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A B S T R A C T

Origami structures often serve as the building block of mechanical systems due to their rich static and dynamic
behaviors. Experimental observation and theoretical modeling of origami dynamics have been reported
extensively, whereas the data-driven modeling of origami dynamics is still challenging due to the intrinsic
nonlinearity of the system. In this study, we show how the dynamic mode decomposition (DMD) method
can be enhanced by integrating geometry information of the origami structure to model Kresling origami
dynamics in an efficient and accurate manner. In particular, an improved version of DMD with control,
that we term geometry-informed dynamic mode decomposition (giDMD), is developed and evaluated on the
origami chain and dual Kresling origami structure to reveal the efficacy and interpretability. We show that
giDMD can accurately predict the dynamics of an origami chain across frequencies, where the topological
boundary state can be identified by the characteristics of giDMD. Moreover, the periodic intrawell motion can
be accurately predicted in the dual origami structure. The type of dynamics in the dual origami structure can
also be identified. The model learned by the giDMD also reveals the influential geometrical parameters in the
origami dynamics, indicating the interpretability of this method. The accurate prediction of chaotic dynamics
remains a challenge for the method. Nevertheless, we expect that the proposed giDMD approach will be helpful
towards the prediction and identification of dynamics in complex origami structures, while paving the way to
the application to a wider variety of lightweight and deployable structures.
1. Introduction

Origami, as an ancient handcrafted paper folding art, captivates not
only artists and mathematicians with its exquisite design principles, but
also engineers with its enormous (and increasingly leveraged in recent
years) potential in engineering applications. By introducing the princi-
ples of creasing and folding to the flat materials, origami structures can
be formed, which lead to stiffness enhancement [1], negative Poisson’s
ratio [2,3] and multistability in the architecture [4–6]. These develop-
ents also inspire further applications in the robotics [7,8], medical

equipment [9,10], and mechanical metamaterials with unprecedented
echanical properties [11,12]. Aside from the aforementioned static
nd quasi-static mechanical properties, origami also possesses rich
ynamics that can be used to construct prospective engineering devices
or impact mitigation and vibration control, which has been studied
sing experiments, numerical simulations, and modeling [13–17].
In recent years, the modeling and analysis of dynamical systems via

ata-driven approaches have grown in popularity because they require

∗ Corresponding author at: Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
E-mail address: jkyang11@snu.ac.kr (J. Yang).

little expert knowledge of the governing equations [18–20]. Specifi-
cally, origami nonlinear dynamics have been realized with excellent
accuracy by machine learning methods based on neural networks [16].
However, machine learning based on the neural networks is typically
computationally intensive and time-consuming at the training stage.
Furthermore, the model works as a gigantic black box where the
decision processes are difficult to understand and cannot explicitly
reveal the underlying physics behind the origami dynamics, despite
the fact that a recent study based on the recurrent neural network
can mimic the Lyapunov exponent of chaotic origami motions from the
hidden layer [16].

In light of this, some novel data-driven frameworks to discover
underlying dynamics and physics have been developed such as sparse
identification of nonlinear dynamics (SINDy) [21] and dynamic mode
decomposition (DMD) [22]. Therein, DMD, as one of the most effec-
tive machine learning techniques, has recently been used in many
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fields for its simplicity and interpretability. Given the advantages of
DMD and relation between DMD and Koopman mode decomposition,
DMD is suitable for characterizing various nonlinear physical and
biological systems [23]. Originally, DMD was developed to identify
spatiotemporal coherent structures from high-dimensional data in the
fluid dynamics community [24]. In addition to fluid dynamics, DMD
has been successfully applied to the analysis of biological signals and
structural dynamics [25–27], as well as more recently to topological
metamaterials [28]. In these studies, DMD features fast computation
and excellent interpretability by a series of physically coherent struc-
tures. However, for the systems with control, DMD is not capable of
uncovering the role that the control plays in the system. In light of this,
DMD with control (DMDc), a variant of DMD, is proposed to relate the
state and the control of a system, highlighting the importance of the
control and improving the accuracy of the DMD model [29,30]. On the
other hand, DMDc often ends up with low accuracy or failure to model
several nonlinear systems [31]. Therefore, it would be worthwhile to
investigate an improved version of DMD for origami dynamics given the
needs of data-driven modeling in this field and inherent deficiencies in
the current DMD formulations.

In our work, we introduce a data-driven framework called geometry-
informed dynamic mode decomposition (giDMD), which is capable of
capturing spatiotemporal dynamics of the Kresling origami structures
under excitation. By integrating the geometry information of origami
into the DMDc, it becomes possible to not only demonstrate the high
accuracy of our approach compared with the DMDc, but also reveal
the role of the geometrical parameters in the dynamics, showcasing
the interpretability. This approach can also be applied to more com-
plicated Kresling origami structures: origami chain and dual origami
structure. In the origami chain, the dynamics across frequencies can be
predicted precisely and the frequency of the topological boundary state
is identified from the features of giDMD. In the dual origami structure
under the excitation in different frequencies, the intrawell periodic
motion is predicted accurately. The interwell periodic motion and
chaotic dynamics can be identified from the characteristics of giDMD,
yet the latter also poses some limitations (regarding the accuracy of its
temporal representation) which are of relevance to consider in future
studies. Our approach, which is considerably easier to operate and
more interpretable than the machine learning based on the neural
networks, offers a general technique to handle the origami dynamics
in the presence of geometrical parameters.

