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Abstract. The Manin constant ¢ of an elliptic curve E over Q is the nonzero integer that scales
the differential s determined by the normalized newform f associated to E into the pullback
of a Néron differential under a minimal parametrization ¢: Xo(N)g —> E. Manin conjectured
that ¢ = +1 for optimal parametrizations, and we prove that in general ¢ | deg(¢) under a minor
assumption at 2 and 3 that is not needed for cube-free N or for parametrizations by X1(N)g.
Since c is supported at the additive reduction primes, which need not divide deg(¢), this improves
the status of the Manin conjecture for many E. Our core result that gives this divisibility is the
containment wy € H 0(Xo(N), Q), which we establish by combining automorphic methods with
techniques from arithmetic geometry; here the modular curve X (V) is considered over Z and 2 is
its relative dualizing sheaf over Z. We reduce this containment to p-adic bounds on denominators
of the Fourier expansions of f at all the cusps of Xo(/N )¢ and then use the recent basic identity for
the p-adic Whittaker newform to establish stronger bounds in the more general setup of newforms
of weight k on Xo(N). To overcome obstacles at 2 and 3, we analyze nondihedral supercuspidal
representations of GL2(Q2) and exhibit new cases in which X¢ (/N )z has rational singularities.
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1. Introduction

By the Shimura—Taniyama conjecture settled in [Wil95, TW95,BCDTO1], for every ellip-
tic curve E over Q of conductor N and every subgroup 'y (N) C T C T'y(N) of GL,(Z),
there is a surjection

¢:(Xr)g = E from the modular curve (Xr)g.

Most commonly, I is T'o(N) or ' (N), so that Xt is Xo(N) or X1 (N), but for different I"
different £ may be more canonical within the same isogeny class: for instance, X;(11)q
and X (11)g are distinct isogenous elliptic curves. The multiplicity one theorem ensures
that the ¢-pullback of a Néron differential wg is a nonzero multiple of the differential
wr € H((Xr)q, Q') associated to the normalized newform f whose Hecke eigenvalues
agree with the Frobenius traces of E:

¢*(wg) = cy - wy foraunique ¢y € Q™

and one knows that ' ¢4 € Z (we abuse notation: wg is nonunique, so ¢ determines only
+cg). For fixed I' and E there are many ¢, so it is common to normalize ¢ to be optimal,
that is, deg(¢) to be the least possible as E varies in its isogeny class and I" is fixed (any ¢
factors through an optimal one: see the proof of Lemma 6.5 and use multiplicity one). For
optimal ¢, Manin conjectured that

?
Cop = :|:1,

see [Man71, Section 10.3].> From the theoretical point of view, the natural approach to
the Manin conjecture is to argue that p { ¢4 for every prime p: geometrically, this p-adic
statement translates to studying the arithmetic properties of the “reduction modulo p” of
the parametrization ¢. This is not so in the computational approach, where for explicit £
one computes with modular symbols to check “directly” that ¢y = +1: indeed, Cremona
used the computational approach to prove in [Cre22] that the Manin conjecture holds
whenever N < 500000. The divergence of the two approaches gives this overwhelming
computational evidence for the Manin conjecture even more weight.

Tt seems that the integrality of cg was first noticed by Gabber during his PhD studies. To
establish it, one reduces to the case I' = I'; (V) and then uses g-expansions; see Lemma 6.5 and its
proof.

ZManin considered I' = T'g(NV), and this implies the general case by Lemma 6.5. In [Ste89],
Stevens argued that minimal degree parametrizations by X (/N)q are the most natural ones, and he
conjectured that ¢y = +1 for them.
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The initial theoretical results on the Manin conjecture were based on exactness prop-
erties of Néron models and showed that p } ¢y for those p > 2 at which E has semistable
reduction (see [Maz78] and [AU96, ARS06] for some sharpenings). By passing to a min-
imal extension K of QQ, over which E acquires semistable reduction and analyzing a
stable integral model of X (N )@p , Edixhoven was able to extend this approach to some
primes p at which E has additive reduction: in [Edi91, Theorem 3], he showed that p } c4
for any prime p > 11 at which E does not have an additive potentially ordinary reduc-
tion of Kodaira type II, III, or IV.? In these geometric approaches, the key input to the
required exactness properties is Raynaud’s result from [Ray74] on uniqueness of com-
mutative, finite, flat group schemes with a fixed generic fiber over a complete discrete
valuation ring of mixed charcateristic (0, p) and absolute ramification index e < p — 1.
Raynaud’s results were later subsumed into integral p-adic Hodge theory but the require-
ment e < p — 1 for exactness properties persisted, so there seems to be little hope that
this approach is the “right” one for the Manin conjecture.

The conclusion p } ¢y was established in [Ces18] for all primes p of semistable
reduction for E by a different method. The key novelty was to analyze the Hecke module
structure of the Lie algebra of the Néron model of Jo(N ) using a multiplicity one result in
characteristic p, and this showed that automorphic rather than purely algebro-geometric
techniques that were tried previously may be better suited for the Manin conjecture. The
latter is most interesting in the remaining case of a prime p of additive reduction for E,
since then the relevant arithmetic geometry is the most delicate.

In this article, we combine automorphic methods with those of arithmetic geometry to
settle a subconjecture of the Manin conjecture, reviewed as () below. We then show that
this subconjecture has the following divisibility consequences for the Manin constant.

Theorem 1.1 (Corollary 7.3). For an elliptic curve E over Q of conductor N, every
surjection

¢: X1(N)g — E satisfies cg | deg(e).

Theorem 1.2 (Theorem 7.2). For an elliptic curve E over Q of conductor N, and for a
level T' with 'y (N) C T' C I'o(N), every surjection

¢:(XT)g = E satisfies cg|6-deg(¢),
and if N is cube-free (that is, if 8 + N and 27 + N), then even

cp | deg(e).
More precisely, under these assumptions, for every prime p we have
valy(cg) < valp(deg(¢))
1 if p =2withval,(N) > 3 and there is no p’ | N with p’ = 3 mod 4,
+ 91 if p=3withval3(N) > 3 and there is no p' | N with p’ = 2 mod 3,

0 otherwise,

(1.2.1)

3In the unfinished manuscript [Edi01], he attempted to remove this assumption on Kodaira types
(still for p > 11).
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and, more generally, if for some I' C T" C T'o(N) the singularities of (Xr/)z,,, are
rational, then
val, (cg) < val,(deg(¢)).

The modular degree deg(¢) is often even, for instance, if I' = ['o(N) and ¢ fac-
tors through some Atkin—Lehner quotient, but otherwise it is somewhat mysterious. In
particular, for many E this degree is coprime with N, so that the new upper bound
val,(cy) < val,(deg(¢)) supplied by Theorems 1.1 and 1.2 eliminates* some additive
primes that could divide ¢y for optimal ¢.

To illustrate, in the figure below we plotted in green the fraction of those isogeny
classes of E over Q of conductor N < 300000 that have an odd additive prime p but for
which no such p divides deg ¢, where ¢ is the optimal parametrization by Xo(N)g; if
p = 3 with valz(N) > 3, then we also require that there exista p’ | N with p’ = 2 mod 3.
Theorem 1.2 shows that the Manin constant for such E is a power of 2 (the semistable
primes are eliminated by earlier results, as reviewed above). Furthermore, we plotted in
yellow the fraction of those isogeny classes as above for which some odd p of additive
reduction does not divide deg(¢) and some other does, with the same caveat for p = 3,
so that Theorem 1.2 eliminates at least one odd additive prime. Even though in all of
these small conductor cases the full Manin conjecture is known by Cremona’s verification
[Cre22], the figure shows the scope of the improvement supplied by Theorems 1.1 and 1.2.

Theorem eliminates
at least one odd additive prime

- Theorem eliminates
all odd additive primes

80% B Al odd primes are semistable
70%

60%
50%
40%
30%
20%
10%

N< 15000 50000 100000 150000 200000 250000 300000

4The bounds in Theorems 1.1 and 1.2 hold for any parametrization ¢, although it is only for
optimal ¢ that the Manin constant c¢ is conjectured to equal &1 (and known to be divisible only by
primes of additive reduction). For example, when E equals the elliptic curve with Cremona label
11a3, which is a model of X1 (11)q, and ¢: Xo(N)g —> E is the isogeny of least degree, one has
cp = deg(¢) = 5, which is consistent with our bounds.
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The key input to Theorems 1.1 and 1.2 and the core result of this article is the follow-
ing integrality property of wy that follows from the Manin conjecture. Namely, we argue
in Theorem 5.15 that

wy lies in the Z-lattice H°(Xo(N), Q) € H%(Xo(N)g. Q1), (%)
f Q

where the modular curve Xo(N) is over Z and 2 is its relative dualizing sheaf over Z.
In addition to being implied by the Manin conjecture, the containment (%) is actually
necessary for attacking it: except for unforeseen radically new approaches, all indications
point to (x) being used in future work on the remaining cases of the Manin conjecture.

The containment (%) is straightforward in the semistable case, that is, for square-
free N, thanks to g-expansions and the Atkin—Lehner involution. More generally, since
the formal completion of Xo(N) along oo is Spf(Z[g]), the weaker containment

wr € HY(Xo(N)®, Q")

amounts to the integrality of the Fourier expansion of f at oo, where Xo(N)*>® C Xo(N)
is the (Z-smooth) open complement of those Z-fibral irreducible components that do not
meet the Z-point given by the cusp oco. Similarly, (x) amounts to certain bounds on the
p-adic valuations of the denominators of the Fourier coefficients of f at all the cusps
of Xo(N)c—at least up to difficulties caused by the lack of a modular interpretation
of the coarse space Xo(N) that we overcome in Section 5 by exploiting the Deligne—
Mumford stack Zp(N) and its “relative dualizing” sheaf €. We compute the precise
required bounds in Proposition 5.14, and an important step for this is to compute the
differents of the extensions of discrete valuation rings obtained by localizing the finite flat
cover Zo(N) — Z (1) at the generic points of the [F,-fiber of Z,(N), which we do in
Proposition 5.12.

To show that the required bounds are met, we use automorphic methods to establish
the following stronger bounds. In Example 4.8 we show that these bounds are sharp in
the case of newforms associated to elliptic curves (and p < 11) and we discuss their
computational potential.

Theorem 1.3 (Theorem 4.6 and Lemma 5.13). For a prime number p, a cuspidal, nor-
malized newform f of weight k on To(N), an isomorphism C ~ @p, the resulting
val,: C — Q U {oo} with val,(p) = 1, and a cusp ¢ € Xo(N)(C) of denominator L
(see Section 4.1), the Fourier coefficients as (r; c) satisfy

k N
Valp(af(r; C)) > —Evalp m

if val,(ged(L,N/L)) =0,

if val,(ged(L, N/L)) =1, val,(N) > 2,
-1 if val,(L) = val,(N) = 1,

1 — 3valy(ged(L, N/L)) otherwise,

0
0
+
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as well as the following stronger bounds in the case p = 2:

k N
valp(ar(r;c)) > _Evalz (M)

0 if val(L) = val(N) = 1,

N £ if val(L) = Jval(N) € {2,3,4},
% +1- %valz(N) if val,(L) = %Valz(N) >4,
0

if valp(ged(L, N/L)) = 3, vala(N) > 6.

Moreover, min, (val, (ar(r; c))) only depends on f and L, and not on the cusp ¢ with
denominator L.

To argue the above bounds we pass to the automorphic side by expressing the “p-part”
of ar(r;c) in terms of the local Whittaker newform Wy, of the irreducible, admissible
representation 7y, , of GL,(Q)) determined by f (see Lemma 4.5 and its proof). Thus,
Theorem 1.3 hinges on the p-adic analysis of the values of Wy, ,, which is a purely local
question about 7y, ,. To access these values, we use the local Fourier expansion of Wy,
and analyze the resulting local Fourier coefficients ¢; ¢(x) with the help of the recent
“basic identity” (reviewed in Section 3.5) that was derived by the third-named author
in [Sah16] from the GL, local functional equation of Jacquet-Langlands [JL.70].

The coefficients ¢; () € C are indexed by characters x: Z; — C* (the relevant ¢
and ¢ are determined by N, L, and r), and reasonably explicit formulas for the c; ¢())
were worked out in special cases in [Sah16] and appeared in general in the recent work
of Assing [Ass19]. These formulas involve the Jacquet—Langlands GL, local e-factors,
which for p # 2 can be expressed in terms of the GL; local e-factors of Tate, equiva-
lently, in terms of Gauss sums of characters of F* for at most quadratic extensions F/Q,.
In effect, p-adically bounding the values of Wy, ,, which is a problem on GL,, reduces
to p-adically bounding Gauss sums of characters, which is an approachable problem
on GL;. We study the latter in Section 2 and then bound the values of Wy, in the
key Theorems 3.14 and 3.15. Their most delicate case p = 2 uses a classification of
nondihedral supercuspidal representations of GL,(Q;) derived via the local Langlands
correspondence (see Proposition 3.9) and, to go beyond the naive bounds, takes into
account cancellations between the ¢ ¢(y). Thanks in part to this additional attention to
p = 2, we obtain the integrality result () without any exceptions.

In a more restrictive setting and by a different method, bounds on p-adic valuations
of Fourier expansions were investigated by Edixhoven in Section 3 of his unfinished
manuscript [EdiO1]. There he also hoped for a more conceptual approach that would be
based on studying the Kirillov model of 7, ,, and the work of our Sections 2—4 realizes
this prediction (we use the Whittaker model instead).

The automorphic approach to (x) seems much sharper and more natural than those
based on arithmetic geometry alone. For instance, as explained in Conrad’s [BDP17,
Appendix B], one may use intersection theory on the regular stacky arithmetic surface
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Zo(N) to bound the denominator of s with respect to the lattice
H°(Xo(N), Q) = H*(Z5(N). Q)

(see Corollary 5.4 for this identification). The bounds obtained in this way are far from
those needed for (x), but the intersection-theoretic approach is not specific to wy—in
essence it bounds the exponent of the finite group

H%(Xo(N)®, Q") /H’(Xo(N). Q).

The reference [BDP17] carries it out® for the line bundle w®¥ in place of Q2.

Turning back to Theorem 1.2, the only role of its rational singularity assumption is
to ensure that Picf,)(o(N) sz 18 the Néron model o (N) of the Jacobian Jo(NN) (here we
chose IV = T'o(NV) to simplify), and so to deduce from () that ws lies in an even a
priori smaller lattice H%(Jo(N), Q') that seems otherwise inaccessible. We do not know
any N for which this assumption fails, in fact, for a prime p we show in Theorem 6.12
that Xo(N )z, has rational singularities in the following cases:

1) if p>5;or

(ii) if p = 3 and either val,(N) < 2 or there is a prime p’ | N with p’ = 2 mod 3; or
(iii) if p = 2 and either val,(N) < 2 or there is a prime p’ | N with p’ = 3 mod 4.
The bulk of this rational singularity criterion is due to Raynaud [Ray91], but we used low
conductor instances of the Manin conjecture to add the cases p < 3 with val,(N) = 2.
The technique we develop for this also reduces the desired divisibility cg | deg(¢) in its

few still outstanding cases to a finite computational problem (albeit not one we know how
to solve completely); see Remark 6.13.

1.4. Notation and conventions

For a prime p, we let Valp:@p — Q U {oo} be the p-adic valuation with val, (p) = 1. For

a nonarchimedean local field F, we let OF be its integer ring, mr C @O f the maximal

ideal, wr € mf a uniformizer, Fr := O /mF the residue field, g := #FF its order,

and Wr C Gal(F/F) the Weil group. We normalize local class field theory by letting

geometric Frobenii map to uniformizers (see [BHO06, Section 29.1]). We normalize the
1

absolute value |-|F on F by |wp|F = #. We set Lr(s) := == for which we only
F

need the values 5
tr(l) = 255, tp(2) = S (1.4.1)

qgr—1’ g%—-1"
For a (continuous) character y: F* — C*, we let a(y) be the conductor exponent: the
smallest n > 0 with y(1 + m'’;) equal to 1 if x(OF) # {1} and to 0 if x(OF) = {1} (in

SUnfortunately, beyond the case valp (N) = 1 treated in [DR73, Chapitre VII, Section 3.19,
Proposition 3.20], the explicit bounds stated in [BDP17, Theorem B.3.2.1] suffer from a typo
in the values of the multiplicities of the components of 2o (N )]Fp stated in [BDP17, Theorem
B.3.1.3] (by [KM85, Section (13.5.6)], the correct multiplicity of the (a, b)-component for a,b > 0
is pmi“(a’b)_l( p — 1)). Consequently, the asymptotic behavior in p of the stated bounds differs
from the case val, (N) = 1.



K. Cesnaviéius, M. Neururer, A. Saha 580

which case y is unramified). For a nontrivial additive character y: F — C*, we let ¢ (y/)
be the smallest® n € Z with ¢ (m’%) = {1}.

For an open subgroup I" C GLZ(Z), we let 2T be the level ' modular Deligne—
Mumford Z-stack defined in [DR73, Chapitre IV, Définition 3.3] via normalization, and
Xr its coarse moduli space, so that Xt is the usual projective modular curve over Z of
level I' and, whenever T is small enough, 2T = Xr (see [Cesl7, Section 4.1 and Section
6.1 up to Proposition 6.3] for a basic review of these objects). We let

GL»(Z) D To(N) be the preimage of {(3 ¥)} CGL2(Z/NZ), Zo(N):= Zrywy:
GL(Z) > T'1(N) be the preimage of {(} %)} € GL2(Z/NZ), 2i(N) := Zr,);
GL2(Z) > T(N) be the preimage of {(§ 9)} € GL2(Z/NZ), 2 (N) := 2rw)-

We write Xo(N), X1(N), X(N) for the coarse spaces and use the j-invariant to identify
X (1) with IP‘% (see [DR73, Chapitre VI, Théoreme 1.1, Section 1.3]). For a scheme X, we
let X™& C X be the set of x € X with Ox  regular. If X is over a base S, we let X*™ C X
be the open locus of S-smoothness. We let 2 }1( /s denote the Kidhler differentials. We let X
be a geometric point over x and let ﬁ;h, L or ﬁ}S}“j denote the resulting strict Henselization.
We also use analogous notation when X is merely a Deligne—Mumford stack.

We let Z be the integral closure of Z in C, set &, := e2mi/n and let Z(p) be the
localization of Z at the prime (p). We let ¢ (m) := #((Z/ mZ)*) be the Euler totient func-
tion. For a field, a “finite extension” means a finite field extension. Rings are assumed
to be commutative. Both C and C allow equality. We write = for canonical isomor-
phisms (identifications), ~ for noncanonical ones, < for monomorphisms, — for epi-
morphisms, and —> for isomorphisms (in categories in question). Our representations and
characters are continuous and over C, and 1 is the trivial character.

2. p-adic properties of Gauss sums

Our ultimate source of p-adic properties of coefficients of g-expansions of newforms at
cusps is the p-adic properties of Gauss sums of characters, equivalently, of e-factors of
GL(1). Thus, we begin by explicating the latter in this section, especially, in Proposi-
tion 2.3 and Theorem 2.6.

2.1. Local field Gauss sums

For a finite extension F/Q,, a multiplicative character y:F>— C*, a nontrivial additive
character ¥: F — C*, the Gauss sum of y with respect to ¥ is defined by

@w(x,x):zf xONY(xy)d™*y for x € F*, with the normalization d*y=1.
O

OF

®In terms of the notation n () used in [Tat79, Section (3.2.6)] or [Del73b, Section 3.4], we have
c(y) = —n(y).
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Since &y (x, y) only sees X|(9; , it does not change when y is multiplied by an unramified
character, so we lose no generality if we assume that y lies in the set

X := {continuous characters y: F* — C* with y(wp) = 1}
=~ Homeon (O 5, CX).

