonant terms. It holds that

3 Pro[3 S, By XOPIN,, 4]

No,...,N5,N234<N:
N234>max(N1,Ns)",
Ng<max(Ny,N3)" <min(N2,N3)

No,...,N5,N234<N:
Na34>max(N,Ns)",
Ng<max(N;,N3)" <min(N2,N3)

-9 Z Z Z |:1N234(n234)(li[1Nj(nj)>

No,..., Ns5,Ny34<N: 91,92,93,¢4 oML, .ens n5€Z3: j=0
N234>max(Ny,Ns)", &{cos,sin} no=n12345
Ng<max(Nz,N3)"<min(N2,N3)

(10.49)

x (n234) 1) T o) T na) T ns) e 10N gy (¢(n1) ) s (2 (ns) )
t
< ( /O di'sin (¢ = 1) (n234)) 2 (1 (12)) 3 (1 13)) D4 (1. 1))

xS8Zlnj,¢j: j= 1,2,3,5]1|

1
~36 3 > 3 [1{1\71 =N2}1N0(n0)%

No,...,N5,N234<N: 3,95€ no,n3,n4,n5€Z3:
N234>max(N1,Ns)", {cos,sin} no=n34s
N4<max(Nj,N3)"<min(N»,N3)
(10.50)
Ins(ns) ;
5 s
x 1y, ( )Welmo x>§05(f(n5>)

t
< ( /O dt' Sine[Nasa, Nal(t = 1/, nag)gs (1'(13)) Da (1, 1) )
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X SI[n3,<p3,n5’<P5]i|

—18 > > [1{n12=n35=0}

No,...,N5,N234<N: no,ny,..ns€Z:
Np34>max(Ny,Ns)", nO=n12345
Ng<max(N2,N3)"<min(Ny,N3)

X 1N234(”234)(H1N (n,)) Fno.x) (10.51)
j=0
o sin((r — 1) (n234)) cos ((t — ') (n2)) cos ((t — 1) (n3)) .
(o (m2)? ()2 w“(t’”“))]‘

In (10.50) and (10.51), we already used symmetry to reduce to pairings between n
and n, or between n and n; as well as n3 and ns, respectively. Since the two-pairing
terms (10.51) are exactly cancelled by the Py, T"°P[ N4, N2, N3, N23a]wa-terms, it re-
mains to estimate the zero-pairing terms in (10.49) and the one-pairing terms in
(10.50). Since we already used symmetry to reduce to fixed pairings, we can now
estimate each dyadic term separately (instead of the whole sum over all admissible
frequency scales).

The zero-pairing terms in (10.49): The argument is similar as for the non-resonant
term in Lemma 10.11. We use the quintic tensor from Lemma 5.11,

hnom ..n5 (t» )"4) = hnom ..n5 [N()a ceey N57 N234’ :l:l PR :l:S](ta )"4)7 (1052)

where we set A = Ay = A3 = A5 = 0. Using (10.52), we can rewrite a dyadic compo-
nent of the zero-pairing term as

1049y = > fd/\4 >

|: i no,X)hn()nl...ns (ta )\4)

AT e
X (V)wi*(ng, ) STlnj, +j: j=1,2, 3,5]}. (10.53)

The (V)-multiplier acting on w4 is due to the (n4)~-factor in the definition of the
quintic tensor. Due to the frequency assumptions N4 < max(N», N3)", however, the
(V)-multiplier is essentially irrelevant. Using the tensor estimate reduction argument
in Sect. 5.7, it follows that

H(lo.ss)H

X—1bs x—1b_s x—1/2+53.b4—1

SNGPONZ max | sup | ()@=
Fo.E100F5 1 eR

x H(A)”MH 3 Rk A STIng £y j=1,2,3,5]

ni,n2,n3,ns

ng—no

, |-
in|

(10.54)
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1350 B. Bringmann et al.

Since N4 is small compared to max (N2, N3), we simply bound the || - ||, »,-norm by
the Hilbert-Schmidt norm || - || ;s . Using the p-moment estimate reduction argument
in Sect. 5.7 and the Hilbert-Schmidt estimate (5.51) in Lemma 5.11, it follows that
1/p
E[(10.54)1’] < p2NE

max

Ny /22 N2 Ny min(Na, N3, Na)'/2
x max(Njy, N3, N4)_1/2 max(Ng, Ny, N5)_1/2

< PPNEZEEND max(Na, N3, Ng) =172,
Due to our frequency-scale assumptions max(Nz, N3, N4) = max(Ny, N5)7 and
N4 < max(N3, N3)7, this yields an acceptable contribution.

The one-pairing term (10.50): The argument is similar as for the resonant term
in Lemma 10.11 and utilizes the sine-cancellation tensor. To be precise, we use the
sine-cancellation tensor

e st Aa) =hyme  [No, N1, ..., Ns, Nosa, &3, +4, £51(t, 14)  (10.55)

nonsn4ns nonznans

from Lemma 5.18, where we set A3 = A5 = 0. Using (10.55), we can rewrite a dyadic
component of the one-pairing term as

sy, = ¥ fau ¥ [dmin,, 0

+3,%4,%+5 no,n3,n4,ns

X (V)wf“ (I’l4, )»4) SI[n3, :|:3, ns, :|:5]i|. (10.56)

As before, the (V)-multiplier results from the definition of the sine-cancellation ten-
sor, but is essentially irrelevant. Using the tensor estimate reduction argument in
Sect. 5.7,

H(lO.Sé)H

X—Lby x—1.b_s x—1/2482.b1 —1

SJNO_I/Q-MZNL%i max  sup |:(A4>_(b‘_1/2) (10.57)

0,%15%5 ) eR

x [t | 30 Tnets, G ha, 1) ST, 43, ms, 5]

non3nans 2i|‘
—
nams n3ng—>no ll Ly

As before, we estimate the operator norm || - ||,,,—», by the Hilbert-Schmidt norm || -
lgny - Using the p-moment estimate reduction argument in Sect. 5.7 and the Hilbert-
Schmidt estimate (5.89) in Lemma 5.18, we obtain that

I/p -
E[1057)7] 77 S pNuNg 2 (N3 Ng)?

max

x min(No, N5)*/> max(Na, Naza) "' N3/> N> N7 !
< PNEE2 max(Na, Nasa) ' NP NS> (10.58)
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Since N4 < max (N, N3)", it holds that max(N,, Na34) ~ max(Np, N3, N4g). As a
result, we obtain

(10.58) < pNEED? max(Ny, N3, Ny~ /2N,

max

Due to our frequency-scale assumptions, this is acceptable. g

It remains to estimate (10.48), which contains the renormalized two-pairing terms.
In contrast to (10.47), (10.48) viewed as an operator in w4 is entirely deterministic.

Lemma 10.16 (Estimate of the renormalized two-pairing terms in 3/, X(SZ}V) For
all N > 1, T > 1, and closed intervals 0 € J C [T, T], it holds that

H Z I'°P[N4, N2, N3, Nazalws —T<yws
N3,N3,N4,Np34<N:
Na34>max(N2,N3)",
min(N3, N3)>max(Np,N3)7,
Ny<max(Np,N3)".

S T wallx—eb7y- (10.59)

X—1/2482.b4 =17y

Proof We only treat the case T =1 and J = [—1, 1], since the general case follows
from minor modifications. Before starting with our estimates, we first rewrite the
I'°P-terms. From Definition 10.12, it follows that

Z I'P[Ny, N3, N3, Nozalws —T<ywy

N2 ,N3,N4,Np34<N:
Na34>max(N2,N3)",
min(N3, N3)>max(N,N3)",
Ng<max(Ny,N3)".

= > TNy N2, N3 Nosalws —Tyuy (10.60)
N3,N3,N4, N34 <N

+ ) [(1 — 1{Naas > max(Na, N3)",
N3,N3,N4,Np34<N

Ny < max(Na, N3)" < min(Na, N3)}) (10.61)
x T°P[N4, N2, N3, No3a] w4].

We now treat (10.60) and (10.61) separately.
The contribution of (10.60): By first using Definition 10.12 and then using the
symmetry in —n334, 12, and n3, it holds that

(10.60)

4
=18 Z |:1§N(”234)<H ISN(nj))ei<n4qx>
n2.n3,n4,n234€7Z3 =2

ny3a=ny+n3—+n4
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to o reos((t— 1))\ /oy cos (6 — )y
x/o dt at/< . )(H #)w(r,n@]—quum

(n234) i (n;

=6 Z |:1<N(n234)(1_[1<1v(”/)) Hna)

no,n3,n4,n234€L3
n34=ny+n3+ng

/ 3 ¢/ .
§ /t dt’a,/(cos ((r—1 )§n234>) (1—[ cos ((t t2)<n]>)))@(t/’ n4)] Teyws
A .

(n234) i (nj)

t
= Z [e”’””‘)(/o dt’at/(FSN(m;,t—t'))ﬁ?(r’,m)—FSN(n4)@(I,n4)>:|.

n4eZ3
(10.62)
Using integration by parts, it follows that
(10.62) = — Z e My (ng, 1) W4 (0, ng) (10.63)
n4€Z3
— Z i{na,x) / dt'T<n(ng, t —t)0,Wy(t', ng). (10.64)
n4€Z3

The first term (10.63) can easily be estimated using a dyadic decomposition and (7.5)
from Lemma 7.3. In order to estimate (10.64), we first decompose w4 into a superpo-
sition of time-modulated linear waves. By inserting the decomposition into (10.64),
it follows that

(10.64)

_ZZ Z [4 <fRd)\4(i4<n4>+)\4)

+4 na€?3
t
X (/ dt'T <y (na, t —1')e! Eainartrat )wf4(k4,n4)>}-
0

Using (7.5) from Lemma 7.3 and a dyadic decomposition, it follows that

t . ’ —
‘(i4 (na) +14) / AT oy (. 1 — 1) s+ )‘ < (Na+ ()2,
0

After using Cauchy-Schwarz in A4, it follows that
| 0. 64)||Lmez€ < llwall x-es,
which yields the desired estimate.
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The contribution of (10.61): Using Definition 10.12, we see that the dyadic com-
ponents in (10.61) are given by

4
Z [ ISN(”234)< 1_[ 15N(”j)>ei<n4’x>

n2,n3,n4€Z3 Jj=2

xftd;/ Si“((f—f’)<"234>)< a COS((t_t/)<”j>))z’5(t”n4)].
0

(n234) (nj)?

j=2

The sum over frequency-scales in (10.61) is supported on a set of frequency-scales
where at least one of the three conditions
min (Nz, N3) <max(Naz, N3)7, N4> max(N, N3)7, or

(10.65)
N34 < max(Nz, N3)"

is satisfied. By symmetry, we may also assume that N> > N3. We now further separate
the argument into two sub-cases.

Case 1: min(N>, N3) < max(Np, N3)7 or Ny > max(N;, N3)". In this case, we
make use of the sine-cancellation. Using Definition 5.13, we write

(10.65)= Y | (13) Ly (n3) Ly, (ma)e! 4

n3,n4€Z’

t
X / dr’ Sine[Np34, N21(t — t', n3s) cos ((t — 1) (n3))Wa(t’, n4)].
0

(10.66)
Together with the embedding X ~1/2+92:0 s x—1/2402.b+=1 'y obtain that

2
|06 rus
2
slaoeo)| , n
S sup Y 1N4(n4><n4>1+2"2‘ > [1N3(n3)<n3>2 (10.67)
1‘6[71'1]}74623 n3EZ3
2

t
X / dt’ Sine[Naza, N2|(t — t', n3s) cos ((t — t’)(ng))@;;(l", n4)]
0

By first using the decomposition of wy4 into time-modulated linear waves (similar as
the reduction arguments in Sect. 5.7) and then applying Lemma 5.17, it follows that

_ 2
(10.67) < max(Naz4, N2) 22 N3 | Prvywa | y-1/20,0

- —1428,42 2
<max(Nosa, No) 22NN, 2202 Prywy |5 (10.68)

@ Springer



1354 B. Bringmann et al.

If min(N,, N3) < max(N,, N3)", it follows that
(10.68) 5 N2—2+277+2€N4—1+252+2€ ” PN4w4 ||§(761b,
which is acceptable. Alternatively, if N4 > max(N>, N3)", it follows that
(10.68) S max(Na, N3, Na)> Ny P22 Py |5,
< max(Na, N3, Ng)~7H20244€ Py apy ||§(—e,bv

which is also acceptable. We note that, while the case N4 > max(N2, N3)" has been
conveniently treated using the Sine-kernel, it actually does not require the sine-
cancellation, because one can gain N 4_ 173 from the X ~1/2+82.b+=1 norm of the out-
put, while the sum over (n2, n3) can be controlled using Lemma 5.4.

Case 2: N34 < max(Nj, N3)". In this case, we write the dyadic component of
(10.61) as

¢ 3
> / dt’<1N4(n4)@(t’,n4)ei<"4’x> > |:1N234(n234)(l_[1Nj(nj))

ny€Z’ 0 na,n3 €2’ /=2 (1069)
sin (¢ — ') (n234)) /1 cos (1 — ) (n)) D
) (n234) (]1:[2 (nj)? ) -

Using the assumption Np34 < max(Na, N3)" and N, > N3, it follows that

3 sin ((¢ — ") (n234)) /v cos ((t — ') {(n ;)
5 [ S8 e

n
I j=2 (n234) j=2

—1 Ar—2A7—=2 3 A3 —142y
S NpauNy N3~ X NyyyN3 S N, :
As a result, we obtain that

H(10.69)H2 < H(10.69)‘

X—1/2+63.b4—1 ~

2
12 a1

SN TN Py

< N;2+4ﬂN;1+252+2€ ” Py, ws ”iig’b 7

which is acceptable. d

11 Analytic aspects of higher order stochastic diagrams
In this section, we estimate the terms involving explicit stochastic objects which

contribute to the remainder. In fact, some of them have already been treated in
Sects. 8—10, so here we only need to study the three (more difficult) remaining
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objects, namely the linear-cubic-cubic, the cubic-cubic-cubic, and the linear-linear-
quintic interactions. We state the main estimates in the following two propositions.

Proposition 11.1 (Regularity of linear-cubic-cubic and cubic-cubic-cubic terms) Fix
dyadic frequency-scales Kg, K1, K2, K3 > 1, denote Kpax := max(Ko, ..., K3), let
p>2and T > 1. Define the linear-cubic-cubic interaction

Ml,3,3 = PKOH;N(PIQ?SN ) PKz%\,s PK3%)

and the cubic-cubic-cubic interaction

M33z3:= PKOHEN(PMQ??N ) Pqu?ﬁ’ Pksq?ﬁv)’

then we have the estimates
7/2 —n?
IM133ll 2 x-12480 04 -1 .77 S P PT (Kmax) ™",

if max(K2, K3) 2 (Kmax)", (11.1)
_2
||M3,3,3||L5)X*1/2+52~b+*1([_T,T]) S P9/2Ta(Kmax) U

Proposition 11.2 (Regularity of the linear-linear-quintic term) Fix a dyadic fre-
quency scale N, let p > 2 and T > 1. Define the linear-quintic-quintic interaction

M, 15:= Py [9‘\)’5N Y, — v - ¥ —18¢Y Ppi.,

B 9(2Ht;i}bo,1o n Hl;i,]\l;i,lo) (?51\’ i ?SN, %N)}

then we have the estimate
”MI,I,S ”Lf,X_l/z‘*"stb-*——l([fT,T]) 5 p7/2Ta. (11.2)

In Sect. 11.1 we will prove Proposition 11.1 for M 3 3, and in Sect. 11.2 we will
prove Proposition 11.1 for M3 3 3. In Sect. 11.3 we will study M 1,5 and prove
Proposition 11.2. These objects are much more complicated than the quintic and
lower order ones discussed in Sect. 7. While it is possible to treat them using only
the graphical notation from Sect. 6 and tensor estimates, such an argument could
be extremely lengthy. To be more efficient, we instead use the molecule formalism
from [40]. This method will be described in detail in Sect. 11.1 below, and is also
applied in Sects. 11.2-11.3. Note that the estimate for M ;5 is stated and proved
separately from the other two terms, because it has more complicated cancellation
and renormalization structures, which will also be treated in Sect. 11.3.

11.1 The linear-cubic-cubic stochastic object
In this subsection we prove Proposition 11.1 for M/ 3 3. As explained above, in this

subsection (specifically in Sects. 11.1.2 and 11.1.3) we will introduce the molecule
formalism, which will also be important in Sects. 11.2 and 11.3 below.
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(g, +)

{567, —)

(ny, +)

» A o
(n2, =) (ng, +) (ng, +) (5, =) (ng, —) (g, +)

Fig. 9 (Colored online) The diagram associated with M 3 3 with the corresponding Fourier modes 7 ;
indicated. For each j, the sign + j is defined below, see (11.9); here we have made a specific choice of
each, as written beside each n ; (for example +934 = + and +5 = —). Nodes of the same color and shape
(other than black circled dot) are assumed to be paired in P, for example here we have P = {{1, 2}, {4, 5}}

11.1.1 Reduction to counting estimates

We first reduce the estimate for M 33 to a counting problem associated with the
structure of this term.