2. Methods

Fig. 1(a) illustrates the side and top views of the single Kresling
origami structure. This single origami structure has two coupled de-
grees of freedom on the separator: translational motion along the
vertical direction 𝑢 and rotational motion around vertical direction 𝜙,
esulting in the rotation of the top surface following the compression of
he origami [14]. This coupled behavior is described by a truss model
hich is composed of the lumped masses and discs connected by the
prings. Appendix A shows the governing equations of motion for the
origami coupled features. The creasing and folding of the origami struc-
ture also introduce numerous geometrical variables which are marked
in Fig. 1. ℎ, 𝑎, 𝑏, 𝛼, 𝛽, and 𝛹 represent the height, the length of crease
lines, the angles between the crease lines and the vertical direction,
and folding angle (the angle between the horizontal plane and facet).
During the compression and tension of the origami structure, according
to the geometric constraints, these geometrical variables will change as
a function of axial and rotational displacement as shown below:

ℎ = ℎ0 − 𝛿𝑢 (1)

𝑎 =
√

(ℎ0 − 𝛿𝑢)2 + 4𝑅2 sin2(
𝛿𝜙
2

+
𝜃0
2

− 𝜋
2𝑁

) (2)

𝑏 =
√

(ℎ − 𝛿𝑢)2 + 4𝑅2 sin2(
𝛿𝜙

+
𝜃0 + 𝜋 ) (3)
2

0 2 2 2𝑁 p
= arctan
ℎ0 − 𝛿𝑢

𝑅[cos( 𝜋
𝑁 ) − cos(𝛿𝜙 + 𝜃0)]

(4)

where the 𝛿𝑢 and 𝛿𝜙 represent the differences of axial and rotational
displacements between top and bottom surfaces, respectively. ℎ0, 𝜃0, 𝑅,
and𝑁 are initial height, initial rotation angle representing the chirality,
adius, and number of vertices of the polygonal cross-section. Accord-
ngly, the angles between the crease lines and the vertical direction
an be easily calculated. Under the excitation, axial and rotational
isplacement will vary over time, hence leading to the variation of
eometrical parameters. In Fig. 1(b), the vector of geometrical param-
ters for 𝑛th origami element at time 𝑡 is shown as 𝑔𝑛𝑡 containing ℎ𝑛𝑡 , 𝑎

𝑛
𝑡 ,

𝑛
𝑡 , 𝛹

𝑛
𝑡 , 𝛼

𝑛
𝑡 and 𝛽𝑛𝑡 . Note that the geometrical variables are not limited

o the aforementioned six parameters, but can be extended to further
eometrical variables potentially present within the origami structures.
or better interpretability on how geometrical variables contribute to
he origami dynamics, the variants of geometrical variables, such as the
quare root and squares of them, are not considered.
DMDc is a data-driven approach to model the systems under control,

hich includes the scenario that the origami structure is excited by
n input (the control). DMDc uses a state transition matrix 𝑨 and the
ontrol matrix 𝑩 to relate the system displacement 𝑑𝑡 and the control
𝑐
𝑡 according to:

𝑡+1 = 𝑨𝑑𝑡 + 𝑩𝑑𝑐𝑡 (5)

epending on whether 𝑩 is known or not, DMDc has different proce-
ures to obtain the model [29]. Herein, we propose a variant that we
erm geometry-informed DMD based on DMDc. In particular, we refer
o geometry-informed DMD (giDMD) as the DMDc learning framework
hat integrates underlying knowledge of the origami geometrical vari-
bles 𝑔𝑛𝑡 . More concretely, in our present origami setting, we create an
ugmented state of the 𝑛th origami 𝑥𝑛𝑡 composed of the displacement
𝑛
𝑡 and velocity 𝑣𝑛𝑡 in both axial and rotational directions, resulting in
𝑡 ∈ R4𝑛. An augmented control 𝑦𝑛𝑡 is also created by concatenating the
ugmented state of the control and the vector of geometrical parame-
ers, resulting in 𝑦𝑡 ∈ R𝑙, where 𝑙 is the number of control variables.
The vector of geometrical parameters also includes the trigonometric
functions (sine and cosine functions) of quantities related to angles,
but for simplicity of depicting our approach in a general way, we do
not illustrate them in Fig. 1(b). A similar idea using the augmented
state and control variables can also be found in the modeling of swarm
dynamics [30]. Therefore, the system can be modeled in the form:

𝑥𝑡+1 = 𝑥𝑡 +𝑲𝑦𝑡 (6)

where 𝑲 ∈ R4𝑛×𝑙. In giDMD, motivated from the earlier work of [30],
the state transition matrix 𝑨 is assumed to be identity (𝑨 = 𝑰) because
e assume that the difference between 𝑥𝑡+1 and 𝑥𝑡 ascribes to the
ontribution of the control. The Eq. (6) can be rewritten as:

𝑡+1 − 𝑥𝑡 = 𝑲𝑦𝑡 (7)

urthermore, Eq. (7) can be written in the matrix form:
′ −𝑿 = 𝑲𝒀 (8)

= 𝑲𝒀 (9)

here 𝑿′ ∈ R4𝑛×(𝑇−1) is one snapshot forward compared with 𝑿 ∈
4𝑛×(𝑇−1), 𝑺 = 𝑿′ − 𝑿 and 𝒀 ∈ R𝑙×(𝑇−1) contains 𝑚 control variables
nd (𝑇 − 1) snapshots. 𝑇 is the total number of snapshots. Therefore,
he matrix 𝑲 is the key for giDMD modeling, which can be solved by
he optimization problem:

rgmin
𝑲

[ 1
2
‖𝑺 −𝑲𝒀 ‖

2 + 𝜂𝑅(𝑲)
]

(10)

