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A B S T R A C T

In the present work we revisit the shock wave dynamics in a granular chain with precompression. By approximating the model by an 𝛼-Fermi–
Pasta–Ulam–Tsingou chain, we leverage the connection of the latter in the strain variable formulation to two separate integrable models, one
continuum, namely the KdV equation, and one discrete, namely the Toda lattice. We bring to bear the Whitham modulation theory analysis of
such integrable systems and the analytical approximation of their dispersive shock waves in order to provide, through the lens of the reductive
connection to the granular crystal, an approximation to the shock wave of the granular problem. A detailed numerical comparison of the original
granular chain and its approximate integrable-system-based dispersive shocks proves very favorable in a wide parametric range. The gradual
deviations between (approximate) theory and numerical computation, as amplitude parameters of the solution increase are quantified and
discussed.

1. Introduction

Granular chains consist of closely packed arrays of particles that interact elastically upon compression. They have received much
ecent attention due to their potential in applications (such as shock absorption, frequency conversion, and energy harvesting), due to
ecent advances in experimental platforms (including heterogeneous and random ones, ones involving mass-in-mass, mass-with-mass,
ranching, and intruder-based ones) and due to the mathematical richness of the underlying equations. See [1–5] for comprehensive
reviews on granular chains. From a fundamental perspective, there are three structures of granular chains of central importance:
The solitary wave, the breather, and the dispersive shock wave. While the solitary wave and breather have been studied extensively
in the context of such nonlinear lattices, its dispersive shock waves (DSWs) are far less understood.

A DSW connects states of different amplitude via an expanding modulated wave train. The study of DSWs in spatially continuous
media has been an active area of research since Whitham’s seminal work [6] over 50 years ago. There has been, however, a renewed
excitement concerning DSWs. This has largely been inspired by groundbreaking experiments observing DSWs in ultracold gases,
optics, superfluids, electron beams, and plasmas [7–9]. The new body of mathematical work is summarized in recent review articles
on the subject [7,10,11]. Dispersive shock waves in one-dimensional (1D) nonlinear lattices (to be called lattice DSWs) have been
xplored numerically, and even experimentally in several works [1,12–17]. Although much of the above motivation stems from the
ranular chains, it is of broad physical interest, as similar structures have been experimentally observed, e.g., in nonlinear optics
f waveguide arrays [18]. It is important to also highlight in this context another setup that has recently emerged, namely tunable
agnetic lattices [19]. Here, ultraslow shock waves can arise and have been experimentally imaged.
The primary tool to analytically describe DSWs is the so-called Whitham modulation theory [6,20,21]. In this framework, one

erives equations describing slow modulations of the underlying parameters of a periodic wave by, for example, averaging the
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Lagrangian action integral over a family of periodic wave trains [7,11]. The existence of periodic waves has been proved [22–24]
and corresponding modulation equations have been derived [25,26]. Explicit forms of the periodic waves may, however, not be
available, resulting in modulation equations that are difficult to work with. Thus, in order to get a better understanding of DSWs
beyond numerical computations, it is useful to explore additional avenues beyond direct use of the modulation equations. For
instance, in [27] analytical techniques to estimate the leading and trailing amplitudes are described. Recently in [28] a discrete
conservation law was studied via a reduction to planar ODE dynamics.

In this work, we will revisit the central and experimentally tractable problem of DSW formation in the prototypical setting
f granular crystals [1,12–17]. In the past, and for different structures of this system, such as the traveling waves, resorting to
ontinuum (such as the Korteweg–de Vries (KdV) equation) or discrete (such as the Toda lattice) integrable and hence analytically
ractable limits has proven to be of considerable value [29]. It is indeed that route that we will examine herein for the realm
f dispersive shock waves. We will explore, in particular, how to exploit existing knowledge on DSWs in those systems to better
nderstand DSWs of the granular chain, but also to explore the extent of the validity of those approximations. Their validity should
ot be taken for granted, since, e.g., in the case of the KdV equation, the long wavelength assumption needed for its derivation is
iolated in the case of step initial data in which DSWs arise.
Our presentation will be structured as follows. In Section 2 we will briefly describe the underlying discrete granular problem.

hen, in Section 3, we will delve into the DSW description for the KdV model and its connection/comparison with the granular one.
n Section 4, we will perform the corresponding analysis and comparison in the case of the Toda lattice. Finally, in Section 5, we
will summarize our findings and present our conclusions and some possible directions for future studies.

2. Model equations for the granular chain

An idealized model of the monomer granular chain is given by [1–5]

𝑀𝑢̈𝑛 = 𝛾[𝑑0 + 𝑢𝑛−1 − 𝑢𝑛]
𝑝
+ − 𝛾[𝑑0 + 𝑢𝑛 − 𝑢𝑛+1]

𝑝
+, (1)

where 𝑀 is the effective mass of each node and 𝑢𝑛 = 𝑢𝑛(𝑡) ∈ R represents the displacement of node 𝑛 from its equilibrium position
at time 𝑡 ∈ R. In the case of spherical particles the nonlinear exponent is 𝑝 = 3∕2 (other exponents are also possible depending
on the geometry, contact angle, and even material type [30]). The parameter 𝑑0 represents a static displacement (the so-called
precompression) that allows additional tunability in the degree of nonlinearity (where 𝑑0 = 0 represents a purely nonlinear force
nd |𝑑0∕𝑥| ≫ 1 represents a nearly linear force). The brackets account for the fact that there is no force in the absence of contact,
.e. [𝑥]+ = max(0, 𝑥). While Eq. (1) ignores effects such as dissipation, it has proven to be a reliable model when compared against
xperiments [1,17,31,32].
In the case of nonzero precompression (𝑑0 ≠ 0), a Taylor approximation of the inter-particle force 𝛾(𝑑0 − 𝑥)𝑝 can be used, which,

when neglecting all terms beyond cubic powers, reduces the granular chain model to the Fermi–Pasta–Ulam–Tsingou model [33]
of the form:

𝑢̈𝑛 = 𝐾2(𝑢𝑛−1 − 2𝑢𝑛 + 𝑢𝑛+1) +𝐾3
[

(𝑢𝑛+1 − 𝑢𝑛)2 − (𝑢𝑛 − 𝑢𝑛−1)2
]

+𝐾4
[

(𝑢𝑛+1 − 𝑢𝑛)3 − (𝑢𝑛 − 𝑢𝑛−1)3
]

(2)

where

𝐾2 =
𝑝𝛾𝑑𝑝−10
𝑀

, 𝐾3 = −
𝑝(𝑝 − 1)
2𝑀

𝛾𝑑𝑝−20 , 𝐾4 =
𝑝(𝑝 − 1)(𝑝 − 2)

6𝑀
𝛾𝑑𝑝−30 .