Note that the definition (3.9) of q?ﬁ involves a time integral, which is restricted to
[—T, T] due to the time localization in (11.1); by subdividing [—7, T'] into intervals
of length ~ 1, and possibly losing factors of 7% in this process, we may reduce to
the case T = 1 (the estimates used below are invariant under time translations). This
also means we can freely insert smooth cutoff functions y = x (¢) in the arguments
below. Using Gaussian hypercontractivity (Lemma 2.8) and Minkowski inequality
as in the proof of Lemma 7.4, we may also reduce to the case p = 2. Denote the
wave number of the output M 33 by ng, and the wave numbers of the linear and
two cubic inputs in M1 33 by n1, (n2,n3,n4) and (ns, ne, n7) respectively; this is
illustrated in Fig. 9, in which each node and corresponding Fourier mode, as well as
some additional features (see below) are indicated.

Note that Fig. 9 is drawn in the style of [40] (except that we identify pairings by
both color and shape); in the notation of the current paper it would correspond to the
term

%

Without loss of generality, we may restrict to the region p > 0 in (2.23), below we
will replace the letter p by &, so the X ~1/2+92.6+=1 norm of M 3 3 will contain the
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Invariant Gibbs measures for the three dimensional cubic NLW 1357

weight (£ — (no))>+~1, see (2.23). Then, like in Sect. 6, we can decompose

f<PK1?§N .PKZYV 'PK3%)(1‘,110)

(11.3)
=y ) Z (Bm>no (1) - SInj, @;: j € O,
P o1, @7€{sin,cos}n1,.
with the coefficient defined as
(B1,3,3)ng--n7 (1)
7 1 1 t t
T~ / / X O x )X (1) sin((na3a) (¢ — 1)
joi (i) (n23a) inse7) Jo Jo (11.4)

4 7
x sin({nse7) (t — 12))1({n1)1) H¢j((nj)t1) H(Dj((nj)lz)dtldtz.
j=2 Jj=5

Here in (11.3), x is a smooth cutoff function, the sum in P is taken over all possible
collections of pairings, i.e. disjoint two-element subsets of {1,...,7}, such that P
does not contain any pairing within {2, 3,4} or {5, 6,7} (for example {2, 3} ¢ P;
note that those P containing {2, 3} etc. are excluded due to the Wick ordering in the
definition of Q?}D). In the summation over (ny,...,n7) and (¢1,...,¢@7) in (11.3) we
assume that

ng=ni..7; n;+n;=0and ¢; =¢; whenever {i, j} € P, (11.5)
as well as

Ki/2 <Iniloo =K1, K2/2 <|n23slec < K2, K3/2 <|nse7lcc < K3, (11.6)
and |ny]ooc < N (Vv e{l,...,7,234,567}). As a convention, in this section we will
use j to indicate nonzero single-digit indices (in {1, ..., 7} in the current case), and
v to indicate arbitrary indices (for example including 0, 234 and 567). The stochastic
integral SZ is defined as in (2.35), where O is the set of indices in {1, ..., 7} that do
not belong to the union of all the two-element subsets in P.

Note that the renormalization term QﬁG 3)[K2, K3](t) - PK1?< n (see Definition

3.13) exactly corresponds to the cases where P consists of exactly three pairings be-
tween the sets {2, 3,4} and {5, 6, 7} (for example P = {{2, 5}, {3, 6}, {4, 7}}); more-
over the cases where P contains a pairing within {2, 3,4} or {5, 6, 7} are also can-
celled by the Wick ordering. Thus, M 33 can be decomposed in the same way as
in (11.3), but restricted to P which does not contain any pairing within {2, 3,4} or
{5, 6,7}, and furthermore does not consist of exactly three pairings between {2, 3, 4}
and {5, 6, 7}. We call such P good. From now on, we shall assume a good P is fixed.

Suppose P contains a subset {1, j} where 2 < j <7; by symmetry we may assume
Jj = 2. Then we must have n; +n, = 0 and ¢; = ¢; in (11.4), which means that here
we have a similar structure as the sine-cancellation kernel in Lemma 5.15. Therefore,
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we can perform the same reduction as in Lemma 5.15 and replace Bj 3,3 in (11.4) by
855)3 3» which is the superposition of three terms defined in (11.7) below.

With the above arguments, we may now fix a choice of good P and a choice of
@;j € {sin, cos} for j € O, and consider the expression on the right hand side of (11.3)
with summation over n; and ¢; = ¢; for {i, j} € P only, where the coefficient B 3 3
is defined as in (11.4). Moreover, if {1,2} € P then we only sum over ¢; = ¢; for
{1,2} #{i, j} € P and (11.4) is replaced by

(B gy (1)

7 1 1 t t
:1—[(_.<n567) /0 /0 XOxE)x(12)

|: (n1) — (n234)

1k, (n1) 1k, (n234) PRI

(n1) + (n234)

sin((t — 1)) ({n1) — (n234)))

+ 1k, (1) 1k, (n234)

1) (1232)2 sin((z — 1) ({n1) + (n234)))
_ Lk 1)1k, (n234) — 1y (1) 1k, (r234)  cos((t — 1) {ny)) sin((t — t/)(n234))]
2 (n1)%(n234)
4
x sin((ns67)(t — 12)) 1—[ @j((nj)t1) 1_[ @j({nj)t2) dtider. (11.7)
j=3

Next, we may apply the formulas sinz = (¢'* — e~/%)/(2i) and cosz = (e'* +
e~ '%)/2, to reduce the time integral in (11.4) to a linear combination of integrals of
form

t t
el f / X (O x (1) x (t)e! QOTTUNTR) Gy dry =: & 0 H (1, Qp, 1, Q2),
0 JO

(11.8)
where

Q0 := —(no) 1 (n1) E234 (n234) L3567 (n567),
Qy 1= Fo34(n234) L2 (n2) 3 (n3) £4 (n4), (11.9)
Q) 1= Fs67(nse7) +5 (ns) +6 (ne) +7 (n7).

Here &+, forv e {1, ...,7,234, 567} are arbitrary signs and =, are the opposite signs;
for convenience define also 0 = +. If {i, j} € P then it is easy to see that the two
occurrences of (n;) = (n;) in the phase must be with opposite signs, thus +; = ;.
As for (11.7) one has a similar expression; in addition, either 1 = 4234 and one
has a factor ({n) + (n234))/(n1)2(n234)2 attached to this integral, or &1 = F»34 and
one has a factor ((n1) — (n234))/(n1)?(n234)? attached to this integral, or one has the
I"-condition where |n|oo =T > |nz34|Oo or n1]loo < T < |n234|c0 for some a fixed

value T (and one has a factor (n1)~2(n234) " attached to this integral).
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For the function H (¢, 20, 21, £22) occurring in (11.8), by Proposition B.4 we have

/R 3(<Qo><91><Qz>>8<1/2—b+>|<f,H)<s, Qo, Q1, )| dQdQdQy < (5)H1/2704);

(11.10)
the same estimate also holds for all ; derivatives of H. Moreover, assume
maxi<j<7(n;) ~ Kl then all (Q;) < K, by (11.9), so by taking supremum

max? max
in each unit cube using Sobolev, we obtain that

[(FH) (&, Q0. 21, ) SHE, (0], 121, 122)) (11.11)
for some function ﬁ, such that

D IHE momimo)| S (Kb ) OO D ()0 /27he) (11.12)

mo,mj,my

NOte alSO that (‘FIH)(Ev QO? le 92) = J:ZH(_és Q()v _le _QZ) If Kmax S
(K 17100 " say (ny) ~ K., then using the proof of Lemma 7.5 (in particular

using (5.46) with N123 and Ny« replaced by K| and K = respectively) we can eas-

max

ily bound the L;"’H3 norm of PKIQ?}:V by (K$ax)’]/10, and the L H?3 norm of the
other two factors by (K ;;,dx) 130 hence (11.1) follows trivially. Thus, we may assume
Kmax > (anax)l/loo, SO (Knﬁax)o(m_l/z) = (Kmax) ?®+~1/2 on the right hand side
of (11.12), which is negligible in view of the (Kmax)_”2 gainin (11.1).

At this point, we can reduce the estimate of M 3 3 to a counting estimate. Recall
that we may fix P and ¢; (j € O); further we may replace the time integrals in (11.4)
and (11.7) by integrals of form (11.8). Recall that we have fixed p = 2. Since

E[SZ(nj,¢;:j€0)-SI(n),9;:je€ 0)]=0

unless (n’/. :j € O)isapermutationof (n;: j € O), and E|SZ(nj,¢;:j € 0)? <1,
we get that

BIMi2 0 e S Yt [ (00020

ng
2
x ) Yo et FHE Q0 Q)| (1113)
(nj:je0) " (nj=—nj:i,j}eP)
where in the summation we still assume (11.5)—-(11.6), and @« = a(ny,...,n7) is a
function bounded by
7
1 1 1
el ST+ (11.14)
jo1 (i) (n234) (nser)
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if {1,2} ¢ P. If {1, 2} € P, then we still always have (11.14); moreover we can also
improve (11.14) using sine-cancellation, namely either we have

(n1) + (n23a)
1 1 (n1)%(n234)% "
< } .
|a|NH (nj) (nse7) | [{n1) — (n234)l
(n1)*(n234)*

if £1 =+334in (11.9),

(11.15)
if :1:1 = F234 in (11.9),

or we have (11.14) and can further require the I'-condition on n; and n334 in the
summation.

Since (np) < Kmax and K;l‘ax < (Kmax) 199, by losing at most (Kmax)©® which
is negligible in view of the (Km.dx)_"2 gain, we may replace (no)~112% in (11.13)
by (no)~!, and also perform a dyadic decomposition and restrict that (n,) ~ N, (v €
{0,1,...,7,234,567}), and that |ny 4+ no34| ~ L if {1,2} € P. Note in particular
that No ~ Ko, N1 ~ K1, Naza ~ K2, Nsg7 ~ K3. In either case, using (11.11) and
expanding the square in (11.13), we can estimate

2
IE||~/\/tl,3,3 ||X—1/2+52.b+—l

<D no)! /H; (&)2+ 2 dg
no

x Z Z Z lee(ny, ..., n7)]|

(n,-=n’j:je0) (nj=—nj:{i,j}eP) (né:—n}:{i,j}e?’)

x ey, ...n)| - THE, Qo] Q1) [Q2D)] - 1H(=E, (2], 1201, 125D,

Here the summation is taken over (1, ..., n7) and another vector (n}, ..., n/7), which
satisfies the same equations, support requirements etc., as (n1, ..., n7). Moreover, we
require the equalities n; = n’j for j € O and n; = —n; and n; = —n’, for (i, j) € P,

as indicated in the summation. The quantities £2; are defined from (n;) as in (11.8);
Q’J are similarly defined from (n’j), but we change —{ng) to {ng) and switch F, and
=+, in the definition of Q/]

Now, using (11.14), and the £ integrability of (£)@b+=D+4(1/2=b+) e can bound

7
EIMi13301% 125001 S [ N2 Ny ' NygiNsgs - A7 sup (#D),
j=1 mo,my,ma,m,my,n;,
(11.16)
where X is the set defined by

T ={(mno,ni1,....n7.n\,....n5) ng=nr.7=nj. 4,
ni—l—nj:n;—i-n/j:O(V{i,j}e?’),njzn’j (Vj e 0),
Qj=mj+0()(0<j<2), Q=m;+0(1)0< <2}, (1117

note that in the definition of ¥ we also impose the above dyadic restrictions such as
(ny) ~ (n,) ~ N, and |n 4 na34| ~ |n| + n'ys,| ~ L etc. The quantity A equals 1 if
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{1,2} ¢ P, and if {1, 2} € P then either

1, if £1 = 934 in (11.9),
A= (11.18)
max(l, No3sL™),  if &) = Fp34 in (11.9)

(in view of (11.15)), or A = 1 but we further require the I'-condition for both ()
and (n’j) in (11.17).

We have now reduced the estimate of M 33 to the counting problem of estimat-
ing #% for fixed values of (m, m/j), which we analyze in the next subsection using
the notion of molecules.

11.1.2 Reduction to molecules

The notion of molecules is introduced in the recent work of the second author with Z.
Hani [40]. With an algorithmic approach, it plays a fundamental role in the analysis
of the diagrams occurring in [40], which are similar to Fig. 9 but have arbitrarily high
complexity.

Here, since we only need to deal with septic and nonic terms, our analysis will
not be purely algorithmic, but rather an algorithmic-enumerative hybrid. In either
case, we find it much easier (in terms of both calculations and presentations) than the
traditional approach where one classifies all possibilities of pairings P and performs
a case-by-case analysis.

The definition of molecules here is a special case of [40], although we will present
it in a slightly different way in accordance with the notations chosen here.

Definition 11.3 (Definition of molecules: linear-cubic-cubic case) Fix a set P and
the associated signs +,, as above. Draw a ternary tree T such that T has root 0 (also
denoted Vy) with three children 1, 234 and 567, the nodes 234 and 567 (also denoted
V1 and V) have children 2, 3, 4 and 5, 6, 7 respectively, and nodes 1-7 are all leaves
(this is essentially the same tree in Fig. 9, which is the ternary tree corresponding
to the linear-cubic-cubic interaction); suppose each node v of the tree has sign +,
(the root has sign +). Draw another identical tree T’ whose nodes (denoted by 1/,
234 or V]f etc.) have opposite signs with T . We pair the leaves (i, j) and (i, j') for
{i, j} € P, and also pair the leaves (j, j') for j € O; note that the signs of any two
paired leaves must be opposite.

Now define a molecule M, which is a directed graph, as follows. Its vertices (called
atoms) are the branching nodes V;, V]f (0 < j <2) of the two trees T and T'. We

connect two atoms V and V by an directed edge e (called bond) if and only if

(D V is a child of V, in this case we let e go from V to % lf\7 has — sign, and from
V to V otherwise; or

(2) V has a child leaf paired to a child leaf of V, in this case we let e go from the
one whose child has — sign to the one whose child has + sign; or

(3) V and V are the roots of T and T respectively, in this case we let e go from V
toV.
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Vo] s o — my — nagy — gy = 0

<H(]> — (m) — (n.-_);“) + (”-[‘";7) =mgy+ ()( 1)
(Vo] = o — ny — niygy — misg; =0

{no) — {n1) — {ngy) + (i) = my +O(1)
[Vi] iy —ng —ng+nazy =0

{n1) — {ng) — {ny) + {nazs) = my + O(1)
[V/]: 0] —ng—nj +nbyy =0

(L) — (na) — (L) + (mhga) =m0 + O(1)
[Va] : g — ny + ng — nggr =0

{ng) — {ny) — {ng) + {Npe7) = ma+ O(1)
(V3] : iz — g — gy = 0

{nr) — (n}) — {ng) + (nge;) = my+O(1)

Fig. 10 (Colored online) An illustration of the molecule corresponding to Fig. 9. Each m, for each bond
e, which equals some +n,, is also shown here. We also list the equation (11.19) for each atom V in the
molecule. Here the bad bonds, as defined in Proposition 11.4, are indicated by red dotted lines. Moreover,
the directions of the bonds are determined by =+, as in Definition 11.3

Note that multiple edges may be connected between two atoms, in which case
we may refer to them as double or triple bonds. For example, in Fig. 9 we have
P = {{1,2},{4,5}} with the values of £; fixed as shown, then the corresponding
molecule M is drawn in Fig. 10; here the bonds marked by +no34, —ne and +nq (for
example) are constructed through cases (1)—(3) above respectively.

Next we list some basic properties of the molecule M (which also holds for the
later cubic-cubic-cubic and linear-linear-quintic cases), and reduce the counting prob-
lem (11.17) to a counting problem associated with the molecule M.

Proposition 11.4 In the molecule M each atom has exactly degree 4 (wWhere we ignore
the direction of bonds in the definition of degree); there is no bond between V; and V'
ifi # j, and any (possible) bond from V; to V; corresponds to a unique bond from
V]f to V.

Now suppose (no, ni,...,n7, n’l, e n’7) € X where X is as in (11.17). We assign
a vector my € 73 to each node q € T U T, such that if ¢ = v is a node of T then
my = £yn,, and if ¢ =V is a node of T' then my = £,n; note that any paired
leaves must have the same mg value. Then, we assign a vector m, to each bond e of
the molecule M as follows. In case (1) in Definition 11.3 we define m, = my where q
is the node corresponding to the atom V'; in case (2) we define m, = my where q is
one of the leaves in the leaf pair; in case (3) we define m, = ny.