Characters in X are unitary and of finite order, and we also consider subsets of fixed
conductor exponent:

X ={xeX|a(p =k} Xp:={xeX|a(p) =k}

(to stress the underlying field, we also write Xf, XF <k, and XF ). The Gauss sum
&y (x, ) is related to the GL(1)-epsilon factors &(s, y, ¥) defined by Tate (see [Tat79,
Section (3.2)] or [Sch02, Section 1.1]): under the common normalization ¢ () = 0, by
[CS18, Lemma 2.3], for every y € X, we have

1 if a(y) = 0 and valp (x) > 0,
_w+1 ifa(y) = 0and valg (x) = —1,
(S'llf(x» x) = glmator2
%—718(%,X_1, V) x(x™Y)  ifa(y) > 0and valp (x) = —a(y),
0 otherwise.
(2.1.1)

We will use this together with properties of e-factors: for instance, for a multiplicative
character y: F* — C*, a nontrivial additive character y: F — C*, and any s € C, by
[Sch02, Section 1.1], we have

- —1/2
s 1) = o(L, 1, P)g PO,
e(L. x.av) = y(@ed, x. ) fora € F*,
where ayy: F — C* is the character x + V¥ (ax). In particular, there is little harm in

restricting to s = % and assuming the common normalization ¢ (1) = 0, under which, by
loc. cit., we have

(2.1.2)

ez X V) =X (@F)* Pe(z 1. ¥).  e(z. 1. ¥)=1whenevera(y)=0,  (2.1.3)

e e X~ ) = x(=1).  |e(3. ¢ ¥)| = Lif x is unitary. (2.1.4)

Due to (2.1.1), the only case in which the study of the p-adic properties of &y (x, x)

has substance is when y is ramified and valg(x) = —a(y). Moreover, by a change of
variables,

Gy (xu, y) = y(u )Gy (x,y) foru e OF,

so it suffices to consider &y, (w;a(X), x). We will analyze the latter below, and we begin

in Proposition 2.3 with the case a(y) = 1, a case whose study reduces to that of classical
Gauss sums of multiplicative characters of finite fields.
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2.2. Finite field Gauss sums

For a finite extension F /F,, a character y : F* — C*, and a nontrivial additive character
Y F — C*, the classical Gauss sum of y (with respect to V) is

gu(0) ==Y x@y(a), sothat gy(x) € Z[Gw-1.4)-

acF>

By, for instance, [Was97, Lemma 6.1], we have

gy =1, gy(Ngy(y) =#F fory #1,
so the prime ideals of Q({sr—1, {p) that divide gy () all lie above p and
if y*=1, then gy(y)*= y(=1) #F. (2.2.1)

We will be interested in val, (g (x)) for the p-adic valuation val, determined by a choice
of an isomorphism ¢: @p ~ C. Via Teichmiiller representatives, the latter determines a
character wp : F* — C* of order #F — 1 such that wr(a) = a mod p. Thus, every
x : FX — C*is of the form y = a)IE“(X) for a unique 0 < () < #F — 1, and we set

[F:Fp]l—1 [F:Fp]—1
s(y) = Z a;, where «(y) = Z a;ip’, 0<a;<p-—1,
i=0 i=0

is the base-p expansion (s(y) and () depend on the implicitly fixed ¢; abusively, we
also extend this notation to characters y: F* — C* with a()) < 1, where F//Q, is a
finite extension with residue field ). Certainly,

ifand only if y =1,

if pisodd, y>2 =1, y # 1.
(2.2.2)

) 0
0<s(y) =(p—DI[F :F,] with s(y) = { (p—1)[F:F,]
2

By [Was97, Lemma 6.11, Proposition 6.13], we have

s =s()+s(x)mod p—1, 0<s(xx) <s(x)+s(x). (2.2.3)

In particular, since, for every finite extension F’/FF, we have both wp/|r = wr and

wr o Normp//p = HE&F]_I wg]F)l , it follows that for &: F”* — C*,

s(Elpx) =s()mod p —1, s(xoNormg/p) = [F':Fls(y) mod p —1. (2.2.4)

By a special case of Stickelberger’s congruence, that is, by [Was97, Proposition 6.13 and

before Lemma 6.11],

vl (g (1) = 5.

and this key identity gives the following result.
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Proposition 2.3. For a finite extension F/Qp, a multiplicative character x: F* — C*
with a(y) < 1, an additive character y: F — C* with c(y) = 0, an x € wz'O%, and
an isomorphism C >~ Q,,

s(x)
p—1
and (qr — )&y (x, x) is an algebraic integer in Q($q.—1,¢p) that is a unit away from p.

ValP (@W (X, X)) =

3

Proof. Since a(y) < 1, we may view y as a nontrivial character of IFI’,S Moreover,
since ¢(y) = 0, the character ¥ defines a nontrivial additive character y:F — C*
by ¥ (t mod mp) := W(wglt). The definitions reviewed in Sections 2.1-2.2 give

&y (w;l, X)) =— if(_xl) , S0 Section 2.2 gives the claims. ]

A similar analysis of &y, (w;a(X), x) for a(y) > 2 in Theorem 2.6 will use the fol-

lowing lemmas whose goal is to express this Gauss sum more or less explicitly.

Lemma 2.4. For a finite extension F/Qp, a multiplicative character x: F* — C* with
a(y) > 2, and an additive character yr: F — C* with c(y/) = 0, thereisau € O such
that

(1) ifa(y) is even, then
x(1+ w;(X)/zx) = W(uw;‘l(’()/zx) forall x € OF;
(ii) ifa(y) is odd, then
x(1+ w;fl(x)H)/zx) = w(uw;(a(X)_l)/zx) forall x € OF;

(iii) if both p and a(y) are odd, then

_ _ wylx?
x(1+ w}(pa(X) D/2yy = W(” (wF(a(X)H)/Zx - FT)) forall x € OF.

Proof. We set € := 0 if a(y) is even and € := 1 if a(y) is odd, so that the map
x> (1 + w}(:a(x)+e)/ 2x) is an additive character : F — C* satisfying the condition
c(0) = (a(y) — €)/2. All such characters have the form x Ip(uw;(‘lm*e)/zx) for
some u € (9; (see [BHOG6, Section 1.7, Proposition]), so (i) and (ii) follow.

For (iii), let U C O be a set of representatives of O /(1 + m;g(x)+1)/2) and consider
the maps

K1+ mgff(")_l)/z —C* forueU
defined by

- _ wplx?
(1 + @002 ) :=¢(u(wF(“("’“’/2x— 3 ))

(a()-1/2 2
- - w X
= w(uwFa(X) (w}a(X) D2y _ —( £ 2 ) ))
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Thanks to the power series expansion z — z2/2 + --- of log(1 + z), the function y, is

a multiplicative character that is trivial on 1 + m‘;,(X) butnoton 1 + mf,,(X)_l. Moreover,

since the characters (u w)|m—(a(x)+1)/2 are pairwise distinct (cf. the proof of [BHO06, Sec-
F

tion 1.7, Proposition]), so are the x,. Thus, since #U = q}f(X)_l)/z(qF — 1), the yy

exhaust the set of those multiplicative characters on (1 + mgg(X)_l)/ 2) /(1 + m?,(X)) that
are nontrivial on 1 + m?,(X)_l. Consequently, y = x,, for some u, as desired, and certainly

this u is also a valid choice for part (ii). [

Lemma 2.5. For a finite extension F/Qp, a multiplicative character y: F* — C* with
a(y) = 2, an additive character y: F — C* with c(yy) =0, and a u € Of as in
Lemma 2.4,

(1) ifa(y) is even, then

0 q}—a(x)/l 0
—a .
Gy (@, 1) = —IW(_“WF 0) 3 (<),
qF —
(i) ifa(y) is odd, then
0 qf(a(x)fl)/z w
qr — 1
X Z x(—u— utwl(f(X)_l)/z)w(_mw;(a(x)ﬂ)/z)
teOrF/mp

where we sum over coset representatives (their choice does not affect the summands).

Proof. We again set € := 0if a(y) is even and € := 1 if a()) is odd. Letting >y and dy
be the Haar measures on F* and F normalized by f(9; d*y = 1and fOF dy =1, we
then have

o 0= [ v Py ay

y€O L

Z X(U)/ p 1'//(aj-F—a()()Uy))((y)dxy
0% /(1+m@0+e)/2 ye(14+md0+e/2y
ve F/(l me ) F

where the sum is over some fixed coset representatives v € @ . The integral in this sum
equals

qF
qr — 1 /):e(l+m(1ff()‘)+e)/2
gr “PT —@G-e)/2 (@(+o)/2
= @O0 [ @ O 4 w0 ay
N R —a(x) —@(-e)/2
= —Y(wp Yv) V(o g (v +u)y)dy.
qF — 1 yeOFr

) V(@ Poy)x(y) dy

o
i
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The latter vanishes unless the integrand defines the trivial additive character of O f, that

is, unless, v = —u mod mgff(X)_e)/z. If a(y) is even, this happens precisely when v is

a(x)/2

in the coset —u(1 + mz"""7), and (i) follows. If a(y) is odd, then the same happens

precisely when v is in a coset of the form (—u + twff(X)_l)/z)(l + mgf(X)H)/z) with
t € OF, and two such cosets are distinct if and only if the corresponding ¢ are distinct
modulo m . Thus, by choosing coset representatives ¢ for O /mr and readjusting our

choices of coset representatives v, for odd a(y) we obtain

Gy (@ P, y)

1—(a()+1)/2
— qF Z y(—u + lw;ﬁl(X)_l)/z)I//(ZD';a(X)(—u + lwl(ra(X)_l)/z))-
gr — 1

teOf/mp

To conclude (ii), it remains to adjust the representatives ¢ by replacing them by —ut.
Finally, by Lemma 2.4 (ii), the summands in (ii) are independent of the coset representa-
tives for Of /mF. [ ]

Theorem 2.6. For a finite extension F/Q,, a multiplicative character y: F* — C* with
a(y) = 2, and an additive character : F — C* with c(y) = 0,

q;1+a(X)/2(QF — )&y (x, x) isaroot of unity for every x € w;a(x)(%;_

Proof. The case of an even a(y) follows from Lemma 2.5 (i) (with (2.1.1) to replace x
by w;“(X)). Thus, we assume that a() is odd, choose a u € O as in Lemma 2.4, and,
by Lemma 2.5 (ii), need to show that q;l/ 2T is a root of unity where

T = Z F(t) with F(t):= y(1 + twl(ra(x)—l)/Z)w(_mw;(a(x)—s—l)/z)’
teOF/mp

so that F(¢) only depends on the class in O /m f of the representative . For odd p, by

Lemma 2.4 (iii),
ut’wi;!
T= > 1//(——2F )

teOf/mp

Consequently, for odd p, letting ¥': Fg — C* be the nontrivial additive character
t > Y (—utwz'/2) and y:F} — C* the unique nontrivial quadratic character, we have

T=1+ Y v =1+ O+ ) =—gy).

X X
teF o teF

Thus, (2.2.1) shows that q;l/zT is a root of unity for odd p.
In the remaining case p = 2, we instead let ¥":Fr — {31} C C* be the nontrivial
additive character t — y(1 + tw;m ~!) and seek to conclude by showing that ¢ 7' T2 is

a root of unity. For this, we first note that, since F(2t) = F(0) = 1, the identity

FOF(@) = x(1+ (t + o @ P 4 10w fP Yy (—u( + 1w @02
=F@+1)y'@t)
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applied in the case t = ¢’ shows that each F(¢) is a fourth root of unity. We obtain

T>= Y FOF({)= Y Fe+)Wwae')=>) (F(s) A +ts)),

tt/'eFp t,t’eFgp selFr teFrp

where, since 7 — ¢2 is an automorphism of Fz and v is nontrivial, the inner sum vanishes
for s = 0. For s # 0, the kernel of the [F,-linear map Fr — Fr given by ¢ +— t2 + ts is
{0, s}, so its image is an [F,-hyperplane Hy C [Fr, and hence the inner sum also vanishes if
H; # Ker(y') and else equals ¢ . Thus, we are reduced to showing that there is a unique
s € Fp \ {0} with H; = Ker(y') or, since the total number of F,-hyperplanes in Fr is
qr — 1, that the H exhaust all such hyperplanes.

Scaling by a fixed r € F 5 is an [F,-linear automorphism of F z, and the nonzero orbits
of this automorphism all have the same order equal to the order m of r in the group F .
Thus, scaling by r fixes no Fa-hyperplane H C Fr unless r = 1: else m would divide
the consecutive integers #(H \ {0}) and #(Fr \ H). Consequently, by scaling, IF 5 acts
transitively on the set of [F>-hyperplanes H C Fr and it remains to note that scaling by
anr € Fx brings Hy = {t? + st | t € Fr} to another hyperplane of this form, namely,
to H,s for the unique r’ € Fr with r'? = r. ]

The above analysis of Gauss sums &y (x, y) gives the following consequence for
e-factors of GL(1).

Corollary 2.7. For a finite extension F/Qp, a multiplicative character x: F* — C* of
finite order, and a nontrivial additive character . F — C*, we have

e v) € Z[%]X. (2.7.1)

Moreover, for any isomorphism C ~ Q,,

(1) ifa(y) = 1, then, with the notation of Section 2.2,

Fr:F -1
FriFy) , sGCY),
2 p—1

valp(e(5. 1Y) = —

(i) if x> = 1ora(y) > 1, then 8(%, X, ¥) is a root of unity, and so valp(s(%, 1)) =0.

Proof. By (2.1.2), we may assume that c(y/) = 0. The twist by an unramified character
formula (2.1.3) then settles the case a(y) = 0 and allows us to assume that y(wr) = 1,
that is, that y € X. In the remaining case of a y € X with a(y) > 0, by (2.1.1), we have

qr — 1 - _
eZ. 1. V) = W@’w(wpam,x I)X(WZ(X))o
F

In particular, Proposition 2.3 and Theorem 2.6 give 8(%, X V) e Z[%]X as well as (i) and
the a(y) > 1 case of (ii). The remaining )(2 = 1 case of (ii) follows from (2.1.4). [

We conclude the section with an explicit analysis of the e-factors of quadratic charac-
ters of Q7. This will be useful for studying the 2-adic properties of Fourier expansions of
newforms.
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2.8. Quadratic characters of Q5

There are eight characters 8: Q5 — C* with 82 = 1:

x5 := (1. Bo. B2 PoBa. B3. BoBs. B2B3. BoB2PBs}.

where 1 is the trivial character, B¢ is nontrivial and unramified, the conductor exponents
of B, and B¢B, are 2, and those of B3, BoB3, B283, and BoB2B3 are 3. To normalize
for the sake of concreteness: via local class field theory, Bo corresponds to the exten-
sion Q»(+/5)/Q, and satisfies Bo(2) = —1, whereas B, corresponds to the extension
Q2(+/—1) and satisfies B»(2) = 1, and B3 corresponds to Q2(+/2)/Q» and satisfies
B3(2) = 1 (s0 B2B3 corresponds to Q,(~/—2)/Q5). In the notation of Section 2.1,

XQo1 =9, Xqg,2 =182}, Xq,3 = {B3.B283}.

Lemma 2.9. For an additive character \ : Q; — C* with c() =0, there is an ay, € 5
with

e(3.B2.9) = Balay) -0, e(3.P3. %) = Balay), e(3.B2B3.¥) = (B2B3)(ay) -i.

Proof. The collection of ¥ with c(¢) = 0 is a ZJ-torsor via the action (ay)(x) :=
¥(ax) (see [BHO6, Section 1.7, Proposition]), so the e-factor transformation formula
(2.1.2) reduces the problem to treating a single ¥r. We then choose the following 1 with
¢(y) = 0 for which we will argue the claim with ay, := 1:

Y(x) :=expmiA(x)) where A:Qy —>» Q3/Z, — Q/Z = @ Qp/Zp.

prime p
With the shorthand &, := ¢27%/" we obtain
Gy (3. B2) = 2(Ca-B2() + 53 - B2(3)) = 2(i + i) =i,
Gy(3.83) = (¢~ Bs(1) + 83 - B3(3) + 5 - B3(5) + &5 - B3(7))
G- -8+ =5,
Gy (3.B283) = 5(Cs - (B2P3) () + - + &g - (B2P3) (D) = 3(Cs + &3 — &8 — &3)
1 .
= ml.

Thus, (2.1.1) gives the desired

‘9(%9ﬁ2v ‘W) = i’ 8(%7 /337 1//) = lv ‘9(%?132/33’ W) =1 L]

3. p-adic properties of local Whittaker newforms

As we will see in Section 4, the theory of Whittaker models translates the study of p-
adic properties of Fourier expansions of newforms f at cusps into the study of p-adic
properties of the values of the Whittaker newform of the p-component of the associated
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cuspidal automorphic representation 7. This transforms a global problem into a purely
local one, and in this section we place ourselves in the resulting local setting. Namely,
we use the theory of local Fourier expansions of the Whittaker newform W . of an irre-
ducible, admissible, infinite-dimensional representation 7w of GL»(Q)), the recent basic
identity (reviewed in Section 3.5) that explicates the resulting local Fourier coefficients,
the work of Section 2 on Gauss sums, and the classification of 7 to derive in Theo-
rems 3.14 and 3.15 explicit lower bounds on the p-adic valuations of values of Wy y;.
We begin by reviewing the local Whittaker newform Wy y in Section 3.2 and its Fourier
expansions in Section 3.5.

3.1. Representations of GL,(F') and their conductors

Let p be any prime, F/Q, a finite extension and 7 an irreducible, admissible, infinite-
dimensional, complex representation of GL,(F) with central character @, and contra-
gredient 7. For a character y: F* — C¥, the twist y7 is the complex representation of
GLy(F) given by g > y(det(g)) ®c 7(g), so that, for instance, w; '7 >~ 7 (see [Del73a,
équation (3.2.2.2)]). For n > 0, we consider the subgroup

Ki(n):={(%%) € GL(0F) | c € w}OF.a € 1 + w}OF} C GL2(OF).

There is the smallest a(x) > 0, the conductor exponent of 7, such that the space of
K;(a(w))-fixed vectors in 7 is nonzero, and so necessarily is one-dimensional (see
[Del73a, Théoreme 2.2.6, Définition 2.2.7]). To compute a(yx), we will use [CSI18,
Lemma 2.7]: for & and y as above with w, = 1, we have

a(ym) < max(a(m),2a(x)) (3.1.1)
with equality if either a(y) # a(mw)/2 or  is twist-minimal in the sense that
a(w) = mina(yx),
X

so that, in particular, a & with w, = 1 is twist-minimal whenever a () is odd.

For a nontrivial additive character ¥: F — C*, similarly to Section 2.1, we let
e(s, m, ) € C* be the local e-factor of 7 (see [Sch02, Section 1.1] for its review) and
abbreviate to e(s, 77) when  satisfies ¢(¥) = 0 (see Section 1.4). This minor abuse is
harmless when w;; is unramified because, by loc. cit., we have

(s, . Y) = 8(% . 1lh)qj(r:Zc(1/f)—a(7r))(s—1/2)’

e(3.m.ay) = wg(a)e(3.m. ) fora e F*
(compare with (2.1.2)). With the common normalization ¢ () = 0, we also have (loc. cit.)

e(s, |- ' y) = ¢ (s, m ) fort € C,
e(s,m, ¥)e(l —s, 0 7, ) = wg (—1), (3.1.2)

SO 8(%,7‘[, ¥) = £1 whenever w, = 1.
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3.2. The Whittaker newform of

For a nontrivial additive character y: F — C*, we set

Wy := {locally constant W: GL,(F) — C with
W((1 ’f)g) =y (x)W(g)forx € F,g € GLZ(F)}.

The group GL,(F) acts on the C-vector space Wy, by (g'W)(g) := W(gg’) and, by
[Del73a, before Proposition 2.2.3], each  as in Section 3.1 is isomorphic to the unique
subspace Wy, () C Wy, the Whittaker model of . The normalized Whittaker newform
of 7 is the unique K; (a(r))-invariant element

Wrw € 'Ww () such that me(l) =1.
For an unramified multiplicative character y: F* — C*, we have’

Wynw(g) = x(det(g))Wr y(g) forall g € GLa(F). (3.2.1)

3.3. The coset representatives g; 4

The values of the Whittaker newform W on the double coset Z(F)U(F)gK(a(r)),
where Z C GL, is the center and U C GL, the “upper right” unipotent subgroup, are
determined by Wy y (g). We choose the representatives g as follows: we set

gt,e,vzz(W’F1)(_11)(1vw#)=( L )eGL2(F) fort,{eZ and v e O}

—¢
1 -1 —vop

and recall from [Sah16, Lemma 2.13] that, letting v range over the indicated coset repre-
sentatives,®

GLy(F) = | | L] L] z(HUuF)gienKin).

0<{<n UG@;/(I-I—I‘[IT;“(L”_K)) teZ

"The map ¢ x: W = (g = x(det(g))W(g)) is a C-linear automorphism of Wy, such that
x(det(g")) 1y (8'W)) = g’ (1 (W)) for g’ € GLa(F).
Thus, 1y induces a GLy (F')-isomorphism Ty: Wy, S Wiy, so that 1y (Wy, (7)) = Wy (x7) and
[X(Wﬂ,l/f) = WXN,W'

One argues the decomposition as follows. For the upper triangular Borel B C GLj, the
valuative criterion of properness for B\GL, and the vanishing H!(Of, B) = {*} show that
GL,2(OF) — (B\GL3)(F), and so give the Iwasawa decomposition GL,(F) = B(F)GL2(OF),
which one refines to GL, (F) = (Z(F)U(F)({’I’(llfg“EZ ?))GLZ((QF). The advantage of the refine-
ment is that the group encoding the nonuniqueness of the decomposition shrinks from

B(@F) = B(F) ﬂGLz((QF) to Z(@F)U(OF) = {(6?) | PARS (9;(;,74 S (91:}.