This approximation assumes that the strain 𝑦𝑛 = 𝑢𝑛 − 𝑢𝑛+1 is small relative to the precompression, i.e. |𝑦𝑛| ≪ 𝑑0 for all 𝑛. Thus,
scillations should not exceed the overlap caused by the precompression, suggesting the particles will remain in contact, hence the
ropping of the bracket notation. For the graphs in this paper, we will plot the strain 𝑦𝑛, since the size of 𝑦𝑛 will tell us how close
we are to the assumption |𝑦𝑛| ≪ 𝑑0. With this definition of the strain, waves with 𝑦𝑛 > 0 imply the beads are squeezed beyond
the precompression amount, and are in this sense compression waves. On the other hand, waves with 𝑦𝑛 < 0 imply the beads are
squeezed less than the precompression amount. While the beads may still be physically compressed, waves with 𝑦𝑛 < 0 can be
thought of as a type of tensile wave since they are ‘‘stretched’’ relative to the precompression amount. If 𝑦𝑛 < −𝑑0 then the beads
at the lattice sites 𝑛 and 𝑛 + 1 lose contact, and the nonlinearity induced by the bracket [𝑥]+ is required. The strongly nonlinear
cases of 𝑦𝑛 ≫ 𝑑0 and 𝑦𝑛 < −𝑑0 will not be covered by the analysis in this paper, which deals with the weakly nonlinear limit. Since
the granular chain will necessarily have 𝐾3 < 0, we can already expect the appearance of compression type waves. Other types
of lattices, such as strain-softening ones [34], will have 𝐾3 > 0, and will thus generate tensile waves. The analysis in this paper
could be applied to other strain-hardening lattices (where the relevant Taylor expansion has 𝐾3 < 0), such as magnetic lattices [35],
but not strain-softening ones (where the relevant Taylor expansion has 𝐾3 > 0). For all simulations we use the parameter values
𝛾 = 23∕2∕3, 𝑀 = 1, and 𝑑0 = 1∕2. In this case, the Taylor coefficients are 𝐾2 = 1 and 𝐾3 = −1∕2. The reason for the choice is
convenience when comparing the granular lattice to the Toda chain. Before discussing the Toda approximation, we consider the
2

KdV description, which is simpler.
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3. KdV description of the granular chain

The connection between the FPUT lattice and the KdV equation dates back to the seminal work of Zabusky and Kruskal [36], and
s one of the earliest in the study of nonlinear waves. While many aspects of the FPUT lattice have been explored through the KdV
ens [37,38] (see also [29] in the context of traveling waves in granular crystals), its DSWs have gained less attention. One notable
ork in this light is [39], which explores the connection of metastability and DSWs using the KdV equation. The KdV equation is
erived using a small-amplitude and long wavelength assumption. While the small-amplitude aspect will allow us to move from the
ranular chain model Eq. (1) to the FPUT model of Eq. (2), the long wavelength assumption is more troubling in the context of
SWs. Riemann initial data clearly violate the long wavelength assumption, and so it is not to clear to what extent, if at all, the
dV description of the granular DSWs will be valid. We explore exactly this question in this section. Since we are reporting results
n terms of the strain, it is natural to express Eq. (2) in terms of the strain variable 𝑦𝑛 = 𝑢𝑛 − 𝑢𝑛+1,

𝑦̈𝑛 = 𝐾2(𝑦𝑛−1 − 𝑦𝑛 + 𝑦𝑛+1) −𝐾3(𝑦2𝑛−1 − 2𝑦2𝑛 + 𝑦2𝑛+1) (3)

We leave out the cubic (and other higher order) terms since they will not play a role in the analysis. Upon substitution of the ansatz

𝑦𝑛 = 𝜀2𝑌 (𝑋, 𝑇 ), 𝑋 = 𝜀(𝑛 − 𝜎𝑡), 𝑇 = 𝜀3𝑡 (4)

into Eq. (3) and Taylor expanding the 𝑌 (𝑋 ± 𝜀, 𝑇 ) terms, one finds that the terms up to (𝜀6) in the residual will be eliminated if
𝑌 satisfies the following KdV equation,

𝜕𝑇 𝑌 + 𝜎
24

𝜕3𝑋𝑌 −
𝐾3
𝜎

𝑌 𝜕𝑋𝑌 = 0, (5)

where the sound speed 𝜎 is defined through 𝜎2 = 𝐾2. Note that, since 𝐾3 < 0, the solitary waves of the above KdV equation will
ave 𝑌 > 0, i.e., the solitary waves of the granular chain are compression waves, as expected. See [29] for a detailed discussion of
he KdV (and Toda) description of the granular chain solitary waves. Through the scaling 𝜏 = 𝜎𝑇 ∕24 and 𝑍 = − 24𝐾3

𝜎2
𝑌 we can cast

all KdV coefficients to unity,

𝜕𝜏𝑍 + 𝜕3𝑋𝑍 +𝑍𝜕𝑋𝑍 = 0. (6)

Solutions of this KdV equation that are of critical importance for our purposes are the periodic traveling waves,

𝑍(𝑋, 𝜏) = 𝑟1 + 𝑟2 − 𝑟3 + 2(𝑟3 − 𝑟1)dn
2

(

√

𝑟3 − 𝑟1
6

(𝑋 − 𝑉 𝜏);𝑚

)

, 𝑉 =
𝑟1 + 𝑟2 + 𝑟3

3
, 𝑚 =

𝑟2 − 𝑟1
𝑟3 − 𝑟1

(7)

which are parameterized by 𝑟1, 𝑟2, 𝑟3, and dn is one of the Jacobi elliptic functions with elliptic parameter 0 ≤ 𝑚 ≤ 1 [40]. Notice
that the limit of these waves as 𝑚 → 1 are the solitary waves of the model.

3.1. DSWs of the KdV equation

The DSWs of the KdV Eq. (6) are well studied, and represent a textbook example of DSWs. In the seminal paper [20], the
following initial conditions for Eq. (6) were considered in the KdV case:

𝑍(𝑋, 0) =

{

1, 𝑋 < 0

0, 𝑋 > 0
(8)

Assuming the parameters of the periodic wave (e.g., the 𝑟𝑗) as varying slowly with respect to 𝑋, 𝜏 and averaging three of the
conserved quantities of the KdV equation over a period yields a set of three Whitham modulation equations [6]. In the case of
self-similar solutions, 𝑟𝑗 = 𝑟𝑗 (𝑋∕𝜏), these equations have the form (𝑆𝑗 − 𝑋∕𝜏)𝑟′(𝑋∕𝜏) = 0, where the characteristic speeds 𝑆𝑗 are
nonlinear functions of 𝑟1, 𝑟2 and 𝑟3. Thus, in this self-similar framework, 𝑟𝑗 is either constant, or 𝑋∕𝜏 is equivalent to the characteristic
speed 𝑆𝑗 . Assuming step initial data of the form of Eq. (8) one finds [20],

𝑟1 = 0, 𝑟2 = 𝑚, 𝑟3 = 1.

Substituting these expressions into Eq. (7), one obtains the following formula for the KdV DSW,

𝑍(𝑋, 𝜏) = 2dn2
(
√

1
6

(

𝑋 − 1 + 𝑚
3

𝜏
)

;𝑚

)

− (1 − 𝑚) (9)

where 𝑋, 𝜏 are parameterized by 𝑚 through the expression

𝑋∕𝜏 = 𝑆(𝑚) , (10)

with 𝑆(𝑚) the second characteristic velocity of the Whitham equations (where the subscript 2 was ignored for simplicity), namely

𝑆(𝑚) = 1 + 𝑚 − 2 𝑚(1 − 𝑚)𝐾(𝑚)
, (11)
3

3 3 𝐸(𝑚) − (1 − 𝑚)𝐾(𝑚)
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Fig. 1. Comparison of the KdV prediction and granular chain simulations in the strain variable, 𝑦𝑛, for various values of 𝑐. The KdV predictions, given by
q. (13), are shown as solid lines, while granular chain simulations with initial data given by Eq. (18), are shown as markers. In all panels, the variables in
he KdV scaling are fixed to 𝑇 = 1200 and 𝑋 ∈ [−50, 30]. The vertical lines are the predictions of the trailing edge (𝑛 = 𝑠KdV

− 𝑡) and leading edge (𝑛 = 𝑠+𝑡). The
loped lines are the prediction of the envelopes. (a) The small parameter is 𝑐 = 0.01 (𝜀 ≈ 0.49) and the time in the original granular chain scaling is 𝑡 ≈ 10, 206.
he best-fit phase shift is the linear interpolation between 𝜃𝓁 = 5 and 𝜃𝑟 = 7. (b) 𝑐 = 0.05 (𝜀 ≈ 1.1), 𝑡 ≈ 912, 𝜃𝓁 = 0 and 𝜃𝑟 = 1. (c) 𝑐 = 0.1 (𝜀 ≈ 1.55), 𝑡 ≈ 322,
𝓁 = −2 and 𝜃𝑟 = 0.5.