Then, for any atom V € M, we have

ZiV,Eme:Ov ZiV,e<me>=mex+0(1), (11.19)
e e
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where e runs over all bonds with one endpoint V, £y . equals + if e is outgoing
from V, and equal — if e is incoming at V, and meyx is a constant vector which is one
of £mj or :l:m/j, see (11.17). The mapping from (ng,ni,...,n7,n},...,n%) € T to
(m,) satisfying (11.19) is a bijection.

For any bond e, we call it bad if m, = +n,, as above, where v is either 0 or any
multi-digit index (such as v = 789 or v = 12345); otherwise we call it good. See
Fig. 10 for an illustration of the molecule coming from Fig. 9, and expressions of m,
and their equations in terms of (ng, ni, ...,n7,ny, ..., no).

Proof This can be checked using Definition 11.3, the definitions of assignments my
and m,, and the conditions in (11.17) that define X. The first equation in (11.19)
follows from the equalities ng = n1 + n234 + ns567 and no34 = ny + n3 + ny etc.,
and the second equation (11.19) follows from the condition 2; =m; + O(1) and
Q’] = m’j 4+ O(1) in (11.17). The precise verifications are straightforward and are
omitted here. Il

Remark 11.5 We make a few observations. First, the molecule in Definition 11.3 is
defined from the specific ternary tree 7 associated with the linear-cubic-cubic inter-
action. If one use any other ternary tree 7, then the rest of Definition 11.3 can be
done in the same way to form a molecule M. The assignments defined in Proposition
11.4 are also the same and the conclusions of Proposition 11.4 still hold. This will be
used in Sects. 11.2—11.3 below, where T will be the ternary trees associated with the
cubic-cubic-cubic and linear-linear-quintic interactions.

Second, the directions of the bonds in the molecule will not be too important
in the counting estimates below, because they only affect the choice of signs £y .
in (11.19), but the counting estimates we will use, namely Lemma 5.4-5.5, do not
depend on the choices of these signs. As such, we will not specify the directions of
bonds below unless necessary (when the direction affects the corresponding counting
estimates).

Finally, since we only need to estimate each individual tree term (such as
]EII/\/11,3,3||§(,1 /248,65 —1) instead of the covariance of the different tree terms, here
we may assume that the molecule M takes a special form where the only bonds be-
tween its upper and lower halves are vertical (i.e. no crossing bonds), see Fig. 11.
Thus, the number of cases we need to consider is slightly smaller than that in [40] for
molecules of a fixed size.

11.1.3 Molecule counting estimates

By considering all the possibilities of P and exploiting symmetry, we can enumerate
all the possibilities of the molecule M (without specifying bond directions, see Re-
mark 11.5) corresponding to good pairings P in Fig. 11. Note that {1, 2} € P if and
only if a double bond is connected between Vjy and Vi, and £1 = %534 if and only if
these two bonds are in the same direction.

By Proposition 11.4, the counting problem for #% can be reduced to the counting
problem for the assignments (m,.) where e runs over all bonds in the molecule M.
For any e, since m, equals one of £n, or n/,, we can identify the corresponding
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inr“./' +n994 N, denipy
g2l 281/ i .\.'l.m.
i b
I
i H =270
+na|E +ngl
2 : +ng| |Enr
ESrN |
i
3 ]
N o
. 7
anfyy. ! /Engg
Casel: P=g

193y % B “Enser
21, EskT
4 ! *

4l

+ng =1y 1y

m/ .
N

/
:I:nf,;~ & Enlg
P
"(I

Case (4): P— {{L2), {4.5)) O (5):P={{2.6}.{4,5)} Case (6): P={{1,2},{3,6},{4,5}}

Fig. 11 (Colored online) All possible cases of the molecule M for the linear-cubic-cubic interaction. Here
Vo and V/ are the roots and V7, V5, Vl’ , V) are their children. For each bond e, the value of m, is indicated
as in Proposition 11.4 and Fig. 10; the directions of the bonds are not specified as in Remark 11.5. The
5 bad bonds e are those whose m, equals £n234, +n567, T3, Tnse or ng, which has to do with the
right hand side of (11.16), see (11.20). Note also that Fig. 10 is a special case of Case (4)

dyadic number N, = N,, such that N, ~ (m.) = (n,) ~ (n),) ~ N,. As such we can
check that

7

—2 =1 a7—2 A7—2 -2 —1
HN,' "Ny NygyNsgr = H N~ l_[ N (11.20)
j=1 good bonds e bad bonds e

for the expression occurring on the right hand side of (11.16), where good and bad
bonds are defined in Proposition 11.4.

The main idea in estimating the number of assignments (m,) is to do it in steps.
Each time we select one or two atoms in M, and count the number of choices for
(m,) where e runs over all bonds connecting to one of the chosen atoms whose m,
have not been fixed yet; after this step we fix the value of these m, and select the next
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atom(s) and so on. This can be viewed as a much simplified version of the counting
algorithm in [40].

In each step, we do the counting estimate using the equations (11.19). In the case
of one atom we can apply Lemma 5.4, and in the case of two atoms we can apply
Lemma 5.5. Note that, in the case of two atoms, the role of n; and n’. in Lemma 5.5
is played by the m, where e is connected to only one of the atoms, while the role of
£; in Lemma 5.5 is played by the m, where e is a bond connecting both atoms; in
particular if ¢ =0 or r = 0 in Lemma 5.5), then instead of applying Lemma 5.5, we
should apply Lemma 5.4 once or twice.

In each step we get an upper bound & for the number of choices, and multiply it
by Y, which is the right hand side of (11.20) but only involving those bonds e where
m, is being counted. Let X)) =: Z, then in order to prove (11.1) it suffices to show
that

1_[ waAz'(Kmax)_772 (11.21)

all steps

in view of (11.16). We will choose the atoms in some order that depends on the struc-
ture of the molecule; the basic guiding principle is to avoid loss in counting estimates
in each individual step; for example we would prefer to choose two degree 4 atoms
when they are connected by a double bond, because the corresponding bound (5.18)
saves a power. Precisely, we argue as follows. If the reader finds (i)—(iii) below too
abstract, we are also presenting a concrete example with step by step demonstration,
corresponding to the molecule in Fig. 10, in Sect. 11.1.4.

(i) Consider Cases (1)—(4) in Fig. 11; note that there is at least a double bond
between V3 and V; and at least a single bond between V; and V|. We may start by
choosing the atoms (V3, V). By (5.18) and noting the two bad bonds connecting to
Vo and V{j respectively, we get Z1 < 1 in this first step. In fact, say we are in case
(4), then V, and VZ’ are connected by two good bonds, say e and e», and V, has one
more bad bond e3 and one more good bond e4, while VZ/ has one more bad bond es
and one more good bond eg, Then (5.18) implies that

X1 < (N, -+ - Nog)> max(Ney, Ney) ™  max(Nes, Neg) ™',
yl = (Ne| '.'N€6)_2N€3N€57

hence Z; < 1.

Next we may choose the atoms (Vj, V(;). Similarly, by (5.20) and noting the bad
bond connecting Vp and Vj and the two remaining bad bonds connecting to Vi and
Vl’ , we get Z> < 1. Finally we choose the atoms (V] Vl’ ) and use (5.15) to get

Z3 5 (Ny, Vl/)_l, where Ny, y/ :=max N,
’ ’ e

where the maximum is taken over all bonds e connecting V; and V/. Putting alto-
gether, we see that (11.21) is already proved if Ny, v/ > (Kma) 107

Now suppose NVl,V{ < (Kmax)m"z, then we may first choose (V7, Vl’ ), count the
vectors m, trivially for bonds e connecting Vi and V/, and use (5.15) to get Z; <
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(Kmax)“o”2 in this step. In the same way as above, we next choose (Vj, V) and then
p y 0
(Va,V)) to get 25 S1and Z3 S (NVz’Vz/)’1 where Ny, v, is defined similarly as

Ny, v/ above. Thus, we see that (11.21) is proved if Ny, v = (Kmax)loo’72

Next suppose Ny, v/ < (Kmax)'°" for 1 < j < 2. Note that max(Nazs, Nsg7) >
(Kmax)" by assumptlon we shall assume N34 = (Kmax)”, as the other case can be
treated similarly (and is easier as there is no double bond between V;y and V). Here
we shall start with (V2, V;) and get Z1 < (Kmax)o(nz) as above, then choose (V1, V)
and count m, trivially for bonds e connecting V; and Vl/ LI {1,2} ¢ P, then there
is a single bond f between V; and Vo, so the value of m ¢ is uniquely fixed and we
trivially get 2, < (Kmax)o('7 N, 234, note that Na3q 2 (Kmax)", and in the last step
with (Vp, Vo) we have Z3 < 1 due to (5.15), this also proves (11.21).

Finally suppose Nv_,,v_; < (Kmax)loo’72 for 1 < j <2,and {1,2} € P, so there is a
double bond between Vj and V. Again we first choose (V2, V;), then (Vi, V|) and
finally (Vo, Vj)); as above we still have 21 < (Kmax)o(nz) and Z3 < 1. In the second
step, using (5.10) after counting m, trivially for bonds e connecting V; and Vl/ , and

noticing that we have assumed |n| 4 n234| ~ L (which plays the role of M in (5.10)),
we get

EN
Z ,S (Kmax)o(n ). L 2;

2 (11.22)
25 < (Kmax) 27 - (max(Ny, Naza)) ™2 if &1 = %034

Moreover, if +; = Fp34 then either we have A = NozaL~1 due to (11.18),
or we can use the I'-condition, so using (5.11) gives that 2, < (Kmax) 27
L2(max (N, N234)) 2. In any case it is always true that

2 _
Zy S A (Kima)©) - (max (N1, Naza)) ™,

which proves (11.21) as N34 > (Kmax)"-

(i1) Consider Case (5) in Fig. 11; note that there is a single bond e; between V;
and V], and a single bond e, between V, and V,. By symmetry we may assume
N¢, = N,, so we shall start by choosing (V, V2/). Using (5.19) we get Z1 S N,,,
while as in (1) we next choose (Vp, V(;) and get Z, < 1 and finally choose (V1, Vl’) to
get Z3 < N_2 Thus we are done if N, 2 (KH[MX)IOO’/2 If Noy < Ney < (Kmax )100”2
then we have NV v = < (Kmax)loo’7 for 1 < j <2, so we can proceed as in the last
part of (1) to conclude the proof.

(iii) Consider Case (6) in Fig. 11. In this case we do something slightly different.
First choose the atoms (V/, VZ’); note that they are connected by a good double bond,
and each has one good external bond and one bad external bond, so by (5.18) we
get Z1 < 1. Then we choose Vjj, which now has only one bond remaining, and get
Z < No_l. Next we choose V, and use (5.15) to get Z3 < 1, and finally choose V|
and repeat the last part of (1) (albeit for only one double bond instead of two) to
get Z4 < A - max(Ny, N234)_1/2. This also proves (11.21), because we always have
max(No, N1, N234) 2 max(Na34, N5g7) 2 (Kmax)" by assumption.
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Invariant Gibbs measures for the three dimensional cubic NLW 1367

With the above discussions, we have now finished the proof of (11.21), which then
proves (11.1) for M 3 3.

11.1.4 An example of linear-cubic-cubic molecule counting

In this subsection we examine an example of the above proof in Case (4), assuming
ij,v; < (Kmax)100772 for 1 < j <2 (which is the most delicate scenario in Case
4)); as explained above we will also assume N34 > (Kpax)”. Recall Fig. 10 and the
quantity on the right hand side of (11.16), where #X is replaced by the number of
solutions to the system (11.19), which is also illustrated in Fig. 10. Moreover A = 1
since 1 = £534.

Step 1: remove (V>, V2/). First, consider the two equations for V, and VZ/ in (11.19),
which involve the unknown vectors (ng, n7, n4, ny, nse7, nsq;), namely

n7 —n4+ne —nser =0, (n7) —(na) — (ne) + {nse7) =mz + O(1); (11.23)
ny —ny+ne—nsg; =0, (n7) = (na) — (ne) + (nss7) =ma + O(1). '

By assumption we have

max(N3, No, N7) < max Ny, yr < (Kma) 'O, (11.24)
je{1,2y ViV

which controls the number of choices for (ng, n7); once ng and ny are fixed, we can
count the number of choices for (n4, ns567) and (ng, n’567) separately, using (5.15), to
bound the number of choices for (ng, n7, n4, nly, nse7, n'ss;) by

2 j—
(Kmax)® ) - (NsN7)*(NZ N7 - N3gh)* (11.25)

Let the right hand side of (11.16) be W. If we delete the atoms (V2, V) and all
bonds connected to them, to get a new molecule M’ with the same good and bad
bonds, then by (11.25) we have

W< No_l(Nl N4)~*(N3NgN7N234Nse7) 2

- (number of choices for all (n,, n,) in M)

2 _ _ _
< (Kmax) 27 - Ny 'NTH (N3 Naza) 72

sup (number of choices for all (n,, 7)) in M).
(n6,n7,14,0y,1567,10567)

This right hand side can be written as Z;W' with 2| = X}V < (Kmax) 27
here, as in the proof in Sect. 11.1.3, the A7 is the number of solutions to (11.23) and
is bounded by (11.25), and V| = N4_4(N6N7N567)_2. Moreover W is just the same
quantity ¥ for the molecule M, where the pre-factor N, Y N 4(N3Nazg) 2 is just
the right hand side of (11.20) for the new molecule M, and the new counting problem
again only concerns the atoms and bonds in M. Note that we are taking supremum in
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[Vo] : no — nq — nazy = Const.
(ng) — (n1) — (neas) = Const. + O(1)

[Vo] : no — ny — nig, = Const.
{no) — (n}) — (nhy,) = Const. + O(1)

[Vi] : my — ng + na3y = Const.
{n1) — (ng) + (nazs) = Const. + O(1)

(V] : ny — ng + niyy = Const.
(nf) — (ng) + {nhy,) = Const. + O(1)

Fig. 12 (Colored online) The molecule M after removing atoms (V», VZ/), and the variables m, and the
equations (11.19). Here the constants in Const. depend on the choices of the previously fixed vectors
(ng,n7,nq, ni‘, nse7, n/567), which are now treated as constants

(ng,ny, ng, nit, nse7, ng67), but all our estimates will be uniform in them, so we may
treat them as fixed constants below.

The molecule and counting problem for M’ is illustrated in Fig. 12.

Step 2: remove (V1,V|). Now we proceed to study the quantity W' for the
molecule M. Consider the two equations for Vi and V{ in (11.19), which involve
the unknown vectors (n3, 11, n', n234, ns,), namely

ny —n3 +ny3g = Const., (n1) — (n3) + (n234) = Const. + O(1);
(11.26)

ny —n3 +nhy, = Const., (n}) — (n3) + (n)3,) = Const. + O(1).

By (11.24) we can bound the number of choices for n3; once n3 is fixed, note
that &1 = #4534 in the current case, then we can count the number of choices for
(n1,no34) and (n’l, n’23 4) separately using (5.10), to bound the number of choices for
(n3,ny,n}, na34, nhs,) by

(Kmax) 0" - N2IN? Nyss - (max(N1, N2aa) ™' P S (Kinax) ™72 - N2(N2N234)?
11.27)
as No3a > (Kmax)".
By the same argument as above, if we delete the atoms (V, Vl’) and all bonds
connected to them, to get a new molecule M” with the same good and bad bonds,
then by (11.27) we have

W < (Kma) "4 Ny

sup (number of choices for all (n,,n,) in M").
(all previously fixed (n,,n},))
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Fig. 13 (Colored online) The
molecule M” after removing 0
atoms (V, Vl’ ), and the

variables m, and the equations i
(11.19). Here the constants in I
Const. depend on the choices of I T
the previously fixed vectors ! [Vi] : np = Coust. )
(ng, n7,n4, 1y, n567, Nsg7) and I {ng) = Const. + O(1)
|
|

/ /
(n3,ny,ny,n234,n53,) g

i [Vy] : mg = Const.

i {ng) = Const. + O(1)
i

I

Here all the previously fixed vectors include (ng, n7, n4, ng, nse7, n’567) and (n3,ny,
n', na3a, n,). As above, the right hand side can be written as 20/ where 2, <
(Kmax)~"/* and W is associated with M. Note that the molecule M contains only
one bond, see Fig. 13.