This group acts on the primitive vectors (;) with entries in O /m’, by left multiplication:

(5§%).(3)) ~ (sz';“y )- The orbits are indexed by both the “valuation” 0 < ¢ < n of y and,

with the subsequent normalization y = wf;, the class X of x in Of /(1 + m[;in((’"_e)). Since

K1(n) is the stabilizer of (}) for the similar transitive left multiplication action of GL2(OF),
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This decomposition reduces the problem to studying the values Wy y (g:.¢,), and the
following Atkin—Lehner relation that results from [Sah16, Proposition 2.28]% and (3.1.2)
halves the range of the £ that one needs to consider: if w, = 1 and ¢(y) = 0, then, for
0 < £ < a(m), there is a p-power root of unity ¢ with

Wey (8e60) = £ Wr y (8r420—a(m),a(mr)—t,—v)- (3.3.1)

As we now illustrate, this relation is useful for deducing a description of the p-adic
valuations of the elements Wy 4 (g¢,¢,,) With £ € {0, a()}.

Proposition 3.4. For a finite extension F/Qp, an irreducible, admissible, infinite-dimen-
sional representation w of GL,(F) with a(w) > 1 and w, = 1, an additive character
Y:F - C*withc(¥y)=0,at € Z,anl € {0,a(x)}, and a v € OF%, there is a p-power
root of unity ¢ such that

:té-q;(l+t+l) if a(r) = landt +€> —1,
Wﬂ,‘(ﬁ(gl,(,v) = :l':é. lf‘a(]‘[) > 1 and[ +£ — _a(T[),

0 otherwise.

Proof. Since (3.3.1) swaps Wy, (€+,0,0) and Wy 4 (81—a(x),a(r),—v)> WE may assume that
¢ = a(m). Then, in terms of the description in footnote 8, both the matrices g; 4(x),» and

g:= (th+2a<n) 1) (v,l - ) have the same invariants, s0 Wy v (8¢,4(r),v) and Wr 4 (g)

agree up to a factor that is a value of i, that is, up to a p-power root of unity. It then
remains to recall from [CS18, Lemma 2.10] that

+q7 ifa(r)=1,r>0,
Wiy (g) = W,,,,,,((w? 1)) =11 ifa(r) > 1, r =0,
0 otherwise. [ ]

these orbits correspond to the double cosets Z(Of)U(OF)\GL2(OF)/K1(n). In conclusion,
Z(F)U(F)\GL2(F)/K1(n) is indexed by invariants ¢, X, and a as above, and it remains to note
that for the element g; ¢ , these invariants are £, v~ and 1 4 2¢, respectively: indeed, the matrix

-1 -1
(" ¢ ) in GL2(OF) sends (}) to the primitive vector (© ¢ ) (so its X and £ invariants are v~
ZUF v w'F

and ¢, respectively) and can be written in the Bruhat decomposition as
R (e () (1 ver
wh v ) (1 |
¢
_(—=F w2t ) ( 1ot )
( —wt ) ( 1 1 81.tv:

-1
which gives the sufficient g; ¢ , € Z(F)U(F) (WS?” 1) (” . v).

DFE
9The proof of this relation does not use the blanket assumption of [Sah16, Section 2] that 7 be
unitarizable.
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3.5. The Fourier expansion of Wx v (g¢.¢,v)

In Section 3.3, for fixed ¢t € Z and £ > 0, the function (9}‘, 5 v > Wr y(g:.0,,) descends
to the quotient O /(1 + m%), so, by Fourier inversion, there are constants ¢; ¢(y) € C
for y € X (see Section 2.1) such that

Waw(8rew) = Z cru(Y)x() foreveryv € OF. (3.5.1)
XE€EX <y

To make use of this local Fourier expansion, it is key to explicate the Fourier coef-
ficients ¢; ¢(x) € C. This may be done in terms of e-factors of representations of the
product GL, x GL; by using the basic identity of [Sah16, Proposition 2.23 and before
Remark 2.22]:" if ¢(¢) = 0 and w, = 1, then, for 0 < £ < a(rw) and y € Xy,

e(3, xm) -
2 quﬂl(xn))(l/z S)Ct,i()()

L(s. xm) teZ

1 ZQF‘U/Z_S)@W(W;“_K’ X_I)Wﬂ,llf ((w,’r 1))

CL(l—s, x"'m) =

as Laurent polynomials in ¢} with the Gauss sums &7, as in Section 2.1. This method for
accessing the numbers ¢; ¢(y) was carried out in [Ass19, Section 2], and we will cite the
resulting formulas below. For a discussion of related unpublished approaches of Templier
and Hu, see [CS18, Remark 2.20].

3.6. Classification of ramified & with w, =1

Our analysis of the Fourier coefficients ¢; ¢(y) will rest on the following well-known
classification of the irreducible, admissible, infinite-dimensional, representations m of
GL,(F) that are ramified (that is, a(;r) > 1) and whose central character is trivial (that
is, w; = 1). We refer to [JL70, Sections 2-3] and [Sch02, Section 1.2] (or [BHOG6,
Section 9.11]) for its justification, and when possible we also give formulas for a(x),
L(s, ym) and (s, y7) with y € X.

(1) = is supercuspidal. In this case, a(xw) > 2 and L(s, yr) = 1 (see [Cas73, before
Lemma on p. 303 and middle of p. 304] and [BHO6, Section 24.5]).

(1a) m is dihedral supercuspidal. Such a 7 is associated, via the Weil representation,
to a character £: E* — C* of a quadratic extension E/F such that £ does not
factor through Normg,r; see [JL70, Section 4] or [Bum97, Theorem 4.8.6].
Equivalently, under the local Langlands correspondence [BHO6, Sections 33.4
and 34.4] such a & corresponds to Indwg & where £ becomes a character of the
Weil group Wg via class field theory. By [JL70, Theorem 4.7 (ii)], for such a

10The cited claims do not use the blanket assumption of [Sah16, Section 2] that 7 be unitarizable.
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we have w; = §|fpxxg/F, where x g, F is the quadratic character associated to
E/F. In particular, w, = 1 forces

§|Im(Norm:E><—>F><) =1, while, by assumption, ElKer(Norm:EX—>F><) 7é 1,
(3.6.1)

so & is of finite order. By [JL.70, Theorem 4.7 (i, iii) and p. 8] the representation
xm is also dihedral supercuspidal, associated to £(y o Normg,r): E* — C*,
and''

(s, xm) = ye(s,E(x oNormg, ), ¥ o Traceg,r) for some y € {£1, £i}.

(3.6.2)

With dg,F being the valuation of the discriminant of £/ F, by [Sch02, Theo-
rem 2.3.2],

a(n) =[Fg :Frla¢) +dg/F. (3.6.3)

(1b) 7 is nondihedral supercuspidal. For such a 7, we have char(Fr) = 2 as well
as a(mw) > 2 (see [Del73a, Proposition 3.1.4] and [Tun78, Proposition 3.5]), but
there seems to be no simple expression for (s, ym). For F = Q,, we describe
such 7 in Proposition 3.9 below.

(2) m >~ uSt is the twist of the Steinberg representation by an unramified character |
with ;,LZ = 1. In this case, a() = 1, and, by [Bum97, Section 4.7, equation (7.10)]
and [JL70, Proposition 3.6], we have

1 .
—— ify=1,
Lis, gm) = | rmoa 7T
otherwise,
1/2—s .
—(@F)q if y =1,
e(s. xm) = mAE .
e(s, x) otherwise.

(3) @ =~ uSt is the twist of the Steinberg representation by a ramified character | with
1?2 =1. Inthis case, by [Bum97, Section 4.7, equation (7.10)] and [JL70, Proposition
3.6], we have a(wr) = 2a(u) > 2 and

l .
ifa =0,
L(s, yn) = | 1=m@rap' > ()
1

otherwise,
G @rg? ifa(u) =0,
6(s. 1) = . ,
e(s, xp)*, otherwise.

11By [JL70, Lemma 1.2] and (2.1.1) with (2.1.3)~(2.1.4), we have y = 8(%, XE/F), and so also
y? = xe/F(=1).
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@) = pl|% B ul| R witho # :I:% is a principal series where the character . € X is
ramified with 1> = 1. In this case, by [JL70, Proposition 3.5], we have a(r) = 2a (1)

and
1= —O'—Sl(l_ =5 le =M,
L(S, XT[) — ( qdFr ) qdF )
1 otherwise,
1 if y = u,
e(s, ym) = ) :
e(s, xypu)* otherwise.

(5) >~ pl|% Bu |5 is a principal series where the character . € X is ramified with
1?2 # 1. In this case, by the same reasoning as in the previous case, a () = 2a(u)

and

1 ~ +1
= if y = u=",
L(s, ym) = { 1-9F

1 otherwise,

—1y_ _
e(s, ym) = q;(a(xu ) a(xu))g(& x)e(s, xu 1).

We refer to these cases as & being of Type 1a, 1b, 2, 3, 4, or 5 (this numbering is not
standard). Type 2 will not concern us much because our focus is the case a(;r) > 2, and
Types la, 3, 4, 5 are in some sense similar, for instance, £(s, 77) in these cases is expressed
in terms of e-factors of characters. Type 1b is the most subtle one, but it benefits from
the more precise classification recorded in Proposition 3.9 that uses the following lemma,
which further explicates conductor exponents.

Lemma 3.7. For a supercuspidal representation ww of GLy(Q3) witha(mw)>2 and w, =1
(Type 1), any twist-minimal twist wo of 7 satisfies

=a(m) if a(w) is odd or if a(w) = 2,
a(mp){ <a(r)—1 if a(m) is even and a(w) > 4,
ela(r)—2,a(r)—1} ifa(w)isevenand a(mw) > 8.

Proof. A twist of a supercuspidal representation is supercuspidal, and hence has con-
ductor exponent > 2 (compare with Section 3.6), so the first case follows from (3.1.1).
The second case may be deduced from [AL78, Theorem 4.4 and the remark after it] by
globalization, but we give a direct argument.

Suppose, for the sake of contradiction, that a() is even with 7 twist-minimal and
a(m) > 4. By [Tun78, Proposition 3.5], such a = is dihedral, associated to some £ :
E* — C* with E/Q; unramified quadratic. By (3.6.3), we have a(§) = a(w)/2 > 1, so,
by [BHO6, Section 18.1, Proposition], for any y € Xq, (&) also a(y o Normg/q,) = a(§).
In particular, both £ and y o Normg,q, are nontrivial on the group

(1 +2997195) /(1 +29©9g) ~ (Z/21)>. (3.7.1)

But y o Normg/q, is trivial on its subgroup (1 + 208-17.)/(1 +2¢97,) ~ 7./27,
and so is &: indeed, (3.6.1) gives $|Im(Norm:Ex_>Q§) = 1, whereas

Normg/q,: 1 + 2@ 710 — 1+ 299717,
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(see [Ser79, Chapter V, Section 2, Proposition 3 a)]). It follows that £ and x o Normg,q,
agree on the group (3.7.1), so that a(§ (y~! o Normg/q,)) < a(£), and hence, by (3.6.3),
also a(y~'m) < a(r), a contradiction.

Finally, suppose that a(7) is even with a(;r) > 8 and write & >~ g, so that (3.1.1)
and the established inequality a(mg) < a(mw) — 1 give a(x) = 2a(y). Since w, =1,
the central character of 7 is y 2, so that a(mg) > 2a(y?) by [Tun78, Proposition 3.4].
Since a(y) > 4 and we are dealing with Q,, we have a(y?) = a(y) — 1, and the desired
a(mg) > a(w) — 2 follows. |

Remark 3.8. In contrast, for an odd prime p and a finite extension F/Q),, every super-
cuspidal representation 7 of GL,(F) with @, = 1 is twist-minimal; see, for instance,
[HNS19, Lemma 2.1].

Proposition 3.9. Up to isomorphism, there are 16 nondihedral supercuspidal (that is,
Type 1b) representations 7w of GL,(Q32) with w, = 1. Letting %gzd be as in Section 2.8,
such m are listed as

{Brs: B e gy U B 1 p e XS

with the following conductor exponents:

a(ms) = a(Boms) = 3, a(Bam3) = a(PoPams) = 4,
a(Bsms) = a(B2B3m3) = a(BoPsns) = a(BoP2Pf3ns) =6,
a(m7) = a(Bor7) = a(Bam7) = a(BoPamy) = a(B3my)

= a(B2f3m7) = a(PoPam7) = a(PoPa2Pam7) =T.

In contrast, no dihedral supercuspidal representation n’ of GL»(Q3) with wy» = 1 has
a(n’) € {3,7)}.

Proof. Via the local Langlands correspondence [BH06, Section 33.4], our supercuspidal
m corresponds to an irreducible, smooth representation o: W, — GL,(C), which has
its associated projectivization o: W, — PGL,(C). Since w, = 1, we have det(c) =1,
so 0(Wg,) is a subgroup of SL,(C) that is necessarily finite (see [BHO6, Section 28.6,
Proposition]). Since 7 is nondihedral, o is not induced from a subgroup. The projective
image 0 (Wg,) must be the symmetric group Sy: the only other finite, solvable subgroups
of PGL,(C) are cyclic, dihedral, and A4, and the first two cannot occur because o is
irreducible and not induced from a quadratic extension (compare with [Wei74, Section
13]), whereas Weil proved in [Wei74, Sections 34-35] that 6(Wg,) # A4 (more pre-
cisely, 0(Wg,) # A4 because A4 has no irreducible, two-dimensional representation,
and o(Wg,) is not a central extension of A4 by Z/2Z because the “Condition C with
respect to A4” of [Wei74, Section 21] fails for Q5; see also [BR99, Section 8]).

Up to conjugation, there is a unique embedding of S4 into PGL;(C) (compare with
[Wei74, Section 14]), so we fix one such and, in the notation of op. cit.,let Ag —> Sy
be the central extension by {£1} obtained by the preimage in SL,(C). Since S4 has
no faithful, irreducible, two-dimensional representations, by conjugating we may assume
that o(Wg,) = Ao. In particular, the S4-extension K/Q, cut out by & extends to a
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Ag-extension K /Q,. Thus, by [Wei74, Section 24 (with Sections 16 and 21)] (“Con-
dition C with respect to Ag” is equivalent to “Condition C with respect to Ay”), this
extension also extends to a Ag-extension K'/Q, with Ay = GL,(IF3) inside GL,(C)
(note that GL,(F3)/{£1} >~ S4). By [Wei74, Section 36] and [BR99, Section 8], this
means that K is one of the two S4-extensions of QQ, that extend to GL;(IF3)-extensions
of Q2. In particular, since any two lifts of o to a 5: W, — GL,(C) are twists by a char-
acter (compare with [Koc77, Section 1]), we have isolated two distinct families of twists
of two-dimensional, irreducible, smooth representations of Wg, that could contain .

By [Cal78, Theorem 5], there exist representations 73 and 7 of GL,(Q5), each either
supercuspidal or a twist of Steinberg, such that ws; = wr, =land a(n3) =3, a(mw7) =7.
To conclude it then suffices to argue that these 7. are nondihedral supercuspidal: indeed,
they will be twist-minimal by Lemma 3.7, the representation 7 will be of the form B,
with B € %%‘Zd, all the latter will be pairwise distinct by [BH06, Section 51.5], and the
formulas for the a(Bn.) will follow from (3.1.1).

The formulas for the conductor exponents in Section 3.6 show that 7. is not a twist
of Steinberg. Thus, we assume that 7, is dihedral supercuspidal, associated to a quadratic
extension E/Q, and a character £: E* — C* subject to (3.6.1). By [Tun78, Proposi-
tion 3.5], the extension E/Q, is ramified, so that a(§) = ¢ — dg/g, € {c —2,¢c =3}
(see Section 3.6 and Section 2.8). For ¢ = 3, this is already a contradiction: indeed, since
Fg =~ IF,, the inequality a(£§) <1 gives a(§) = 0, which contradicts (3.6.1). For ¢ = 7, if
dEg /@, = 2, equivalently, if a(§) = 5, then, by (3.6.1) and [Ser79, Chapter IV, Section 1,
Proposition 4 and Chapter V, Section 3, Corollary 3], we have £|; 447, = 1, so the inclusion
1+m$ O C (14 4Z>)(1 + m3, OF) contradicts a(§) = 5. In the remaining case ¢ = 7
withdg g, = 3, wehave a(§) = 4,soagain |, 47, = 1, which, since $|@2x = XE/Q, (see
Section 3.6), contradicts the conductor-discriminant formulaa(x £/Q,) = dg/g, =3. =

Remark 3.10. As we learned from Ralf Schmidt, the main assertion of Proposition 3.9
is due to Neklyudova [Nek75] who obtained it by analyzing the Hecke algebra (see also
[Nob78]). With the local Langlands correspondence, it could also be deduced from results
in [Zin79] or [Hen79].

To prepare for a p-adic study of the values of W, ., we begin by exhibiting a general
integrality away from p property of these values in Proposition 3.12. Its argument rests
on the following lemma.

Lemma 3.11. For a finite extension E /Q,, an m > 0, a Haar measure dx on the additive
group E™ with fO? dx € Z[%], and a function f:(Of)" — Z that is right multi-
plication invariant by (1 + wOg)™ for some n > 0 (that is, f(x) = f(xy) for all
y € (1 +@gOp)™), we have

/ f(x)dx € Z[5]; (3.11.1)
@5

for a Haar measure d* x on the multiplicative group (E>*)™ with f(@;)m d*x € Z[%],
instead 1

L B
Ce (D" /(og)m fyd7x e 23] (3.11.2)
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Proof. Due to (1.4.1), the first display implies the second one. For the former,

/(@x)m Sx)dx = > f(xo)vol((1 + whOp)™)

XQG(OE)”’/(I-FWZT@E)’”

Jom dx
=k > f(x0),

qmn
E xe@)m/(1+whog)m

and it remains to note that f takes values in Z. ]

Proposition 3.12. For a finite extension F/Qp, an irreducible, admissible, infinite-
dimensional representation w of GLy(F) such that a(w) > 1 and w; = 1, an additive
character y: F — C* withc(¥) =0, and a g € GL,(F),

Wrmﬁ(g) € Z[%]
i dihedral supercuspidal (Type 1a) or a twist of St (Types 2, 3), or
ifwis _
principal series x||% B x~'|-| 5 (Iypes 4, 5) with qiﬂ,f" € Z[%].

In addition, if w is nondihedral supercuspidal (Type 1b) and F = Q5, then

552 ifa(m) =6,0=3,1€{-3,—4},

(3.12.1)
Z otherwise.

W:rr,tlf(g) € {

Proof. By Section 3.3, we may assume that g = g; ¢, forat € Z,a0 <{ <a(m),and a
v € O . For the first assertion, by Proposition 3.4, we may assume that 7 is not of Type 2,
and, to conclude, we claim that Wy (g;,¢,») is a Z[%]-linear combination of products of
quantities |, @5y f(x)dx with f and dx as in Lemma 3.11 for a finite extension E/F.
This will follow from formulas for Wy 4 (g;.¢,») derived by Assing [Ass19, Section 3].
For later use, we recall from (3.1.2) that

8(%,7?) = 8(%,7‘[) = +1

and from (2.7.1) that 8(%, XY € Z[%]X for a character y: F* — C* of finite order.
Namely, [Ass19, Lemma 3.1] gives the desired description for = of Type la (with
E/F quadratic and m = 1; by (3.6.2), the quantity y there lies in {£1, £ }). To similarly
treat w ~ pSt of Type 3, we first twist by a finite order unramified character and use
(3.2.1) to assume that u(wr) = 1, and then apply [Ass19, Lemma 3.3]'> (now E = F
and m € {1, 2}; in the case of loc. cit. that involves Salié sums, we use (3.11.2) instead

12Even though the case £ = a(y) = 1 is omitted from the cited statement, it is treated in the
proof: as is observed at the beginning of the argument there, the subcase ¢ # —2 reduces to [Ass19,
Lemma 2.1], whereas the subcase t = —2 is addressed before the phrase “If | = 1 = a(y), we will
leave this expression as it is.”
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of (3.11.1)). Finally, for 7w of Type 4 or 5, we combine the assumption q}ﬂ,f" € Z[%] with
[Ass19, Lemma 3.6] (now E = F and m € {1,2}).

For the remaining (3.12.1), we assume that 7 is of Type 1b with F' = Q, and use
(3.3.1) with Proposition 3.4 to reduce to 0 < £ < a(xr)/2. By the classification in Propo-
sition 3.9, we have a(w) < 7, so the bound is 1 < £ < 3. We will use the local Fourier
expansion

Way(grew) =" D a0 ()
XEX<¢

and the following formulas for the ¢, ¢ () derived in [Ass19, Section 2.1] from the basic
identity of Section 3.5:

—e(3.m) ift=1,1t=—-a(n), y =1,
coa(x) = 4217263, et x ') if 1 =—a(ym). x € Xy,
0 otherwise.