nd 𝐾(𝑚) and 𝐸(𝑚) are complete elliptic integrals of the first and second kind, respectively. Details for the derivation of this
xpression can be found in [11,41,42]. In Eq. (9), the limit 𝑚 → 0 corresponds to the trailing, harmonic wave edge, while the
imit 𝑚 → 1 corresponds to the leading, solitary wave edge. The trailing edge speed (𝑆−) and leading edge speed (𝑆+) are obtained
s limiting values in Eq. (11). In particular

lim
𝑚→0

𝑆(𝑚) = 𝑆− = −1, lim
𝑚→1

𝑆(𝑚) = 𝑆+ = 2∕3 (12)

ranslating back to the granular chain variables, 𝑦𝑛(𝑡), we obtain the following approximation for the core of the granular chain
SW:

𝑦𝑛(𝑡) = −𝑐 𝜎
2

𝐾3

(

2dn2
(
√

4𝑐
(

𝑛 −
(

1 + 𝑚 + 1
3

𝑐
)

𝜎𝑡 + 𝜃0(𝑛, 𝑡)
)

;𝑚
)

− (1 − 𝑚)
)

(13)

where 𝑐 = 𝜀2∕24 is a small parameter, and the variables 𝑛, 𝑡 are parameterized by 𝑚 through the expression
(𝑛 − 𝜎𝑡)
𝜎𝑐𝑡

= 𝑆(𝑚) , (14)

with 𝑆(𝑚) still given by Eq. (11). Note Eq. (13) contains a slowly modulated phase shift 𝜃0(𝑛, 𝑡) that is not accounted for by the
eading order Whitham theory [43]. We have included it here, as it will be treated as a fitting parameter to account for a phase
ismatch between theory and simulation.
From the above expression we can write the trailing edge speed (𝑛∕𝑡 = 𝑠KdV

− ) and leading edge speed (𝑛∕𝑡 = 𝑠KdV
+ ) in terms of the

riginal granular chain variables,

𝑠KdV
− = 𝜎 + 𝜎𝑐𝑆− = 𝜎 (1 − 𝑐) (15a)

𝑠KdV
+ = 𝜎 + 𝜎𝑐𝑆+ = 𝜎

(

1 + 2
3
𝑐
)

. (15b)

hus, the leading edge speed is supersonic, as it necessarily features larger than the sound speed 𝜎, whereas the trailing edge speed
s subsonic. Since the parameter 𝜀 is assumed to be small (and hence also so is 𝑐), the leading edge is traveling just above the sound
peed, and the trailing edge is slightly below. Using the parameter values 𝐾2 = 1 and 𝐾3 = − 1

2 , we have the following estimates for
the trailing edge speed, and mean 𝑦̄KdV

− and the leading edge speed and amplitude (𝑎KdV
+ ),

𝑠KdV
− = 1 − 𝑐, 𝑦̄KdV

− = 2𝑐, 𝑠KdV
+ = 1 + 2

3
𝑐, 𝑎KdV

+ = 4𝑐. (16)

We write the leading and trailing edge characteristics explicitly with this choice of parameters due to their intimate connection with
the Toda predictions. This is also why in Eqs. (15) and (16) we used the KdV superscript to distinguish between these approximations
nd the ones using the Toda lattice, described in Section 4.

.2. Comparison of KdV and granular DSWs

To write down the initial values for the simulation of Eq. (1) that correspond to Eq. (4), we will need the velocity

𝑦̇𝑛(𝑡) = 𝑑
𝑑𝑡

𝜀2𝑌 (𝑋, 𝑇 )

= −𝜀3𝜎𝜕𝑋𝑌 + 𝜀5
(

𝐾3 𝑌 𝜕𝑋𝑌 − 𝜎 𝜕3 𝑌
)

4

𝜎 24 𝑋
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where we used the fact that 𝑌 is assumed to solve the KdV equation, Eq. (5). If we substitute 𝑌 (𝑋, 0) = − 𝜎2

24𝐾3
𝑍(𝑋, 0) into the

bove with 𝑍(𝑋, 0) defined in Eq. (8), the spatial derivatives will be undefined at 𝑋 = 0. Thus, we replace Eq. (8) with a smooth
pproximation of the unit step, namely,

𝑍(𝑋, 0) =
1 − tanh(𝑤𝑋)

2
=∶ 𝑓 (𝑋) (17)

in which case all quantities in the initial value are well-defined. Thus, the initial strain and velocity become,

𝑦𝑛(0) = −
𝜀2𝑐22
24𝐾3

𝑓 (𝜀𝑛) (18a)

𝑦̇𝑛(0) =
𝜀3𝜎3

24𝐾3
𝑓 ′(𝜀𝑛) + 𝜀5𝜎3

242𝐾3

(

𝑓 (𝜀𝑛)𝑓 ′(𝜀𝑛) + 𝑓 ′′′(𝜀𝑛)
)

(18b)

For our first set of simulations, we initialize Eq. (1) with Eqs. (18) with 𝑤 = 1∕2 and for various values of the parameter 𝑐, see
Fig. 1. In this figure, we select fixed values of the KdV variables 𝑋 ∈ [−50, 30] and 𝑇𝑓 = 1200 (𝜏 = 50). For these values of the
macroscopic parameters the KdV DSW (see Eq. (9)) is developed, and features about 8 oscillations within its core. To see the DSW
in the granular chain develop to the same extent, we must simulate until 𝑡𝑓 = 𝜀−3𝑇𝑓 . Since the leading edge is traveling at the speed
𝑠+ the lattice must extend at least until 𝑛 = 𝑠KdV

+ 𝑡𝑓 . For small values of 𝜀 (and hence 𝑐) this leads to long simulation times with
lattices that are quite large, see Fig. 1(a). In this panel, we have 𝑐 = 0.01 (𝜀 ≈ 0.49), which implies that 𝑡𝑓 = 10,206 and that the
largest lattice index should exceed 𝑛 = 10,275. The maximum strain is approximately 4𝑐 = 0.04, which is 8% of the precompression
amount 𝑑0 = 0.5. This is a fairly weak nonlinear response, and one would hope the KdV approximation to be accurate. Indeed, by
comparing the solid lines (KdV approximation) and markers (granular chain simulation) of Fig. 1(a), one sees good agreement. The
sloped lines are the prediction of the envelope of the DSW, which is also quite accurate. The vertical lines are the predictions of
the trailing edge (𝑛 = 𝑠KdV

− 𝑡) and leading edge (𝑛 = 𝑠KdV
+ 𝑡). In the figure, one can see linear waves at the trailing edge that do not

vanish, while the KdV prediction has vanishing oscillations at the trailing edge. The existence of linear waves at the trailing edge
is well known in FPUT lattices. While these linear waves will always be present, their amplitude decays like ∼ 𝑡−1∕3 [44] (and they
are not expected to be captured through Whitham theory). The leading edge of the actual DSW is lagging behind the predicted
location (given by 𝑠KdV

+ 𝑡). This discrepancy becomes larger as 𝑐 is increased (compare panels (a)–(c)). In general, there will be a
phase mismatch between the theoretical prediction and the actual granular DSW. To account for this, a phase shift 𝜃0(𝑛) is applied
to the theoretical prediction by finding the best-fit phase shift at the trailing edge of the DSW (to obtain a phase shift 𝜃𝓁) and at
the leading edge (to obtain a phase shift 𝜃𝑟). Then 𝜃0(𝑛) is defined as the linear interpolation between these two shifts, namely
𝜃0(𝑛) = 𝜃𝓁−𝜃𝑟