Step 3: remove (Vy, Vé). As the molecule M” contains only one bond, the counting
problem for M” is trivial and the number of choice for ng is 1 with all the other
vectors fixed. Therefore we trivially get W' = Z3 S Ny ! < 1. Therefore we get

W=212 25 < (Kna) ) - (Kma) -1,
which proves (11.1).
11.2 The cubic-cubic-cubic stochastic object
In this subsection we prove Proposition 11.1 for M3 3 3.
11.2.1 Reduction to counting estimates

We shall reduce the estimate for M3 3 3 to a counting problem associated with the
structure of this term; this part is largely identical to Sect. 11.1.1, so we will only list
the main points.

Let the wave number of the output M3 3 3 be ng, and the wave numbers of the
three cubic inputs be (n1,n2,n3), (n4,ns,n6) and (n7,ng,n9). Let max;(n;) ~
K ., in the same way as in Sect. 11.1 we may assume K5 < (Kmax)'%. Now,
similar to (11.3), we have

FMaastn)=Y. Y > (B33 dngng(t) - SIlnj. ¢;: j € O],
P ¢1,....p9€{sin,cos} n1,....n9

(11.28)
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1370 B. Bringmann et al.

where the coefficients are

9 t t t
(B3.3.3)n0-n (l‘)=1_[L ! ! ! / f / XOx @) x () x(13)
o il (nj) (n123) {nase) (n789) Jo Jo Jo

x sin({n123) (t — t1)) sin({n4se) (t — 1)) sin({n789) (¢t —13))

3 6 9
x [Teimpm [Teitnpm) [Teitnj)n)dndnds  (11.29)

j=1 j=4 =7

instead of (11.4). Here P is a collection of pairings of {1,...,9} and O is the set of
indices which is not in any subset in P. Again P does not contain any pairing within
{1,2,3}, {4,5,6} or {7, 8, 9} (so for example {1, 2} ¢ P), due to the renormalization
in the definition of . Moreover, since the renormalization term

Y ek K10 - PO

cyclic

(where the sum is taken over (i, j, k) € {(1,2,3),(2,3,1), (3, 1,2)}, see Defini-
tion 3.13) exactly corresponds to the cases where P consists of exactly three pair-
ings between two of the sets {1,2,3}, {4,5,6} and {7, 8,9} (for example P =
{{1, 8}, {2, 7}, {3,9}}), we know that in (11.28) we may also assume that P does not
consist of exactly three such pairings. We will call such P good.

Now we may fix a good P and ¢; (j € O), and reduce the time integral in (11.29)
to a linear combination of integrals of form

t t t
e / / / X (O x (0) x (1) 0 HNNFTRLFRB) g dp, i3
0 Jo Jo

(11.30)
= ei<n0>t : H(t’ QO? le QZ’ 93)’
where
Q0 := —(no) 123 (n123) L456 (n456) L£789 (n789),
Q1 :=F3(n123) L1 (n1) 2 (n2) =3 (n3),
(11.31)

(
Q2 1= Fas6(n4s6) T4 (n4) L5 (ns) ¢ (ne),
Q3 1= F789(n789) £7 (n7) L3 (n8) 9 (N9)

with suitable signs +,. Again, like in (11.11) and (11.12), by Proposition B.4 we
have

[(FH)(E, Q0, 1, 20, 23)| SHE, (D01, 12011, (2], 123)) (11.32)
for some function ﬁ, such that

D HE mo mymy,ma)| S (K )OO D) 27 (11,33

mo,mj,mj,m3
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where (K}, )9®+~1/2) is again negligible. Let (n,) ~ N, for v € {0,...,9, 123,
456,789} (note that Nyo ~ K¢y and N3 ~ K| etc.), by repeating the arguments in
Part I of Sect. 11.1, we can obtain, up to negligible factors, that

EIMs 3305 101 S TN Ny 'NisNasgNags - sup (#),
j=1 Mo, ..., M3,1M,..., M5

(11.34)
where X is the set defined by

Y= {(no,nl,...,ng,n’l,...,n’g):noznl...g=n’1,__9,
ni+nj=n;—|—n/j:0(‘v’{i,j}e73),nj=n/j (Vje€0),
Qi=m;j+0(1)0=<j=<3), Q’] =m/j+0(1) O<j 53)}, (11.35)

such that (ng, n’l, R n’g) satisfies the same equations, support requirements etc., as
(no, n1, ..., n9). The quantities 2; are defined from (n;) as in (11.31), SZ/] are simi-
larly defined from (n’j) but with opposite +, signs, and we assume (n,) ~ (n},) ~ N,.

11.2.2 Reduction to molecules
Before moving to molecules, we first settle some simple cases. If {1,2,3} € O (or

if {4,5,6} € O or {7,8,9} € O), then by definition (11.35) of ¥, we know that
nj= n// for 1 < j <3, hence nj23 = n/,;. If we replace n123 and n,; by two new

variables ney and Ney, then (no, nex, na, ..., ng, ng, ny, ..., ny) belongs to a new
set of form (11.17). By the proof in Sect. 11.1, we see the number of choices for
(n0, Nex, N4, ..., M9, Ng, MYy, ..., ng) is bounded by

1, always,

No - N3 NiseN7so(Na- - No)® - 2
(Kmax)™",  if max(N4s6, N789) > (Kmax)".

Once these are fixed, we then count the number of choices of (n| =n,ny =n), n3 =
n%), which is < (N1N2N3)2Nfzg using (5.15) and the fact that max(Ny, N2, N3) =
Ni23. Putting together, we see that these estimates imply (11.1) no matter which one
in {N123, Nas¢, N789} is comparable to K,x. From now on, we will assume that none
of the sets {1, 2, 3}, {4, 5, 6} or {7, 8, 9} is contained in O.

Define the molecule M as in Definition 11.3, but start with the ternary tree 7
associated with the cubic-cubic-cubic interaction; namely, 7 has root 0 whose three
children are 123, 456 and 789, and each node ijk has three children i, j and k which
are all leaves. The rest of Definition 11.3 remains the same (for example the sign of
each node v is +,, the atoms of M are branching nodes of 7 and 7, etc.). Moreover,
Proposition 11.4 still holds, and its statement and proof remain exactly the same.

We also point out two properties specific to the current molecule M, which can be
easily verified: it has no triple bond nor self connecting bond (because P is good, and
none of the sets {1, 2, 3}, {4, 5, 6} and {7, 8, 9} is contained in O). In addition, if Vj
and V| are the atoms corresponding to the roots of 7 and 7”, and V;, V]f 1<j<3)
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(V] = Enp £ nagg & ngsg £ nggg = 0

:l:<Tl(]) o= (Tl.]gg) = s (T!-45(;) S (Tl‘fgg) =mgy+ 0(1)
[Vy] = £ng £ njgs £ nljsg £ ntgg =0

(o) £ (ng3) £ (i) £ (n7g9) = My + O(1)
W] :tmtnotngtnsm=0

:I:(nl) + (N«l) = <TL3) + (T!-]g;]) =m + ()(1)
ing (Vi]:En) £notngtnisy =0

£{n]) £ (na) & {ng) £ (nfyy;) = mi + O(1)
[1/3] : :|:T?-4 + s, + g =+ Nyne = 0

+{ny) £ (ns) £ (ng) £ (nass) = ma + O(1)
(V3] : £n) £ ns tngEns =0

£{nf)) £ (ns) = (ng) £ (nls) = mh + O(1)
[Va] : £ny £yt ng £ ngg =0

£{ny) £ () £ (ng) £ (Nrs) = my + O(1)

V3] : £n)£n)Lngtniy =0
E(ny) £ (n}) £ (ng) £ (nig) = my+ 0O(1)

Fig. 14 (Colored online) An example of molecule M for the cubic-cubic-cubic interaction corresponding
to P ={{1,7}, {4, 8}}. Here Vj and Vé are the roots and Vj, ij (1 < j <3) are their children. The other
elements shown, including the bad bonds, are similar to Fig. 10

are their children, then there is a single bond ¢; between Vjy and each V;, a single
bond ¢’; between V{j and each V/, and a single bond eq between Vy and V{j. From the
form of the product on the right hand side of (11.34), the bad bonds in M are exactly
these 7 single bonds (so good bonds are exactly those between V;, VI (1 < j < 3).
An example of such a molecule M (which has 8 atoms) is depicted in Fig. 14.

11.2.3 Molecule counting estimates

By symmetry we shall assume Ni23 > Nas¢ > N7g9, and that they correspond to
atoms (V1, V2, V3) and (V], V,, V3) respectively. Same as in Sect. 11.1.3, we only
need to prove (which is much stronger than we need)

(number of choices for (m,)) - ( l_[ Ne_2 . H Ne_l> < (Kmax)_l;
good bonds e bad bonds e
(11.36)
just as in Sect. 11.1.3, we do the counting in steps, with one or two atoms chosen
at each step, and only need to estimate the value of Z = X'} in each step (as well
as their product). Like in Sect. 11.1.4, a concrete example of the following reduction
will be examined in Sect. 11.2.4.

In the reduction, we will choose Vj in the last step, before which we only work
with V;, V]f (1 < j <3). We also keep track of the number of (remaining) good bonds
connected to each of these atoms, initially the values are GB := {3, 3,3, 3, 3,3},
meaning that each atom V, ij (1 < j <3) has exactly 3 good bonds.

@ Springer



Invariant Gibbs measures for the three dimensional cubic NLW 1373

Consider V3. Since there is no triple bonds, there are only two possibilities: when
it has 3 good single bonds, or when it has 1 good single bond and 1 good double
bond.

(i) Suppose V3 has 3 good single bonds, then we choose it in the first step, by
(5.16) we know Z;| < Nyg9, and after this step we have GB = {2, 2, 2, 3, 3}. Due to
the lack of triple bonds, at least one atom with 2 good bonds must be connected to an
atom with 3 good bonds. We next choose this atom with 2 good bonds (which also
has a bad bond connecting to Vg or V{), by (5.15) we have 2 < 1, and after this step
we have either GB ={1,2,2,3} or GB ={2,2,2,2}.

If GB ={1,2,2,3}, then the 2 atoms with 2 good bonds cannot be connected
by a double bond (since otherwise removing them would leave GB = {1, 3} which
is impossible), so we next choose the one of these 2 atoms that is not connected to
the atom with 1 good bond. By (5.15) we have Z3 < 1, and after this step we have
GB = {1, 1, 2}. Next we choose the only atom with 2 good bonds and get Z4 < 1 by
(5.15), and after this step we have GB = {0, 0}.

Alternatively, if GB = {2, 2, 2, 2}, then we next choose any of the remaining atoms
and get Z3 < 1 by (5.15). After this step we have GB = {1, 1, 2} (in which case we
proceed as above) or GB = {0, 2, 2}, in which case we choose one of the two atoms
with 2 good bonds, get Z4 < 1 by (5.15), and after this step we have G B = {0, 0}.

In either case, after all the above reductions we have G B = {0, 0}, so there are two
atoms (other than V and Vé) left, and each of them has only one bad bond. Next we
choose these atoms and get Zs < N‘Il and Zg < N‘gl, where v; € {123,456, 789}
but only one of them is 789 (as V3 is chosen in the first step). Finally we choose Vj
to get Z7 SN, I Summing up, we get

21 27S N1so - Nogo - Nisg - Ny

which is bounded by (Kmax)_l, because the two maximal elements in {Ng, Ni23,
Nas6, N739} must be comparable due to the equality ng = n123 + nase + n7g9.

(i) Suppose V3 has 1 good single bond and 1 good double bond, say the good
double bond connects to another atom V. In the first step we choose (V3, \7); since
they are connected by a good double bond, and each has one good external bond and
one bad external bond, we can apply (5.18) to get Z; < 1. Then we choose the next
atoms arbitrarily, one at a time, such that each atom has at most 2 good bonds when
it is chosen. This is always possible because there is no triple bond, and by (5.15) we
have Z; < 1 at each step.

We continue until there are only two atoms (other than V( and V;)) left, say V. and
V_. At least one of them is not V3; say V # V5. Then we choose V_ and get Z5 S 1
using (5.15), and choose V., which now has only one bad bond, to get Z5 < N~ 1
where v € {123,456} since Vy ¢ {V3, V;}. Finally we choose Vj to get Z7 < No_l.
Summing up, we get

2127 S Nyge - Ny ' S (Kma) ™

in the same way as (i).
With the above discussions, we have now finished the proof of (11.36), which then
proves (11.1) for M3 3 3. The proof of Proposition 11.1 is now complete.
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: +ng & nyog + nyss = Const.

:l:(l’lu) + <7’l‘1<_)'3) + (T!-45(;) = Const. -+ ()(1)
Eng £ Ny £ Nlsg TN =0

F(no) £ (nps) £ {nlse) = (n7g9) = my+ O(1)
: £ny &£ 113 &+ nyo3 = Const.

+{na) £ {ng) & (n13) = Const. + O(1)
DN Nt ngtniy =0

£{n) £ (n2) £+ (ng) £ (nfy;) =m) + O(1)
: ny & ng =+ nysg = Const.

£{ns) £ (ng) £ {n4ss) = Const. + O(1)
sEn) iyt ngEn =0

£{nfy) £ (n5) £+ (ng) £ (nl5e) = my + O(1)

(V3] : £n) £ 1) £ nigy = Const.
+(n}) £ {n}) £ (nig) = Const. + O(1)

Fig. 15 (Colored online) The molecule M’ after removing atom V3, and the variables . and the equa-
tions (11.19). The constants in Const. depend on the choices of the previously fixed vectors, same as in
Sect. 11.1.4

11.2.4 An example of cubic-cubic-cubic molecule counting

In this subsection we examine the case of the molecule in Fig. 14 following the re-
duction process in Sect. 11.2.3. In fact we will remove one atom each time, with the
sequence V3, Vo, Vi, V3, V3, V[, V.

Recall the equations in Fig. 14 and let WV be the right hand side of (11.36); initially
we denote GB = {3, 3, 3, 3, 3, 3} because each of the atoms V/, V]f (1 <j<3)has3
good bonds. Starting from V3, we have the equation

tnytngtngtngg =0, £(n1)=E (ng) =+ (ng) =+ (n789) =m3+ O(1),

whose number of solutions is at most (N} N4N9N739)2 by (5.16), so similar to the
proof of Sect. 11.1.4 we have W < Z; W, where

21 S (N1N4No) > Nygg - (N1NaNoN7s9)* = N7so,
and W' is same the quantity WV but for the molecule M’ after removing V3, see
Fig. 15.
Now we have GB = {2, 2, 2, 3, 3} because Vi, V>, V3/ now each has 2 good bonds.
Next for V5 (as it has 2 good bonds and is connected to V; which has 3 good bonds)
we have the equation

+ns + ng £ nqs6 = Const., =F(ns) x (ng) & (n4s56) = Const. + O(1),
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[Vi] = £np £ nya3 = Const. Vol : g £y £ nljgs £ nbgg =0
(o) & (nizm) = Const. + O(1)  (ng) & {nlgg) = () & (ngg) = 10+ O(1)

[VA] : 0o £ ng £ nqsy = Const.
+(ng) = (n3) £ (ny23) = Const. + O(1)

(Vi]: 0] £natng£njy=0
£(ny) £ (n2) & (ng) £ (nly3) = mi +O(1)

(V3] : £n), £ nlyys = Const.
+(n}) £ (n);s) = Const. + O(1)

[V;] : £n £ 0, £ nlgy = Const.

7

+(n}) £+ (n}) £ (nig) = Const. + O(1)

Fig. 16 (Colored online) The molecule M after removing atom V5, and the variables m, and the equa-
tions (11.19). The constants in Const. depend on the choices of the previously fixed vectors

whose number of solutions is at most (N5N6N456)2N4_516 by (5.15), so similarly we
have W' < Z, W with

25 < (NsNg) 2Nzt - (NsNeNaso) Nz = 1,

and W is associated with the reduced molecule M after removing V5, see Fig. 16.
Now we have GB = {1, 2,2, 3}; next for V; (as it has 2 good bonds and is not
connected to V; which has 1 good bond) we have the equation

+ny +n3 £ nip3 =Const., =£(ny) + (n3) & (n123) = Const. + O(1),

whose number of solutions is at most (N2 N3Ny 23)2N17213 by (5.15), so we have W' <
ZoWO) with

2y S (NaN3)2Nph - (NaN3N13) Ny = 1,

and W is associated with the reduced molecule M® after removing Vi, see
Fig. 17.

Now we have GB = {1, 1, 2}; next for V3’ (as it has 2 good bonds) we have the
equations

£n), £}, £ nhgy = Const., %(n}) = (n}) % (n7g0) = Const. + O(1),

whose number of solutions is at most (N N4N789)2N7§19 by (5.15), so we have
W < Z W™ with

23 < (N1N4)_2N7_85 . (N1N4N789)2N7_819 =1,

and W is associated with the reduced molecule M® after removing V;, see
Fig. 18.
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[Vo] : £ng = Const. Vo] = £ng £ nlgy £l £ nlgg =10
+({ny) = Const. + O(1) E{np) £ (ns)  (nlye) £ (nigg) = my+ O(1)
(V] : £nf £ nfyy = Const.
i £({n}) £ (n,3) = Const. + O(1)
i-Hlu
! V3] : £n)y £ nly; = Const.