Since 1 < £ < 3, the appearing y are quadratic (see Section 2.8), so 8(%, ), 8(%, x)s
and e(%, x~ ) are all roots of unity (see (2.1.4) and (3.1.2)). Thus, since 21-4/2 ¢ 7 for
£ <2, wereduce to £ = 3 when a(r) € {6, 7} and, in the notation of Section 2.8, the only
appearing y are 83 and ;3. If a(;r) = 6, then for these y, by Proposition 3.9, we have
a(ym) € {3, 4}, and the claim follows. In the remaining case a(x) = 7, we likewise have
a(ym) = 7, so we only need to consider the value

W (8750 = 3175 (3. Bo)e(h, BsmIBs ) + (b BaBs)eCh. Babsm)Bafs ).

Lemma 2.9 gives e(%,/%) = +1 and s(%,ﬂzm) = =+i,and (3.1.2) gives s(%,ﬂyr) ==1
and s(%, B2B3m) = £1. Thus, Wy 4 (g-7,3,0) lies in {:I:zll%, :I:zll;/’z}, and so is a root of
unity in Z. ]

A final preparation for Theorems 3.14 and 3.15 is the following vanishing result that

draws heavily on [CS18], which studied the phenomenon of exceptional vanishing of the
values of Wy y .

Proposition 3.13. For a finite extension F/Qp, an additive character y: F — C* with
c(y) = 0, an irreducible, admissible, infinite-dimensional representation 7w of GL,(F')
with a(r) > 2 and w, = 1, a twist-minimal twist g of 7w, an £ with 0 < £ < a(w), and
av € O, we have

t < —max(a(r),2£), or

. t > —max(a(r),24), £ # a(w)/2, or

Wﬂ,tﬂ(gt,l,v) =0 if . .
t > —a(my), 7 is supercuspidal (Type 1), or

t # —max(a(mw),24), pis odd, 7 is supercuspidal (Type 1).
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Moreover, in the case F = Q, we have the following additional vanishing for { = a(m)/2:

Wy (&ra@my/20) =0 if

t < —a(mw), w is supercuspidal (Type 1) with a(mwg) < a(mw) — 1, or

t < —a(w) + 1,  is supercuspidal (Type 1) with a(my) < a(mw) — 2, or
t < —a(w) + 1, w is a ramified twist of St (Type 3), or

t <—a(m)+ 1, m = pl||% 8 upl|F° witho # +1 4% =1Tpe4), or
t < —a(m)+2, 7~ pl|% 8 p |77 with u> # 1 (Type 5).

Proof. The additional vanishing statements for £ = a(sr)/2 follow from the rest and from
[CS18, Theorem 2.14] (with Section 2.8 and (3.1.1); for instance, for Type 5, one uses
a(u) > 4, so that also a(u?) = a(u) — 1).

For the main statement, its last case follows from the rest: indeed, by Remark 3.8, if p
is odd and 7 is supercuspidal, then a (o) = a (7). Moreover, its case t < —max(a(w),2£)
follows from [Sah17, Proposition 2.10(1)]," so we assume that t > —max(a (), 2£).
In the remaining cases, we use the Atkin—Lehner relation (3.3.1), which replaces ¢ by
t +2¢ —a(x) and £ by a(wr) — £, to reduce to 0 < £ < a(mw)/2, and we will conclude
from (3.5.1) by arguing that

cre(x) =0 forall y e X4.

For this, we will use the basic identity reviewed in Section 3.5. By inspecting Sec-
tion 3.6, in the remaining cases in question we find that L(s, y7) = 1, and, by [CSIS,

Lemma 2.10],
v (5 ) ={s 020

In effect, the basic identity in the cases in question is the equality

1/2— _ _
8(57)(”)2#“("”))( P00 = Gy (@it )
teZ

of Laurent polynomials in g3. When ¢ < a(sr)/2, by (3.1.1), we have a(ym) = a(r),
so that the c; ¢() indeed vanish for  # —a(x). In the remaining case when 7 is super-
cuspidal, we have a(ym) > a(mg), and the c; ¢(x) still vanish for t > —a () > —a(yn),
as desired. |

When a(r) > 2, for clarity, we split the sought bounds on val, (Wy  (g¢,¢,»)) into the
case of an odd p (Theorem 3.14) and that of F = Q, (Theorem 3.15). To avoid additional
technical complications, we do not attempt to treat the case of a general finite extension

of Qz.

13The proof does not use the assumption of [Sah17, Section 2.2] that 7 be unitarizable; compare
with [CS18, Proposition 2.11].
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Theorem 3.14. For a finite extension F/Qp, with p odd, an irreducible, admissible,
infinite-dimensional representation 7w of GLp(F) with a(rw) > 2 and w, = 1, an addi-
tive character Y. F — C* with ¢(y) = 0, an isomorphism C ~ @p, at € Z, an £ with
0<{¢<a(m),andav € O%, we have

val,(Wr,y (&1.6.0))

0 if £ €{0,a(m)},
0 if L e{l,a(x)—1}, a(m) > 2,

> 3 [Fr 1 Fp)(1 — inam=0) if € ¢10,1,a(r)/2,a(x) —1,a(m)},
—[Fp : Fp] +min(FEF Ly Ly yrr =1 a(n) = 2.1 = -2,
[Fr:Fpl(1 —a(x)/4) if £ =a(m)/2, a(m) >2,t = —a(n),

and, for L = a(w)/2 and an even a(r), the following additional bounds (see also Propo-
sition 3.13):

(1) if 7 is supercuspidal (Type 1) with a(w) = 2, then
1 1
val, (W g (81,1,0) = —[Fr : Fp] + 5 + pT;

(i) if m is a twist of Steinberg by a ramified quadratic character (Type 3), then a(w) =2
and

144 , r+IND
val, (W y (81,1,0)) > _T[]FF (] + mm(—[IFF : Fp]( 7 ) 3 + P 1):

(iii) if 7 is a principal series i|-|% &8 p|-|z° with u> = 1 (Type 4), then a(n) = 2 and
val, (W, (81,1,0))

N1, 1
> —[FF : Fp] = (¢ + 2)|val, (¢F)] + min(—[FF : Fp](%)» >t F);

(iv) if w is a principal series ji|-|% @ w! |-| " with w? # 1 (Type 5), then

Valp(Wnn//(gt,a(n)/z,v))
Frp:F .
{—”p—gum+%+ﬁ—(t+2)|valp(q%)| if a(n) =2,
— F :Fp] max R 2—2 .
—ErEdmnCEmamED) — ;4 a(r)valy(gf)| if alm) > 2.

Theorem 3.15. For an irreducible, admissible, infinite-dimensional, representation 7w of
GL,(Q») with a(w) > 2 and w, = 1, an additive character ¥: Qo — C* with c(y) = 0,
an isomorphism C >~ @2, at €Z, an L with0 < { < a(rw), and a v € 7, we have

0 if £ €{0,1,a(m) —1,a(x)},
val, Wy (81,0,0)) = § 1 — MEa=0 0 ¢ 10 1, a(n) /2, a(n) — 1,a(n))},
0 if £ € {3,a(mr) -3}, a(xn) > 6,

(3.15.1)
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and, for £ = a(w)/2 and an even a(w) > 2, the following additional bounds (see also
Proposition 3.13):

(1) if w is supercuspidal (Type 1), then
valb (W (&1,a(n)/2,0)) = 1 —a(m)/4
and, for a(w) € {6, 8},

ValZ(Wn,V/ (g—a(n)+1,a(rr)/2,v)) > 0;
(i) if m is a twist of Steinberg by a ramified quadratic character (Type 3), then we have
a(w) € {4,6} and
—(+3) ift>-2,a(r) =4,
—(t+1) ift>=-2a(m) =6,
-3 ift =—4,a(m) =6,

00 otherwise;

valy (W:'r,llf (gt,a (n)/z,v)) =

(iii) if 7 is a principal series /L|-|62 =2 ,u||@g with u? = 1 (Type 4), then a(r) € {4, 6}

and
> -2 — (1 +2)|val,(29)| if 1 = =2, a(n) = 4,
> 5 (4 2)|val,(2°)| ift > =2, a(w) =6,
ValZ(Wn,L/f(gt,a(n)/Z,v)) - 12 . - '
=—3 ift=—4,a(r) =6,
= 00 otherwise;

(iv) if & is a principal series ;L|-|f’Qz T ||6‘; with u? # 1 (Type 5), then a(w) > 8 and

Va]z(Wn,V/ (gt,a(n)/z,v))
12024 (¢t 4 a() - 2)|vala2%)| if t > —a(w)/2,
> {448 (¢t ta(r) - 2)vab(29)]  if —a(r) +2 <t < —a(n)/2,
00 if t <—a(mw)+2.

3.16. Proof of Theorems 3.14 and 3.15. Even though we have separated the cases of an
odd p and of p = 2 with F = Q; into separate statements, we will prove them simul-
taneously. For £ € {0, a(xr)}, the assertion is that val, (Wy 4 (g¢,¢,v)) = 0, which follows
from Proposition 3.4. Each of the assertions that involves £ > a(;r)/2 allows any ¢ € Z.
Thus, we may use the Atkin—Lehner relation (3.3.1) to switch £ and a () — £ if needed
to assume from now on that

(1) 1 <€ <a(mr)/2 and (by also using Proposition 3.13) if £ < a()/2, thent = —a(x).

Moreover, 7 is not of Type 2 because a () > 2 (see Section 3.6). If 7 is of Type 1b (so
that p = 2), then the sought bounds follow from Proposition 3.9 and (3.12.1). Thus, we
assume from now on that

(2) m is not of Type 1b or Type 2.
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Our basic strategy is as follows: by the local Fourier expansion (3.5.1), we have

Wow (rew) = D caQOx@).  so val,(Wry(griw)) = min valp(cr,e(1).
=t
x<E<e (3.16.1)
and we will bound val, (¢, ¢(x)) individually for each representation in the classification
of Section 3.6 (in exceptional cases individual bounds will not suffice and we will consider

the full sum). Below we omit our fixed ¥ from the notation when forming e-factors with
respect to it.

The case when 7 is of Type la. Such a 7 is associated to a character £: EX — C* for a
quadratic extension E/F. By [Ass19, Section 2.1], for 1 < £ < a(xw)/2and y € X,

— =783, 7) ift =—a(m), L=1, y =1,
cre(x) = qFl_lq;,_e/zs(%, )()8(%, yIm) ift = —a(ym), x € ¥y, (3.16.2)
0 otherwise.

In particular, ¢; ¢(1) = O unless t = —a(m) and £ = 1, in which case val, (c_g(r),1 (1)) =0
(see (3.1.2)), and ¢, () = 0 for y € X<¢ \ {1} unless y € X,. Since all the required
bounds are nonpositive for Type 1a when £ = 1, this reduces the problem to y € X; with
t = —a(ym).

We begin with the case a(;r) = 2, when £ = 1 and, since y € X1, also F # Q; (so that
pisodd)andt = —a(ymw) = —2 (see (3.1.1)). By Section 3.6, the representation y !
dihedral supercuspidal associated to §(y ™! o Normg,p): E* — C*. By [Tun78, Propo-
sition 3.5], we may assume that E/F is unramified, so that a(§(y~! o Normg,r)) = 1
by (3.6.3). Thus, by (3.6.2) and Corollary 2.7 (i),

T 1S

valy(e(3, x ') = valy(e(3.6(x ™" oNormg, p). v o Traceg,r))
s(§~' (x o Normg/ r))
p—1 '

= —[Fr : Fp] +

Consequently, (3.16.2) and Corollary 2.7 (i) give

s(x~") + sE~'(x o Normg ) '

valy(c—2,1(x)) = —[FF : Fp] + P

By (3.6.1), we have §|@; =1,50(2.2.3) and (2.2.4) give

p—112s(x™") + s~ (x o NormgF)).

Since s(x~1) and 5(§1 () o Normg, r)) are positive, it follows that we have the inequal-
ity s(x~') + s(€'(x o Normg,r)) = 251 + 1. In conclusion, for a() = 2, we obtain
the sufficient bound

1 1
valp(c—2,100) = —[FF : Fp] + 5 + =
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We next turn to the case when a(mw) > 2 with 1 < € < a(w)/2, and y € X; with
t = —a(ym) as above. By (3.1.1), we have a(w) = a(y*'x), so that, by (3.6.3), also
a(E(y*' o Normg,r)) = a(). In addition, a(§) > 1: indeed, otherwise, by (3.6.1), we
would have a(§) = 1 and, since, by (3.6.3),

[Fe :Frla(§) +dg/Fr = a(w) > 2,

the quadratic extension £/ F would be ramified (so that Fg = Fr), we would have p = 2
because dg/r < 1 for odd p (see [Ser79, Chapter IlI, Section 6, Proposition 13]), and the
simultaneous Fg =~ [, and a(§) = 1 would give a contradiction. Thus, (3.16.2) together
with Corollary 2.7 and (3.6.2) gives

> L if¢ =1,

i — p—1
valp (¢—a(r),e(X)) { _ EFF F(1—€/2) if 6> 1.

These bounds suffice in all cases with a(r) > 2 and £ < a(r)/2 except when p = 2 with
a(m) > 6 and £ = 3, when instead we seek to show that valo (Wx, 4 (8—a(x),¢,v)) = 0 and
bounding each val,(c; ¢(x)) does not suffice. Instead, in the notation of Section 2.8, in
this case (3.16.1) and (3.16.2) give

Wn’,w (g—a(n),3,v)
= 21%(8(%, B3)e(5. B3m)B3(v) + &(5. B2B3)e(3. B2Bam)(B2B3) (v)).  (3.16.3)
Since 2 = 7 = 1, Lemma 2.9 and (3.1.2) then give the sufficient

1+ 1—i
Wy (&—a(m),3.0) € {:t 21/2 , 21/2 }

We turn to the remaining case when a () > 2 with £ = a(w)/2, and y € X, with
t = —a(ym) as above. Ifa()(_ln) > 2 (for instance, if p is odd, see Remark 3.8), then, as
above, (3.6.3) gives a(§(y ™' o Normg,r)) > 1, so that, by (3.6.2), (3.16.2), and Corol-
lary 2.7 (ii),

valp(cra(my2(x) = [Fr : Fpl(1 —a(m)/4). (3.16.4)
If, in contrast, a()(_ln) = 2, then p = 2, Lemma 3.7 and Section 2.8 give Xz =1 and so
also w,—1, =1, and (3.16.4) follows from (3.1.2), (3.16.2), and Corollary 2.7 (ii).

The equality (3.16.4) suffices for the desired bounds unless p = 2 and a(x) € {6, 8},
when we seek to show the additional bound vals(Wx, 4 (8—a(x)+1,a(r)/2,0)) = 0. In this
final case, by Lemma 3.7 and (3.1.1), the minimal conductor twist 7y of m >~ yomg sat-
isfies a(mp) < a(w) — 1 and a(yo) = a(w)/2. Moreover, we may assume that we have
a(mp) = a(mw) — 1 because otherwise Wy y (§—a(r)+1,a(xr)/2,0) = 0 by Proposition 3.13.
Then E/Q; is ramified by [Tun78, Proposition 3.5] and, for any y € X,(z)/2, we have
a(xxo) =a(xo) —1=a(m)/2—1 <a(m)/2, so also

a(xm) = a((xxo)mo) = a(mo) = a(r) — 1
(see (3.1.1)). Consequently, by (3.16.1) and (3.16.2),

Wa g (8—amy+1a@my/z) = 274 3" o3 pe. x T mx(v). (3.16.5)
X€XQy.a(m)/2
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If a(wr) = 6, then, just as after (3.16.3), Lemma 2.9 gives the sufficient inclusion
Wrw(8=53,0) € {jzzlli/;, izll;/;} If a(w) = 8, then, letting 84 € X,,4 be nonquadratic
with B4(—1) = —1, we have

XQy4 = {Ba. B2Ba. B3 ' BBy '} with B € Xg,o. fo(—1) =—1

as in Section 2.8. In this notation, (3.1.2) gives 5(%, ﬁ;ln)s(%, Bam) = 1 and
(3. B2B3 ' m)e(5. B2Bar) = 1, s0, with

x =63, Ba)e(5, By ' m)Ba(v) and X' = (5, B2Ba)e(5, B2By 7)(B2B4) (v),
by (2.1.4) and (3.16.5), we have
Wep(g-740) = (x —x7 '+ x" 4+ x'71). (3.16.6)

The characters ;! and B, ! agree on 1 + 4Z, so they satisfy Lemma 2.4 (i) with the
same u € 7. Thus, Lemma 2.5 (i) gives (S’w(l—lﬁ, ,3;1) = :I:@’w(%, ,32,321), so that, by
(2.1.1), also

£(3.Ba) = £e(3. B2a). (3.16.7)

where, by Corollary 2.7 (ii), both sides are roots of unity. By Section 3.6, the represen-
tations B !m and B2B; 7 of conductor exponent 7 (see before (3.16.5)) are dihedral
supercuspidal associated to £(8;' o Normg,q,) and &(B28;" o Normg/q,), respec-
tively. Thus, since E/Q> is ramified quadratic, and hence dg,q, € {2, 3}, we deduce
from (3.6.3) that

a(¢(By' oNormg)q,)) = a(§(B2B5" o Normg/q,)) € {4, 5}.

Since these two characters agree on 1 + w% O =14 20g, we conclude as in (3.16.7),
but now also using (3.6.2) (with (2.1.2)) and the odd conductor exponent cases of Lem-
mas 2.4 and 2.5, that

8(%, Biln) = :I:s(%, B2B;'7), where both sides are roots of unity.
Thus, x and x’ are roots of unity, x = £x’, and (3.16.6) gives
Wy (g-7,4,0) € {x, —x_l}, soalso valy(Wg y(8-7,4,0)) = 0.

The case when 7 is of Type 3. Such a 7 is uSt for a ramified character  with u? = 1,
and a(r) = 2a(p). We twist by the unramified quadratic character if needed to assume
that (wr) = 1: by (3.1.1) and (3.2.1), this changes neither a () nor val, (W 4 (g:.0,4))-
By [Ass19, Lemma 2.1] and (1.4.1), for 1 <{ <a(w)/2and y € X4,

e T w2 Gy (wgt 7Y if x # p.t = —2a(uy),

Gy (@it u) if y = p. t =-2,
Cl,e(X) = q%——l(s —/ -1 . o
__q3F+t l//(wp ST if y =p,t>-1,

0 otherwise.
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By then using formula (2.1.1) for & (w;e, 1~ 1) together with (2.1.4), we obtain

T lq} b wPeh ) iy g (1 = —2a(xp). £ =a(y),
qr l,u( 1) ify=1,1t=-2a(n), =1,
ot = | pap et ) ify=p t =2, 0=au,
—(gr + Dap" T PeG ) i =p 0z -1 0= a(u),
0 otherwise.

(3.16.8)

We begin with the case of p odd, when necessarily a(u) = 1, so that a(xw) = 2, and
¢ = 1. Since pu? = 1, from (2.2.2) and (2.2.3) we obtain PT_I |s(x ') + s(x), so, for
x ¢ {1 u}, also
-1
251 + 500 = pT +1.

Since u? = 1, Corollary 2.7 and (3.16.8) then give the sufficient

—[Fr:Fpl+ 5+ 55 ifxé{lu)t=-

0 ify=1,1=-2,

valp(cre(X) = s . (3.16.9)
—[Fr : Fpl(r + 3) if y=p,t>-2,
00 otherwise.

For the remaining F' = Q,, in the notation of Section 2.8, we have u € {2, B3, 8283},
soa(w) =4if uw = By, and a(w) = 6 if u € {B3, B2P3}. It then suffices to use (3.16.1),
the values (3.16.8), and Lemma 2.9 to compute the only possible nonzero Wy y (g¢.¢,v)
forl <{ <a(u):

Way (@ra0) = —u(=1) e {£1} ift = —a(x),

1e(X.B2)Ba(v) € {£1} if =Py, t =2,
Wn,?ﬁ(gt,z,v) = 2,+38(2,,32)ﬁ2(1)) S {:|:2t+3} ify, = ,32, t > —1,
(3. B2i)?e(5. B2) B2 (v) € {£i} if p € {B3.BaP3}. 1 = —

21/28(2,ﬁz)zg(zvﬂzﬂ)(ﬂZH)(v) € {:I:21/27 i21/2}
if u € {3, B2B3}. t = —4,
Way(813,0) = 22/25(2 wp(v) € {izs/z»izyz} if € {B3, B2B3}, t = -2,
2,+7/28(2,M)/L(v) € {:|:2,+7/2, 2t+7/2}
if p € {B3, B2p3}, t = —1.