𝑛𝓁−𝑛𝑟
(𝑛 − 𝑛𝑟) + 𝜃𝑟 where 𝑛𝓁 and 𝑛𝑟 are lattice indices close to the trailing and leading edge, respectively. We practically

sed 𝑛𝓁 = 𝑠KdV
− 𝑡𝑓 + 5 and 𝑛𝑟 = 𝑠KdV

+ 𝑡𝑓 − 5. Accounting for the phase in this way results in good agreement between the KdV
rediction and actual full profile of the DSW. Note, for reference purposes, that we do not shift the trailing and leading edge, nor
he envelope predictions (thus the solid black lines are the ‘‘original’’ prediction without an empirically determined phase shift).
here is a number of causes for the phase mismatch between theory and actual DSW. The first is that the initial condition does
ot lead to the immediate formation of a DSW, since the smooth monotone decreasing initial data first needs to develop a gradient
atastrophe. Thus, one would expect the leading solitary wave to lag behind the prediction, due to the later ‘‘start’’ in the simulation.
he catastrophe time in the derived KdV equation can be approximated by computing when two arbitrary characteristics lines of
he underlying Hopf equation 𝑍𝜏 +𝑍𝑍𝑋 = 0 intersect, leading to the prediction 𝜏catastrophe = −1∕minR 𝑓 ′(𝑋) where 𝑓 (𝑋) is the initial
datum defined in Eq. (17). This could be used as a concrete correction for the phase shift. However, it is less obvious how to correct
for the other two sources of the phase mismatch. One is the missing phase description from the first order Whitham theory. While
such a prediction is possible in principle, the underlying complexity of the correction would undermine the elegant simplicity of the
approximation given in Eq. (13). Finally, another source of mismatch will be in the inherent approximate nature of Eq. (4). While
bounds for the error of the KdV approximation exist (assuming smoothness of the underlying KdV solutions [45,46]), they cannot
be used to correct the phase mismatch. Thus, we capture all the possible sources of error in the phase by empirically determining
the phase 𝜃0(𝑛). Even without this empirical correction, the leading and trailing edge, and the envelopes, are well described by the
KdV equation. Panels (b) and (c) of Fig. 1 are similar to panel (a), but consider larger values of the parameter 𝑐, in order to test the
practical limits of the approximation. In panel (b) we have 𝑐 = 0.05 (𝜀 ≈ 1.1), which leads to a maximum strain of about 4𝑐 = 0.2,
which is 40% of the initial precompression. This is a fairly nonlinear response, and indeed, the parameter 𝜀 ≈ 1.1 actually exceeds
unity, which is in clear violation of the smallness assumption. Nonetheless, the KdV approximation is still quite reasonable. In panel
(c) we have 𝑐 = 0.10 (𝜀 ≈ 1.55), which leads to a maximum strain of about 4𝑐 = 0.4, which is 80% of the initial precompression. For
such large values of the strain, one can start to see discrepancies between the KdV prediction and granular chain dynamics, even
after accounting for the phase mismatch. From a qualitative perspective, however, the agreement remains reasonable considering
how large the strain is.

Fig. 1 demonstrates that the KdV approximation of the granular chain DSW is quite good, as long as the parameter 𝑐 is small.
Thinking of the relevance of the description for an experimental setting, a smaller lattice size would be more practically accessible,
and thus the speed 𝑐 should be larger, such that the DSW can form before the end of the chain is reached. Thus, we will next
explore going beyond the smallness assumption of 𝑐 in hopes of getting to lattices of reasonable size (some experiments have chains
on the order of 100 beads [47] and, indeed, [48] reports experiments with up to 188 beads). Furthermore, the initial conditions
used for Fig. 1 imply the entire strain and velocity profile must be specified, which is generally hard to achieve in granular chain
experiments. The more relevant initial condition for the granular chain, and other similar lattices, is a collision at one side of the
5
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Fig. 2. Granular chain simulations with an initial velocity shock, Eq. (19), compared to the KdV prediction (top row) and Toda prediction (bottom row).
heoretical predictions are shown as solid lines and granular chain simulations are shown as markers. In all panels, the variables in the KdV scaling are fixed
o 𝑇 = 1200 and 𝑋 ∈ [−50, 30]. The vertical lines are the predictions of the trailing and leading edge. The sloped lines represent the prediction of the envelopes.
a) The small parameter is 𝑐 = 0.1 (𝜀 ≈ 1.55) and the time in the original granular chain scaling is 𝑡 ≈ 322. The best-fit phase shift is the linear interpolation
between 𝜃𝓁 = −4.5 and 𝜃𝑟 = 0.5. (b) 𝑐 = 0.15 (𝜀 ≈ 1.9), 𝑡 ≈ 175, 𝜃𝓁 = −5.5 and 𝜃𝑟 = −0.5. (c) 𝑐 = 0.2 (𝜀 ≈ 2.2), 𝑡 ≈ 115, 𝜃𝓁 = −6 and 𝜃𝑟 = −1.5. (d) 𝑐 = 0.1 (𝜀 ≈ 1.55),
𝓁 = −3 and 𝜃𝑟 = 0.2. (e) 𝑐 = 0.15 (𝜀 ≈ 1.9), 𝑡 ≈ 175, 𝜃𝓁 = −4 and 𝜃𝑟 = −0.5. (f) 𝑐 = 0.2 (𝜀 ≈ 2.2), 𝑡 ≈ 115, 𝜃𝓁 = −4.5 and 𝜃𝑟 = −1.

hain. In [15] it was shown that such a collision is well approximated by a continuous velocity applied to the end of a semi-infinite
hain (this is the so-called piston problem [49]). By an appropriate change of variables, the piston-problem initial conditions are
quivalent to an infinite chain with a velocity shock [25], namely,

𝑢𝑛(0) = 0 (19a)

𝑢̇𝑛(0) = −2𝑐 sign(𝑛) (19b)

here sign(0) = 0. Notice that this initial condition is given in terms of the displacement variable 𝑢𝑛. Nonetheless, we continue
o report results in terms of the strain 𝑦𝑛 = 𝑢𝑛 − 𝑢𝑛+1 for consistency. With such an initial condition, it is reasonable to suppose,
ased on the linear theory [44], that the trailing edge (in the strain) will have a mean close to 2𝑐. This suggests that the 𝑐 defined
ssuming the initial data Eq. (8) is the same as the 𝑐 defined in Eq. (19). Indeed, this was the motivation for defining 𝑐 = 𝜀2∕24
reviously. This means we can apply the prediction of Eq. (13), even when the initial condition is given by a velocity shock. The
op row of Fig. 2 shows a comparison of a DSW formed given a velocity shock (markers) and the KdV prediction for various values
f 𝑐. Once again, the microscopic time 𝑡 is chosen such that macroscopic time 𝑇𝑓 = 1200 is fixed. This implies that Fig. 1(c) and
ig. 2(a) show the same KdV approximation, but the former granular chain data comes from a smooth shock in the strain, while the
atter has a (displacement) velocity shock. By comparing those two figure panels, one can see that the overall structure of the two
SWs is qualitatively similar. Fig. 2(b,c) show examples for larger values of 𝑐, and the discrepancies are becoming more evident.
onetheless the qualitative agreement is still reasonable. Notice that for 𝑐 = 0.2, which corresponds to Fig. 2(c), a chain extending
o 𝑛 = 130 will capture the DSW, which is within the realm of current experimental capabilities, as per our discussion of [48] above.
he top row of Fig. 3 shows the same simulation data, but now with windowing such that the microscopic variables (𝑛, 𝑡) are fixed.
n particular, intensity plots of the strain are shown. The prediction of the leading and trailing speed from the KdV equation are
hown as solid black lines.
We now investigate how well the estimates of the trailing and leading edge characteristics in Eq. (16) compare to the granular

SWs for a larger range of the parameter 𝑐. Fig. 4(a) shows a numerical estimate of the leading edge amplitude (blue dots). The
mplitude is simply the maximum strain observed at the final time of the simulation, which we fixed to 𝑡𝑓 = 900 for all simulations
hown in the figure. The KdV approximation of the leading edge amplitude, 𝑎KdV

+ , is shown as the blue solid line. As expected, the
greement is good for small 𝑐, but gradually gets worse as 𝑐 increases. The trailing edge mean of the simulated DSW is shown as
he red squares in Fig. 4(a). It is estimated as the mean of the first node, namely 1

𝑇 ∫𝐼𝑇 𝑦1(𝑡)𝑑𝑡 where 𝑇 is the peak to peak time
KdV, is shown as
6

f the final oscillation in the simulation and 𝐼𝑇 is the corresponding interval of time. The KdV approximation, 𝑦̄−
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Fig. 3. Intensity plots of the granular chain simulations with an initial velocity shock, Eq. (19). The solid lines are the estimates of the leading and trailing
dge from the KdV description, and the dashed lines are from the Toda description. (a) 𝑐 = 0.1, (b) 𝑐 = 0.15 (c) 𝑐 = 0.2.