here 𝑅(⋅) is a regularizer that promotes sparsity and 𝜂 is a hyper-
arameter to determine the strength of the regularization. A sparse
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Fig. 1. Illustration of giDMD and comparison between DMDc and giDMD. (a) The side view and the top view of the single Kresling origami with geometrical parameters. (b) The
ata matrices for the data-driven framework of giDMD. The geometrical parameters 𝑔 are collected as the height ℎ, the length of crease lines 𝑎, 𝑏, folding angle 𝛹 , the direction
of the crease lines 𝛼, 𝛽. The state 𝑥 is taken to include the displacement 𝑝 and velocity 𝑣, and the control 𝑦 is taken to involve the states of the input 𝑥𝑐 and the geometrical
parameters 𝑔. (c) The prediction using DMDc. (d) The prediction using giDMD. The predictions of axial displacement 𝑢 and rotational displacement 𝜙 using DMDc are shown in the
first and second row, respectively. The gray shaded areas represent the training data. The ground truth and the prediction are shown in blue and red, respectively. The insets in
four graphs show the relation between frequency (𝑓 ) and power amplitude (𝑃 ) after the fast Fourier transform. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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matrix 𝑲 can be useful to promote the interpretation of the role
geometries play in the origami dynamics and to discover the dominant
geometric components. We use the non-convex regularizer, 𝑙0 norm, in
our optimization problem, where sequential thresholded least squares
method is performed, which is also widely used in the dynamics dis-
covery [21]. 𝑙0 regularization works by encouraging the coefficients of
the model below a certain threshold value to be completely ignored
and has convergence guarantees [32]. To be specific, first of all, the
tandard least squares fitting is performed. Then, a parameter 𝜂 is
iven to specify the minimum magnitude for coefficients in 𝑲 and all
oefficients with magnitude below the threshold are zeroed out. This
rocess of fitting and thresholding is performed until convergence. In
his way, a sparse matrix 𝑲 that balances the tradeoff between accuracy
nd minimizing the number of the control elements can be obtained.
n our examples demonstrated below, the rapid convergence is realized
ithin several iterating steps (at most 1 step for single origami, 2 steps
or dual origami structures, and 10 steps for origami chain).
Indeed, our method, from the idea of dynamics discovery using

parse regression, is quite similar to SINDy [21]. The sparse 𝑲 in
iDMD and the sparse 𝜩 in SINDy both serve to select the active terms
n the library (control variables in giDMD and candidate functions in
INDy). However, there are some differences. In SINDy, there exists an
xtensive library of candidate functions that is provided as a possible
asis to represent the dynamics, while 𝒀 in giDMD only contains
he origami geometrical variables. Moreover, the exact velocity and
cceleration of the system are used in the SINDy, while 𝑺 in giDMD,
otivated by the DMDc approach, is composed of the difference of
isplacement and the difference of velocity.
Next, we demonstrate the superiority of our method over the stan-

ard DMDc. We simulate the dynamics of a single origami element
nder the harmonic excitation at the frequency of 5 Hz using the truss
3

e

odel, as detailed in Appendix A. Due to the coupled behavior of the
rigami features, the output is the axial displacement 𝑢 and rotational
isplacement 𝜙. When the origami dynamics is modeled by DMDc
sing 60% training data, both predicted displacements 𝑢̂ and 𝜙̂ exhibit
arge discrepancies compared with the simulated displacements 𝑢 and
in Fig. 1(c). The relative errors calculated by ‖𝑢−𝑢̂‖𝐹

‖𝑢‖𝐹
and ‖𝜙−𝜙̂‖𝐹

‖𝜙‖𝐹
are

around 50% and 247% for 𝑢 and 𝜙, where ‖⋅‖𝐹 is the Frobenius norm of
the matrix, defined as the square root of the sum of the absolute squares
of the entries. In comparison, the significant improvement is achieved
by giDMD model, as shown by the agreement between prediction (red
lines) and ground truth (blue lines) in Fig. 1(d). The relative errors
for 𝑢 and 𝜙 are around 0.26% and 1.37%. This improvement can also
be seen in the spectra (insets in Figs. 1(c) and 1(d)) given by the
ast Fourier transform. Under the excitation of 5 Hz, there is another
eak other than the excitation frequency in the spectrum because of
he nonlinearity. In stark contrast with the DMDc, giDMD can predict
wo peaks in the spectrum, implying that giDMD can fully capture
he origami dynamics. The drastic improvement in accuracy in both
ime and frequency domain demonstrates the effectiveness of giDMD
owards modeling origami dynamics.

. Results and discussions

.1. Topological boundary states in the origami chain

The effectiveness of our method has emerged in the single origami
tructure above. Next, we further demonstrate this method on more
omplex origami structures. The first example we demonstrate our
ethod on is the elastic topological metamaterials built by the origami
tructure. The elastic topological metamaterials are inspired by the

lectronic topological insulators, where the vibration is isolated in the
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Fig. 2. Application of giDMD on the origami chain. (a) The schematic of the origami chain composed of Kresling origami with alternating chirality. The design parameters of
rigami are ℎ0 = 30 mm, 𝜃0 = ±70◦, 𝑅 = 36 mm where ℎ0, 𝜃0, and 𝑅 are the initial height, initial rotational angle, and radius of the cross-section, respectively. (b) The band
tructure calculated by the unit cell enclosed by black dashed line in (a). The Zak phases of the lower band and upper band are 𝜋. (c) The modes of the supercell formed by 16
unit cells. The black dots represent the bulk band. The cyan and pink dots represent the topological boundary states within the band gap. (d) The axial and rotational modes of
the topological boundary states. (e) The simulated axial displacement along the origami chain at different frequencies in the pass band (15 Hz), stop band (50 Hz) and topological
boundary states (145 Hz). (f) The corresponding predicted axial displacement using 60% training data (from 0 s to 3 s). (g) The comparison between ground truth (blue) and giDMD
model (red) of the axial displacement of the second separator in the origami chain. The cases under 15 Hz, 50 Hz and 145 Hz are shown from left to right. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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bulk yet propagating along the boundary or surface. The topologically
protected defect-immune wave propagation in the elastic topological
metamaterials has been attracting significant attention [33–38]. Re-
cently, the origami structures have been used as building blocks to
construct topological metamaterials [14]. We adopt the existing design
to construct the origami chain shown in Fig. 2(a). The unit cell enclosed
by black dashed line contains two origamis with opposite chirality
represented by initial rotational angle 𝜃0.