+(nfy) £ (nfys) = Const. + O(1)

V3] : £nf £ n), £ nlgy = Const.
£(n}) £ (nf}) £ (nig) = Const. + O(1)

Fig. 17 (Colored online) The molecule M@ after removing atom V7, and the variables m, and the equa-
tions (11.19). The constants in Const. depend on the choices of the previously fixed vectors

[Vi] : £ny = Const.
+{ngy) = Const. + O(1)

i [I'] tkng = n']g:; + ”lm; + ”’T_x!; =1

(o) & (thg5) = () = () = i+ O(1)

[V}] & njy3 = Const.

@.-.-..ﬁ’i%ﬂ +(ny) = Const. + O(1)

£ [V}] : £nl)s; = Const.

0l
. +{n).;) = Const. + O(1)

Fig. 18 (Colored online) The molecule M@ after removing atom V|, and the variables m, and the equa-
tions (11.19). The constants in Const. depend on the choices of the previously fixed vectors

At this point the counting problem is trivial, so by removing the remaining atoms
arbitrarily we get

WW = 252627 < (NoN123Nase) ™",
hence
W =227 < Nigo - (NoN123Nase) ™' S (Kmax) ™'
as desired.

11.3 The linear-linear-quintic stochastic object

In this subsection we prove Proposition 11.2. Compared to M 33 and M3 3 3, the
term M 1 5 has more complicated form, so we first need some pre-processing. To be
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Invariant Gibbs measures for the three dimensional cubic NLW 1377

precise, in the argument below we will decompose M 1 5 into two “special” compo-
nents (M1,1,5)sp1 and (M1 1,5)sp2, and two “generic” components (M1 1 5)g.1 and
(M1,1,5)ge2, and estimate them separately in Sects. 11.3.1-11.3.4.

Recall from (7.20) that 3 % , can be decomposed into three terms, where the last

term is the resistor 183S v - We shall denote the sum of the first two terms by 3(% v nrs
and will single out a first “special” component of M 1 5, namely

(M1,1,5)sp1 1= P<p [54(\&,\/3@ 18¢(l 5)P<N?<N 54(21'[12]\1,0 lo | l'[hl i, 1°>

X (?fN’?fN 73<N)}7 (1137)

so that
My 15 — (Mi15)sp1 = P<n |:9<V)§N (%N)m —Ten q?fN
—9<2H}21\l/0 10+l—[h1 hi, 10)(?51\/»?51\1’ (%N)HJ]. (11.38)

Here th 0.0 and Hhi’hi’lo are defined as in Definition 3.14 but with % replaced

by either 63_ or (Y, )nr, except that for th 1010 ' he renormalization term Q(l is
y P <N
included only in (11. 37) but not in (11.38). .

Now we dyadically decompose (11.38). By the definitions of HIE ,i,o 1° and H};’]\},"’lo
(see Definition 3.14) we have

3= >y Quab[Kﬂ((%N)nr)—FgN-q?ﬁ, (11.39)

Ko,....K3<N L|,L,<N
K"€>(Kmdx)

where K, = (Ko, K1, K2, K3, K13 = L1, K»3 = L») and Quad is defined in Defini-
tion 9.2. Denote also Kpax := max(Ky, ..., K3) similar to Proposition 11.1.

We shall further decompose (11.38) and identify a first “generic” component,
namely

(D)
(Mi1.5)ge1 = Y Quad[K1(§B, . (11.40)

Ky

Here Z(l) includes those terms where K3 > (Kpnax)" and min(Kg, L, Ly) >
(Kma) 'O . Then

(2)
(11.38) = (M11.5)ge1 = Y Quad[KJ (P, e — T<wv - . (11.41)

K

where 2(2) includes those terms in (11.39) that are not in Z(l).
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Next, for fixed K, define the operator I'°°[K,] in the same way as in Definition
10.12, but with the extra factor 1;,(n13)1,(n23) inserted to (10.46). Then we can
identify a second “special” component from (11.41), namely

(2)

(Ml,l,S)spZ = Z FOP[K*]% - FSN%- (11.42)

Ky
Finally, the last component, which is the second “generic” component, is given by

(2)
Mi15)ge2 = [Quao[K*](%m - F"P[K*]“?{’N} (11.43)
K*

so we have M 1 5 = (M1,1,5)sp1 +(M1,1,5)5p2+ (M1, 1,5)ge1 +(M1,1,5)ge2- It then
suffices to prove (11.2) for each of these components. For convenience of presenta-
tion, these estimates will be proved in the order gel — sp2 — spl — ge2, which is
different from the natural order where they are introduced.

11.3.1 The first generic component

We start by proving (11.2) for the generic term (M 1 5)g.1. This actually follows
directly from Lemmas 7.8-7.9 and Lemma 9.3. More precisely, if K3 > (Kmnax)" and

min(Kg, L1, Lp) > (Kmax)10’72, then Lemmas 7.8-7.9 implies

| P (o

while (a slight modification of the proof of) Lemma 9.3 implies that

< 5/2 1282 pa
Li”XI/ZJf"Z*"([—T,T])N(Zp) K3 T’

HQuaD[K*] H L3P (X1/2+02b (T T)— X~ 1245254 =1 ((_T.T1))
—n/2 —1/2
<2p - (Kma) OO (K "2 + K5 DT
Hence, by our choice of parameters, we have that

.3
| uad( k.1, S PT (Kna) ™,

L(ngfl/2+82,b+—l (-T.TD
which implies (11.2) for (M 1,5)ge1-
11.3.2 The second special component

Next we prove (11.2) for the special term (M 1,5)sp2, Which is basically the same as
Lemma 10.16. In fact, let wy := Q?fv , then we can decompose (11.42) as

()
(11.42) = { ZFOP[K*]w4—F§Nw4} —ZFOP[K*]W; = I—ZH[K*], (11.44)

Ky K K
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where in the first term no restriction is put on the summation in K. Now this term I
is exactly equal to (10.60) since we are summing over all different choices of L; and
L», so by the proof of Lemma 10.16 we have

E(I)° STPYE|wall?, S TP prl

X—1/2+800.b4 =L ([T T]) ~ X=eb([=T,T]) ~

using also (7.9). As for II[K,], we may fix a choice of K, and notice that Z(l)
requires that Ko > K, so we are in Case (1) of (10.61) as in the proof of Lemma
10.16. By repeating that proof (note also that the sine-cancellation is not needed
assuming Ko > Kh.x), we see that

EIITIK I < (Kmax) " "PATPUE |wa

—1/2480. b =1 ([T, T]) ~ X=eb([=T,T])

S (Kmax)_np/4Tpa p3p/2

which is then summable in K, (noting that max(L1, L7) < Kmax), and this proves
(11.2) for (M1,1,5)sp2-

11.3.3 The first special component

Now we turn to (My,1,5)sp1. Let Ky = (Ko, ..., K3, K13 = L1, K23 = L), we make

a dyadic decomposition by attaching the factor ]_[3-_0 lK.(nj) <1, (n13)1L,(n23)

where as before Kyax = max(Ko - - - , K3), and note that, by the definitions of H}E Al,o o

and HIEAI,“ o in Definition 3.14, we can always assume K3 > (Kmax)" here. Note

that now (this component of) (M 1 5)sp1 can be written as Quaa[K*](ggN ), so if

min(Ko, L1, L2) > (Kmax) %", we can apply Lemma 9.3 together with Lemma 7.10,
and argue as in Sect. 11.3.1 to conclude that

1QuAd[K 1@ ) | L2y 112452001 1.7},
SIPg, 3y I 2e x—12480 0017 1))

X ~”Duu0[[(*] ” L2 (X282 (=T, T])— X~ V/2+02:b4 =1 ((_T,T]))

< P72 (Kana) OO0 (K" 4 KT VDT S 12T (Kipa) ™

which proves (11.2) for (M,1,5)sp1-
Now let us assume min(Ky, L1, L) < (Kmax)lonz. By Corollary 6.15, we have

Fe3o (t,n) = FE3 (¢, m)ST[n, sin] + F<5 (t, n)SZ(n, cos] (11.45)

for some explicitly defined functions FZ (p . As such, and noticing also that the terms

with one pairing are exactly cancelled by the (’:(1 -3) factor, we see that (M 1 5)p1 =
> K, [ K] where the summation is taken over K, such that K3 > (Kmax)" and
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min(Ko, L1, Ly) < (Kmax)'%7", and

F K], no) = Z ZHIK (n))- ¢1(t<n1>)¢zz(t<nz>)

o (n1)(n2)

X F&(t,n3)8Tlnj, ;1< j <3]. (11.46)

By (the proof of) the X!/2=¢? bound in Lemma 7.10, we can deduce the bound
satisfied by the function F¥,, namely

1Pk FE o2 S 1Py Feylixon S Ky 2P < KA (11.47)

Therefore, by (11.47), hypercontractivity estimates and the reduction arguments in
Sect. 5.7 we have

T[N 2 x—1/2+50.04 =1 =7 77
—1/2428
ST Ky PR IK | o2 2
1/2
S TP Ky (K Ky T R (Sup > 1)
n3
5 (ng,n1,n2)
where in the last sum over (n¢, n1, n2) we require that 7o =n123 and (n;) ~ K; (0 <

Jj <3) as well as (n13) ~ L1, (n23) ~ L. The value of this sum is clearly bounded
by

. 1/2-26 2y\2
(min(Ko, L1, L2))(med(Ko, K1, K2))> < (Ko> K1 K2 - (Kmax) °)7.

This gives an acceptable contribution since K3 > (Knyax)", so by summing over K,
we have proved (11.2) for (My,1,5)sp1-

11.3.4 The second generic component

Finally we prove (11.2) for the generic term (M 1,5)4.2. The proof is similar to
Sects. 11.1 and 11.2, and mostly relies on the molecular technology.

Part I: reduction to counting estimates. This part is largely identical to Sects.
11.1.1 or 11.2.1, so we will only list the main points.

Let the wave number of the output (M 1 5)¢e2 be ng, and the wave numbers of the
two linear inputs be 71 and n,. Let the wave numbers of the inputs in the quintic term

(%N )nr be (n3, ..., n7), where (ns, ng, n7) are the wave numbers of the inputs in the

cubic term :‘?;N. Let max;(n;) ~ K} ., as before may assume K, < (Kmax)'®.

Note also that |nj| ~ K; for 0 < j <2, |n34567| ~ K3, and |n34567]| ~ L for j €
{1, 2}. Now we have

]:(Ml,l,S)gd(f,n())
= Z Z Z (Bl 1 S)n() n7(t) SI[nJ Q¢ ] c 0] (1148)

P @1,....p7€{sin,cos} 11,...,n7
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where the coefficients are

(B1,1,5)ng---n7 (1)

7
1
:U_)

// x () x (t1) x (t2) sin({n34567)

t—1))
(nse67) (n34567) (11.49)

2 4 7
x sin((nse7) (1 — ) [ [ () [ [ @i (e [ [ 0 (njdi) diadty.

j=1 ji=3 j=5

Here P is a collection of pairings of {1,...,7} and O the set of indices not in any
subset in P. Now P does not contain {1, 2}, {3, 4} or any pairing within {5, 6, 7}, and
contains at most one pair within the set {3, 4, 5, 6, 7}, due to our choice of (%N )nrs
moreover, the renormalization term

rr[k.J%,,

exactly corresponds to the cases where P = {{1, 3}, {2,4}} or P = {{1,4},{2,3}},
we know that in (11.28) we may also assume that P is not {{1, 3}, {2,4}} nor
{{1, 4}, {2, 3}}. We will call such P good.

Now we may fix a good P and ¢; (j € O), and reduce the time integral in (11.49)
to a linear combination of integrals of form

) t ety pt )
ettt / / fx(r)x(n)x(rz)e“%’*“'”*m’z)drzdn

(11.50)
= M H (1, Qo, Q1. R2),
where
Qo 1= —(no) £1 (n1) 2 (n2) £34567 (n34567),
Q) 1= F3a567(n34567) £3 (n3) 4 (n4) Ls67 (n567), (11.51)
Q1= Fs67({ns67) £5 (n5) ¢ (n6) L7 (n7)
with suitable signs =+, . Like before, by Proposition B.4 we have
(FH)E, Q0. 21, )| SHE, (R0, 191], [22]) (11.52)
for some function ’ﬁ, such that
D HE mo,mima)| S (K ) OO TP ()20, (11.53)

mo,mj,my

where (K )9®+~1/2) is negligible. Let (n,) ~ N, for v € {0, ...,7,34567, 567}
(note that Ny ~ K¢ and N34567 ~ K3 etc.), by repeating the arguments as before, we
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can obtain, up to negligible factors, that

2
E| (Ml,1,5)g62”X—1/2+52,h+—1

e (11.54)
SHNJ Ny N3gserNse7 A" sup #2),

j=1 Mo, ..., M3, ...,0%
where X is the set defined by

E:{(n()snls"'sn7sn/15""n/7):nO:nl'“7=n/14..71
n,-+nj:n;+n/j=O(V{i,j}€79),nj=n'j (Vje0),
Qi=mj+01)(0<j<2), Q=mj+01)0=<j<2)}, (1155

with the same notation as before; the dyadic support conditions we have are that
(ny) ~ N, and (n34567) ~ Lj (j € {1,2}), and the same for n’;.

The quantity A in (11.55) is related to the sine-cancellation kernel, and is sim-
ilar as in Sect. 11.1 but slightly different, so we explain it here. First, we will as-
sume {1,3} € P (or {2,4} € P etc. by symmetry, but we just switch the indices
1 and 2 if necessary) and +1 = F34s567; if this is not satisfied then 4 = 1. Now,
in the definition (11.43) of (M 1,5)g.2 We may fix Ly and sum in L. By def-
inition of 2(2) (see (11.41)), this summation in L, results in either a restriction
1234567 |00 < (Kmax)lonz, or no restriction at all on n»345¢7 (in the latter case we
must have min(Kg, L) < (Kmax)lonz). We shall symmetrize in n; and n34567 as in
Sect. 11.1 and get the corresponding value of A, except that we may have an extra
term involving

2 2
{11 + n2loo < (Kma) ' } — 1{In34567 + 12100 < (Kmax)'""} (11.56)

due to the possible restriction |11234567]c0 < (Kmax)m”z.

In summary, we have the following description of A and the set ¥ in (11.54)
and (11.55). In the first scenario we have A = N34567L1_l similar to (11.18). In the
second scenario A = 1, but we have either {1,3} ¢ P, or £ = £34567, Or we can
further require the I'-condition in 3, or we can require that exactly one of |n12| and

1234567 |00 18 < (Kmax)lo”2 (in this scenario L is still fixed but we are summing over
L5 so this parameter is absent in the definition of terms; also whatever conditions we
have for (n ), the similar conditions will also hold for (n",)).

Part II: reduction to molecules. Define the molecule M as in Definition 11.3,
but start with the ternary tree 7 associated with the linear-linear-quintic interaction;
namely, 7 has root O whose three children are 1, 2 and 34567, and 34567 has three
children 3, 4 and 567, and 567 has three children 5, 6 and 7, and nodes 1-7 are all
leaves. The rest of Definition 11.3 and Proposition 11.4 remain the same.

The following are easily verified for the molecule M assuming P is good: it con-
tains no self connecting bond and no triple bond between any V; and V; (or V/ and
V]f ), here we assume Vj is the atom corresponding to the root of 7, and V| corre-
sponds to its child, and V; corresponds to its grandchild. Moreover, {1, 3} € P if and
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Fig. 19 (Colored online) An
example of molecule M for the
linear-linear-quintic interaction
corresponding to

P ={{1, 3}, {2, 6}}. Here Vy, Vé
are the roots, Vi, Vl/ are their
children and V5, V2’ are the
children of Vy, Vl/ . The other
elements shown, including the
bad bonds, are similar to Fig. 11

Case: P= {{1,3},{2,6}}

only if a double bond is connected between Vjy and V1, and 1 = £34567 if and only
if these bonds have the same direction. The bad bonds in M are those bond ¢ whose
m, equals £n34567, Ens67 or no; there are 5 of them, two connecting V; to Vy and
V2, two connecting V| to V;; and V;, and one connecting Vo and V. An example of
such a molecule M is depicted in Fig. 19.