Fig. 4. (a) Numerical estimates of the leading edge amplitude (blue dots) and trailing edge mean (red squares) of the granular DSW versus the initial velocity
parameter 𝑐. The corresponding KdV approximation (solid lines) and Toda approximation (dashed lines) are also shown. (b) Numerical estimates of the leading
edge speed (blue dots) and trailing edge speed (red squares) of the granular DSW versus the initial velocity parameter 𝑐. The corresponding KdV approximation
(solid lines) and Toda approximation (dashed lines) are also shown. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

the solid red line. The leading edge (blue dots) and trailing edge (red squares) speeds are shown in Fig. 4(b). The leading speed is
estimated by computing the difference in the times the maximum is obtained between two consecutive sites and simply inverting
that time difference to obtain the speed estimate. We used the sites 𝑛 = 700 and 𝑛 = 701. To estimate the trailing edge speed, we
select a small amplitude threshold and define the trailing edge to be the first node that achieves a strain higher than or equal to
the threshold after having fixed the time to 𝑡 = 𝑡𝑓 . The estimate for the speed is then simply this critical lattice site divided by 𝑡𝑓 .
ne must define such a threshold since there will always be the presence of small amplitude linear waves at the trailing edge of the
SW. The threshold we used was the mean of the tail (just described) plus 2.5% of the maximum strain of the DSW. This particular
hoice of threshold yields good agreement when numerically comparing the trailing speed of the Toda lattice DSW to the analytical
rediction (detailed in the next section). The KdV prediction of the edge speeds is represented as the solid lines for the trailing edge,
KdV
− (red), and leading edge, 𝑠KdV

+ (blue). From Fig. 4 we see that the KdV prediction overestimates the leading edge amplitude and
railing edge mean, and overestimates (by quite a large margin for large 𝑐) the DSW core length, given by (𝑠KdV

+ − 𝑠KdV
− )𝑡.

4. Toda description of the granular chain

We now turn our attention to a different analytical approximation of the granular chain DSW. The latter will be based on the
Toda lattice, which is one of the few nonlinear lattices that is integrable (another example is the Kac–van Moerbeke lattice, which is
closely related to Toda via a Miura type transformation [50]). The Toda lattice has a rich history [51]. The equation in its canonical
form is

𝑢̈𝑛 = 𝑒𝑢𝑛−1−𝑢𝑛 − 𝑒𝑢𝑛−𝑢𝑛+1 . (20)

If one Taylor expands the relevant ODEs, the following FPUT lattice is obtained,

𝑢̈ = (𝑢 − 2𝑢 + 𝑢 ) − 1 [

(𝑢 − 𝑢 )2 − (𝑢 − 𝑢 )2
]

+ 1 [

(𝑢 − 𝑢 )3 − (𝑢 − 𝑢 )3
]

(21)
7

𝑛 𝑛−1 𝑛 𝑛+1 2 𝑛+1 𝑛−1 𝑛 𝑛−1 6 𝑛+1 𝑛−1 𝑛 𝑛−1
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Through the rescaling 𝑢𝑛(𝑡) → 𝐾2∕𝐾3𝑢𝑛(𝑡
√

𝐾2), we can match the linear and quadratic terms of the Taylor-expanded granular chain
(see Eq. (2)) and the Taylor-expanded Toda chain (see Eq. (21)) for an arbitrary choice of the granular chain parameters 𝑑0, 𝛾,𝑀
recall 𝑝 = 3∕2). Since we can only rescale time and amplitude, we cannot match the cubic coefficients. Notice that a similar
atching was leveraged in the work of [29] in order to study traveling waves in granular chains: indeed, in that connection the
oda lattice could afford the possibility of bi-directional waves and their collisions, a feature that is absent from the (unidirectional)
dV approximation. Recall that for convenience we selected 𝛾 = 23∕2∕3, 𝑀 = 1, 𝑑0 = 1∕2 for the numerical computations, which
ed to Taylor coefficients 𝐾2 = 1 and 𝐾3 = −1∕2, which match the first two Toda Taylor coefficients. This was the reason for the
hoice of parameters used in the previous section, so that we may better compare the KdV and Toda predictions. Recall that the
ound speed is 𝜎 = 1.
There is a four parameter family of traveling periodic waves of the Toda lattice, parameterized by 𝐸1, 𝐸2, 𝐸3, 𝐸4. In terms of the

train, the formula is,

𝑦𝑛(𝑡) = log
(

2𝑅̂𝑛(𝑡) +
1
2
(𝐸2

1 + 𝐸2
2 + 𝐸2

3 + 𝐸2
4 ) − 𝜇2

𝑛(𝑡) − 𝑏2𝑛(𝑡)
)

(22)

where

𝑏𝑛(𝑡) = 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4 − 2𝜇𝑛(𝑡) (23)

and

𝜇𝑛(𝑡) = 𝐸2
1 − (𝐸1∕𝐸2)𝐵 sn2(𝑍𝑛(𝑡), 𝑚)

1 − 𝐵 sn2(𝑍𝑛(𝑡), 𝑚)
, (24a)

𝑍𝑛(𝑡) = 2𝑛𝐹 (𝛥,𝑚) + 𝜔𝑡 +𝑍0, (24b)

𝑚 =
(𝐸3 − 𝐸2)(𝐸4 − 𝐸1)
(𝐸4 − 𝐸2)(𝐸3 − 𝐸1)

, (24c)

𝑅̂𝑛(𝑡) = −𝜎𝑛(𝑡)
√

𝑃 (𝜇𝑛(𝑡)) , 𝑃 (𝑧) = (𝑧 − 𝐸1)(𝑧 − 𝐸2)(𝑧 − 𝐸3)(𝑧 − 𝐸4) , (24d)

𝜔 =
√

(𝐸4 − 𝐸2)(𝐸3 − 𝐸1) , 𝛥 =

√

𝐸4 − 𝐸2
𝐸4 − 𝐸1

, 𝐵 =
𝐸3 − 𝐸2
𝐸3 − 𝐸1

. (24e)

n the above equations, sn(𝑧, 𝑚) is the Jacobi elliptic sine, 𝐹 (𝑧, 𝑚) is the inverse of sn(𝑧, 𝑚), 𝑍0 is an arbitrary translation parameter
(phase), 𝜇𝑛(𝑡) is the Dirichlet eigenvalue of the scattering problem for the Toda lattice and 𝜎𝑛(𝑡) = ±1 is the sign associated with 𝜇𝑛(𝑡),
nd determines whether 𝜇𝑛(𝑡) is increasing or decreasing as a function of 𝑛 and 𝑡. For numerical computations, we used 𝜎𝑛(𝑡) = −sign(
od (𝑍𝑛(𝑡)∕𝐾𝑚) − 1∕2). Notice how the Toda traveling wave solution is more complicated than its KdV counterpart in Eq. (7). So
hile we may anticipate a better approximation (since no long-wavelength assumption is made), the cost is a formula that will be
ore cumbersome.