The band structure can be calculated by the linearized truss model
(Appendix A) based on the small amplitude approximation after the ap-
lication of periodic boundary condition (Bloch’s theorem). As shown
n Fig. 2(b), four bands appear in the first Brillouin zone. Two lower
ands nearly overlap, and two upper bands are crossing to form a
egeneracy point at the edge of the first Brillouin zone. To characterize
he topology of this system, we calculate the topological invariant Zak
hase for the 1D system. Because the bands are degenerate at the edge
f the first Brillouin zone, the topological invariant Zak phase 𝜑 for 𝑞th
nd (𝑞 + 1)-th bands is calculated through the Wilson-loop eigenvalues
s indicated below:

𝑞,𝑞+1 = −
𝑘−1
∑

𝑘=0
Im ln

|

|

|

|

|

⟨𝑈 𝑞
𝑘 |𝑈

𝑞
𝑘 ⟩ ⟨𝑈 𝑞

𝑘 |𝑈
𝑞+1
𝑘+1 ⟩

⟨𝑈 𝑞+1
𝑘 |𝑈 𝑞

𝑘+1⟩ ⟨𝑈 𝑞+1
𝑘 |𝑈 𝑞+1

𝑘+1 ⟩

|

|

|

|

|

(11)

here 𝑈 𝑞
𝑘 denotes the mode at the Bloch wave vector 𝑘 for the 𝑞th
4

and [39]. This produces 𝜑1,2 = 𝜑3,4 = 𝜋 which are marked in Fig. 2(b). t
he nonzero topological invariant of the lower bands also ensures the
opologically nontrivial band gap between the lower bands and the
pper bands.
According to the bulk-edge correspondence, the topological bound-

ry state will emerge within the band gap in the truncated origami
hain. In Fig. 2(c), the eigenmodes of the truncated origami chain with
6 unit cells are calculated. As expected, two degenerate modes appear
ithin the band gap. After checking the axial and rotational mode
hapes of these two degenerate modes shown in Fig. 2(d), we confirm
hat these two degenerate modes are topological boundary states due
o the concentrated displacement at the boundary.
Then, the wave propagation along the origami chain is calculated

y the truss model (Appendix A) using the small-amplitude approxi-
ation (i.e., in the linear regime). The origami chain is excited by the
armonic motion of the first separator. The axial displacements of each
eparator over time are illustrated in Fig. 2(e) under different excitation
requencies, represented by the frequencies in pass band (15 Hz), stop
and (50 Hz) and at the topological boundary state (145 Hz). At the
requency of 15 Hz, the vibration can affect the whole origami chain,
hile the vibration is localized at the boundary at the frequency of
0 Hz, as expected for such a band gap frequency. At the frequency of
45 Hz, where the topological boundary state emerges, the vibration is
lso localized at the boundary but with larger amplitude, representing

he excitation of the corresponding eigenmode.
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Fig. 3. Identification of topological boundary states in origami chain. (a) The rows of 𝑲 matrix corresponding to the axial displacements of the origami chain at 15 Hz, 50 Hz and
145 Hz. The labels on the 𝑥 axis show the corresponding control variables such as ℎ, 𝑎, 𝑏, 𝛹 , 𝛼 and 𝛽 of every origami component in the origami chain. Only control variables
corresponding to the nonzero and large entries in 𝑲 are shown for better readability. The slanted lines indicate the nonzero values shift linearly with the increase of row of 𝑲 ,
representing the interaction between nearest origami elements. (b) The singular value spectrum of the 𝑲 matrix under different excitation frequencies from 10 to 220 Hz. The
orange dash arrows on two sides indicate the range of the bandgap, and one in the middle indicates the frequency of topological boundary states. (c) The zoom-in view by using
32 singular values.
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The giDMD model for the origami chain is put forward using 60%
training data (from 0 s to 3 s). The prediction and ground truth agree
excellently, as evidenced by the same patterns in Figs. 2(e) and 2(f),
and relative error smaller than 0.1% in general. Besides, Fig. 2(g) shows
the detailed axial displacement of the second separator in the origami
chain from simulation and giDMD. The overlapped curves exhibit the
excellent agreement between ground truth and prediction. The highly
accurate modeling of origami chain across frequencies confirms the
ability of giDMD to model complex structures in the nearly linear
regime of the corresponding dynamics.

We take the first 31 rows of the 𝑲 matrix responsible for the
calculation of the axial displacement of each separator in the origami
chain. As shown in Fig. 3(a), the 𝑲 matrix is fairly sparse with sparsity
around 0.6 (the number of zero values in the matrix divided by the total
number of elements in the matrix) for all three cases, where nonzero
values are concentrated near the position indicating the information
of height ℎ, angles between crease lines and vertical direction 𝛼, 𝛽,
and corresponding sine functions sin 𝛼, sin 𝛽. It suggests that these
geometrical variables are mainly important and responsible for the
axial displacement of origami chain. Especially, at the frequency of
the topological boundary state (145 Hz), the values for sin 𝛼, sin 𝛽
are smaller than those of the other two frequencies, suggesting less
importance of these two geometrical variables in forming topological
boundary states. This may result from the strong localization of vibra-
tions near the boundary, causing most geometrical variables to remain
almost unchanged. Furthermore, the nonzero values shift linearly with
the increase of the row of 𝑲 slanted lines in Fig. 3(a), indicating that
the displacement of each separator is related to geometrical variables
of nearest origami elements. Note that the geometry information such
as ℎ marked in Fig. 3(a) generally indicates the geometrical variables
of every origami component.

Similar to the DMD where the eigenvalue of the linear operator can
characterize the system dynamics, we use the singular values of the 𝑲
matrix to identify the ‘state’ of the system. The singular value spectra of
the 𝑲 matrix from 10 Hz to 220 Hz are shown in Fig. 3(b) to illustrate
the difference. In the region of the pass band (𝑓 ≤ 20 Hz, 𝑓 ≥ 198 Hz),
the first several singular values are significantly larger than those in
5

t

the region of stop band (20 Hz ≤ 𝑓 ≤ 198 Hz). At the frequency of
topological boundary states, the singular values are particularly smaller
than any of other frequencies as detailed in zoom-in view in Fig. 3(c).
The smaller singular values at the frequency of topological boundary
state may be induced by the absence of contribution from sin 𝛼, sin 𝛽
compared with other frequencies. We also notice that there are smaller
singular values around 145 Hz but the smallest one is at 145 Hz. The
singular values are large outside 145 Hz and the ones within the band
gap region (20 Hz ≤ 𝑓 ≤ 198 Hz) are used to describe the localized
states near the boundary due to the band gap. This can be a data-driven
way to identify the frequency of topological boundary states.