The case when 7 is of Type 4. Such a 7 is u|-|% @ ul|-|7° for o # :I:% and a ramified
n € X with /,Lz =1,and a() = 2a(p). By [Ass19, Lemma 2.2] and (1.4.1),for 1 </{ <
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a(w)/2 and y € X4, we have

e G T DGy (m Rt a7 i x # p t=—2a(xp),

L@w(w# 1) if y=p, 1=-2,
. - 3/2 @'lll(wp @G +4qF) ify=pn,t=-1,
Cre\X) = (t+2) / .
q2+t/2 @v/(wp s W) (=T a(t+2) +4r — 2 m=0 %)
if y=p, >0,
0 otherwise.

By then using formula (2.1.1) for &, (wF X ~1y and formulas (2.1.3)—(2.1.4), we obtain

¢ _ .
= lq‘F Pe(h am we(h, ) i g 41, £ = —2a(xp), €= a(y),
qF l,u( 1) ify=1,1t=-2a(n), L =1,
—t .
g Pe(d. ) if y = p, 1 ==2,L=a(),
—L _ .
el = 1= T Pe g + qf) ity =pt=—1, L =a(u),
’ 1
—e(5,1) t+2) t —1
quHiz)/Z( i +dF — Ym0 Tom)
F qr
ify=wu,t>0,4=a(n),
0 otherwise.

If p #2,thena(u) = 1,50 a(wr) = 2 and £ = 1, and, similarly to (3.16.9), we get the
sufficient

—[FF : Fpl + 5 + 555 if y g {lopht =—

0 ify=1,1t=-2,
valp (e e ) = 1,5 o

~LR2 R 1 Fp) - (¢t +2)valy(gf)| iy =p. 1= -2,

00 otherwise.

In the remaining case F' = 5, similarly to Type 3, in the notation of Section 2.8, we have
1 € {B2, B3, B2B3}, and we combine the above formulas for the c;¢(y) with (3.16.1)
and Lemma 2.9 to find the following sufficient formulas for the only possible nonzero
Wi v (8¢.¢,v) in the range in question:

Waw(gi1,0) € {1} if t = —a(w),

{£5} ifp =Pt =-2,
{55277 +2°)} ifp=po t =—1,
Way (8e2,0) € \ {55175 (55072 + 272 = 300 55005) |
if =Pz 1>0,
(£} if 1 € {B3. B2}, 1 = —6,
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{E5172 F5172) if ju € (B3, BaBa), 1 = —4,
{3 77} if p € (B3, BaBa). t = 2.
Waw(8ra0) € \ {£5( +2°). 25w +2°) if i € (B, Baa} 1 = —1,

stz GGears +2°012 =320 soommn) - {E 1 £i}
if u € {3, B2p3}. 1 = 0.
The case when m is of Type 5. Such a 7 is pu|-|% @ T |-|7° for a ramified . € X with

u? #1,and a(rr) = 2a(w). By applying [Ass19, Lemma 2.2],'* (1.4.1), and (2.1.3), for
1 <{<a(w)/2and y € X<, we have

cre(x) =
G DG g (et 1) if {1 1 =—a(u) —aGu )
qr;(a(xufl)—a(xu)) v X X M » = X AL ),

—$+o(@(u?)-1) _ .
_sz a(a(w 8(%7/'L:':2)®¢(w K’M:Fl) 1f)(=[L:|:1, t=—a(u2) -1,

(gr=1? —a(u?) | *2 -, F1
2T hFourau) Gy (@ Gy (@ 1)
F

if y=p*!, 1> —a(u?),
0 otherwise.

By then using formula (2.1.1) for the appearing Gauss sums as well as (2.1.4), we obtain

Cz,l()() =
—% ify=1,1t=-2a(u),{=1,
e T eG o  wet 0 _
@ - l)qﬁ/Zfl+U%a(xu_l)ff(xu)) if x ¢ {1 puE') 1 = —a(xp) —aGu™), £ =a(y).
F—U4F
1 1
(5.0 F2e(5.0t) .
2 (Z*l)/zio(lfa(uz)) if y = Mil’ t=—a(u?) —1,¢=a(p),

@r—Dqp
1 F2y. 1  +1
e(5,u)e(5,0™0) .
2 2 S P 2 _
q(Fr+e+a(u2)>/2¥a(z+2a(u2)> ify=p* 12 —a(p), t=a(p),
0 otherwise.

We begin with a(r) = 2, when £ = 1 and a(u) = 1, so p is odd and, since u? # 1, also
a(pu?) = 1.By (2.2.3), both s (x ' u™1) + s(y ') + 25(y) and s(uT2) + 2s(u*) are
divisible by p — 1, so

1 1
s D s w4+ s(0) = pT +1 and s(u¥?) +s(u*) > pT +1.

14We corrected a slight mistake in [Ass19, Lemma 2.2] (see also [Ass19e]): when y1|px #
x2lox,inthe case “if a(uy;) # a(uy;) = 0for{j,i} = {1,2} andt > —a(uy;)” of the formula
for ¢4 ; (1) one should instead have

(17272 i (@' T900)) y; (w0 Wx)) G (=W |y )G (L, 1)
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These inequalities, the formulas for the c; ¢()), and Corollary 2.7 (i) imply the sufficient
bound

4+1 1 1
valy(cr,1(x)) = —T[]FF (Fp] + 5+ o1 (t +2)|valy(qF)| for x € X<1.
In the case a(w) > 2, that is, a(u) > 1, we begin with 1 < £ < a(u) = a(w)/2, so that

t = —a(s) by (1). In this case, the formulas above for the ¢; ¢() and Corollary 2.7 give

s D) i =1
Valp(cfa(n),ﬁ()()) = p-l .
[Fr:F,)(1—£/2) ifl<{<a(n)/2,

which reduces the problem further to the last setting of (3.15.1), in which, in addition,
F = Q3 and £ = 3. In the notation of Section 2.8, the formulas above for the c; () and
(3.16.1) then give

1
Wy @amso) = 515 2 (5. Be(G, Bz, B~ )B()-
Be{B3.B283}

Since e(3., Bu)e(5. Bu™") = (Bu)(—1) € {£1} by (2.1.4), Lemma 2.9 gives the sufficient

1+ 1—1i
Wn,v/(g—a(n),&v) € {i 21/2 ,+ 21/2 }

The remaining case is a () > 2, that is, a(u) > 1, with £ = a(w)/2 = a(u), in which
the above formulas for the ¢, ¢()) allow us to restrict to y with a(y) = a(u). For odd p,
since a(p) > 1, we have a(u?) = a(u), so if also a(yu*!) < a(u), then

a(u™h) = a(u*' - 1) = aw).

Thus, for odd p, the above formulas for the c¢; ¢(y) combine with Corollary 2.7 to give
the sufficient bounds

valp (¢ra(0) (X)) =
—[Fp : Fp](“2 — 1) —|(a(xp™") —a(xm)valp(q%)|
ifa(yu),a(uu™") > 1,1 =—a(yu)—a(u™),
ErEpl1a0) s (o)~ Dyvalp(gf)| ifa(u®!) =1, 1 = —a(u)— 1.
—[Fr : Fpl(5 +a(w)—|(t +2a(w)valy(¢%)|  if x = p* 1 = —a(u)—1.

We are left with F = Q,, when u? # 1 gives a(u) > 4 (see Section 2.8), so a(w) > 8

and a(pu?) = a(u) — 1. If y ¢ {u*'}, then, since a(y) = a(u), exactly one of a(y)
and a(ypu~') equals a(i) — 1, and the other one lies in [2, a(u) — 2] (compare with
[CS18, Lemma 2.2]). Thus, for such y we have

—a(yp) —a(xp™") < —a(u) —1
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and, furthermore,

la(xpn™) —a(xp) = 2a(p) —2 —a(yp) —a(yp™").

Thus, the formulas above for the c¢; ¢ () and Corollary 2.7 give the sufficient final bounds

ValZ(Ct,a(M) (X))
1= 28 — (4 2a(p) —2)|vala29)|  if x # pF = —a(yp) —a(uu™).
> ¢ 122 () —2)|val(2%)] if g = p*l 1 = —a(p),

It _a(p) — (1 4 2a(u) = 2)valo2%)] ity = pE 1= —a(u) + 1. m

4. p-adic valuations of Fourier coefficients at cusps

We turn to global consequences of the local analysis of the preceding section, more
precisely, to Theorem 4.6 that p-adically bounds the Fourier expansions at cusps of holo-
morphic newforms on I'g(N). For this, we begin by reviewing notions that concern cusps
and Fourier expansions.

4.1. Cusps
The group SL,(R) acts by Mobius transformations on the extended upper half-plane
$* :=HUPY(Q) with $:={zeC |Im(z)> 0}
and, for an N > 1, the set of cusps of ['g(V) is the orbit space
cusps(Lo(N)) := (To(N) N SL2(Z))\P'(Q).

Since SL(Z) acts transitively on P! (Q) and the stabilizer of co € P*(Q) is {£ (' })}.
we have

cusps(To(N)) = (To(N) N SL2(Z)\SL2(Z)/{£ (" 1)}
and the latter is the global analogue of the local double coset set Z U \GL,(F)/K;(n) of
Section 3.3. Via the complex uniformization of X¢(N ), that is, via the identification of

Riemann surfaces
Xo(N)(C) == (Ty(N) N SLy(Z))\$* “4.1.1)

(see [Roh97, Section 1.10, Proposition 7]), the cusps are the complement of the elliptic
curve locus of Xo(N)c.

Concretely, each cusp ¢ of T'o(N) is represented by an m/L € Q C P'(Q) with
ged(m, N) = 1 and a uniquely determined denominator L | N of ¢ (compare with
[DSO05, Proposition 3.8.3]). For ¢ = (‘c‘ 2) 0o, we have L = ged(c, N). The cusp oo
is the unique one of denominator N and there are ¢(gcd(L, N/L)) cusps of denom-
inator L (see loc. cit.). The width of a cusp c is the smallest w(c) € Z~¢ such that
y (1 “’gc)) y~1 € To(N) for any fixed y € SL,(Z) with ¢ = yoo, explicitly,

0
w(c) = N/ged(L?, N).
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4.2. Fourier expansions

For a function f:$9 — C, a k € Z~¢, and a y = (‘C‘ 3) € GL;'(R), the function
fley: — C is defined by

L k/2 1 az + b
(Fene) = e r (S57),

Iftheideal {h € Z | f = f i (')} C Z is nonzero, generated by a unique w € Z, then
f descends along the map $ —» C* given by z > ¢27/Z/¥ to a function fy: C* — C.
If then fy extends to a holomorphic function at 0, then f is holomorphic at oo and we
obtain its Fourier expansion at oo:

f@@) =) asme™m=/v. 4.2.1)

n>0

We say that such an f is cuspidal at oo if ay (0) = 0.

For a subgroup I'1 (N) C T C GLZ(Z) and a k € Z~¢, a modular form (resp., a cusp-
form) of weight k on T is a holomorphic function f:$ — C such that both f|ry = f
for y € T' N SLy(Z) and f |y’ is holomorphic (resp., cuspidal) at oo for y’ € SLy(Z).
A cuspform f on I' is normalized if as (1) = 1. For instance, for I' = I'g(N ), choosing
y=("1_,) gives f(z) = (-1)¥ f(z), so k isevenor f = 0.

For every modular form f of weight k on I'g(N) and every cusp ¢ = yoo such that
y € SLy(Z), we have (f|xy)|x(! “’{c)) = f|xy, so (4.2.1) gives the Fourier expansion
of f atc:

(flen)@) =Y _ay(n;y)e "=/,
n>0

which depends not only on ¢ but also on y—explicitly, for any y’ € SL,(Z) with ¢ =y’ o0,

2mwint/w(c)

ar(n;y) =e ar(n;y’) forsomet € Z that depends on y'~'y.

In particular, for any isomorphism @p ~ C and its p-adic valuation val,: C — Q U {oc},

val, (fle) = ;I;f(; val,(ar(n;y)) dependsonly on f andc,andnotony. (4.2.2)

4.3. The representation wy

For a normalized newform f on I';(N) (see [Li75, p. 294]),"° the Fourier coefficients
ag(n) are algebraic integers that generate a number field K¢ (see [DI95, Corollary
12.4.5]). In particular, for a normalized newform f on I'g(N) and every prime p, we have
val, (f'|oo) = 0. For such an f', the Fourier coefficients ay (n; y) at any cusp ¢ = yoo of
denominator L lie in K¢ ({ny1,) (see [BN19, Theorem 7.6], which even exhibits the pos-
sibly smaller number field generated by the ay (n; y)), and to study them p-adically we
will use the adelic viewpoint.

5Here and throughout the paper, a “newform” is implicitly assumed to be a (holomorphic) cusp-
form.
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Namely, for a newform f on I'{(N), we let 7y be the cuspidal, irreducible, admis-
sible, automorphic GL,(Aq)-representation spanned by the GL,(Aq)-translates of the
adelic newform associated to f (see [Gel75, Theorem 5.19]). In the resulting factoriza-
tion (compare with [Fla79, Theorem 3])

/
Tf = Moo & ® Tf.p
p<o0o
each 7y, , is an irreducible, admissible, infinite-dimensional representation of GL(Q,) of
conductor exponent val, (N). If f ison [o(N), then wz, , = 1, and if also val,(N) > 2,
then 7z, is of Type 1, 3, 4, or 5 in the classification of Section 3.6. In the last two cases,
we have the following refinement.

Lemma 4.4. For a prime p and a newform f of weight k on I'o(N) with val,(N) > 2,
if the GL»(Qp)-representation ny, , is of Type 4 or 5, that is, if

nfp = pllg, B ,u_1|-|6; for a ramified . € Xq,, such that o # % when u> =1,

then o € iR and p*°+'3" € Z, so that [val, (p)| < k%l

Proof. By the Ramanujan—Petersson conjecture at all finite places (see, e.g., [Bla06, The-

orem 1 and Remark on p. 46]), the characters u|-|6p and p ! |-|6‘1’7 are unitary, so o € iR.

By complex conjugation, it then remains to show that pf‘”k%l € 7. For this, we first
globalize u to a finite order character fi: Ag/Q* — C* (compare with [AT09, Chap-

ter X, Section 2, Theorem 5]), set 7 := ﬁnf, and let f be the normalized newform of
weight k on T’y (ﬁ) for which 7 7 >~ 7 (see [Gel75, Theorem 5.19]), so that af(p) ¥
(see Section 4.3).

If 7tz is of Type 4, then

~ ~ |.|Z |=o i 1
nf’p_||QpEE||@p with o # +35,

so [CS18, equation before (30)] gives
k=1

—1 _
az(p)=p"Wer 4,(71)) 2 (7 + %),
where ¥,: Q, — C* is an additive character with ¢(,) = 0 and W,Tf~ e is the normal-

ized Whittaker newform of & Fip (see Section 3.2). Checking prime by prime, we obtain

[PSS14, (121)

]
p

the sought p~°+*3" € Z.
If 7y, is of Type 5, then
T, M2|-|6p B||g, with w? #1,
so [CS18, equation (30)] gives

ap(p)=p"?War 4, (1) 1 War wa (P1))
qIN q#p

with ¥g and Wy .y, as before. Since (7)) =1(5 g) (1 - ), the factors for ¢ # p
are all roots of unity (see Section 3.2), so [PSS14, equation (121)] now directly implies

the sought p~o+'3" € Z. n
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The following key lemma uses the adelic point of view to link the global p-adic val-
uation val, (f|¢) to the local p-adic valuations val,(Wy,. , v, (g:,¢,0)) that were bounded
in Theorems 3.14 and 3.15.

Lemma 4.5. For a prime p, a normalized newform f of weight k on To(N), and a cusp ¢
in Xo(N)(C) of denominator L,

if ptN. then val,(f|c) = 0. 4.5.1)

If, in contrast, p | N, then, setting w := ny, , for brevity (see Section 4.3), for any additive
character : Qp, — C* with c() = 0, with the notation of Sections 3.2-3.3, we have

k N
valp(fle) = = valy (m)

kt
+ reZiI(}%[;EZ; (7 + Valp(WnJ//(gr—max(valp(N),Zvalp(L)),Valp(L),v)))‘
Proof. We included (4.5.1) because it follows from the argument below, though [DI95,
Remark 12.3.5] gives it, too. We fix additive characters ¥,: Q; — C* with c(y4) =0
for each prime g | N such that Y/, = ¥ inthe case p | N, wefixay = ('Z 2) € SL,(Z)
with ¢ = yoo, and we consider a variable Fourier coefficient ay (r; y). By [CS18, Propo-
sition 3.3], there are v, € Z; (that depend on r) such that

2mird
ag(ryy) = ag(ro)ew©L

K _ 2
X l_[ g2 ClaO=valg N[ eedWEND Py (@vaty (r)—max(valy (N),2valg (L) waly (L))

q|N

where ro =[],y q*¥")_ Since ay (ro) € Z (see Section 4.3) and Wi, 4w, takes values
in Z[é] (see Proposition 3.12 with Lemma 4.4), it remains to take p-adic valuations and
let r vary. ]

We are ready to bound the p-adic valuations of Fourier expansions of newforms at
cusps.

Theorem 4.6. For a prime p, a cuspform f that is a Z-linear combination of normal-
ized newforms of weight k on T'g(N), a cusp ¢ € Xo(N)(C) of denominator L, and an
isomorphism C >~ Q,,

k N
val, (fle) > —Evalp(—)

gcd(L2, N)
0 if val,(ged(L, N/L)) =0,
n 0 if val,(ged(L, N/L)) =1, val,(N) > 2,
—% if val, (L) = %valp(N) =1,

1— %valp (ged(L,N/L)) otherwise,
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as well as the following stronger bounds in the case p = 2:

vala(fle) > —Evalz(L)
2 gc

0 if val(L) = val(N) = 1,

N £ if valy(L) = Lval(N) € {2,3.4},
% +1- %valz(N) if val,(L) = %Valz(N) >4,
0

if valp(ged(L, N/L)) = 3, vala(N) > 6.

Proof. We lose no generality by assuming that f* is a normalized newform of weight k on
Fo(N), so we set  := 7y, (see Section 4.3) and fix an additive character y: Q, — C*
with c(y¥) = 0.

The case val, (N) = 0 follows from (4.5.1). If val,(N) = 1, we have val, (L) € {0, 1}
and a(;r) = 1, and Lemma 4.5 reduces the problem to showing that

kt/2 + Valp(Wn’,l/f (gr—max(l,2va1p(L)),va1p(L),U)) = 0

for every T € Z>o and v € Z, which follows from the first case of Proposition 3.4.

In the remaining case val,(N) > 2, by Section 4.3, the representation 7 is of Type
1, 3,4, or 5 with a(;r) = val,(N), and Lemma 4.5 reduces the task to showing that for
T € Z>o and v € Z, the quantity

kt/2 + valy(Wr y (g—max(val, (N),2valp (L)) valp (L),0)) (4.6.1)

is at least the summand split into different cases in the desired inequalities. If, in addition,
val, (L) # val, (N )/2, then this is immediate from Theorems 3.14 and 3.15, so we assume
from now on that

val, (L) = val,(N)/2.

For 7 of Type 3, if p is odd, then Theorem 3.14 (ii) shows that val,(N) = 2 and
gives the conclusion (after plugging in the bounds from Theorem 3.14 (ii), the expression
(4.6.1) becomes linear in 7, so its extrema are at the endpoints of the range for 7), and if
p = 2, then Theorem 3.15 (ii) (with Section 2.8) shows that val,(N) € {4, 6} and gives
the conclusion. For 7w ~ M|-|6p ou! ||@‘; of Type 4 or 5, Lemma 4.4 shows that

k—1
[valp (P?)] = ——.

so Theorems 3.14 and 3.15 likewise give the conclusion.