.1. DSWs of the Toda lattice

The Toda shock problem [52,53] is the IVP for Eq. (20) with an initial velocity shock, see Eq. (19). Both the shock problem and
he rarefaction problem were studied in [54] within the framework of Whitham modulation theory. Like in the KdV case, one can
erive a system of modulation equations (4 in the Toda case) that can be written in diagonalized form, and solved in the self-similar
rame 𝐸𝑗 = 𝐸𝑗 (𝑛∕𝑡) assuming an initial velocity shock. Three of the parameters are constant in the self-similar frame, and one
epends on the parameter 𝑚 [54,55]. In particular,

𝐸1 = −(1 + 𝑐), 𝐸2 = −(𝑐 − 1), 𝐸3(𝑚) = (𝑐 + 1)
1 − 𝑐(1 − 𝑚)
1 + 𝑐(1 − 𝑚)

, 𝐸4 = (𝑐 + 1). (25)

ssuming 0 < 𝑐 < 1, the core of the DSW is described by Eq. (22) with parameters given via Eq. (25) where 𝑛, 𝑡 are parameterized
by 𝑚 through the expression

𝑐(𝑐 + 1)
1 + 𝑐(1 − 𝑚)

(1 + 𝑐(1 − 𝑚))𝐸(𝑚) − (𝑐 + 1)(1 − 𝑚)𝐾(𝑚)

(𝑐 + 1)𝐾(𝑚) − (1 + 𝑐(1 − 𝑚))𝛱
(

𝑐𝑚
𝑐+1

|

|

|

𝑚
) =∶ 𝑠Toda(𝑚) = 𝑛

𝑡
(26)

here 𝐾(𝑚), 𝐸(𝑚) and 𝛱(𝑛|𝑚) are complete elliptic integrals of the first, second, and third kind respectively, and 𝑠Toda(𝑚) is the
hird characteristic velocity of the Whitham equations for the Toda system. As before, 𝑚 → 0 corresponds to the trailing, harmonic
ave edge (recall 0 < 𝑐 < 1) and 𝑚 → 1 corresponding to the leading, solitary wave edge. The trailing edge speed (𝑠Toda− ) and leading
dge speed (𝑠Toda+ ) are obtained as limiting values in Eq. (26), in particular

lim
𝑚→0

𝑠Toda(𝑚) = 𝑠Toda− = 1 − 𝑐, lim
𝑚→1

𝑠Toda(𝑚) = 𝑠Toda+ =

√

𝑐(𝑐 + 1)

log(
√

𝑐 +
√

𝑐 + 1)
(27)

nce again, we have that the leading edge speed is supersonic whereas the trailing edge speed is subsonic. We can also compute
he trailing edge mean and leading edge amplitude from Eq. (22),

𝑦̄Toda = 2 log(1 + 𝑐), 𝑎Toda = 2 log(1 + 2𝑐) (28)
8
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Notice that trailing edge speed predictions from Toda and KdV are identical, namely 𝑠Toda− = 𝑠KdV
− . Indeed, the remaining three edge

characteristics are also related. By Taylor expanding the remaining formulas in Eqs. (27) and (28) about 𝑐 = 0 shows that the leading
order behavior is identical to the KdV approximation, shown in Eq. (16). Namely, for small 𝑐 we have that

𝑠Toda+ ≈ 1 + 2
3
𝑐 = 𝑠KdV

+ , 𝑦̄Toda− ≈ 2𝑐 = 𝑦̄KdV
− , 𝑎Toda+ ≈ 4𝑐 = 𝑎KdV

+ (29)

4.2. Comparison of Toda and granular DSWs

We now compare the Toda predictions of the granular DSW via Eq. (22) (with parameters defined in Eq. (25)) with direct
simulations of the granular chain with the velocity shock initial data, defined in Eq. (19). The bottom row of Fig. 2 shows the
simulation (markers) and the Toda prediction (lines) for various values of 𝑐. In order to make concrete comparisons with the KdV
predictions (shown in the top panels of this figure), the time is chosen such that 𝑇𝑓 = 1200 is fixed. This implies that the top panels
can be directly compared with the panel beneath it. Note that the granular chain simulation data is identical in both cases (the
markers) and only the analytical predictions differ. Qualitatively, the KdV predictions are quite similar to the Toda ones. From a
quantitative perspective, one can clearly see that Toda performs better as 𝑐 gets larger (compare Fig. 2(b,c) to panels (e,f)). Fig. 3
shows the same simulation data, but now with windowing such that the microscopic variables (𝑛, 𝑡) are fixed. In particular, intensity
plots of the strain are shown. The prediction of the leading and trailing speed from the Toda equation are shown as dashed black
lines. Trailing edge speeds from each prediction overlap perfectly, since the approximations are identical, and one can see that the
leading edge speed is slightly smaller in the Toda case.

The estimates of the trailing and leading edge characteristics in Eqs. (27) and (28) are shown as the dashed lines in Fig. 4. In
particular, in panel (a), the blue dashed line is the leading edge amplitude 𝑎Toda+ and the red dashed line is the trailing edge mean
̄Toda− . Note that in each case, the Toda prediction underestimates the relevant quantities, whereas the KdV prediction overestimates
them. As expected from Eq. (29), both the KdV and Toda predictions become closer as 𝑐 → 0, and that both get closer to the actual
granular DSW dynamics. The blue dashed line in panel (b) is the Toda prediction of the leading edge speed 𝑠Toda+ . Here, the Toda
prediction is once again smaller than the KdV prediction, however both in this case are overestimates of the actual granular DSW
leading edge speed. Both estimates become more accurate as 𝑐 become smaller. The trailing edge speed predictions are identical in
the KdV and Toda case, which underestimate the actual trailing edge speed. The asymptotic prediction for 𝑐 → 0 is not captured,
but this is likely due to the error involved in numerically estimating the trailing edge speed due to the presence of small amplitude
linear waves present in the simulations. These tails only vanish for 𝑡 → ∞.

Finally, we remark that we have only considered values of 0 < 𝑐 < 1, which correspond to the Genus-2 region of the Whitham
equations for the Toda lattice. In this subcritical case, the parameter 𝑚 has a minimum value of 𝑚 = 0 and the tail of the solution thus
approaches a zero amplitude constant. In the supercritical case of 𝑐 > 1, the corresponding Whitham equations are in the Genus-1
region, and the minimum value of 𝑚 is 𝑚 = 1− 1

𝑐2
. In this case the inner part of the DSW (outside of the core of the DSW) is a binary

oscillation [54]. This is because the wavelength has reached, at this critical value of 𝑚, an integer value such that the oscillations, in
the lattice, are binary. In the subcritical case, the wavelength does not reach unity before the end of the core is met (when traversing
the DSW from the leading edge to trailing edge). While the KdV and Toda predictions are clearly outside their range of validity for
𝑐 > 1, it is worth noting that we did not observe any bifurcation of the tail behavior transitioning from a zero amplitude constant
to a binary oscillation (we tested up to 𝑐 = 100). In other words, the wavelengths of oscillation near the tail were always less than
unity for the values of 𝑐 we tested. This observation is especially interesting given that the Taylor expanded approximation of Toda
(or the granular chain), i.e., the FPUT chain, does indeed undergo such a bifurcation [25]. The lack thereof seems to be a feature
of the nonlinearity of the granular chain. This observation is a key difference between the granular chain DSWs and their weakly
nonlinear approximations and it underscores the importance of investigations in the strongly nonlinear regime. Such studies will be
reported on in future publications.