3.2. Dynamic motion in the dual origami structure

The next example is the dual origami structure exhibiting rich
dynamic motions under excitation. This structure is composed of two
bistable origami elements with opposite chirality as shown in Fig. 4(a),
in which 𝑢0 and 𝜙0 are the input axial and rotational excitations at
the first separator, and 𝑢1, 𝜙1 and 𝑢2, 𝜙2 are the axial and rotational
displacements at the second and third separators, respectively. In
the previously reported experimental study [16], under the excita-
tion in different frequencies, the structure will feature periodic mo-
tion (5–9 Hz, 14–16 Hz, 18 Hz, 23–24 Hz) and chaotic motion (10–13 Hz,
17 Hz, 19–22 Hz). Note that due to combination of two bistable
origamis, the periodic motion can be further identified as intrawell
periodic motion (5–9 Hz, 18 Hz, 23–24 Hz), and interwell periodic
motion (14–16 Hz). The intra- and inter- well behaviors are further elab-
orated in the Ref. [16]. The experimental setup is shown in Fig. 4(b)
nd detailed in Appendix A. Although this structure is simpler than
he previous example, it is under the large-amplitude excitation region
nd hence displays the corresponding hallmarks of nonlinear dynamics,
ncluding the above mentioned chaotic motion.
To demonstrate our method, we choose two typical cases where

eriodic motion and chaotic motion are represented by 5 Hz and 17 Hz,
espectively. After obtaining the 𝑲 matrix from the sparse regression,
here the sparsity of 𝑲 matrix is around 0.7, we check the first row of
he 𝑲 matrix responsible for the calculation of axial displacement 𝑢 .
1
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Fig. 4. Application of giDMD on the dual origami structure. (a) The schematic of the dual origami structure with opposite chirality. (b) The image of experimental setup for the
vibration test from the Ref. [16]. Copyright 2020 Springer Nature. The design parameters of origami are ℎ0 = 50 mm, 𝜃0 = ±70◦, 𝑅 = 36 mm where ℎ0, 𝜃0, and 𝑅 are the initial
eight, initial rotational angle, and radius of the cross-section, respectively. The input excitation is applied by a shaker, and the motions are captured by two action cameras and
uantified by the digital image correlation program. (c)(d) The row of 𝑲 matrix corresponding to the axial displacement 𝑢1 at the frequency of 5 Hz and 17 Hz, respectively. The
abels on the 𝑥 axis show the corresponding control variables such as ℎ, 𝑎, 𝑏, 𝛹 , 𝛼 and 𝛽 of two origami components. Only control variables corresponding to the nonzero and
arge entries in 𝑲 are shown due to the better readability. (e) The prediction of axial displacement 𝑢1 and 𝑢2 using giDMD at the frequency of 5 Hz. (f) The prediction of axial
isplacement 𝑢1 and 𝑢2 using giDMD at the frequency of 17 Hz. The gray shaded areas represent the training data. The ground truth is shown in blue and the prediction is shown
n red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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he case for 5 Hz is shown in Fig. 4(c). The first row of the 𝑲 matrix is
parse so that nonzero values only appear in several positions standing
or the information of ℎ, 𝑎, 𝛹 , 𝛼, 𝛽, sine and cosine functions of 𝛼 and
, suggesting that these geometrical variables are responsible for the
xial motion of the second separator. In comparison, at the frequency
f 17 Hz, nonzero values emerge in similar positions but with much
maller values in Fig. 4(d). Besides, the sine and cosine functions of 𝛼
nd 𝛽 are contributing less to the axial motion of the second separator
ue to the smaller values than other geometrical variables. Compared
ith the origami chain where the length of crease lines and the folding
ngle do not significantly contribute to the axial displacement, in the
resent case, the length of crease lines and folding angle are major
ontributions to the axial displacement for the dual origami structure.
he possible reason can be the smaller amplitude excitation (i.e., linear
egime) of the origami chain, leading to the representation of 𝑎, 𝑏
nd 𝛹 by the function of ℎ. After sparse regression, the contributions
f 𝑎, 𝑏 and 𝛹 can be approximated by ℎ, whereas large-amplitude
xcitation (nonlinear regime) in dual origami structure results in the
ailure to represent 𝑎, 𝑏 and 𝛹 using ℎ. Similar to the analysis of
he 𝑲 matrix in Section 3.1, the geometry information marked in
ig. 4(c) generally indicates the geometrical variables of two origami
omponents.
We then predict the axial displacements 𝑢1 and 𝑢2 at the frequency

f 5 Hz and 17 Hz. As shown in Fig. 4(e), the prediction and ground
ruth agree excellently with 60% training data, as evidenced by the
6

verlap of red curves and blue curves. In stark contrast, the predictions
t the frequency of 17 Hz do not match with the ground truth in a
recise manner (Fig. 4(f)). Although the sudden change in the chaotic
otion cannot be predicted, the predicted results still show clear
ifferences from the periodic motion (Fig. 4(e)), i.e., they carry the
blueprint of the observed chaotic dynamics. Therein, 𝑢1 is more chaotic
than 𝑢2 and thus the prediction is better in 𝑢2. Note that the prediction
results of intrawell periodic motion at other frequencies are similar
to Fig. 4(e), while the ones of chaotic motion at other frequencies are
similar to Fig. 4(f).

The spectral analysis is conducted to show the frequency response
under the excitation in different frequencies. In Fig. 5(a), the spectra
for 𝑢1 and 𝑢2 in different frequencies are obtained by the fast Fourier
transform of the experimental data after normalization. It is obvious
that along the diagonal direction of each panel, there are responses at
the same frequency as the excitation frequency. Apart from that, the
periodic motion and the chaotic motion can be clearly identified from
the increase of lower frequency components. The ‘state’ of the structure
is also marked in Figs. 5(a) and (b), where green, orange and purple
shaded areas indicate the intrawell periodic motion, interwell periodic
motion and chaotic motion. Fig. 5(b) illustrates the spectra for 𝑢1 and
𝑢2 based on the prediction results. It can be seen that the spectra in the
region of intrawell periodic motion (5–9 Hz, 18 Hz, 23–24 Hz) agree
with the ground truth excellently. However, giDMD fails to predict
the interwell periodic motion (14–16 Hz), where the predictions blow
up to infinity at some time point, resulting in the failure of spectral