In the remaining case when = is of Type 1, for p odd, by Proposition 3.13, we may
restrict to T = 0, and then conclude by Theorem 3.14. In contrast, for p = 2, we combine
Lemma 3.7 and Proposition 3.13 to reduce either to a(r) = 2 with t = O or to t > 0, and
then use Theorem 3.15. ]

We explicate the weight 2 case of Theorem 4.6 because it is the most relevant one for
our goals.
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Corollary 4.7. For a prime p, a Z-linear combination [ of normalized newforms of
weight 2 onT'g(N), a cusp c€ Xo(N)(C) of denominator L, and an isomorphism C :@p,

Valp(f|c) . _Valp(N/L)

0 if val,(L) € {0, val,(N)},
max(%, ﬁ) if val,(L) = 1, val,(N) = 2,
1 if val,(L) € {1, val,(N) — 1}, val,(N) > 2,
+ 1 1+ 3val(N) if p=2,valy(L) = Jval(N) € {2,3,4},
2+ jvala(N) if p=2,valy(L) = 3vala(N) > 4,
3 if p=2,vala(L) € {3,val,(N) — 3}, val,(N) > 6,
1+ %Valp(gcd(L, N/L)) otherwise. |

Example 4.8. In Tables 4.8.1 and 4.8.2, for newforms f associated to elliptic curves of
conductor N, we used the SageMath algorithm16 described in [DN18, Section 6] to com-

Newform f Level|Label|vala (f'[1/2) |[val2(f|1/4)|vala(f|1/8)|vala(f11/16)
4-2q3—q>+2q" +¢°+0(q'% | 22-5| 20a 0
4—q3>-2¢°+q¢°+0(q'°) 23.3| 24a -1
q+q3-2¢°+¢°+0(q'% [2*3] 48a -2 1
q—2¢°-3¢°+0(¢q'9) 2° | 32a -3 -1
q+2¢°-3¢°+0(q'°) 26 | 64a —4 -2 1
q-2q3+2¢°+4q7 +¢°+0(q'%)| 27 |128b -5 -3 -1
q+4q°=3¢°+0(q'9) 28 |256¢ -6 —4 -2 1

Tab. 4.8.1. p-adic valuations of Fourier expansions for p = 2 and small levels

Newform f p |Level | Label | val, (/) valp(f|1/p2)

a+q*—q*—4°-3¢*+0(q'°) 3 p25| 45a| —1/2
q-2q*—q"+0(q"?) 3| p3 | 27a] -1

a+q>+q*+3¢°—44" +43+0(¢'°) 3|2p4|162d| -2 0

q—2¢*+5¢"+0(q") 3| p5 |243b] -3 —1
4+a>+43—q*+q°-3¢%+¢°+0(q'°) 5(3p2| 750| —1/2
4-4*+2q° +¢*-2¢°—¢¥+4°+ 0(¢'?) 7|2p2| 98| —1/2
4+2¢%— P +2¢* +¢°-2¢5+2¢"-2¢°+0(q') | 11| p2 |121d| —1/2

Tab. 4.8.2. p-adic valuations of Fourier expansions for 3 < p < 11 and small levels

16 Available at https://github.com/michaelneururer/products-of-eisenstein-series. A faster and
more general pari/gp algorithm for algebraically computing Fourier expansions at cusps is based
on [Coh19], but we did not use it because it is heuristic: to convert the numerically approximated
Fourier coefficients to algebraic numbers, it uses a heuristic application of the LLL-algorithm. Our
denominator bounds could help make this algorithm rigorous.
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pute the valuations val, (f'[;/,¢) for 0 < £ < %vallJ (N) (the restriction to this range is
natural due to the Atkin—Lehner involutions). The resulting examples illustrate the sharp-
ness of Corollary 4.7.

5. The differential determined by a newform lies in the Z-lattice H®(X(N), 2)

Any cuspform f of weight 2 on I'g (V) that has a rational Fourier expansion determines a
differential form wy on Xo(N)g. The goal of this section is to use the results of Section 4
to show in Theorem 5.15 that, in particular, if such an f is a normalized newform (which
then corresponds to an isogeny class of elliptic curves over Q), then wy is integral in the
sense that it lies in the Z-lattice

H(Xo(N), Q) C H°(Xo(N)g, @),

where €2 is the relative dualizing sheaf. For arguing this, it is convenient to work with the
regular stack Zo(N) that has both a modular interpretation and line bundles of modu-
lar forms instead of the possibly singular scheme X¢(/N) whose scheme-theoretic points
lack a clear modular description. Thus, we begin by reviewing the definition of the “rel-
ative dualizing” sheaf in the stacky case. Some material of this section overlaps with the
appendix of the unpublished manuscript [Ces18].

5.1. “Relative dualizing sheaves” of Deligne—Mumford stacks

Let X — S be a flat, locally finitely presented morphism of schemes with Cohen—
Macaulay fibers. By [SP, Lemma 02NM], the scheme X is a disjoint union of
clopen subschemes whose relative dimension over S is constant. Thus, the theory of
Grothendieck duality, specifically [Con00, bottom halves of pp. 157 and 214], supplies
relative dualizing Ox-module Qx5 that is quasi-coherent, locally finitely presented, S -
flat, and of formation compatible with base change in S. For instance, if X — S is smooth,
then Qx5 is simply the top exterior power of the vector bundle €2 }1( /s The formation of
Qx/s is compatible with étale localization on X : for every étale S-morphism f: X' — X
one has a canonical isomorphism

e f*(Qxys) = Qxv/s (5.1.1)

supplied by [Con00, Theorem 4.3.3 and bottom half of p. 214]. Moreover, if f/: X" — X’
is a further étale S-morphism, then [Con00, equation (4.3.7) and bottom half of p. 214]
supply the following compatibility:

tropr = trr o ((F) () (f)* (f*(Rx/5)) = Qxrys. (5.1.2)

Let now 2~ — S be a flat morphism, locally of finite presentation, of Deligne—-Mumford
stacks with Cohen—Macaulay fibers. By working étale locally on S, the compatibili-
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ties (5.1.2) ensure'” that the Ox-modules Qy/s for étale morphisms X — 2" from a
scheme X glue to a quasi-coherent, locally finitely presented, S-flat &4 --module Q »-/5s,
the relative dualizing sheaf of &~ — S, whose formation is compatible with base change
in S (see [Con00, Theorem 4.4.4 and bottom half of p. 214] for the base change aspect).
If ' — § is smooth, then Q 45 is the top exterior power of Q}%f /s

The quasi-coherent € g--module €2 4,5 has full support and is S-fiberwise Cohen—
Macaulay: indeed, this reduces to the case when S is the spectrum of a field and 2" is a
scheme, and in this case, by [Har66, Remark, p. 291], the stalks of €2 /5 are dualizing
modules for the corresponding stalks of &4 and hence, by [SP, Lemma 0AWS], are
Cohen-Macaulay of full support. Similarly, by [SP, Lemma 0DW?9], the module €2 o-/s
is a line bundle if and only if the S-fibers of 2~ are Gorenstein.

We draw attention to the case when 2~ — S is proper and 2" is not a scheme, in
which we do not claim any dualizing properties of the & 2--module 2 o-/s constructed
above.

5.2. The case of modular curves

For us, the key case is when S = Spec Z and 2 is either the modular stack 2T or
its coarse space Xt for an open subgroup I' C GL, (Z) (see Section 1.4). The resulting
Z — § is flat, of finite presentation, with Cohen—Macaulay fibers (the latter by the nor-
mality of .2 and [EGA V4, Corollaire 6.3.5 (i)]), so the discussion of Section 5.1 applies.
Normality of 2" and [EGA 1V, Corollaire 6.12.6 (i)] ensure that 2™ is the comple-
ment of finitely many closed points of 2", and hence contains Z¢q and is Z-fiberwise
dense in Z". Since 2" is also Z-fiberwise Gorenstein (see [Liu02, Chapter 6, Exam-
ple 3.18]), the coherent, Z-flat, Cohen—Macaulay & g--module 2 grs/7 of Section 5.1 is
a line bundle. In addition, 2 2,7 agrees with the line bundle Q;Z/ /7 over any Z-smooth
open Z# C X, for instance, over Zz[i/n] C £ for an N > 1 with ['(N) C I" (see
[DR73, Chapitre IV, Théoréeme 6.7] and [Ces 17, Proposition 6.4 (a)]).

The key advantages of 2 4-/7 over the €z -module Q}% Jz are its aforementioned
pleasant properties at the nonsmooth points. The following comparison relates €2 27./7 to
the more concrete Qx /7.

Proposition 5.3. For an open subgroup I' C GL, (Z) an N > 1withT'(N) C T, and the

coarse space morphism 2T X T, we have an isomorphism of line bundles
1 ~ 1
Q(X’r)Z[l/N]/Z[l/N] - (nZ[l/N])*(Q(%F)Z[I/N]/Z[l/N]) (6:3.1)

and for any open U C Xt such that % = n~'(U) 5 U is étale overa Z-fiberwise dense
open of U,

HO(U,Q) c H'(Ug, Q") is identified by (5.3.1) with H°(%.Q) C H*(%g. Q).

17See [LMB00, Lemme 12.2.1] for a discussion of analogous compatibilities and their relevance
for glueing.
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Proof. The second assertion implies the first: indeed, for every open U C (Xr)z[1/x], the
map 7~} (U) — U is étale over the complement of j = 0 and j = 1728 (see [Ces17, last
paragraph of the proof of Proposition 6.4]). For the same reason, away from j = 0 and
j = 1728 the pullback map

1 1
Qxrro/e = (1@)«(R(a1)4/0) (5.3.2)

is an isomorphism: there it is the Qsz)@ /Q—twist of the coarse space isomorphism

Ox. —> mx(Oa.). To conclude that (5.3.2) is an isomorphism, we claim that so is its
base change to the completion &1 of the strict Henselization of (X1)g at any

- (Xr)Q.x
x € Xr(Q). We have
é(s};(r)@,x ~ Q[t] under which (Q(IXF)@/Q)ésh ~ Q] - dt,

(XP)Q.x

and also, using the identification X1 (Q) = 27 (Q) to view x in 2T(Q),

ﬁ(sgjfr)@,x ~ Q[z] under which (Q%%F)@/Q)ﬁzl}fr)@.x ~ Q] -dr.

Taking into account the action of the automorphism group of x € 21 (Q), we have, com-
patibly,

/»sh ~ (/7h G 1 N ~ 1 N G
Orrgx = Oy )" (@« Qaryg @iy, = Camaay, )

for some finite group G acting faithfully on ﬁfg&)@’x (see [DR73, Chapitre I, Section
(8.2.1)] or [Ols06, Theorem 2.12]). Since the ramification of mq is tame, the faithfulness
of the action implies by Galois theory that G ~ 4 (Q) with, at the cost of changing the
uniformizer  above, t = t#% and ¢ € s (Q) acts by 7 — ¢ - 7 (see [Ser79, Chapter IV,
Section 2, Proposition 8]). The desired Q[¢] - dt = (Q[z] - d 7)€ follows.

To conclude the sought identification H%(U, Q) = H%(%,Q), we let U’ C U with
preimage %' C % be a Z-fiberwise dense open over which r is étale. The Oy.-module
Qx./z has depth 2 at the points in U \ (U’ U Ug) (see Section 5.2), and similarly for
Q 9+ /2, 50, by [EGA 1V 4, Théoreme 5.10.5], we have

H(U.Q)=H(U' Q)N H(Ug.Q") inside H°Ugy. Q).
H%.Q)=H' %' . Q) NH%.Q") inside H(%,.Q).
Therefore, the isomorphism (5.3.2) reduces the problem to the case when U = U’. Simi-
larly, neither H°(U, Q) nor H%(% , 2) changes if we remove finitely many closed points
from U, so we assume further that U and % are regular, so that Qg7 and Q4,7 are line

bundles (see Section 5.2). Then (7|%)*(Qu/z) = Q4 z by the étaleness of % — U
(see (5.1.1)), so that there is a pullback map

QU/Z — (7‘[|%)*(Qa///z) that is the QU/Z—tWiSt of Oy = (lo)«(O),

and so is an isomorphism. The sought identification follows by taking global sections. =
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We conclude that the Z-lattice determined in the Q-space H°(Xo(N)gq, ') of cusp-
forms by the relative dualizing sheaf Q2 on the stack 2, (/N ) agrees with its coarse space
counterpart:

Corollary 5.4. Foran N > 1 and the map Zo(N) LS Xo(N), we have an Ox,(y)-module
isomorphism Qx,(n)/z 5 om(Q 2o(N)/z) that over Q is the pullback of Kdihler differ-
entials. In particular,

H°(Xo(N),Q) = H°(Zo(N), Q) inside H°(Xo(N)g.R") = H*(Zo(N)g.2").
(5.4.1)

Proof. The map  is étale (even a Z /27Z.-gerbe) over a Z-fiberwise dense open of Xo(N),
for instance, over the complement of j = 0 and j = 1728; see [éesl7, proof of Theo-
rem 6.7]. Thus, in the case I' = I'g (), Proposition 5.3 applies to every open U C Xo(N)
and gives the claim. ]

Due to the abstract nature of Q, the lattice H°(Zo(N), Q) is a priori inexplicit.
To remedy this, in particular, to relate this lattice to the integrality properties of Fourier
expansions studied in Section 4, we will use an integral version of the Kodaira—Spencer
isomorphism presented in Proposition 5.6.

5.5. The line bundle w

The cotangent space at the identity section of the universal generalized elliptic curve
gives a line bundle w on % (1), which pulls back to a line bundle @ on ZT for every
open subgroup I' C GL, (Z). We write “cusps” for the reduced complement of the elliptic
curve locus of 2T, so that “cusps” restricts to a Weil divisor on the regular locus 2%,
which contains (£T1)g and is Z-fiberwise dense in 2T (see Section 5.2). By [Del71,
Section 2], for every k € Z~q and every I' C T';(N), the space H°((21)c, 0®¥) (resp.,
H((27)c, »®* (—cusps))) is canonically identified with the C-vector space of modular
forms (resp., cuspforms) of weight k on T reviewed in Section 4.2, so H%(2t, w®)
(resp., HO(2t, 0®* (—cusps)) if 2T is regular) is a Z-lattice in this C-vector space.

Thanks to this algebraic description, one enlarges the scope of the definitions: in the
rest of this article, by a modular form (vesp., cuspform) of weight k on I over a scheme S
we mean an element of H((2T)s.w®%) (resp., H*((2T)s. ©®* (—cusps)); we will use
the latter only when 2T is regular).

Proposition 5.6. For an open subgroup I" C GLZ(Z), letting y range over the generic
points of the IF,-fibers of Zr for the set of primes p that divide every (equivalently, the
smallest) N > 1 with T'(N) C I, and letting d, denote the valuation of the different
ideal of the extension O }'}F i/ ﬁ:}bhf(l),y of discrete valuation rings (see Section 1.4 for the
notation), we have

Q%l{?g/z = a);?;/,.ir‘cg (—CUSPS + Zy dym)
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Proof. Tt is indeed equivalent to consider the smallest N with I'(N) C I': if p | N but
p + M for some I'(M) C T, then, for N’ := N/p**»®) every element of ['(N’) is
congruent modulo p**»®) to an element of I'(M), so T'(N') c T(MN")T'(N) c T,
contradicting the minimality of N.

For the main assertion, since both sides are line bundles (see Section 5.1) and 2T
is normal, by [EGA IVy, Théoreme 5.10.5], it suffices to exhibit the desired isomor-
phism over the slightly smaller open % C 21 that is the preimage of the open of 27(1)
obtained by removing the images of the singular points of 2. We will bootstrap the
claim from its case for 2" (1) supplied by [Kat73, Section (A1.3.17)]:

QEK(I)/Z o~ wg,z(l)(—cusps). (5.6.1)

By working étale locally on 2 (1) and using [Con00, Theorem 4.3.3, equation (4.3.7),
bottom of p. 206], we get

Quz = Qu)aq) 6, T*QLay/z (5.6.2)

where 7: % — 2 (1) is the forgetful map. Since = is finite locally free over 7 (%),
by [Con00, bottom half of p. 31 and pp. 137-139, especially, compatibility (VARG)
on p. 139], the Oy -module Q4,9 1) reviewed in Section 5.1 is identified with
%”om@ﬂ(%) (74(O%), Ox(a))- Thus, since 7 is generically étale, the element

trace € Homg,,,, (mx(O% ), Onar)) = T . Q1 2 (1))

via the correspondence [SP, Lemma 01XO0] (with [SP, Lemma 0AGO]), gives rise to the
identification

Qo jaq) = Oy (quggﬂ(l) dxm), (5.6.3)

where the sum is over the height 1 points x of 2T and d, is the order of vanishing of
“trace’” at ﬁi%hrr - By considering the fractional multiples of “trace™ that still map ﬁi%hrr 7
into 0% | 5» we see that dy is the valuation of the different ideal of &%, /0% )+
(see [Ser79, Chapter III, Section 3]). Thus, d, = 0 whenever this extension is étale, so
each x that contributes to the sum either lies on the cusps of (2T )q or is the generic
point of an irreducible component of an F,-fiber of 2t — Spec Z such that p | N for
every I'(N) C T (see [DR73, Chapitre IV, Définition 3.2]). At the former, ramification
is tame and dx = e, — 1, where e, is the ramification index of 6’;;‘,1_3/ ﬁ;‘;(lﬁ (see

[Ser79, Chapter III, Section 6, Proposition 13]). Thus, since
7 (05 (—cusps)) = 0F (= Xy ceusps €x11}):
by (5.6.1)—(5.6.3) we obtain the desired
Qo7 = 05*(—cusps + >, dy{y_}). n

Variant 5.7. For an open subgroup I' C GL, (2) and the forgetful map w: Xr — X(1),
letting y range over the height 1 points of Xt and letting d)’, denote the valuation of the
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different ideal of the extension Ox. [ Ox1),x(y) of discrete valuation rings, we have

ez = (0 gy )l (yex 45 (0)-

Proof. The proof is similar to (but simpler than) that of Proposition 5.6. Namely,
X(1) =~ IP’% is Z-smooth, so Qx(1)/z = Q}lm)/z, and, similarly to there, one may restrict
to the preimage U C Xr of X(1) \ #(Xt \ X1°) and then conclude by using the ana-
logues of (5.6.2) and (5.6.3). ]

For general I, it is tricky to directly compute the d, that appear in the integral
Kodaira—Spencer formula of Proposition 5.6 because the extension ﬁ}}ifny/ ﬁ?ﬁg(l),y
involves imperfect residue fields and may be wildly ramified. For I'g(N), we will com-
pute the d, in Proposition 5.12, and for this we first argue that only the level at p matters
and then describe 2o (p"*7M)) along the cusps.

Lemma 5.8. For open subgroups T, T’ C GLy(Z) with T(N) C T and T(N') C T, a
generic point yrar of the Fy-fiber of Zrnr with p  N', and its image yr in Zr, in
Proposition 5.6 we have

d

yrnr’/

= dy.

Proof. By [DR73, Chapitre IV, Construction 3.8, Proposition 3.9], the stack ZTnr/
agrees with the normalization'® of 2T X 51y Z1v. Thus, since the assumption p } N’
ensures that the map 21 — 2(1) is étale at the image of yrnr- (see [DR73, Chapitre IV,
Définition 3.2 onwards]), the map ZTnrr — Zr is étale at yrar/. In particular, letting y
be a geometric point above yrars, we have ﬁf’%mr,i = ﬁg}r,?, sothat ., = dyp.,
as desired. [ ]

5.9. The components of Zo(N)F,

We recall from [KM85, Theorem 13.4.7] that the irreducible components of Zo(N ),
correspond to pairs (a, b) of integers a, b > 0 with a + b = val, (N ) in such a way that on
the (a, b)-component the p-primary part of the cyclic subgroup that is part of the modular
interpretation of 25(N) is generically an extension of an étale group of order p? by the
a-fold relative Frobenius kernel. The ramification index e p) of the strict Henselization
of Zo(N) at the generic point of the (a, b)-component of Zo(N)r, was determined in
[KMS85, Section (13.5.6)]:

e@p) = (p™" ). (5.9.1)
If p | N, then the forgetful map Zo(N)r, — Zo(N/p)F, sends each (a, b)-component

with b > 0 to the (a, b — 1)-component, and the (a, 0)-component to the (¢ — 1, 0)-
component.

18Note that for [DR73, Chapitre IV, équation (3.9.1)] to hold, one needs to take the normalization
of its left side; see [Cesl7, Example 4.5.3].



K. Cesnaviéius, M. Neururer, A. Saha 620

Lemma 5.10. For a prime p and an n > 0, the base change of the forgetful map
Zo(p") = Z' (1) along the map Spec(Z[q]) — £ (1) given by the Tate generalized
elliptic curve over Z[q] is

Zo(p™) x a1y Z[q]
| | Spec@igpllahu | | Spec(ZpellaDIX1/(XP"™ — tpaq)).

a+b=n a+b=n
a>b>0 0<a<b

I

where, without explicating the Z[q]-algebra structure, the last term is Z[(pa][X]. After
base change to IF,, the term indexed by (a, b) in this decomposition maps to the (a, b)-
component of Zo(p")F,,-

Proof. By [DR73, Chapitre VII, Corollaire 2.2], the finite, flat Z[g]-scheme
Zo(p") xaq) Z[q] is the normalization of Z[g] in the finite Z(g)-scheme
Zo(p™) X 21y Z((g)). The latter parametrizes cyclic (in the sense of Drinfeld) subgroups
of order p” of the Tate elliptic curve over Z((¢)), so, by [KM85, Theorem 13.6.6], it is

. pb—l
Spec(Z((¢)) U Spec(Z(¢"/"" M u | | Spec(Z((q))[X]/(%(;T)))
a+b=n
a,b>0

where ®,(Z):= ZP~! 4 ...+ Z + 1 is the p-th cyclotomic polynomial. More explicitly,
ifa>b>1,then X/ anib is a pP-th root of unity in the source of the surjection
Xph_l . a—b
2@ () ) = Zlepl@) giventy X gg”
that must also be injective because its source and target are free Z (g))-modules of rank
p?~1(p —1). Similarly, if 1 < a < b, then xr' /q is a p®-th root of unity in the source
of the isomorphism

b—1
4 a

Z(a)[X]/ (q’p (;(I,T)) = (Z1Gpe)(@DIX]/ (X" = Gpag).