5. Conclusions and future challenges

In the present work we have revisited the shock wave problem of a system of wide relevance to material science applications,
namely the granular chain. Such nonlinear dynamical lattices in both their monomer, and even in their heterogeneous (e.g., dimer)
installments have been explored not only theoretically but also in physical experiments over the last two decades. Recently,
additional related settings such as tunable magnetic lattices, have also become experimentally accessible [19]. Importantly, in all
of these settings the advances of experimental monitoring technology enables the real-time visualization of structures including
traveling [2] and dispersive shock waves [19]. While traveling waves have been the quintessential workhorse of such lattices and
of their applications, recent analytical, numerical and experimental developments have motivated the systematic consideration of
DSW structures.

Herein, we have leveraged the approximation of the granular chain by a Fermi–Pasta–Ulam–Tsingou lattice, and at a second
layer of approximation of the latter by an integrable continuum (the KdV) or discrete (the Toda lattice) system. The fundamental
advantage of these integrable settings here is not their analytical solvability via the inverse scattering transform, although certainly
that might be desirable. Rather, it is instead their accessibility, through seminal works such as [20] (for the KdV) and [54] (for the
Toda case) of the analysis through Whitham modulation theory of the DSW patterns. The explicit form of the periodic solutions
of these models lends itself to the slow modulation of their (amplitude, width, wavenumber, frequency, etc.) characteristics which
9

Whitham modulation theory is eminently suited to describe. Naturally, there are still empirical selections (such as the phase one
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made herein), but nevertheless, we have found that in the appropriate small amplitude regime, these approximations provide an
excellent analytical handle on the form of the DSWs of the granular chain. Indeed, at some level, given the layers of approximation
(granular to FPUT, then FPUT to KdV or Toda), this may seem somewhat surprising, however this turns out to be a useful description
of precompressed granular chains, as it did earlier also for the respective traveling waves [29]. Naturally, as the amplitude of the
wave grows, the quality of the approximation decreases. Among the two approximations the elegant KdV one is simpler, but typically
overestimates more the quantities of the granular chain, while the more cumbersome Toda one avoids the long wavelength (extra
layer of) approximation and performs better in larger amplitude settings.

Naturally, such studies pave the way for further/deeper exploration of DSWs in discrete systems, an intriguing and quite
active area of investigation [19,28,55,56]. For instance, one can envision developing quasi-continuum (possibly regularized)
approximations of the original granular chain and developing a Whitham modulation theory for the resulting continuum model.
One could also imagine developing a modulation theory at the level of the original discrete problem (alone lines of thought
similar to those, e.g., of [25,28]). Finally, while most of these studies have been focused on one-dimensional lattices, both optical
applications [18] and magnetic ones [57] suggest the relevance of corresponding explorations in higher (e.g., two-) dimensional
discrete systems.

CRediT authorship contribution statement

Christopher Chong: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration,
Software, Supervision, Validation, Visualization, Writing – original draft. Ari Geisler: Data curation, Formal analysis, Investi-
gation, Software, Validation, Visualization, Writing – review & editing. Panayotis G. Kevrekidis: Conceptualization, Formal
analysis, Funding acquisition, Investigation, Methodology, Project administration, Validation, Writing – review & editing. Gino
Biondini: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Supervision,
Validation, Writing – review & editing.

Declaration of competing interest

On behalf of the author team, I declare the absence of any conflict of interest.

ata availability

Data will be made available on request.

cknowledgments

This work is dedicated to the memory of Professor Noel F. Smyth, with gratitude also to the Editors of the associated special issue
f Wave Motion for their efforts and kind invitation. The authors would like to thank the Isaac Newton Institute for Mathematical
ciences, United States of America for support and hospitality during the programme Dispersive Hydrodynamics when work on this
aper was undertaken (EPSRC Grant Number EP/R014604/1) . This material is also based upon work supported by the US National
cience Foundation under Grants DMS-2009487 (G.B.), DMS-2107945 (C.C. and A.G.), DMS-2204702 (P.G.K.) and PHY-2110030
P.G.K).

eferences

[1] V.F. Nesterenko, Dynamics of Heterogeneous Materials, Springer-Verlag, New York, 2001.
[2] Christopher Chong, Panayotis G. Kevrekidis, Coherent Structures in Granular Crystals: From Experiment and Modelling to Computation and Mathematical

Analysis, Springer, New York, 2018.
[3] Yu. Starosvetsky, K.R. Jayaprakash, M. Arif Hasan, A.F. Vakakis, Dynamics and Acoustics of Ordered Granular Media, World Scientific, Singapore, 2017.
[4] C. Chong, Mason A. Porter, P.G. Kevrekidis, C. Daraio, Nonlinear coherent structures in granular crystals, J. Phys.: Condens. Matter. 29 (2017) 413003.
[5] S. Sen, J. Hong, J. Bang, E. Avalos, R. Doney, Solitary waves in the granular chain, Phys. Rep. 462 (2008) 21.
[6] G.B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974.
[7] G.A. El, M.A. Hoefer, M. Shearer, Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws, SIAM Rev. 59 (1) (2017) 3.
[8] Michelle D. Maiden, Nicholas K. Lowman, Dalton V. Anderson, Marika E. Schubert, Mark A. Hoefer, Observation of dispersive shock waves, solitons, and

their interactions in viscous fluid conduits, Phys. Rev. Lett. 116 (2016) 174501.
[9] Gang Xu, Matteo Conforti, Alexandre Kudlinski, Arnaud Mussot, Stefano Trillo, Dispersive dam-break flow of a photon fluid, Phys. Rev. Lett. 118 (2017)

254101.
[10] M.J. Ablowitz, M. Hoefer, Dispersive shock waves, Scholarpedia 4 (11) (2009) 5562.
[11] G.A. El, M.A. Hoefer, Dispersive shock waves and modulation theory, Physica D 333 (2016) 11.
[12] D.H. Tsai, C.W. Beckett, Shock wave propagation in cubic lattices, J. Geophys. Res. 71 (10) (1966) 2601.
[13] E. Hascoet, H.J. Herrmann, Shocks in non-loaded bead chains with impurities, Eur. Phys. J. B 14 (2000) 183.
[14] E.B. Herbold, V.F. Nesterenko, Solitary and shock waves in discrete strongly nonlinear double power-law materials, Appl. Phys. Lett. 90 (26) (2007)

261902.
[15] A. Molinari, C. Daraio, Stationary shocks in periodic highly nonlinear granular chains, Phys. Rev. E 80 (2009) 056602.
[16] E.B. Herbold, V.F. Nesterenko, Shock wave structure in a strongly nonlinear lattice with viscous dissipation, Phys. Rev. E 75 (2007) 021304.
[17] H. Kim, E. Kim, C. Chong, P.G. Kevrekidis, J. Yang, Demonstration of dispersive rarefaction shocks in hollow elliptical cylinder chains, Phys. Rev. Lett.