analysis. The interwell periodic motion describes the scenario where
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Fig. 5. Identification of intrawell periodic, interwell periodic and chaotic motion. (a)
The spectrum analysis of the experimental axial displacements 𝑢1 (the first panel) and
𝑢2 (the second panel) under different excitation frequencies from 5 to 24 Hz. (b) The
corresponding spectral analysis based on the predicted axial displacements 𝑢1 (the first
panel) and 𝑢2 (the second panel). The white area with a cross represents the failure of
the prediction. The green, orange and purple shaded areas represent the frequencies
of intrawell periodic motion, interwell periodic motion and chaotic motion. (c) The
singular value spectrum of the 𝑲 matrix under different excitation frequencies from 5
to 24 Hz. The Lyapunov exponents of 𝑢1 and 𝑢2 under different excitation frequencies
are also shown in dark green and bright green, respectively. (d) The relation between
the second singular values 𝜎2 and the Lyapunov exponents 𝜆 under different excitation
frequencies. The intrawell periodic motion, interwell periodic motion and chaotic
motion are represented in green, orange and purple circles. The distance correlation
between logarithm-scale second singular values and Lyapunov exponents are shown in
both graphs. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

𝑢1 and 𝑢2 feature a large difference, as well as 𝜙1 and 𝜙2, i.e., in the
regime of significant axial and rotational differences across origami
separators. In such case, the blow-up phenomena in the prediction are
due to the unstable dynamical system produced by the giDMD model.
Understanding how to extend the giDMD approach to capture such a
scenario remains an interesting open question for further investigation.
In the region of chaotic motion (10–13 Hz, 17 Hz, 19–22 Hz), the spectra
from the predicted results show qualitative agreement with the ground
truth featured by the increased magnitude in the low frequency range,
despite the failure to capture the intermittent variation in chaotic
motion as shown in Fig. 4(f). These findings imply that giDMD can
predict the chaotic motion to some extent.

Similar to Section 3.1, we study the feasibility of using the 𝑲
matrix to identify the ‘state’ of the dual origami structure. Fig. 5(c)
shows the singular values 𝜎 of the 𝑲 matrix at different frequencies,
where different singular value spectra appear in different frequencies.
We notice that in the frequency range corresponding to the chaotic
7

motion, the singular values are particularly smaller than others. To
characterize the origami dynamics, the Lyapunov exponents for 𝑢1 and
𝑢2 are shown by bright green and dark green in Fig. 5(c), calculated by
the Rosenstein’s method [40]. As is well-known, the larger Lyapunov
exponent suggests more chaotic dynamics. From our results, we can
deduce that smaller singular values correspond to larger Lyapunov
exponent. In Fig. 5(d), we choose the second singular value of each
𝑲 matrix 𝜎2 to compare with Lyapunov exponents for 𝑢1 (top panel)
and 𝑢2 (bottom panel). It is noticed that there are clear boundaries
among chaotic motion (smallest values), interwell periodic motion and
intrawell periodic motion (largest values). Besides, there is the fairly
strong relation characterized by the distance correlation (quotient of
the distance covariance and the product of the distance standard devi-
ations) between logarithm-scaled second singular values and Lyapunov
exponents, resulting in 𝑑𝐶𝑜𝑟 = 0.7628 and 𝑑𝐶𝑜𝑟 = 0.5649 for 𝑢1
and 𝑢2. The correlation between the singular values and the Lyapunov
exponents of the dynamics system has not only emerged in our data-
driven study, but also in several theoretical studies aimed at calculating
Lyapunov exponent [41,42]. Therefore, based on the above results, one
can identify the intrawell, or interwell periodic motion or the chaotic
motion of the dual origami structure.

4. Discussion and conclusion

The 𝑲 matrix serves as the control matrix in the giDMD, which will
convert the control 𝒀 to 𝑺, expressed by 𝑺 = 𝑿 − 𝑿′. Since the state
𝑿 corresponds to the displacement and velocity of each separator at
each time step, 𝑺 contains the information of velocity and accelera-
tion. Essentially, 𝑲 is found to describe the velocity and acceleration
using geometrical parameters in origami structures. The sparsity of 𝑲
matrix shows that the velocity and acceleration of the origami structure
are only related to a few geometrical parameters. This can also be
implied by the governing equation of motion of origami as shown in
the Appendix A and derived equations. These governing equations of
motion of origami contain the combination of geometrical parameters
explicitly or implicitly. The 𝑲 matrix essentially selects the important
geometrical parameters listed in the 𝒀 matrix by the values of its
entries. Indeed, this is done through the original system dynamics (and
this data-driven approach), rather than by the more traditional method
of inducing parametric variations and observing the relevant response.
This is the reason why giDMD works well in origami dynamics and is
only related to the several geometrical variables, resulting in the sparse
𝑲 matrix. In a sense, one can argue that the material in Appendix A
represents the traditional modeling approach (based on constitutive
laws) towards the origami system of interest, while the giDMD repre-
sents a modern, data-driven variant thereof. Even when the governing
equation is not available, this approach can still be used to potentially
model the origami dynamics from experimental data. Furthermore, our
method can also be interpreted by the mode superposition, since the
individual entries 𝑘𝑖𝑗 of 𝑲 matrix can be expressed as 𝑘𝑖𝑗 = 𝒖𝑇𝑗 𝜮

−1𝑽 𝑇 𝒔𝑖
after the singular value decomposition, 𝒀 = 𝑼𝜮𝑽 𝑇 , where 𝒖𝑇𝑗 is the
𝑗th row of 𝑼 and 𝒔𝑇𝑖 is the 𝑖th row of 𝑺. This results in different 𝑲
matrix in the same origami structure under different frequencies. For
the consistency of the narrative, we fix the training ratio to be 60% in
the main text, but we also show the giDMD modeling in other training
ratios in Appendices B and C including error analysis and identification
of states of origami structures. Our approach demonstrates the efficacy
in different training ratios and the ability to identify origami dynamics.