Part IlI: molecule counting estimates. Recall from the definition of 2(2) as in
(11.41) that we have |n34567| ~ N3as67 ~ K3 2 (Kmax)", and that one of the values
Inol, In1345671, [n23as67] or (by symmetrization in (11.56)) [n12] is < (Kmax)'®"". In
any case, as in Sects. 11.1 and 11.2, we only need to prove that

(number of choices for (m,)) - ( l—[ Ne_2 . 1_[ Ne_l) < A?. (Kmax)_"z,
good bonds e bad bonds e
(11.57)
and again the left hand side can be written as a product of Z over all steps. The
following reduction process works in all cases; we will not present concrete examples
as this has already been done in Sects. 11.1.4 and 11.2.4.

Denote by ep,q the bad bond connecting Vjy and Vi; we have N, ~ N3as67 >
(Kmax)". We start by choosing (Vj, V(;) and get a factor of Zj; then we choose
(Vy, Vl/) to get Z,, and finally choose (V», VZ’) to get Z3. By (5.15) we easily see
that Z3 < 1. Also by (5.20), and since no bad bond is connected between V; and V/,

we see that Z, < N, where NVI,V{ is the maximum of N, for e running over

Vi,V
all bonds connecting Vll and V|. Alternatively, if we count m, for those e trivially
in the second step, then by (5.10), we also get Z, < N \9/1‘\/], - 07!, where the quan-
tity Q is defined to be Q = N, if V; is connected to Vp by a single bond e, and
Q = max(N,,, Ne,) if V1 is connected to Vj by a double bond (e, e2) of same di-
rections, and Q ~ |n,, — ne,| if V} is connected to Vp by a double bond (eq, e3) of
opposite directions. As for Zj, note that we may assume that one of |ng]|, [1n134567],
1234567, 1n12] i < (Kmax)'O7. If 1] < (Kmax)'" We count ng trivially and then
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N
apply (5-125) or (5.20) to get Z1 < (Kmax)?7; if min(|n 1345671, 12345671, In12]) <
(Kmax)m” , we may first choose Vé using (5.14), and then choose Vj using (5.15)

to get the same result (strictly speaking, in the case |n1z| < (Kmax)lo”2 we get a po-
tentially losing factor N~ 'No when choosing V, but after V] is chosen, the value of
e,y Will be fixed up to (Kmax)lonz, which leads to a factor Ny’ ! when choosing Vj,
so in total we still have Z; < (K max) 2 ).

In summary, we see that (11.57) is already proved, unless NVI,V{ < (Kmax)o(”z),
and V] is connected to Vp by a double bond (eq, e2) of opposite directions, and
e, — Ny | S (Kmax)o("z). Therefore, we may assume all these conditions hold; in
particular we have {1,3} € P, &1 = F34567 and L1 ~ |n134567] < (Kmax) 0. Now
if min(|n23ase7], [712]) < (Kmax) @) also, then each of |nol, n1l, Inal, In3ase7] is
within (Kmax)o(’/z) of each other, which easily implies that Z| < (Kpax) oer) ~N3_4g67
and hence (11.57); we may thus ignore the factor (11.56), hence we have either
A= N34567L1_1 which also implies (11.57) easily, or the I'-condition |n1|e > T" >
1134567100 (OT [134567]00 = ' > 11 ]00)-

Now assume we are in the last case with the I'-condition. In the first step, we
may first choose V(; using (5.14), then choose V{ but using (5.11) instead of (5.15) to
get Z1 < (Kmax)o(”z) . N3;1567. Note that here we apply (5.11) directly if V has no
bond connecting to V;; otherwise Vj has a single bond e connecting to V; such that
ne = £ny (see Fig. 19), then the value of ny must be fixed up to error (Kmax)o("z),
so we can apply (5.11) when counting (n1, n34567). Therefore, in this case we also
get (11.57).

With the above discussions, we have now finished the proof of (11.57), which then
proves (11.2) for (M1,1,5)ge2. The proof of Proposition 11.2 is now complete.

12 Proof of main estimates

In this section, we prove the main estimates from Sect. 3.5 and the modified ver-
sion from Lemma 4.6. Since all of the main ideas have already been presented in
Sects. 6-11, each proof will primarily consist of references to earlier lemmas and
propositions.

Proof of Proposition 3.20: The desired estimate follows directly from the decomposi-
tion in Lemma 10.3 and the estimates in Lemma 10.4 and Lemma 10.5. O

We now turn to the nonlinear terms in the evolution equation for Y<y. We first
prove Proposition 3.22, which controls terms containing two linear stochastic objects.

Proof of Proposition 3.22: The three different estimates (i), (ii), and (iii) in the propo-
sition have already been proved exactly as stated in earlier sections. The two explicit
stochastic objects in (i) have been estimated in Proposition 7.11 and Proposition 11.2.
The two para-controlled random operators in (ii) have been estimated in Sect. 10.3.

The term involving X(glz)v has been estimated in Lemma 10.11 and the term involving
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X(j[)\, has been estimated in Lemma 10.14, Lemma 10.15, and Lemma 10.16. Finally,
the random operator in Y from (iii) has been estimated in Proposition 9.1. 0

We now prove Proposition 3.23, which controls terms containing one linear
stochastic object. Since Proposition 3.23 controls more terms than Proposition 3.22,
its proof will be longer. Nevertheless, it still primarily consists of a collection of ear-
lier estimates.

Proof of Proposition 3.23: To simplify the notation, we focus only on 7 = 1 and
J =[—1, 1], since the general case follows from minor modifications. Furthermore,
we restrict all norms to [—1, 1] x T3. In the following, each estimate holds on A-
certain events E4 € £, which will not be repeated below. For notational purposes, it
is convenient to replace the A-factor in our desired estimate by A3. By eventually
replacing E4 with E 413, this can be re-adjusted after our argument. In the statement
of the proposition, we are concerned with the terms

( N — H*;;‘V"’“) (?SN 2 c(”) (12.1)

where ¢®, @ e Gp In our estimate of (12.1), we distinguish the cases when the
arguments ¢ @ and §(3) contain two, one, or zero cubic stochastic objects.
Case 1: (P =¢O® = ‘? The resulting term is an explicit septic stochastic ob-

ject, which has been estimated in Proposition 11.1.
Case2: ¢ = q?p In this case, we further distinguish the sub-cases

:® = &iﬁ :® e {?SM’X(I)’X(Z)}’ and  P=vy
Case 2.a: {® = q?p and ¢® = % In this case, we prove that

* _ yyhilo,lo Q?p %
H( <N HSN ><?§N’ =N’ SN)HX—1/2+82,};+—ISA'

hi, 10 hi 39

-operator from Definition 9.5, we first decompose*

( ;N — Ht;i}b(),lo) (?SN ’(Y?v s %N)
=?SNQ?§V ‘&%N _ ( hiloo 4 Hlll[\]/o hl) <?§N’q?fw %N) (12.2)
+ ll‘Alfom( S S N ) VY. (12.3)

Using Proposition 9.6 and Proposition 7.7, the first summand (12.2) is controlled by

?qu?ﬁ %N _( h11010+nf:1¢0h1><?5N’(Y?v’ %O

2

Using the IT_

X—1/2463.b4 1

<
N X1/2761,b -

hi, 10 lo 5)

39The 1'[ -term contains no portion of G( <N since C(l )[Nl N3] is only non-zero for N = N3.
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Thus, it remains to treat the second summand (12.3). We emphasize that the estimate
heaviliy relies on the Qf(l 5)-term, which originates from the 1533-cancellation. From
Definition 9.5, we have that

ne (. ¥, ) - <%
= 2 <?N1 Py, — e, N3]>PN2Q?P (12.4)

Ni,Na,N3<N:
N2<NY,
Ni~N3>N/

_< > - X )C(”)[Nl,NﬂPNZQ?" (12.5)

Ni,N2,N3<N  Nj,N2,N3<N:
NzSNY
Ni~N3>N{

We first estimate the remaining main term, ie., (12.4). Using X~ 1/2+%2.0 <
X ~1/2482,b+ =1 and product estimates (see e.g. [110, Appendix A]), we obtain that

P —cUDINL N3] ) P
(?Nl M% [N1, N3] | P, e
a9
S (?N, P, - eI, N3])PN2 -
(15
S (?N, Py, — ¢! [NI,N3]> I 2 &9 (12.6)
t X

Using Proposition 7.16, Lemma 7.5, and N1 ~ N3, it holds that

(12.6) S AN N 100V,
Due to the frequency-restrictions Ny < Ny in (12.4), this yields an acceptable contri-
bution. We now estimate the minor term (12.5). Using X ~1/2+%2.0 s x—1/2482,b4 =1,

we have that

1,
H ¢( 5)[1\’1 N3] Py,

x—1/248.by—1

< ety 5>[N1,N31PN2

128, —1/248

<Ny ey N3]l oo oo H Er,

. 12.7
e (12.7)

Using Lemma 7.17, Lemma 7.5, and the frequency-restriction in (12.5), plus the fact
that 01(511’5) [N1, N3] =0 unless N1 ~ N3, the resulting contribution is acceptable.
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Invariant Gibbs measures for the three dimensional cubic NLW 1387

Case 2.b: ¢ = wp and ¢® € {?SM , XD X®1. In this case, we prove that

h1 10 lo 3)
(e =) (o 6 s
< A3(1 + ||u5N||§(_.,,, + 1 =nll i ).

This case slightly easier than Case 2.a, since it does not utilize the 1533-cancellation.
Using the I"Ihl lo, hl—operator from Definition 9.5, we first decompose

(mzy =20 °) (o 35 <)
_?<Nq?p§(3> < hllolo+1—[};11\1/oh1>< <N’q?p ;“(3)> (12.8)

020 (T OF 4 5)- (129)

The first summand (12.8) can be estimated using Proposition 9.6 and the regularity
estimate for ?5 Mo XD or X@ (Lemma 7.4 or Proposition 3.20). For the second
summand (12.9), we recall that

STLING SR T SR e

Ny,Ny,N3:
N2§N;)

Ni~N3>N]

For the dyadic components, we have that

(3) 3)
H?N' Pqu?) PN3§ H ~1/2489.by—1 N”?N] PNzW) PNag

3
<H?N] PN3§( y

120

a2 Py,

L°°Cl

Depending on §(3) IS {?S e XM, X(z)}, we use either Lemma 7.6 or Proposition
10.6, which yield

3 12+12

Using Lemma 7.5, we also obtain that

|

Leer = < ANZ.

Under the frequency-restriction Ny < Ny, this yields the desired conclusion.
Case 2.c: ¥ = Q?p and ¢® =Y. From Proposition 9.6, we obtain that

h1 10 lo
(mex ) (B 0 Y| i, = Al w200,

which is acceptable.
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Case3: ¢, ¢ e st /5~ We now treat the case when neither ¢ @ nor ¢ is given
by the cubic stochastic object. We first decompose

hi,lo, I 2) @ 2 3
( N HSINO O) <?<N ’ guélzl gélzl) = Z HEN(?SN ’ PNZ;élzf’ PN3§;13/>'

- N1,N2,Ns:
max(N2,N3)>N{

(12.10)
In the case N]" < max (N2, N3) < Ny, it follows from the bilinear estimate (Lemma
8.3) that

2 3
[y (P Prat S Pt

3
8 Ar—1/4 - 851 p/8 '
5AN12<N1 "+ max(Na, Ns) 1/3)N2‘N31HHC;JK,HXUZ%I.;,
j=2

) H X —1/2+85.b4—1

2 3)
?SN PNZ{SNPN3§SN HX“/2+52-”+‘1

3
<ANP TV TT e 50 aeino
j=2

3
<AN[€ l_[ ||4¥13 ”XVHN"
=2

Using the regularity estimates for ?< uo XD, X or Y, we obtain that

3

l_[ ”{g,\), ||X1/2—5|,b = A2<1 + ”viN”;‘(—].h + ”Y§N||§{1/2+52,h>~
j=2

Since this yields an acceptable contribution, it remains to treat the case max(N,
N3) 2 Np. By symmetry, we may assume that N = max(Nz, N3). In the following,
we distinguish several different sub-cases. The case distinctions are driven by the
following three aspects:

e In high x high x low-interactions between ?5 ' %N, and a third argument, we
need to utilize the 1533-cancellation.
e In high x high x low-interactions between ?sN , an element of {?< Mo xM, X(z)},

and a third argument, we need to use our product estimates (Lemma 7.6 or Propo-
sition 10.6).

e In comparison with Y<y, the elements of {?< e * , XM X(z)} have fewer
derivatives but obey better Strichartz estimates. -
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Case 3.a: t® = % and ¢ e 6” .For¢® ¢ 61/2, it holds that

H2N<?N|’PN2%N’PN3§(3)):(?N, PN2$ Q(l 5)[N1 N2])PN3§(3) (12.11)
—1{¢® =P M1Pn . (12.12)

While the 1533-cancellation is essential in our estimate of (12.11), it is irrelevant
in the additional term in (12.12). Using X ~1/2%92.0 < x—1/2482,6+=1 3nd product
estimates, the first summand (12.11) can be estimated by

H (?Nl Py, $ Q:(l 5)[Nl,Nz])PNs © H

SH(?NI P, — €L INL, Nz])pN ;()‘

X—1/2483,b4 1

2y 1724

= H?Nl PNZ %N - Q:gl’\?) [Nl s N2]HLOOC,1/2+5I+E ”{<3) HLOOH1/2—5| . (1213)
t Lx [

The first factor in (12.13) is estimated using Proposition 7.16. The ¢®-factor in
(12.13) is estimated using the regularity estimate for either ?5 Mo XD, X@ orvy.

As a result, we obtain that

(12.13) S AN (1 + oan s + [ Yen 00 ),

which is acceptable. We now turn to the additional term in the case §(3) = %, ie.,
the term in (12.12). Using X ~1/2%92.0 <y x—1/2432.b+=1 it follows that

H cINy, N31Py,

71/2+52,h+71

< et v, Nsl e,

L2H71/2+52

SNy ING, NaT e ‘&? HLoocl/Z . (12.14)

Using Lemma 7.17, Lemma 7.7, and the frequency-condition Ny 2 Ny, N3, it follows
that

(12.14) < AN, 0213,

which is acceptable.
Case 3.b: ¢? e {? XD X®Y and ¢ P e 61/2 Since this case does not re-
quire the 1533-cancellation, it is slightly easier than Case 3.a. It holds that

MLy (R, Prac®, Pt ®)
(12.15)

=y, Pvac S Pt Sy = 1e® = B el D v, Na1Pr,c R
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Since ¢ has the highest frequency in (12.15), the 1533-cancellation is not essential
in (12.15) and we estimate both summands separately. Using Strichartz and product
estimates, the first summand in (12.15) is estimated by

@) 3
H ?Nl PnyE oy P HX—1/2+52 by—1

2 3
5 H ?Nl PNzgiKIPNzé.( y —1/245y

)

L?H,

@
S H ?Nl N2§ HL°°C 1/2+81 +€ LOOHI/Z 5 (12.16)
Depending on the choice of ¢®), the first factor in (12.16) is estimated using the

product estimates for either ? > XD or X@ (Lemma 7.6 or Proposition 10.6). De-

pending on the choice of ¢, the second factor in (12.16) is estimated using one
of our regularity estimates (Lemma 7.4, Proposition 7.7, or Proposition 3.20). The
second summand in (12.15) can be bounded directly using Lemma 7.17 and, depend-
ing on the choice of £, one of our regularity estimates (Lemma 7.4 or Proposition
3.20).

Case 3.c: t® =Y and {® € & /,\MY). For any (e 61/2, it holds that

3
MZy <?N|  Pn,Yen, PNJi;&)
(12.17)

=Ty, Py Yen Pty —1{c® = B Jel D Ve, N3Py, Ve,

Since Y<u has the highest frequency in (12.17), the 1533-cancellation is not essential
in (12.17) and we estimate both summands separately. For the first summand, we
obtain from Strichartz estimates that

3
S H Ty, P Y<n Pyt
s,

S AN226762 1Y <N ll 1724020 ”52/2/ ”L,@OL;@'

3
H?N PN2Y<NPN3§( y ”

—1/2+8).by 1 2u; /2+8,

1PN, Y<nllpoor2 | Pry¢Sy ”L,OOL;O

00 7 00
LPLY

Depending on ¢, the desired conclusion now follows from the probabilistic
Strichartz estimates for either ?< e %, XD, or X®@ (Lemma 7.4, Proposition 7.7,
or Proposition 3.20). The second summand in (12.17) can be estimated directly using
Lemma 7.17 and the regularity information on Y.