120 (2018) 194101.
10

http://refhub.elsevier.com/S0165-2125(24)00082-9/sb1
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb2
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb2
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb2
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb3
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb4
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb5
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb6
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb7
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb8
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb8
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb8
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb9
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb9
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb9
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb10
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb11
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb12
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb13
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb14
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb14
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb14
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb15
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb16
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb17
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb17
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb17


Wave Motion 130 (2024) 103352C. Chong et al.
[18] Shu Jia, Wenjie Wan, Jason W. Fleischer, Dispersive shock waves in nonlinear arrays, Phys. Rev. Lett. 99 (2007) 223901.
[19] Jian Li, S. Chockalingam, Tal Cohen, Observation of ultraslow shock waves in a tunable magnetic lattice, Phys. Rev. Lett. 127 (2021) 014302.
[20] A.V. Gurevich, L.P. Pitaevskii, Nonstationary structure of a collisionless shock wave, Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 65 (1973) 590–604.
[21] V. Karpman, Nonlinear Waves in Dispersive Media, Pergamon Press, New York, 1975.
[22] G. Iooss, Travelling waves in the Fermi-Pasta-Ulam lattice, Nonlinearity 13 (3) (2000) 849.
[23] A. Pankov, Travelling waves and periodic oscillations in Fermi-Pasta-Ulam Lattices, Imperial College Press, London, 2005.
[24] M. Herrmann, Unimodal wavetrains and solitons in convex Fermi-Pasta-Ulam chains, Proc. R. Soc. Edinb.: A Math. 140 (4) (2010) 753.
[25] A.M. Filip, S. Venakides, Existence and modulation of traveling waves in particles chains, Comm. Pure Appl. Math. 52 (6) (1999) 693.
[26] W. Dreyer, M. Herrmann, A. Mielke, Micro-macro transition in the atomic chain via Whitham’s modulation equation, Nonlinearity 19 (2) (2005) 471.
[27] T.R. Marchant, Noel F. Smyth, Approximate techniques for dispersive shock waves in nonlinear media, J. Nonlinear Opt. Phys. Mater. 21 (03) (2012)

1250035.
[28] Christopher Chong, Michael Herrmann, P.G. Kevrekidis, Dispersive shock waves in lattices: A dimension reduction approach, Physica D 442 (2022) 133533.
[29] Y. Shen, P.G. Kevrekidis, S. Sen, A. Hoffman, Characterizing traveling-wave collisions in granular chains starting from integrable limits: The case of the

Korteweg–de Vries equation and the Toda lattice, Phys. Rev. E 90 (2014) 022905.
[30] Alexandre Rosas, Aldo H. Romero, Vitali F. Nesterenko, Katja Lindenberg, Observation of two-wave structure in strongly nonlinear dissipative granular

chains, Phys. Rev. Lett. 98 (2007) 164301.
[31] Hiromi Yasuda, Yasuhiro Miyazawa, Efstathios G. Charalampidis, Christopher Chong, Panayotis G. Kevrekidis, Jinkyu Yang, Origami-based impact mitigation

via rarefaction solitary wave creation, Sci. Adv. 5 (2019) eaau2835.
[32] Miguel Molerón, Andrea Leonard, Chiara Daraio, Solitary waves in a chain of repelling magnets, J. Appl. Phys. 115 (18) (2014) 184901.
[33] E. Fermi, J. Pasta, S. Ulam, Studies of Nonlinear Problems. I, Tech. Rep., (Los Alamos National Laboratory, Los Alamos, NM, USA), 1955, pp. LA–1940.
[34] E.B. Herbold, V.F. Nesterenko, Propagation of rarefaction pulses in discrete materials with strain-softening behavior, Phys. Rev. Lett. 110 (2013) 144101.
[35] Miguel Molerón, C. Chong, Alejandro J. Martínez, Mason A. Porter, P.G. Kevrekidis, Chiara Daraio, Nonlinear excitations in magnetic lattices with long-range

interactions, New J. Phys. 21 (2019) 063032.
[36] N.J. Zabusky, M.D. Kruskal, Interactions of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15 (1965) 240–243.
[37] G. Gallavotti, The Fermi–Pasta–Ulam Problem: A Status Report, Springer-Verlag, Berlin, Germany, 2008.
[38] Anna Vainchtein, Solitary waves in FPU-type lattices, Physica D 434 (2022) 133252.
[39] Paolo Lorenzoni, Simone Paleari, Metastability and dispersive shock waves in the Fermi–Pasta–Ulam system, Physica D 221 (2) (2006) 110–117.
[40] F.W. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, 2010.
[41] A.V. Gurevich, A.L. Krylov, Dissipationless shock waves in media with positive dispersion, J. Exp. Theor. Phys. 65 (1987) 943–944.
[42] A M Kamchatnov, Nonlinear Periodic Waves and Their Modulations, World Scientific, 2000.
[43] Yuji Kodama, The Whitham equations for optical communications: Mathematical theory of NRZ, SIAM J. Appl. Math. 59 (6) (1999) 2162–2192.
[44] Mielke Alexander, Patz Carsten, Uniform asymptotic expansions for the fundamental solution of infinite harmonic chains, Z. Anal. Anwend. 36 (2017)

437–475.
[45] G. Friesecke, R.L. Pego, Solitary waves on Fermi–Pasta–Ulam lattices: II. qualitative properites, renormalization and continuum limit, Nonlinearity 12

(1999) 1601.
[46] G. Schneider, C.E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi–Pasta–Ulam model, in: Proceedings of

Equadiff ’99, vol. 1, World Scientific Publishing Company, Singapore, 2000, p. 390.
[47] N. Boechler, G. Theocharis, S. Job, P.G. Kevrekidis, M.A. Porter, C. Daraio, Discrete breathers in one-dimensional diatomic granular crystals, Phys. Rev.

Lett. 104 (2010) 244302.
[48] R. Carretero-González, D. Khatri, M.A. Porter, P.G. Kevrekidis, C. Daraio, Dissipative solitary waves in granular crystals, Phys. Rev. Lett. 102 (2009)

024102.
[49] R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves, Springer-Verlag, Berlin, 1948.
[50] J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations, in: N. Metropolis, S. Orszag, G.-C. Rota (Eds.), Surveys in Applied

Mathematics, Academic Press, 1976, pp. 235–258.
[51] M. Toda, Theory of Nonlinear Lattices, Springer-Verlag, Berlin, 1989.
[52] Brad Lee Holian, Hermann Flaschka, David W. McLaughlin, Shock waves in the Toda lattice: Analysis, Phys. Rev. A 24 (1981) 2595–2623.
[53] Stephanos Venakides, Percy Deift, Roger Oba, The Toda shock problem, Comm. Pure Appl. Math. 44 (8–9) (1991) 1171–1242.
[54] A.M. Bloch, Y. Kodama, Dispersive regularization of the Whitham equation for the Toda lattice, SIAM J. Appl. Math. 52 (4) (1992) 909–928.
[55] Gino Biondini, Christopher Chong, Panayotis Kevrekidis, On the Whitham modulation equations for the Toda lattice and the quantitative characterization

of its dispersive shocks, 2023, arXiv:2312.10755.
[56] C.V. Turner, R.R. Rosales, The small dispersion limit for a nonlinear semidiscrete system of equations, Stud. Appl. Math. 99 (1997) 205.
[57] Christopher Chong, Yifan Wang, Donovan Maréchal, Efstathios G. Charalampidis, Miguel Molerón, Alejandro J. Martınez, Mason A. Porter, Panayotis G.

Kevrekidis, Chiara Daraio, Nonlinear localized modes in two-dimensional hexagonally-packed magnetic lattices, New J. Phys. 23 (4) (2021) 043008.
11

http://refhub.elsevier.com/S0165-2125(24)00082-9/sb18
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb19
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb20
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb21
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb22
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb23
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb24
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb25
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb26
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb27
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb27
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb27
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb28
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb29
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb29
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb29
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb30
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb30
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb30
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb31
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb31
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb31
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb32
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb33
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb34
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb35
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb35
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb35
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb36
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb37
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb38
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb39
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb40
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb41
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb42
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb43
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb44
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb44
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb44
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb45
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb45
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb45
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb46
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb46
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb46
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb47
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb47
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb47
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb48
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb48
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb48
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb49
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb50
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb50
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb50
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb51
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb52
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb53
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb54
http://arxiv.org/abs/2312.10755
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb56
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb57
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb57
http://refhub.elsevier.com/S0165-2125(24)00082-9/sb57

	Integrable approximations of dispersive shock waves of the granular chain
	Introduction
	Model Equations for the Granular Chain
	KdV Description of the Granular Chain
	DSWs of the KdV equation
	Comparison of KdV and granular DSWs

	Toda Description of the Granular Chain
	DSWs of the Toda lattice
	Comparison of Toda and granular DSWs

	Conclusions and future challenges
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