In this work, we propose the method of giDMD to learn the origami
dynamics that gives rise to origami coupled motions from pure ob-
servation data (experiment data and simulation data). We show the
better performance of giDMD characterized by the prediction accuracy
compared with DMDc. In the two example origami structures we apply
our method on, giDMD can not only predict the origami behaviors
under different frequencies, but also highlight an ability to identify
the ‘state’ of origami structures. Furthermore, giDMD offers insights
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into the importance of geometries in the governing motion law of
origami. giDMD has better performance in the linear (or nearly linear)
region of origami dynamics, while there are still some challenges in
describing chaotic dynamics within the nonlinear regime. In the latter,
giDMD starts to fail in connection to the goal of accurate prediction,
but it can still help with the identification of the origami state. The
giDMD provides a substantial capability to model origami dynamics
in an efficient (fast computation) and interpretable way. Although we
primarily demonstrate our method on two specific structures, future
work can be devoted into more complex origami structures across
scales and not limited to the Kresling origami. Besides, whether the
origami systems driven by the non-periodic excitation can be modeled
by our giDMD method is worthwhile to explore. Indeed, the further
extension of giDMD to other such geometrically nonlinear systems is a
topic currently under active investigation and relevant results will be
reported in due course.
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Appendix A. Data acquisition

A.1. Experimental data

In the example of the dual origami structure, the raw experimen-
tal data was used for the giDMD model. The experimental data and
experimental procedures were detailed in the Ref. [16]. The dynamic
test was conducted on a dual triangulated cylindrical origami structure.
The design parameters of origami were ℎ0 = 50 mm, 𝜃0 = ±70◦,
𝑅 = 36 mm which are the initial height, initial rotational angle,
and radius of the cross-section, respectively. The left origami is in
negative chirality (𝜃0 = −70◦) and the right origami is in positive
chirality (𝜃0 = +70◦). The left end of the dual origami structure was
connected to the shaker (LDS V406 M4-CE, Brüel & Kjær) which applied
the single-frequency harmonic excitation to the system. The motion
of spherical markers attached to the separators was captured by two
action cameras in 240 frames per second and quantified by digital
image correlation. The triangulation method was used to find the three-
dimensional coordinates of the spherical markers, resulting in the axial
displacement 𝑢 and rotational displacement 𝜙 of each separator.
8
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Table A.1
Design parameters for single origami and origami chain.
𝑚 (kg) 𝑗 (kg m2) 𝑁 ℎ0 (m) 𝑅 (m) 𝜃0 (◦)

58.8 × 10−3 6.77 × 10−5 6 30 × 10−3 36 × 10−3 ±70

Table A.2
Mechanical parameters for single origami and origami chain.
𝑘𝑎 (N m−1) 𝑘𝑏 (N m−1) 𝑘𝛹 (N m rad−1)

6055 3743 7.277 × 10−3

Fig. B.6. The prediction accuracy for the dual origami structure and the origami chain
using different training ratios. (a) The relative errors as a function of training ratio of
axial and rotational displacement in different frequencies for dual origami structure are
shown in the left and right panel, respectively. (b) The relative errors as a function
of training ratio of axial and rotational displacement in different frequencies for the
origami chain are shown in the left and right panel, respectively. The white regions
indicate the failure of the prediction in (a) and (b).

A.2. Simulation data

In the example of single origami and origami chain, the simula-
tion data was used for the giDMD model. The design parameters and
mechanical parameters used in the numerical simulation are shown in
Tables A.1 and A.2, respectively.

The mechanical parameters 𝑘𝑎, 𝑘𝑏 represent the axial spring con-
tant along the crease 𝑎, 𝑏, and 𝑘𝛹 represents the torsional spring
onstant along the bottom crease.
The simulations of the single origami and origami chain under

xcitation in different frequencies are conducted based on the truss
odel regarding Kresling unit cell as inter-polygonal spring connecting
eparators with mass 𝑚 and rotational inertia 𝑗 [6,13,14]. The equation
of motion of the separator can be expressed as:

𝑚𝑛𝑢̈𝑛 + 𝐹𝑛(𝛿𝑢𝑛, 𝛿𝜙𝑛) − 𝐹𝑛−1(𝛿𝑢𝑛−1, 𝛿𝜙𝑛−1) = 0 (A.1a)

𝑗𝑛𝜙̈𝑛 + 𝑇𝑛(𝛿𝑢𝑛, 𝛿𝜙𝑛) − 𝑇𝑛−1(𝛿𝑢𝑛−1, 𝛿𝜙𝑛−1) = 0 (A.1b)

where 𝛿𝑢𝑛 = 𝑢𝑛 − 𝑢𝑛+1 and 𝛿𝜙𝑛 = 𝜙𝑛 −𝜙𝑛+1. The subscript 𝑛 denotes the
𝑛th separator. The force and torque in Eq. (A.1a) and Eq. (A.1b) can
e further expanded by the summation of the contribution from each
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spring as below:

𝐹𝑛(𝛿𝑢𝑛, 𝛿𝜙𝑛) = 𝑘𝑎𝑛𝑁(𝛿𝑢𝑛 − ℎ0)(1 −
𝑎0
𝑎𝑛

)

+ 𝑘𝑏𝑛𝑁(𝛿𝑢𝑛 − ℎ0)(1 −
𝑏0
𝑏𝑛

)

+ 2𝑘𝛹𝑛𝑁𝑅ℎ0(𝛹0 − 𝛹𝑛)

×
cos 𝜋

𝑁 − cos(𝛿𝜙𝑛 + 𝜃0)

𝑅2[cos 𝜋
𝑁 − cos(𝛿𝜙𝑛 + 𝜃0)]2 + (ℎ0 − 𝛿𝑢𝑛)2

(A.2a)

𝑇𝑛(𝛿𝑢𝑛, 𝛿𝜙𝑛) = 𝑘𝑎𝑛𝑁𝑅2 sin(𝛿𝜙𝑛 + 𝜃0 −
𝜋
𝑁

)(1 −
𝑎0
𝑎𝑛

)

+ 𝑘𝑏𝑛𝑁𝑅2 sin(𝛿𝜙𝑛 + 𝜃0 +
𝜋
𝑁

)(1 −
𝑏0
𝑏𝑛

)

+ 2𝑘𝛹𝑛𝑁𝑅ℎ0(𝛹0 − 𝛹𝑛)

×
sin(𝛿𝜙𝑛 + 𝜃0)(ℎ0 − 𝛿𝑢𝑛)

𝑅2[cos 𝜋
𝑁 − cos(𝛿𝜙𝑛 + 𝜃0)]2 + (ℎ0 − 𝛿𝑢𝑛)2

(A.2b)

where the parameters with subscript 0 denote the initial origami con-
figuration.