Case 3.d: ¢® = ¢ =Y. In this case, we prove that

* 2
H Iy (?N1 , Pn,Y<p, P, YgN) H sy S ANmaX||Y§N||X1/2+52.b-

To this end, we use the dyadic decomposition

(H’;N - H};i}\l,o’l°> (? PN Y<n, Pry Y§N) = Z Py, (?N, Pyn,Y<n Py YgN)-
No
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Depending on the relative value of Ng and N3, we now utilize one of the following
two deterministic Strichartz estimates. In the case Ny < N3, we estimate

(12 ) B, . 71|

<N (; /2+82+€

X71/2+52'b+71

Ty, PN2Y§NPN3Y§N‘

P

L7L

5 N(; /2+682+€

Lo PN Y<Nilpoor2 |1 Phs Y<nlizoop2

1/2
<A(N0/N3)/+ N WY < 502,
~ max < X1/2+52,b

In the case Ng = N3, we estimate

(12 ) B, 1)

S NO—1/2+52

x—1/2+83,b4—1

Ty, P Y<n Pr;Y<n

P

< A(Ng/Ns) TR Nzes y_ 2
~ 0/ 3 max || SN||X|/2+52-h'

L212

g N0—1/2+82

Lope 1PN, Y<nllpoor2 I PNs Y<nll 200

In both cases, this yields an acceptable contribution. |

We now turn to the proof of Proposition 3.24, which is the last main estimate from
Sect. 3.5.

Proof of Proposition 3.24: To simplify the notation, we focus only on 7 =1 and J =
[—1, 1], since the general case follows from minor modifications. Furthermore, we
restrict all norms to [—1, 1] x T3, In the following, each estimate holds on A-certain
events E4 € £, which will not be repeated below. As in the proof of Proposition
3.23, we replace the A-factor in our desired estimate by A3, In the statement of the
proposition, we are concerned with terms of the form

%y <P5N§(1), Py, P§N§(3))y Coni<n, or (v<n —T=n)i<N,
(12.18)
where ¢V, ¢ @ 3 ¢ 65 and ¢ € 68. We first address the second and third terms
in (12.18), whose estimates are rather simple. Using X~ U2482.0 y x=1/2482,b4 1
Lemma 6.23, and Lemma 7.1, we obtain for all ¢ € 68 that
le<ni<n ||X—1/2+52,b+—1 + |(v<n —T=n)Z<n ||X—1/2+62,h+—1

< ||€§N§5N ”Lz —1/248, + ” (J/<N — F<N)C<N ” oV

Slie<n I oo gyt
g
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1392 B. Bringmann et al.

The desired conclusion now follows from our regularity estimates for elements of
68. As aresult, it remains to treat the first term in (12.18). To this end, we distinguish
cases where the arguments ;‘(1), §(2), and 5(3) contain three, two, one, or zero cubic
stochastic objects, respectively.

Case 1: ¢V =¢® =03 = Q?p This case corresponds to the explicit nonic

stochastic object, which has been estimated in Proposition 11.1.
Case 2: ¢V =¢@ =NP and t® € &7 ,. In this case, it holds that

(B~ (F) )R

It follows that

(7))
=N X—1/2+8 by~

() )5
(F.) -

The first factor has been estimated in Proposition 7.15. The second factor can be
bounded using our regularity estimates for elements of Gf 2

Case 3: ¢V = q?p and ¢®,¢® e Gf/z. In this case, we first decompose

My (P c260) =Y Y PO P e,

No Ni,Ny,N3<N
(12.19)

We now estimate the dyadic components in (12.19). Due to the symmetry in {® and
¢®, we may assume that either ¢® e Gf/z\{Y} or {® =¢® = y. In the second
case, we can further assume that N, > N3.

Case 3.a: ¢V = q?p @ e 6’ 1/2 and ¢ e 61/2\{Y}. Using Strichartz esti-
mates, product estimates, and Lemma 7.5, we first estimate

2 3)
” Py, (Pqu?p PN2§ PN3§ )HX—1/2+62,19+71

1/2+48,+2 2 3
[/2+82+2€ Q?PPNZQ_() ()

< N_1/2+32+26N_6 max(Na, N3)? H PNIQ?}J

L?H;l/ZJrEz

<%> H
1/2-8; *

—1/2+8; LOOH

N

LY°Cy

SNy

725

L¥&C; ¢
2 (3)
X ”PNszN”L,OCL}r ||PN3§§N“L,2L;°

—1/2+682+2 — 2 3
SANG VRN max (Na, N3 I Pyt Bl e 2 1Pyt Sl 2o (12.20)
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Since ¢ € 6p 12 and ¢® e & 1 /2\{Y}, we obtain from regularity and probabilistic
Strichartz estimates that

2 3
1PNs e S0 o2 1 Prs S50 2
1/2+6 1/2+6
< 2Ny I 1(1+||UEN||§(,1_b+||Y§N||§(1/2+52,b). (12.21)

After re-inserting (12.21) into (12.20), we obtain an acceptable contribution.

Case 3.b: 5(1) = Q?p 5(2) = §(3) =Y, and N> > Nj3. In this case, we further
distinguish two-subcases, which depend on the relative size of Ny and N3.

Case 3.b.i: g“(l) = Q?p’ g“(z) = §(3) =Y, and Ny, N> > N3. Arguing exactly as in
(12.20), we obtain that

@ p (3)
” Fro (q?p PNZ( )H —1/24b65.b4 -1

5ANo_1/2+82+2€Nf6 226 “ Py, Y<n HL?"L% “ Pn,Y<n ” L2

(12.22)

Using deterministic Strichartz estimates and our assumption N, N> > N3, we obtain
that

(12.22) < ANO*1/2+82+2€N_5N22671/2752N31/2+€,52

< ANTCN; 1/2-5+5¢

which is acceptable.
Case 3.bii: ¢V =P, ¢ =¢® =Y, and N, > N3 > No. Using Lemma 7.5,
we estimate

) (3)
HPNO(PMQ?})PNZC NELELe )HX’1/2+52*1’+’1

1/2+8+¢
SNO/ Py, ?SN PNZYSNPMYSN‘LZLI
t=x
1/2+85+e
SNy Py Y LOQLOOHPNzYSN”L,OCL;||PN3YSN||L,°°L§

1/2+85+e —1/2-8 5, —1/2-8
S AN, /246 NiN, / A / 2||Y<N”X1/2+52b
Due to our frequency-restrictions, it holds that

N8/2+52+6N15N2 1/2— 52N7]/2 8 < N6N71/2 $r+e < Nn:;)(/z Sr+2e
Case 4: ¢V @ O ¢ 6f If ¢ e 61/2\{Y}, we can use probabilistic
Strichartz estimates and the same argument as in Case 3. By symmetry, it only re-
mains to treat the case { (V) = ¢@® = ¢® =Y. Since the cubic nonlinear wave equa-
tion is deterministically well-posed at regularities greater than or equal to 1/2, this
case can be treated using the standard well-posedness argument in X /24926, O

Finally, we prove Lemma 4.6, which is a variant of Proposition 3.23 and Proposi-
tion 3.24.
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Proof of Lemma 4.6 To simplify the notation, we focus only on 7 =1 and J =
[—1, 1], since the general case follows from minor modifications, and we restrict
all norms to [—1, 1] x T3. In the following, each estimate holds on A-certain events
E 4 € &£, which will not be repeated below.

The argument is a minor modification of the proof of Proposition 3.23 and Propo-
sition 3.24. We first recall from (4.8) that

UEN_ N[U<N,Y<N]+ N[U<N]+Y<N (1223)

feMed?and @, ¢ 68 contain at most one v-term, we directly insert the
decomposition (12.23) and argue as in the proof of Proposition 3.23 or Proposition
3.24, which yields the desired estimate. Thus, we can assume that

P =% =0, (12.24)

We now distinguish the cases ¢ () € G”\{v} and ¢V = v.
Case 1: ¢V e &P\ {v}). If ¢V =9, we have to estimate

hi,lo,lo
(H*SN—HSN )(?SN,USN,USN)Z ) Ry, Pravn Prsven. (12.25)
Ni,N,N3<N:
max(Nz,N3)>N1'7

Alternatively, if ¢ (D e 68\{v}, we have to estimate

1 1
n;N<¢§)V,v<N,v<N) S Pwel) Prven Pryven. (12.26)
N1,N2,N3<N

We now treat the dyadically localized terms in (12.25) and (12.26). Using symmetry
in the second and third argument, we can reduce to the case Ny > N3. By using the
decomposition (12.23) and the definition of the nonlinear smoothing norm (Definition
3.2), we can write

Pryv<y = Py, XU\ ey, Yen ]+ Pry X0 [vn] + Py, Y=n, (12.27)
Pyyv<y = Pyyvl (Str) + Pyyv S?Vg), (12.28)
where

” oV ”Looc cnx—-eb T ||U(reg) ||X1/2+5z b= 2” U<N”«N5([0 -

The superscripts in (12.28) stand for “Strichartz” and “regularity”, respectively. Us-
ing (12.27) and (12.28), we decompose the dyadically localized terms in (12.25) or
(12.26) as

1
Py, ¢ izz/PszﬁN Pyyv<y

= Pry e8P (XY + X8 ) Py 5 (12.29)
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1

+ P e Py Y P o5y (12.30)
1 1 2 S

+ Py, ¢ P, (X;}, +X8), + YSN)PN3U(£LI\?. (12.31)

The estimates of (12.29) and (12.30) are exactly as in the proof of Proposition 3.23
and Proposition 3.24. Indeed, if g““) = ?, the estimates of (12.29) and (12.30) are

as in Case 3.b or Case 3.d of the proof of Proposition 3.23, respectively. If ¢V e
68\{1}}, the estimates of (12.29) and (12.30) are as in Case 3 or Case 4 in the proof
of Proposition 3.24.

It remains to treat the term (12.31). Since the case C(l) € 68\{11} is trivial, we

focus on the case ¢V = . The contributions from X(SI])V and X(SZ])V can be bounded

directly using Corollary 10.9. The remaining contribution of Y<y can be estimated
by

” ?Nl Py, Y<n Py, v(;;\r/) ||X*1/2+62.b+—1
S| By, P Y Pryuly HL,ZH;I/H‘SZ
S(NTEELN > Mo} + 1N S M)

x| Ty, ”L,OOL;O | Py, Y<n ”L,ZL)% I PNzU(sS;\r/) ”L;’OL;O

SA(NTPEELN > Mo} 41N S W)
1/2 —1/2-§
x N} PPN P2 NS Yyl g joess b o< [ s

Since (12.25) is restricted to frequency-scales satisfying Ny = max(N2, N3) > N/,
this yields an acceptable contribution.

Case 2: £V = v. Due to (12.24), it holds that ¢V = ¢@ = ¢® = y. As before,
we utilize the dyadic decomposition

HEN(U5N7U5N,U5N)= Z PN v<N PNyU<N PN3U<h -
N1,N2, N3<N

By symmetry, we can assume that N1 > N, > N3. Using the decomposition (12.23)
and the nonlinear smoothing norm, it remains to estimate

Py (K3 + X2+ Yan) Py (058 +000) Py (05 +057). (12.32)

All possible combinations in the product (12.32) can be estimated easily using
Strichartz estimates. For example,

H Py, (X(glz)v + X(gzl)v + YEN)Psz(SS;\rI) Py, U(gsgf)

X—1/248.b4—1

1 2
] P (5L, K2+ Vo) Prpl8 P o0

L7L3
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(str)

(str)
Ny Vo

1 2
<) (X + X8 + ) AIY

L®L2 L®L® H L°LY®

SNy Jo<n -

1 2
Py (X0} + X2, + Yep) HLocHI/Hl

The desired conclusion now follows from the regularity estimate for XL‘}V and X(<21)v
(Proposition 3.20). We omit the (standard) details for the remaining terms in the prod-
uct (12.32). O

Appendix A: The nonlinear stochastic heat equation with sharp
frequency-cutoffs

In Sect. 6.1, we discussed the frequency-truncated stochastic nonlinear heat equation
(6.6), i.e.,

(35 +1— A) DLy = _P§N< (P 02y +y5N<1>°§°;v) + V2dweos
(s, x) € (s0, 00) x T?, (A.1)

cos __ +COS
q)SN s=s0 .

In the proof of Proposition 3.5 at the end of Sect. 6.1, we claimed that the local well-
posedness of (A.1) essentially follows from the previous literature [27, 62, 65]. Due
to the sharp frequency-cutoffs in (A.1), however, some modifications are necessary.

The sharp frequency-projections (P<y)y, which are based on cubes, are uni-
formly bounded on LY for every 1 < p < oo but unbounded on L%°. However, for
every § > 0, (P<y)y is uniformly bounded as a map from C)‘E to L$°. More generally,
for every @ € R and § > 0, (P<y)y is uniformly bounded as a map from C¢* to C%.
Due to the smoothing properties of heat equations and the sub-criticality of (A.1), the
resulting §-loss is acceptable, and most of the argument in [27] applies verbatim to
(A.1).

The main technical difficulty concerns commutator terms, which do not exhibit
any gains under the sharp frequency-cutoffs. To illustrate this, let N > 1, let n =
(N,0,0) € Z?, and m = (1,0, 0) € Z>. Then, it holds that

[PfN, ei(m,x)]ei(n,x) — PSN(ei(m,ﬂei(n,x)) _ ei(m,x) PSN(ei(n,x)) — _ei<m+n,x).
(A2)
In particular, (A.2) exhibits no gain in N. Due to the missing commutator estimates, a
few steps in [27] do not directly carry over to (A.1). For example, the decomposition
in [27, (3.3)] has no direct counterpart in our setting. In the rest of this section, we
show how the main estimate [27, Proposition 3.8] can be extended to our setting, but
do not discuss any other (more minor) modifications.

A.1 Preparations

Let 0 < € < 8 < 1 be parameters. In (6.3), we defined the heat propagator e—5(1=2)
n)?

as the Fourier multiplier with symbol n — e~*%)" For any initial time sy € R, we
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Invariant Gibbs measures for the three dimensional cubic NLW 1397

define the associated Duhamel integral as

S
Duh,, [F](s) ;:/ ds/ef(sfs/)(lfA)F(s/).

S0

We now recall the following Schauder-type estimate.

Lemma A.1 (Schauder-type estimate) For any o € R, 6 € (0, 1), 59 € [—1, 0], and
F: [s0,0] x T3 = R, it holds that

sup s —sol” | Dubgy [F][|l o2 S sup Is —sol” [Flloe.  (A3)
- s€[s0,1] *

s€[so,1]
Furthermore, if F (so) =0, we also have that

sup [s = sol” | Duhy, [8 F] | ce2 S sup Is =sol” [Fllee-  (A4)

s€lso,1] s€lso,1]

Except for a boundary term in Duhg,[d; F'], the 8-loss in spatial derivatives can be
used to obtain better weights in |s — sg].

Proof The estimates essentially follow from [27, Proposition 2.7]. For the second
estimate, we also use the identity

Duhy, [F] = F —Duhy, [(1 — A)F]. O
Furthermore, we define the following bilinear para-products.*
Definition A.2 (Bilinear para-products) For any f, g: T3 — R, we define

f®g:= Z Pk f PLg, fOg:= Z Px f Prg, and

K,L: K,L:

K<L K~L
f@g:= Y PxfPLg.

K,L:

K>L

A.2 Main estimate

We now prove the analogue of the main estimate [27, Proposition 3.8] with sharp
frequency-cutoffs. In order to precisely state the estimate, we use the Wick-ordered
square

cos  €Qs

3 cos 2
QL _.(o ) .
<N = iy ) G-

(7

40In the definition of the para-products, we are not forced to choose the sharp frequency-projections and
could have used a different (smooth) frequency-scale decomposition.
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Proposition A.3 For all A > 1, there exists an A-certain event E o € £ on which the
following estimate holds: For all 6 € (0,1), N > 1, s9 € [—1,0), and ¥ : [s9, 0] x
T3 — R, we have that

COS COs COs CcOs

Q 0O Q O
Duh, [9 Ly O (P Duhso)[ 2y @PSN\P]

-

sup |s — sole ‘
s€ls0,0]

_VszsN‘I’] (A.5)

326

<A sup |s—sol’[W(s)| s
s€[s50,0] *

Remark A.4 We make a few comments on Proposition A.3.

(1) If instead of the nonlinear remainder W the low-frequency component is given
by the cubic stochastic object

the term can be treated as an explicit stochastic object and estimated more easily.
(i1) The regularity condition on W on the right-hand side of (A.5) is far from optimal,
but sufficient for our applications to (A.1). It is the result of a simple (but crude)
Sobolev-type embedding.
(iii) The local well-posedness theory of (A.1) also requires a minor variant of (A.5),
where the Duhamel integral is estimated at a lower spatial regularity but with
better pre-factors of |s — sg.

Proof In the following, we denote the frequencies in the first and second factor of

COos

:‘
Y
Y

-

o

S

IATO!