To conclude the claimed description of Zo(p") X2 1) Z[g], it remains to note that
b—a

both Z[¢,»[¢] for a = b and (Z[5pe] [gDIX1/(XP"™ — Lpaq) = Z[pa] [X] fora < b

are normal (even regular). The claim about the (a, b)-component follows from [KM85,

Proposition 13.6.2 and proof of Theorem 13.6.6]. ]

Before proceeding to the promised formula for the d) in Proposition 5.12, we record
the following consequence of Lemma 5.10 that relates the present section to the analytic
considerations of Section 4.

Lemma 5.11. For L | N and a prime p, every cusp of Zo(N)c of denominator L (see
Section 4.1 and use Zo(N)(C) = Xo(N)(C)) reduces to the (val,(L), val,(N/L))-
component of Zo(N)F, (see Section 5.9).
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Proof. Points of Zp(N) and of its coarse space Xo(N) valued in algebraically closed
fields agree and every cusp is a Q-point, so the statement makes sense. Moreover, the com-
plex uniformizations (4.1.1) are compatible with forgetting some of the level, so we may
assume that N = p". For L = N, the only cusp of X¢(N) of denominator L is co and its
punctured analytic neighborhood parametrizes pairs (C* /g%, (e271/N)) with ¢ = e27%
and Im z > 0 (see [Roh97, Section 1.10, Proposition 7]). Thus, by the algebraic theory
of the Tate curve with its canonical subgroup px (see [DR73, Chapitre VII, Section 1,
especially, équation (1.12.3)]), this cusp factors through the (7, 0)-term of the right side
decomposition of Lemma 5.10, and hence reduces to the (7, 0)-component. For the other
cusps, we induct on 11, so we suppose that 1 > 0 and consider a cusp ¢ of denominator p*
with £ < n — 1. By induction, the image of ¢ reduces to the (¢,n — { — 1)-component
of %o(p”_l)pp. Thus, if n — £ — 1 > 0, then ¢ must reduce to the (£, n — £)-component
of 2o(p™)F, (see Section 5.9). To bootstrap the remaining ¢ (p™""~1-D) cusps with
£ = n — 1 (see Section 4.1), it now remains to note that, by Lemma 5.10, there are pre-
cisely ¢ (p™n("=1-D) cusps that reduce to the (7 — 1, 1)-component of 2o(p")F,,- n

Proposition 5.12. Foran N > 1, a prime p, the generic point y of the (a, b)-component
of Zo(N)F, (see Section 5.9), and the valuation d, py of the different of the extension

ﬁi”cllo(N)i/ﬁf%(l)i’
b ifa=0,
dap)y = 4§ pm@=Y(ph—b—1) ifab>1, (5.12.1)
0 ifb=0.

Proof. By Lemma 5.8 and Section 5.9, we may forget level away from p to assume that
N = p". As in the proof of Proposition 5.6, the different of a finite, generically sep-
arable extension R’/R of discrete valuation rings is the annihilator of the R’-module
Homg(R', R)/(traceg/;g). The formation of this annihilator commutes with flat base
change in R (after which R and R’ may cease being discrete valuation rings). We will
apply this to ﬁiﬁl&l’o N5 / ﬁ?&‘,(l)i, the valuation d(, ) of whose different we wish to com-
pute. Namely, by [DR73, Chapitre VII, Théoréme 2.1], the map Spec(Z[¢]) — Z (1)
given by the Tate generalized elliptic curve over Z[q] realizes its source as an étale dou-
ble cover of the formal completion of 2" (1) along the cusps, and the flat base change map
we will use is the resulting ﬁ}g my = Z [[qﬂ?;), where the latter strict Henselization is at
the generic point of the F,,-fiber of Z[g]. In this notation, by Lemma 5.10, the resulting
base change of 0% v - is

a

s b— P
ZIpllalyy ifa=b. and  ((Z[GellgDIX]/(XP" " = L))y ifa <b.
These are discrete valuation rings, and the extension Z[{,»] [[qﬂ?l’)) /Z [[q}]?l‘)) is a flat base

change of Z[¢ pb]?l;) / Z?;). Thus, the @ > b case of (5.12.1) follows from the ramification

theory of cyclotomic fields [Was97, Proposition 2.1]. To similarly treat the a < b case,
we will use the subextension

Z[ql}, € Zigpallglh, © (Z1gpallaDIXT/ (X P

a

— &a@)(y) (5.122)
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and the tower formula for the different [Ser79, Chapter III, Section 4, Proposition 8]
(which, notably, does not require residue field extensions to be separable—an assumption
not met here). Namely, letting J(a,b) be the valuation of the different of the top extension,
[Was97, Proposition 2.1] now gives

dpy = da,b) +

P Ypa—a—1) ifa=>1,
0 ifa =0.

To compute J(a,b), we note that the top subextension in (5.12.2) is of degree p®~¢, does
not change the uniformizer 1 — {,«, induces a purely inseparable residue field extension of

degree pb_“, and, as a module, is generated by powers of X. Since X, X2, ..., X"’b_a_1
have trace 0 in this extension, we conclude that d = (b — a)¢(p?). The desired formula
in the remaining case a < b follows. [

With the integral version of the Kodaira—Spencer isomorphism (Proposition 5.6) and
the explicit formulas for the d, (Proposition 5.12) in hand, we are ready to characterize
the Z-lattice H°(2o(N). ) in terms of the p-adic properties of Fourier expansions at
all cusps in Proposition 5.14.

Lemma 5.13. For a prime number p, an [ € HO(%O(N)@p, 0®) with k > 1, a
cusp ¢ € Xo(N )(@p) of denominator L, and an isomorphism (: @p ~ C, the valuation
v := val (t(f)|L(c)) defined as in (4.2.2) (see also Section 5.5) after pullback'® to a cusp
ce X(NN)((C) above ¢ for a sufficiently divisible N depends only on f and val,(L)
but not on ¢, 1, N, or letting % C Zo(N)z, denote the open complement of those
irreducible components of Zo(N)F,, that do not meet the reduction of c,

v is the largest rational number such that p~° f € HO(%ZP, w®F). (5.13.1)

Proof. By Lemma 5.11, the irreducible component of 2Z4(N)F,, that contains the reduc-
tion of ¢ depends only on val,(L), so the same holds for % and it suffices to establish
(5.13.1). Moreover, by scaling f, we may assume that v = 0. By the normality of Z¢(N),
the forgetful map

7 2 (NN) = 25(N) satisfies 6aqv) > (16 5y 7)) OV TEW)

and this persists after flat base change, such as to Z Thus, T'o(N) / (N N ) acts transi-
tively on the cusps ¢ € X (N N )(C) above ¢ and, lettlng Ucx (N N)z , be the comple-
ment of those irreducible components of 2 (N N )F, that do not meet the reduction of a
fixed €, the task is reduced to showing that

no v’ € Q- satisfies p_”/f|%(NA~,)@ € HO(?ZZp,a)@k). (5.13.2)
p

19The only role of the auxiliary level is to ensure that 2 (N N )c is a scheme and hence admits
a complex uniformization analogous to the one discussed in (4.1.1).
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In addition, limit arguments eliminate the artificial non-Noetherian aspects: they allow us
to replace @p and Zp by a variable sufficiently large finite extension F/Q, and its ring
of integers O F .

For sufficiently divisible N, the stack 2 (N N) is a scheme (already 15 | N suffices,
see [KM85, Corollary 2.7.2]) and, by [KM85, Theorem 10.9.1], the formal completion of
2 (NN)o ~ along the closure of ¢ is O F [q/ ™V N)]. Under a trivialization of the pullback
of w®* to this formal completion, the pullback of f is described by its g-expansion, which
is an element of F [[ql/ (NN)] that, via ¢, agrees with the analytic Fourier expansion of f
at € constructed as in Section 4.2 (see [DR73, Chapitre VII, Section 4.8]). Consequently,
w§ f with a € Z extends to a section of w® over a neighborhood of the closure of
Cin (N N )or if and only if a/er > 0, where e is the absolute ramification index
of F. The complement in Yo » of the union of such a neighborhood with 2 (N N)F is
of codimension > 2, so, since 2 (N N )o, is Cohen-Macaulay, [EGA 1V, Théoréme
5.10.5] ensures that w f extends to a neighborhood of the closure of ¢in 2" (N N oy if
andonly if w¢ f € HO (% ,..w®%). As F grows, this achieves the promised (5.13.2). m

Proposition 5.14. For a prime p and a cuspform f € H°(Zo(N )G, w®?(—cusps)),
the differential wy € H%(X, (N)@p, Q1) lies in the Zp—lattice

H°(Xo(N)z,.Q) = H*(Z(N)z,. Q)

ifand only if for every 0 < { <val,(N) and some (equivalently, any) cusp ¢ € X, (N)(@p)
whose denominator L satisfies { = val,(L) and some (equivalently, any) isomorphism
t:Q, =~ C, we have

—val,(N) if val, (L) =0,
valp (L(f)li) = | —valp(N/L) + 515 if 0 < valy(L) < valp(N), (5.14.1)
0 if val, (L) = val,(N).

For such a cuspform f defined over a number field K with ring of integers Ok, we have
wr € H*(Xo(N)oy Q) ifand only if (5.14.1) holds for all primes p and all embeddings
K < Q,.

Proof. The last assertion follows from the rest because any finite free @g-module M
(such as HO(Xo(N)oy, ) = HY(Xo(N), Q) ®z Ok, see Section 5.1) coincides with
the set of m € M ®g, K whose image in M ®q, @p lies in M ®q, Zl, for every
prime p and every embedding K < Q,. For (5.14.1) itself, we begin by recalling the
integral Kodaira—Spencer isomorphism of Propositions 5.6 and 5.12: letting y range over
the generic points of the irreducible components of 2o (N )F,,, with dy, as there, we have

Qo2 12, = 022 (—CHSPS + Zdym)-
y

Consequently, the characterization of val,(f|.) given in Lemma 5.13 together
with [EGA 1V,4, Théoreme 5.10.5] (applied as in the preceding proof) shows that
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wr € HY(25(N )Zp’ 2) if and only if for every y and some cusp c that reduces mod-

ulo p on {y_}, we have dy /e, > —val,(¢t(f)],(c)) Where e, is the absolute ramification
index of the discrete valuation ring ﬁ};}o (N).y- By Lemma 5.11, a cusp ¢ of denominator
L reduces to the (val, (L), val,(N/L))-component of 2o (N ), for which, by (5.9.1), the
corresponding e, is ¢ (p™n(alr (L)valp (N/L))y Ty arrive at (5.14.1), it then remains to use
(5.12.1). L]

We are ready for our main integrality result for normalized newforms.

Theorem 5.15. For a number field K and an f € H°(25(N )k, »®?(—cusps)) whose
base change along some K < C is a Z-linear combination of normalized newforms on
To(N) (see Section 5.5),

wr € HY(Xo(N)og. Q) = H*(20(N)og. Q)

inside H*(Xo(N)g, Q') = H°(Zo(N)k, Q) (identification by flat base change and
(5.4.1)), and, more generally, for any I'1(N) C T C T'o(N),

wr € HO(Xr)og. Q) C H'(Xp)k.Q"), oy € H*(21)ox. Q) C H'(21)k. Q).

Proof. A Galois conjugate of a newform is still a newform (see [DI95, Corollary 12.4.5]),
so the assumption on f does not depend on the choice of an embedding K < C. For the
first assertion, by Proposition 5.14, we need to check that for every prime p, every embed-
ding A: K — @p, every 0 < £ < val,(N), some cusp ¢ € Xo(N)(C) whose denominator
L satisfies val, (L) = £, and some isomorphism ¢: Q,, > C, the valuation val, (t(A(f))|c)
satisfies the bound (5.14.1). This, however, follows from Corollary 4.7.

To deduce that wy € H®((Xr)o, ., 2) for an arbitrary T, since Qxr)o, /0K 1s 2
Cohen—Macaulay ﬁ(Xr)@K -module of full support (see Section 5.1), by [EGA V4,
Théoreme 5.10.5], it suffices to show the containment wy € H°((X1%)o, . 2). Thus,
Variant 5.7 and the settled case I' = I'g(N) reduce our task to showing that for every
height 1 point y € X with images y” € Xo(N) and y” € X(1), the extensions

Ox(1),y” C Oxy(ny,y’ C Oxy,y of discrete valuation rings satisfy  d,/,» > ey dyr

where dy (resp., ex) is the valuation of the different (resp., the ramification index) of
the indicated subextension. This inequality is immediate from the tower formula for the
different [Ser79, Chapter III, Section 4, Proposition 8]. To likewise deduce that we also
have wy € H°((21)oy, R2), one uses Proposition 5.6 instead. |

Remark 5.16. For a normalized cuspform f of weight 2 on I'¢(N), if ws lies in
H%Xo(N), Q), then it is a primitive (that is, not divisible by any m > 1) element of
this Z-lattice. In fact, then it is primitive even in the Z-lattice H%(X3", Q') for every
I''(N) CT CTy(N).Indeed, the finite maps X (N) — Xt — Xo(N) are flat away from
finitely many closed points (see [EGA [V 4, Proposition 6.1.5]), so they restrict to maps
X1(N)*™ — X" — Xo(N)*™ away from these points. By [EGA V4, Théoréme 5.10.5],
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removing finitely many closed points has no effect on H((—)*™, Q1), so we obtain the
inclusions

H(Xo(N)™ Q" c HO(X;™, Q') c HO(X1(N)™, QY), (5.16.1)

which reduce primitivity to the case I' = I'; (V) settled as in [Ste89, proof of Theorem
1.6] via g-expansions.

6. Rational singularities of X¢(/N)

For studying the Manin constant, the Z-lattice H%(Jo(N), Q") given by the global dif-
ferentials on the Néron model $o(N) of the modular Jacobian Jo(N) := Picgfo( Mo/Q
is more convenient than the a priori larger H%(Xo(N), ) because it is functorial with
respect to both a modular parametrization Jo(N) — E and its dual £ — Jo(N). Thanks
to this functoriality, the Manin conjecture implies that the differential ws associated to the
normalized newform f determined by E should lie in H%(go(N), '), and we show this
unconditionally in Corollary 6.14 whenever X (/N ) has rational singularities. We show in
Theorem 6.12 that this assumption holds in a vast number of cases.

6.1. Rational singularities

We recall from [Lip69, Definition 1.1] that a Noetherian, normal, two-dimensional, local
domain R has rational singularities if H'(Z, 0z) = 0 for some proper, birational mor-
phism Z — Spec(R) with Z regular. In this case, by [Lip69, Proposition 1.2], we have
HY(Z,0z) = 0 for every proper, birational Z — Spec(R) with Z merely normal, and
any such Z also has rational singularities.

The following result summarizes the relevance of rational singularities for our pur-
poses.

Proposition 6.2. For an excellent discrete valuation ring R with fraction field K and
residue field k, a normal, proper, flat relative curve X over R such that X is irreducible
and X*™ N Xy # @, the Jacobian J := Pic?(K/K, and its Néron model § over R, the map
Picgf /R ™ 49 is an isomorphism if and only if the inclusion

H%(g.QY—> H%X,Q) isan equality inside H°(J,QY)=H’(Xg,Q), (6.2.1)

which happens if and only if X has rational singularities; more generally, letting
w: Z — X be a proper, birational morphism with Z regular,

H(X,Q)/H°(g.Q"Y) ~ HY(X, R'n.(07)).

Proof. We have R = H(X, Ux) because this finite morphism of normal domains (see
[SP, Lemma 0358]) is, by checking over K, an isomorphism. Thus, since X*™ N Xy # @,
by [Ray70, Théoreme 8.2.1], the map X — Spec R is cohomologically flat and Pic?(/R
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is a separated, smooth R-group scheme (see also [BLR90, Section 8.4, Proposi-
tion 2]). In particular, the Néron property supplies the map Pic?( /R 4. Moreover,
the deformation-theoretic [BLR90, Section 8.4, Theorem 1] gives the identification
HY(X,0x) = Lie(Picgf / ) of finite free R-modules. Consequently, by the Grothendieck—
Serre duality (see [Con00, Theorem 5.1.2]),

H°(Picy g, ') =Homg(Lie(Picy z), R)=H’(X,Q) in H°(J,Q")=H°(Xk,Q").
(6.2.2)

Thus, there is the claimed inclusion H%(g, Q') < H(X, Q), which, since all the global
differentials on ¢ are translation invariant (see [BLR90, Section 4.2, Propositions 1 and
2]), is an equality if Pic?( /R = 4°. Conversely, if the inclusion is an equality, then the
separated morphism Pic?( /R ™ 49 is an isomorphism on Lie algebras, that is, it is étale
(see [EGA 1V,, Corollaire 17.11.2]), and hence, by checking the triviality of its kernel
over K (see [EGA 1V,, Théoréme 18.5.11 ¢)]), even an isomorphism.

By Lipman’s [SP, Theorem 0BGP], a desingularization w: Z — X exists (ensuring
this is the only role of the excellence of R). Moreover, by the above and the proof of
[BLRYO, Section 9.7, Theorem 1], the map 7 *: HI(X, Ox) — HI(Z, O'z) is identified
with the map Lie(Pic?( / r) <> Lie(d). By forming duals, the finite length cokernel of the
latter is isomorphic to H°(X,2)/H°(g.Q"). On the other hand, Grothendieck’s theorem
on formal functions [EGA III,, Corollaire 4.1.7] shows that H2(X, Ox) = 0. The above
and the spectral sequence H' (X, R/ n.(0z)) = H'*J/(Z, 07) then give the claimed

H(X.Q)/H(§.Q") =~ H'(Z,07)/n"(H' (X, Ox)) = H*(X, R'n.(07)).

Since R!7.(0z) is supported at the singular points of X and vanishes if and only if X has
rational singularities (see Section 6.1), the latter happens if and only if (6.2.1) holds. =

Example 6.3. Proposition 6.2 applies to R = Z () and X = (Xr)z_,, for every prime p
and every 'y (N) C T C I'p(N). Indeed, X1(N)*™ N X1(N)F, # @ by [KM85, Section
(13.5.6)], so, since, by [EGA 1V 4, Proposition 6.1.5], the finite map X;(N) — Xr is flat
away from finitely many points, also X;™ N (X1)F, # ®.~ More gengrally, it also applies
to any (Xpn7)z,, With I' as before and Lgiag(M) C H C GL2(Z) the preimages of
subgroups

{(*' x,) | xi € (Z/MZ)*} C H C GLy(Z/MZ)

for some M coprime to N: indeed, the identity (5 §) (¢ 5) (% (1))71 = (Ajb C/aM ) gives

-1
() ToM?*) (5 8) " = Tagug(M),
so, by [DR73, Chapitre IV, Proposition 3.19 and (3.14.1)], we obtain an isomorphism

XFﬂFQ(Mz) = Xrnrdiag(M)’

so that we may now instead use the resulting finite flat map

XFﬂI‘O(M2) = XrﬂFdiag(M) — Xrng
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to conclude that

Xm0 (Xpng)E, # 0. (6.3.1)

By Proposition 6.2, controlling the lattice H°(go(N), Q') relevant for the Manin
constant hinges on positively answering the pertinent cases of the following question con-
sidered by Raynaud [Ray91].

Question 6.4. Does Xo(N) have rational singularities for every N > 1?2

We know of no N for which the answer is negative, in fact, we exhibit a positive one
for a large class of N in Theorem 6.12, which subsumes [Ray91, Théoréme 2]. The new
cases in Theorem 6.12 will come by bootstrapping from Proposition 6.6, whose proof
uses the following lemma.

Lemma 6.5. For T'1(N) C T C IV C I'o(N), the Jacobians Jr and Jr’ of (Xr)g and
(X17)Q, and isogenous newform elliptic curve quotients™ m: Jr — E and n: Jyr — E’,
if Ker(r) and Ker(z') are connected, then there is an isogeny e: E — E’ such that the
Manin constants ¢y and ¢y satisfy

Cxr = Cy - #Coker(Lie & e Lie )

where €& and &' are the Néron models of E and E'. Moreover, ¢, € Z for any newform
elliptic curve quotient w: Jy — E (regardless of Ker()).