N

by (n1, nz) and (n3, n4), respectively. We also denote the frequency of W by ns. In-
serting the definitions of the stochastic objects, Duhamel integral, and para-products,
it follows that
e}
9 ¢

-

C

le}

S [

88
v O Py Duh, [ Ny @PSN\IJ]
s (A.6)
= > > | ds'PyW(s".n5)Gen (s, s, xins, Ns),

Ns<N nseZ3 5o

‘O

IA
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where
G<n(s,s', x;ns, Ns)
=9.2%/2

x Yy >y [’"1234”1N12(n12>1N345<n345>

ni,n2,n3,n4€Z3 N12,N3as:  N3g:
Ni2~N345, N34>>Ns
N3as<N

(e 2
XUy (30 Isns) (T 1wty )= A7)
1<j<4

s N
x( / / WL (AW n) ] emm07)
—00 J —00

j=12
/ / Wcos(n )dWSiOS(nU 1_[ e—(S,—Sj)("j)z):|_
j=3,4

In order to proceed with our estimates, we decompose G<y into terms with zero,
one, and two resonances. To this end, we define the fourth-order chaos by

Q(4) (s,s', x;ns, Ns)

9.2421{s" <5} Z Z Z |: (n12345,%)

ni,na,n3,n4€Z3 N12,N3as:  Nig:
N12~N345, N34>>N5
N345<N

(e 2
XLy (12) 1y (1345) Ly (r3) L (1) ([ 1wt ) o)

I<j=4
([, @ awsranp( T 1ty =steton’)
B iy j=12
X( 1_[ 1{s; fsl}e(s/sj)<nj>2>>:|,
j=3.4

the second-order chaos by

G2\ (s.s', x:ns, Ns)

=18-2%21{s' < s} Z Z Z |:1{n13 = Qe (r2e5:%)

ni,n2,n3,n4€Z3 N12,N3as:  Nigq:
N12~N345, N34>>N5s
N3g5<N

(e 2
XLy (12) 1 (1345) Ly (3) L 1) ([ 1)) e (a9
2<j<4
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s s’
X </ / AW (n2)dWg, ™ (n4)
—0Q0 J =0

’

' (s=52)(n2)? ,=(s+s'=2 2 (s —s4)na)?
X/ dS3<e_ s=52)(n2)” p—(s+s'=253)(n3)" ;= (s'=s54) {n4 ) ’

—00

and the zeroth-order chaos (or constant) by

GO (5.5, x1ns, Ns)
:18 . 24/26i(n5,x)

X Z Z Z [1{n13 =n24 = 0}, (n34)

ny,np,n3,n4€Z3 N12,N3as:  N3q:
N12~N345, N34>>N5

N345<N (AlO)
(e 2
X Lyags (1345) Ly (130) T (1) (T 1z )70
3<j<4
s’ s’ (' —25) )2
x(/ / dszdsy e TS TS >:|
—00 J =0 1_[

3=j=4

We now treat the contribution of each chaos separately.

Step 1: Contribution of G®. For expository purposes, we decompose the argument
into three sub-steps.

Step 1.a: In the first step, we define a dyadic decomposition of G, We define

GW (s, s, x;ns, Ny) =GP(s, s, x; ns, N1, Na, N3, N4, Ns, N12, N3a, Nags)

by inserting dyadic cut-offs in (A.8). More precisely, we remove the sum over (but
keep the restrictions on) N2, N34, and N345 and replace

[T 1evy)  with [T ;.

l<j=<4 I<j=4

Due to our previous frequency-restrictions and symmetry, we can always restrict our-
selves to the case

N{ > N2, N3 > Na, Ni2 ~ N34 ~ N3a5 > Ns. (A.11)
In the following, we also write
Ninax := max (N1, N2, N3, Na, N5, N3as).

Step 1.b: In the second step, we prove for all p > 2 that

Pn,GP (s, s, x,ns, Ny)

IE|: sup
—1<s'<s<0

i|1/p
L (A.12)

1/2 . —1y A —1/2
,szexp(— 1/8|s —s/|N3245)N0/ Niys min (1, NoN; 1)Nma){ e
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Using the reduction arguments in Sect. 5.7 (or Sobolev embedding in the s and s'-
variables), it suffices to treat fixed —1 < s’ <s < 0. For any p > 2, we obtain from
Gaussian hypercontractivity that

P 12/p
EI:H PNOg(4)(s9S/1-xs ns, N*) LOO:I

X

§p2N€

max

E[H PnyGP (s, s, x, ns, Ns)

]
<SP Niax > [(li[ Y ("j)>
j=0

no,11,n2,13,04,15€L3
no="n12345

X L (12) Ly (130) T () exp (=205 = 5') (345)?)
K s s s 2 ( y >2 4 o y )2
X dSldS2/ / dS3dS4( e S=8j)n; )( e S =8j)n; )}
/—OO /;OO —00 J —00 jlj[l ]1]”

4
< pzN;,aX( I1 N.;Z) exp ( —1/2(s — s’)N3245)
j=1

5
X Z |:(1_[ le(nj))1N12(n12)1N34(n34)1N345(nj):|. (A.13)
’107n1,nz,n3,n4,n5€Z3: j=0
no=n12345

By viewing ng, na, n345, and ny4 as the free variables and recalling (A.11), we obtain
that

4
(A13) < P2 Nas ([T N72) NoNaNsasNay* exp (= 17265 = 5 )Ny )
j=1

S NiaxNoNgss < (NENTINTINGE) exp (= 1720 = s)Ns ). (A14)
In order to prove (A.12), it only remains to bound the second factor in (A.14). Under
our frequency-restrictions in (A.11), it holds that max(Ng, N5) < Nags and Nags <

min(Np, N3). As a result,

2n—1 =1 n—1 2 =2 a1
NyNy "Ny Nyys S (NgN3gs) < (N; N3 Nass)
< min(1, N} N5?) max(Ny, N3) ™!

~min(l, N¢N5 2Ny
This yields the desired estimate in (A.12).
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Step 1.c: In the final step, we control the contribution of G to the left-hand side
of (A.5). Due to Lemma A.1, it suffices to prove for all frequency-scales that

s —_—
sup |s—So|9HPNO Z / ds/PNS\II(s/,n5)g(4)(s,s/,x;n5,N*) s
s€[s0,0] nseZ3 50 C,
SANGS sup s —sol” [ W) 1o (A.15)
s€[s0,0] X

By using (A.12), we obtain (on an A-certain event) that, for all —1 <s’ <s <0 and
all frequency-scales,

“PNOQ<4)(S,S/,x;n5,N*) 5

< Aexp ( —1/8]s — s/|N§45>N(§/2N§45 min(1, NoN5 Y Nmal 2. (A.16)

As a result,

=Y / ds' Pry W (s, n5)GW (5. 5", x: ns, N.)

s
S0

o1/
X
nseZ3

s —_—
< / ds'|| PngG @ (s, 8" xims, N | o120 Y [P W (s, ms)|
S X

S0 ns

S ANG* min (1, NoN5 ) N2 NV N2+

N
><(/A ds’exp(— 1/8]s —s’|N3245>|s’—s0|_9> sup |S/_SO|€H"IJ(S/)HHXI"S'

50 s'€[s9,0]

From a direct calculation, we obtain that
45 . —1 2 1/248 A1—1/24€
ANy ® min (1, NoN VN2 sNY 2P Nl

N
x (/ ds’exp<— 1/8]s —s/|N3245>|s/—s0|_9>
S

50

N
1/2—38 A,—1/2+ —(1— _
SANZ5NI NG ([l =500 sl )
S

0

SANED |5 — 50177,

This yields the desired estimate (A.15).

Step 2: Contribution of G @, Since the argument is similar to the treatment of G @,
we omit the details.

Step 3: Contribution of G°). We emphasize that the contribution of gi‘)}v has to
be renormalized, i.e., has to cancel with y<y. We first perform the sum over the
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frequencies n1 and n, and perform the integrals in s3 and s4, which yields

¢m®s x;ns, Ns)

=18 Iys(ns) e %" N > [1N12<n34>1N345(n345)

n3,n4€Z3 N12,N3as: N3a: N34>>Ns

N12~N3ys,
N3s5<N
—(s—s")(n;)?
(el 2 e J
<A low(ras) ([ tantnp)em =0 (T S )}
3<j=4 3<j=4 /

We now isolate the main term in (A.17), which is given by

~

Q“D(s s',x;ns, Ns)

=18 - 1y;(ns)e 59

/ —(s—s"){(n;)?
x Y [1<N(n345)< [1 15N(”j)>€_(s_s)<n345>2( [l e(T)}

n3,n4EZ3 3§j§5 35]54
(A.18)
In the error term g<<° -G (<01)v’ one can gain a factor of N5 N;‘IS, which makes the esti-

mate rather easy. As a result, we focus only on the main term G ﬁ’,{, Using symmetry
in n3, n4, and ni4s, it follows that

~

g(o) (s,s’, x;ns5, Ns)
=—6-1y,(ns)e' s~

e~ (5= ") {n3as)?

—(s— s)(nj)
><3s< Z [1§N(n345) n (1_[ 1<N(nj)e e )D

n3,ns€Z’ 3=j=4
(A.19)
With a slight abuse of notation,*! we define
FSN (nSa s; NS)
—s(n3a5)? )2
=06 1n5(ns) Z [1<N(n345) ( l_[ 1<N(nj) > ):|>
n3,ns€Z3 3=j=4
(A.20)
Equipped with this notation, (A.19) reads
GO\ (s.s', xins, Ns) = —8,T <y (ns, s —ss Ns) &' ") (A21)

“IIn the main part of the paper, the second argument corresponds to the time-variable in the wave equation.
In this appendix, the second argument corresponds to the time-variable in the heat equation. Furthermore,
since we mostly work with s —s” > 0, we changed the sign in the exponential.
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It follows that

N
—_— ~O
» /ds’PNS\IJ(s’,ns)g;}V(s,s’,x;ns,Ns)—ygNPNsws)
S

n5€Z3 0
N P .
= -0y, Y [ d'Py,U (s, n5)I<n(ns, s —s'; Ns)e ') (A22)
nseZ3 50
+ Y (Pan(n5,0) — y=n) Prs B (s, ns)e! 54 (A23)
nseZ3

For the first term (A.22), we use the second estimate in Lemma A.1, which reduces
the desired estimate to

s o —— .
sup |s — so” H > ds'PysW(s", n5)T <y (ns, s — s'; Ns)e' 5%
s€[s0,0] nseZ? 50

63/2’45

< sup |s —sol” “lIJ(S)”HXl—E.

~

s€[so,0]

This follows directly from the triangle inequality in ns, inserting the definition of
['<n, and performing the s’-integral.

For the second term (A.23), we use the first estimate in Lemma A.1, which reduces
the desired estimate to

sup s — so|” H Z (T<n(ns,0) — VfN)PN5\IJ(s,n5)ei<”5’x>

—1/2—-45
s€[s0,01 nseZ? Cx
< sup Is — sol” “\II(S)”Hl_a.
5€[50,0] *
This follows from the triangle inequality in n5 and Lemma 7.1. g

Appendix B: Merging estimates, moment method and time integrals

We first recall the main technical tools needed from [45], namely the merging esti-
mate (Lemma B.1) and the moment method (Proposition B.2, called trimming esti-
mate in [45]).
Lemma B.1 (Merging estimates, Proposition 4.11 in [45]) Consider two tensors h,(:A)
1
and h,((i) ,Where Ay N Ay =C. Let A|{AA, = A, define the semi-product
2

M 5@
Hiy =Y by, hi . (B.1)

ke

Then, for any partition (X,Y) of A,let X N A1 = X1, Y N A1 =1 etc., we have

1 2
I iy —ky < 1BV Ny ue—ky, - 1P i, —keo, - (B.2)
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Proposition B.2 (Moment method, Proposition 4.14 in [45]) Let A, X, and Y be
disjoint finite index sets and let h = hnAany be a (deterministic) tensor. Let N be
a dyadic frequency-scale and assume that, on the support of h, |n;| S N forall j €
AU X UY. Furthermore, let (£j)jea € {+, —}A be a collection of signs. Finally,
define the random tensor H = H,, 5, by

Huxny =Y hugnyny SIlnj, %1 j € Al, (B.3)
nA

where the stochastic integrals ST are as in Sect. 2.4. Then, we have for all § > 0 and
all p > 1 that

S
LY

2

xny HnX—>ny ‘ Igflg.( ”h”A”X”y ”anX—Wl(;ny’
where the maximum is taken over all partitions of A.
Remark B.3 Note that Proposition B.2 is slightly different from Proposition 4.14 in
[45], due to the use of the renormalized product SZ instead of products of indepen-
dent Gaussians. However, this difference does not affect the proof.

In addition, we prove an almost L' estimate for iterated oscillatory time integrals
(Proposition B.4). This is a special case of Lemma 10.2 in [40], and is used in the
molecular analysis in Sect. 11.

Proposition B.4 (Some time integral estimates) Consider the following expressions:
topt )

Hi33(t, Q0, Q1, Q) = / f XOx ) x () PFHFRD) dnydry, (B.S)
0 Jo

H3.3.3(2, Q0, 21, 22, 23)

1 t t
‘:/ / / X O3 () x (12)e! COFRNTRLTXD) drydrydrs, (B.6)
0 JO JO

t t 5] .
Hi1.5(1, Qo, R, Q) 1= / / / X (D) x (1) x (1) QTR 4 dry - (B.7)
0 JO JO

Then we have the following estimates:
/R Qo) (@) V2T (FiH1 3.5, Q0. @1, 20)| d0d21d2
< ()2, (B.8)
/ | (920)(21) () ()70 (FiH3.3,3) (€. Q0. 1. 2. 2) | dQdQ21d 20423
R
S (g2, (B.9)
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/ (Q0)(Q@)(@)) V2T (FiH1L1L5) . Q0. Q1. Q0)| d0dQ1d2,
R\

S (€. (B.10)
The same estimates hold for all Q; derivatives of these functions.

Proof First, the Q2 ; derivatives of the H functions satisfy the same estimates as them-
selves because taking one £2; derivative in (B.5)—(B.7) just corresponds to multiply-
ing by ¢; or ¢, which is bounded due to the cutoff x. Thus we will only prove the
bounds for the original H functions. Moreover we will only prove (B.10) for H; 15
defined by (B.7), since the proof for the other two will be similar (and simpler as they
do not involve iterated time integrals).

Now consider H := Hj,1,5. Let 1 = no(£2) 4+ noo(£2) be a partition of unity sup-
ported on |2| < 1 and |2| 2 1 respectively, then integrating by parts we have

1 .
/ x (t2)e 22 dry
0

x (t1)e" 21 — 5 (0) 1
i i Jo

=10(2)¥ (11, 22) + rloo(Qz)( x/(t)e' 2" dt2>,

(B.11)

where 1 is a fixed smooth function of (¢1, 27). Let the three terms in (B.11) be A,
B and C, below we will only focus on the main term which is B. In fact the term
A is a Schwartz function upon localizing in #; (which we can always do), which is
easily handled. For the term C, we can integrate by parts in #, many times, and the
boundary terms all have the same form as B (except x may be replaced by x' etc.
which does not matter); the remaining bulk term will carry enough decay in €25, so
upon localizing in 71, it can be bounded as a function of #; and €2; in a finite high
order Schwartz space, so effectively it can be treated in the same way as A.
Now we focus on the main term

x(t1)e 21 — ¥ (0)

B =100 (822) i

and plug it into (B.7) to get

Q) t . .
oo (C22) i / XD (x ()e' 2 — x (0))e' 11 dry.
12 0

Integrating by parts again, we obtain some remainder terms plus the main term which
is

2 P(Q+Q0)1 2
t — 0
TS NI (x" (e x~(0))

| 10o(2) noe(@1)
i i

eiQOt[nOO(QZ) Moo (21 + 22)

X (O (x ()" — x(@)}. (B.12)
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The remainder terms can be treated in the same way as (B.11) above by integrating
by parts many times, so we will only consider the main term below.
For this main term we clearly have that

|Fx(B.12)(8)]

S

Z (’7700(92) Noo (§21 + £22)
i) (21 +Q22)

Qe{Qo, Qo+Q1, Qo+21+20}

Moo (£22) Moo (§21)
i 12

+ ‘ )(é -1 (B.13)

This easily implies (B.10), because both functions

Noo(£22) Moo (€21 + £22) an N00(£22) Moo (£21)
12 (21 + Q) i i

are almost L' in (€21, ©25), and becomes L' when multiplied by the negative weight
((21)(22))80/27P41); the integrability in Qq, as well as decay in £ in (B.10), follows
because of the (€ — )79 factor in (B.13) (so in particular we can assume |§] <
1 + max; [£2;]). Now, once (B.10) is proved for the main term, the same argument
can easily be applied to the remainder terms to get the same estimate. This finishes
the proof of (B.10). O
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