Proof. Everything was settled in [Ces18, Lemma 2.12] except for the assertion that ¢, €
Z in the case when Ker(7) is nonconnected. To reduce the latter to the case when Ker(7r)
is connected, it suffices to consider the factorization Jr — Jr/(Ker(7)?) — Eof 7. =

Proposition 6.6. For the following T' C GLZ(Z), the modular curve Xt has rational

singularities:

(1) any 't (N) C T' C To(N) such that (Xr)g has genus < 1;

i) I' =Te(9 N Cs with C3 C GLZ(Z) being the preimage of the cyclic subgroup
C3 C GLy(Z/27Z) ~ S;.

Proof. We will use Proposition 6.2, which applies thanks to Example 6.3 (note that
Faiag(2) = I'(2)), so we let ¢ be the Néron model over Z of the Jacobian of (Xr)q.
In particular, we may assume that the genus of (X)g is positive: indeed, in the genus 0
case the spaces in (6.2.1) vanish. Then the genus of (X1)g is 1: indeed, for (ii), the genus
of Xo(36)q is 1, so, due to the surjection

6.3.1)
X0(36) —> X1, 0)ncs- 6.6.1)

that of (X F0(9)053)@ is < 1 (in fact, it is 1, but we will not digress to show this).

20we say that a surjection of abelian varieties w: Jy — E is a newform quotient of Jr if
Jr/(Ker()?) is associated to a newform on I' via the Eichler—Shimura construction (compare,
for instance, with [Roh97, Section 3.7] or [DS05, Definition 6.6.3]). We call such an E a newform
elliptic curve quotient if, in addition, E is an elliptic curve.
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In (i), the map (XT)g — Xo(N)g is then an isogeny of elliptic curves over QQ (see
[Sch09, Corollary 1.2 (i)]), so that N < 50 (compare with Example 6.7 below). By,
for instance, Lemma 6.5 and Cremona’s [ARS06, Theorem 5.2], the Manin conjecture
holds for the optimal parametrization of the elliptic curve (Xr)g by the modular curve
(XT)q: the differential ws associated to the unique normalized newform on Iy (V) lies
in H 0(4, Ql). However, by Theorem 5.15 and Remark 5.16, this @y is also a primitive
element of the lattice H°(X™, Q). Since H%(¢, Q') c H°(Xr, Q) c HO(X™, Q)
(see (6.2.1)), these Z-modules are then all generated by wy, so Proposition 6.2 gives (i).

In (ii), we have reduced to the Q-fiber of the map (6.6.1) being an isogeny of elliptic
curves of degree 3 (compare with [DS05, bottom of p. 66]). Thus, by [LMFDB, elliptic
curve 36al], it must be the unique degree 3 isogeny with source X (36)g. By [LMFDB,
elliptic curve 36a3], the Manin constant of the resulting nonoptimal modular parametriza-
tion of the elliptic curve (X F0(9)053)@ is 1, so the pullback of the Néron differential
wg is the differential wy associated to the unique normalized newform on I'g(36). In
particular, by Theorem 5.15 and Remark 5.16, this pullback is a primitive element of
H(Xo(36)™, Q') and, to conclude in the same way as for (i), we use the inclusions

(6.2.1

H¢, 91 ¢ HOx Q) C HO(xm QY © HO(Xo(36)"™, QY),

To(9NCs To(9NCs’

the last one of which is obtained as (5.16.1) by using the map X((36) — X |

F0(9)ﬂé3 .

Example 6.7. The Z-curve X((N) has rational singularities for N = 1,...,21,24,25,
27,32,36,49: these are the N for which Xo (N )g has genus < 1, that is, for which Propo-
sition 6.6 (i) applies.

To upgrade the finite list of Proposition 6.6 to infinite families, in Proposition 6.10 we
develop general criteria for rational singularities of Xo (V). For this, we use the following
lemmas.

Lemma 6.8. For an action of a finite group G on a ring R, if both R and R® are com-
plete, two-dimensional, Noetherian, normal, local domains (When #G is invertible in R,
it suffices to assume this for R) and R has rational singularities, then, for every proper
birational Z — Spec(R®) with Z normal, #G kills H'(Z, Oz), in particular, R also
has rational singularities when #G € R*.

Proof. We may assume that G acts faithfully and begin with the parenthetical claim, in
which #G € R* and we consider the R -linear operator Z: r > % > gec &7 that fixes
each a € RC. By applying Z to any equality a = 3" r;a; witha,a; € R® and r; € R, we
get R N IR = I for any ideal I C RY. In particular, R® inherits the ascending chain
condition, so is a Noetherian domain. The zero-dimensional localization R @ g K Gof R
is the fraction field K of R, so, by Galois theory, it is a finite extension of the fraction field
KC of R®. We choose a K Y -basis ri,...,r, € R for K and consider the RC-module
map R — P;_, RY givenby r (Z(rr;))!_,. This map is injective because the version


http://www.lmfdb.org/EllipticCurve/Q/36a1/
http://www.lmfdb.org/EllipticCurve/Q/36a3/

The Manin constant and the modular degree 629

of # for K cannot kill Z:’zl rr; KC = rK unless r = 0. Thus, R is a finite R®-module,?’
so RG < R is a finite, local map of Noetherian local domains that splits via Z as a map
of RG-modules, and hence RC is a complete, two-dimensional, Noetherian, normal, local
domain.

Returning to general G, for Z as in the statement we let 7 — Spec R be the proper
birational map obtained by normalizing the base change Zg in K := Frac(R) (the finite
type of Z over R follows from [EGA IV4, Proposition 7.8.6 (ii)]). The G-action on R
induces a compatible G-action on Z, for which the integral map 7: 7Z—>Zis equivari-
ant (with G acting trivially on Z). Thus, since Z is normal, r induces an isomorphism
V4 /G = Z. Consequently, the trace map s — Y geG &5 defines an Oz -linear morphism
7+ (0%) — Oz whose postcomposition with &z — m4(0’z) is multiplication by #G on
Oz . The rational singularities assumption gives H'(Z, m+(0%)) = 0 (see Section 6.1),
so the induced maps on H!(Z, —) show that #G kills the R®-module H'(Z, 07), as
claimed. In particular, if #G is a unit in R, so also in RE, then HYW(Z,07) =0. By
choosing a Z that is regular (see Lipman’s [SP, Theorem 0BGP]), we then conclude that
R indeed has rational singularities. ]

Lemma 6.9. For a prime p, we have p } #(Aut(x)/{x1}) for each x € %(N)(Fp)
whenever
@ p=5ior
(ii) p = 3 and there is a prime p’' | N with p’ = 2 mod 3; or
(ili) p = 2 and there is a prime p' | N with p’ = 3 mod 4.

Proof. By [Cesl7, proof of Theorem 6.7], for cuspidal x we have Aut(x) = {1}, so we
may assume that x corresponds to an elliptic curve E over Fp equipped with a cyclic (in
the sense of Drinfeld) subgroup C C E of order N. Thus, since Aut(x) C Aut(E) and
#Aut(E) | 24 (see [KM85, Corollary 2.7.2]), we have (i). For (ii) and (iii), we consider the
action of Aut(x) on E[p’](F ). Firstly, if p’ is odd (resp., p’ = 2), then this action (resp.,
the induced action of Aut(x)/{=%1}) is faithful; see [KM85, Corollary 2.7.2]. Thus, since
it also preserves both the Weil pairing and the cyclic subgroup C' := C N E[p'] C E[p/],
any p-Sylow subgroup G of Aut(x) (resp., of Aut(x)/{=£1}) acts semisimply on E[p']
and embeds into Aut(C’) = (Z/p'Z)*. In particular, #G | p’ — 1, so that G = 1 in (ii)
and G = {1} in (iii). -

Proposition 6.10. For a prime p, an N € Z~o, and n := val,(N), if
(i) p=5;or
(i) p = 3 and thereisa p’| N with p’ =2 mod 3; or
(iii) p =3 and either Xo(3" - 7)z 5, or (XI‘(,(3")053)Z(3) has rational singularities where

the subgroup C3;CGL, (Z) is the preimage of the cyclic subgroup C3 C GL,(Z/27);
or

2IFinite generation of R as an R%-module holds much more generally, even for noncommuta-
tive R; see [Mon80, Corollary 5.9].
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(iv) p =2andthereisa p’| N with p’ = 3 mod 4; or
(V) p =2and Xo(2" - 5)z,,, has rational singularities and N # 2"; or

(vi) p=3(resp., p =2)and forthe level T'y(p") universal deformation ring R of (E,C),
where E/Fp is the elliptic curve with j = 0 and C C E the cyclic (in the sense of
Drinfeld) subgroup of order p", and for every subgroup G’ C G := Aut(E)/{%1}
of p-power order, RC' has rational singularities (resp., same, but if N # 2", then
we may restrict to cyclic G'),

then Xo(N )z, has rational singularities.

Proof. Since Xo(N)z,, is regular away from the F,-points x with j = 0 or j = 1728
(see [Cesl7, Theorem 6.7]), we need to show that O, (n),x has rational singularities
for every such x. By Lipman’s [SP, Theorem OBGP], there exists a proper birational
map Z — Spec(Ox,(n),x) With Z regular and, by [EGA V4, Corollaire 6.4.2, Scholie
7.8.3 (v)] (see also [Gre76, Corollary 5.6]), the ﬁ;;:)(m’x-base change of Z is regular.
Thus, by checking the vanishing H'(Z, 0z) = 0 after flat base change, Oxo(N),x has
rational singularities if and only if so does ﬁ;}; (N)x* However, by [DR73, Chapitre I,
Section (8.2.1)] (or [Ols06, Theorem 2.12]), we have

O3 iy = (O ()Y, (6.10.1)
and @%(m,x is regular by [KM85, Theorem 6.6.1]. Thus, (i), (ii), and (iv) follow from
Lemmas 6.8 and 6.9.

In (vi), the unique E is supersingular, C is the kernel of the p”-fold relative Frobenius
(see [KMS85, Lemma 12.2.1]) and hence is preserved by Aut(E), and x maps to (E, C).
Moreover, E[N/ p"] is étale, so its subgroups C’ C E[N/ p"] deform uniquely, and hence
R~ 022,0( N)x by the modular interpretation of Zo(N). Since G injects into (in fact,
equals) SL,(F3)/{£1} if p = 2 and SL,(F,) if p = 3 (see [KM85, Corollary 2.7.2],
also [Del75, Proposition 5.9 (IV)—~(V), Section 7.4]), its p-Sylow subgroup G?) C G is
normal. Thus, the same holds for H := Aut(x)/{£1} C G, so that R¥ ~ (RH(p))H/H(m.
The assumption of (vi) ensures that RY ) has rational singularities, so, by Lemma 6.8,
so does RH =~ ﬁ;(ho(N),x (see (6.10.1)). To conclude (vi), we note that H is cyclic when
p =2and N # 2"; then the preimage of H in Aut(E) lies in the cyclic group (Z/ p'Z)*
for an odd prime p’ | N (see the proof of Lemma 6.9).

To show that (iii) and (v) follow from (vi), we set I' :=T4(3" - 7) or I := T4 (3") N C;
in (iii) and I" := Ty(2" - 5) in (v) and, in view of the above, especially the analogue of
(6.10.1) for 2T and the insensitivity of the universal deformation ring R of (E, C) in (vi)
to tame level, we need to show that every cyclic subgroup G’ C Aut(E)/{=%1} of p-power
order is Aut(z)/{%1} for some z € 2T (Fp). For p = 3, the unique G’ of 3-power order
is Z/3Z and its preimage G’ C Aut(E)is Z /6Z. Since [ contains sixth roots of unity,
the action of G’ on E [7] is diagonalizable and either of the resulting G'-stable F7-lines
C' C E[7] is the 7-primary part of a level structure that determines the desired z for
I' = [p(3" - 7). Similarly, the faithful action of G’ on E[2] determines a C;-structure,
and so a desired z for I' = I'y(3") N Cs. For p = 2, the argument is analogous: now
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G’ is Z/2Z but is no longer unique (the 2-Sylow of SL,(IF3)/{£1} is Z/27Z x Z/27),
its preimage G’ is Z/4Z, and one can diagonalize the action of G’ on E[5] because F5
contains fourth roots of unity. |

Remark 6.11. By the preceding proof, if N # 2", then the p-Sylow subgroup of the
exceptional automorphism group at each Fl, -point of Z,(N) is normal and either trivial
or Z/ pZ (the latter can occur only for p = 2 and p = 3). In particular, Lemma 6.8 and
the preceding proof show that for any proper birational 7: Z — Xo(N) with Z normal,
the Ox,(ny-module R'7,(C7) is killed by 6.

A big portion of the following partial positive answer to Question 6.4 appeared in
[Ray91, Théoréme 2]: our main improvement is the inclusion of the cases val,(N) = 2
for p < 3.

Theorem 6.12. For a prime p, the modular curve (Xo(N))z,,,, has rational singularities
whenever

(@) p=5;or
(b) p = 3 and either val,(N) < 2 or there is a prime p’ | N with p’ = 2 mod 3; or
(¢) p =2 and either val,(N) < 2 or there is a prime p’ | N with p’ = 3 mod 4.

Proof. Thanks to Proposition 6.10, it suffices to check that X¢(7), Xo(21), and
XF0(9)053’ as well as Xo(5), Xo(10), Xo(20), Xo(1), Xo(2), and X¢(4), have rational
singularities. We have already done this in Proposition 6.6 (see also Example 6.7). ]

Remark 6.13. The method would show that Xo(/N) has rational singularities for every
N # 2" equal to a conductor of an elliptic curve over Q if one knew that X Loy
XF0(81)063’ and XF0(243)053 (or, if one prefers, Xo(27 - 7), Xo(81 - 7), and X((243 - 7)),
as well as X(8-5), Xo(16-5), Xo(32-5), Xo(64-5), Xo(128 -5), X¢(256 - 5), Xo(64),
X0(128), and X((256) have rational singularities (for well-known conductor exponent
bounds for an elliptic curve over Q, see [Pap93, Corollaire du Théoréeme 1]).

Corollary 6.14. For a normalized newform f € H®(Zo(N)q, @®?(—cusps)) (see Sec-
tion 5.5) and the Néron model $o(N) over Z of the Jacobian Jo(N) of Xo(N)q,

6-wr € H(Jo(N),QY), where wy is the differential associated to f;
if Xo(N) has rational singularities, then even wy € HOgo(N), Q).

Proof. The Manin conjecture for the quotient 7: Jo(N) — E with connected Ker()
determined by f predicts that wy is the pullback of a Néron differential wg of the elliptic
curve E. By the functoriality of Néron models, this pullback lies in H(go(N), Q'),
s0, by, for instance, Cremona’s [ARS06, Theorem 5.2] that verified the Manin conjecture
for small N, we may assume that N # 2". By Proposition 6.2, there is an inclusion
H%Jo(N), Q') < H°(Xo(N), Q) that is an isomorphism if and only if Xo(N) has
rational singularities and, by Remark 6.11, in general its cokernel is killed by 6. Thus, it
remains to recall from Theorem 5.15 that s € H%(Xo(N), Q). |
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7. A relation between the Manin constant and the modular degree

Our final goal is to use the work above to establish Theorems 1.1 and 1.2. The following
basic fact is the underlying source of the relationship between the modular degree and the
Manin constant.

Lemma 7.1. For a field k, a proper, smooth k-curve X with Jacobian J 1= Picg(/k, ak-
surjection ¢: X — E onto an elliptic curve, a point P € X (k) with ¢ (P) = 0, the closed
immersion ip: X — J given by Q + Ox(Q — P), and the homomorphism 7w: J — E
obtained from ¢ by the Albanese functoriality of J, the compositionmt onV: E — J — E
is multiplication by deg ¢.

Proof. The existence of ¢ implies that X has genus > 0, and the map 7: J — E is char-
acterized by Ox (Q — P) — ¢(Q); see [Mil86, Proposition 6.1]. Moreover, by [Mil86,
Lemma 6.9 and Remark 6.10 (c)], the map Pic®(ip) is the negative of the inverse of the
canonical principal polarization of J, and the canonical principal polarization of E sends
aQeEK)to Og([0] — [Q]) (see also [Con04, Example 2.5]). In particular, the map
Pic®(¢) = Pic(ip) o ¥ sends such a O to Ox([¢7'(0)] — [~ (Q)]) and, by taking
into account the canonical principal polarization of J, we find that w o 7 sends Q to
degg - 0. ]

Theorem 7.2. For an elliptic curve E over Q of conductor N, a Néron differential
wg € HY(E, QY), the normalized newform f determined by E, its associated differ-
ential oy € H°(Xo(N)q, Q"), a subgroup T1(N) C T C I'o(N), and a prime p, if for
some subgroup ' C T'" C To(N) the curve (Xt/)z,,, has rational singularities (see The-
orem 0.12), then every surjection ¢: (Xr)q —> E satisfies

val,(cg) < valp(deg(¢)) withcy € Z definedby ¢*(wg) = cg - 5.

Without the rational singularities assumption, we still have

val, (cy) < valp(deg(¢))
1 if p=2withvaly(N) > 3 and there is no p" | N with p’ = 3 mod 4,
+ 11 if p=3withvals(N) > 3 and there is no p' | N with p' =2 mod 3,

0 otherwise.

Proof. By Theorem 5.15, we have wy € H°(Xyts, Q). Thus, by Proposition 6.2, the
rational singularity assumption ensures that wy € H °((glp)Z( et Q) where Jr- is the
Néron model of the Jacobian Jr+ of (Xr/)g. We choose a P € Xr(Q), for instance, a
rational cusp, and consider the resulting embeddings (Xr)g < Jr and (Xr/)g — Jrv.
By the Albanese functoriality of the Jacobian, the map Xr — X induces a morphism
Ir — Jrv, and we conclude by pullback that

wr € H'((9r)z(,,. Q") (7.2.1)
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(here we use the compatibility of the identification H°((Xr/)g, Q') = HO(Jr, Q1)
obtained by pullback along (Xr/)g < Jrs with its counterpart obtained by
Grothendieck—Serre duality as in (6.2.2); see [Con00, Theorem B.4.1]). By postcom-
posing with a translation, we may assume that ¢(P) = 0, and we then let w: J;p — E
be the map that ¢ induces via the Albanese functoriality. Lemma 7.1 ensures that
wonY:E < Jr — E is multiplication by deg(¢), so the same holds for the induced
& — gr — & on Néron models. Thus, by pullback,

deg(¢) - wg = ¢g - (1) ().
Since ¢y € Z by Lemma 6.5 and
(V)" (wr) € H%(Ez,,,. Q") = L(p) - 0
by (7.2.1), we obtain the sought

val,(cg) < val,(deg(e)).

Without the rational singularities assumption, by Corollary 6.14 and the Albanese func-
toriality as above, we still have 6 - wy € H%(gr, Q'), so the same argument gives
val,(cg) < val,(deg(¢)) + val,(6). In particular, by also using Theorem 6.12, we obtain
the claimed last display in the statement. ]

Since X1(N) almost always agrees with the regular 27(N), we now show that
the above minor hypothetical exceptions to the divisibility cg | deg(¢) cannot occur for
parametrizations by X;(N)q.

Corollary 7.3. For an elliptic curve E over Q of conductor N, a Néron differential
wg € HY(E,QY), the normalized newform f determined by E, and its associated differ-
ential oy € H°(X1(N)q, 1), every surjection ¢: X1(N)g —> E satisfies

cp | deg(¢p) withcy € Z defined by ¢*(wg) = cg - wy.

Proof. By Theorem 7.2, we have val,(cg) < val,(deg(¢)) for every prime p > 5. For
the remaining p = 2 and p = 3, Theorem 7.2 applied with T' = TV = T';(N) gives the
same as long as X1(N)z,,, is regular. By [KM85, Corollary 2.7.3, Theorem 5.5.1] and
[Ces17, Lemma 4.1.3, Theorem 4.4.4], this happens whenever p’ | N for a prime p’ > 5.
Thus, we may assume that N = 2¢ . 3b , in fact, by the last statement of Theorem 7.2, even
that N =29 or N = 3% (soa <8and b < 5;see [Pap93, Corollaire du Théoreme 1]). For
any isogeny ¥: E’ — E, since the composition with the dual isogeny is multiplication
by deg(v), we have Y *(wg) = cy - wg’ for some ¢y, € Z with ¢y, | deg(y). Thus, we
may assume that ¢ does not factor through any such . For low conductor curves, by
Cremona’s [ARS06, Theorem 5.2], the Manin constant of such optimal parametrizations
by Xo(N)g is 1. Thus, Lemma 6.5 allows us to conclude the same for parametrizations
by X1(N)g with N =2%and N = 3%, so that indeed val,(cg) < val,(deg(¢)). |
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