The calculation of the band structure is based on the linearized
truss model of the unit cell in order to represent the small amplitude
excitation. The unit cell contains two origami elements whose front
separators denote the sites (1) and (2). The linearized equations of
motion can be expressed as:

𝑚𝑛𝑢̈
(1)
𝑛 − 𝛼11(𝑢(2)𝑛 − 𝑢(1)𝑛 ) − 𝛽11(𝑢

(2)
𝑛−1 − 𝑢(1)𝑛 )

− 𝛼12(𝜙(2)
𝑛 − 𝜙(1)

𝑛 ) − 𝛽12(𝜙
(2)
𝑛−1 − 𝜙(1)

𝑛 ) = 0 (A.3a)

𝑚𝑛𝑢̈
(2)
𝑛 − 𝛼11(𝑢(1)𝑛 − 𝑢(2)𝑛 ) − 𝛽11(𝑢

(1)
𝑛+1 − 𝑢(2)𝑛 )

− 𝛼12(𝜙(1)
𝑛 − 𝜙(2)

𝑛 ) − 𝛽12(𝜙
(1)
𝑛+1 − 𝜙(2)

𝑛 ) = 0 (A.3b)

𝑗𝑛𝜙̈
(1)
𝑛 − 𝛼21(𝑢(2)𝑛 − 𝑢(1)𝑛 ) − 𝛽21(𝑢

(2)
𝑛−1 − 𝑢(1)𝑛 )

− 𝛼22(𝜙(2)
𝑛 − 𝜙(1)

𝑛 ) − 𝛽22(𝜙
(2)
𝑛−1 − 𝜙(1)

𝑛 ) = 0 (A.3c)

𝑗𝑛𝜙̈
(2)
𝑛 − 𝛼21(𝑢(1)𝑛 − 𝑢(2)𝑛 ) − 𝛽21(𝑢

(1)
𝑛+1 − 𝑢(2)𝑛 )

− 𝛼22(𝜙(1)
𝑛 − 𝜙(2)

𝑛 ) − 𝛽22(𝜙
(1)
𝑛+1 − 𝜙(2)

𝑛 ) = 0 (A.3d)

where the coefficients can be derived from the second derivative of the
potential energy of each unit cell as detailed in the Ref. [14]. With the
design parameters and mechanical parameters in Tables A.1 and A.2,
he coefficients can be determined to be 𝛼11 = 𝛽11 = 26850 N m−1, 𝛼12 =
𝛽12 = −819.8 N rad−1 and 𝛼22 = 𝛽22 = 26.07 N m rad−1. The periodic
oundary condition (Bloch’s theorem) is then applied to the linearized
quation of motion, such that 𝑢(2)𝑛−1 = 𝑢(2)𝑛 𝑒−2𝑖𝑘ℎ0 , 𝜙(2)

𝑛−1 = 𝜙(2)
𝑛 𝑒−2𝑖𝑘ℎ0 ,

(1) (1) 2𝑖𝑘ℎ0 (1) (1) 2𝑖𝑘ℎ0
9

𝑛+1 = 𝑢𝑛 𝑒 and 𝜙𝑛+1 = 𝜙𝑛 𝑒 . The band structure 𝜔(𝑘) can be
btained by solving the eigenvalue equation as a function of the Bloch
ave vector 𝑘 in the first Brillouin zone:

𝜔2 + 𝐷̂(𝑘)]𝑈 = 0 (A.4)

ere, 𝜔 denotes the angular frequency. 𝐷̂(𝑘) is the dynamical matrix
s a function of 𝑘, and 𝑈 is the corresponding eigenmode expressed as
= [

√

𝑚𝑢(1),
√

𝑚𝑢(2),
√

𝑗𝜙(1),
√

𝑗𝜙(2)]𝑇 .

Appendix B. Error analysis in different training ratios

Although the training ratio for the giDMD model of our aforemen-
tioned examples is set to be 60%, we also investigate the sufficiency of
the training ratio to build an effective and reliable model to describe
the origami dynamics. The relative error in different training ratios is
calculated for two examples (Fig. B.6(a) for the dual origami structure
and Fig. B.6(b) for the origami chain). Fig. B.6(a) shows the relative
error of axial and rotational displacement in the left and right panels,
respectively. It can be seen that 20% training ratio is enough to build
the effective giDMD model for most cases of intrawell periodic motion
in the dual origami structure. However, giDMD fails to model the inter-
well periodic motion no matter what the training ratio is. The effective
modeling for the chaotic motion can be achieved as early as when
the training ratio is 20%. The corresponding model cannot precisely
describe the intermittent change of chaotic motion as illustrated in
Fig. 4(f) in the main text, resulting in the large relative error. However,
it can show the spectral features of the chaotic motion (large low-
frequency components) as shown in Fig. 5(b). Note that large training
ratio does not always guarantee the effective giDMD model as shown
by the white areas in the region of large training ratios.

Fig. B.6(b) shows the relative error of axial and rotational displace-
ent in the top and bottom panels, respectively. It can be seen that
he effective model can be constructed as early as when the training
atio is 30%. Besides, the model across frequencies can be built with
igh accuracy. The error analysis in different training ratios shows the
fficacy of our approach with fewer training data, which demonstrates
he possibility of early prediction in origami dynamics.

ppendix C. Identification of state in different training ratios

As stated in the main text, the ‘state’ of the origami structure may
e induced by the singular value of 𝑲 matrix. We further calculate
he singular values of 𝑲 matrix in different training ratios to iden-
ify the ‘state’ in origami structures. The second singular value of 𝑲
matrix in different training ratios is calculated for the dual origami
structure (Fig. C.7(a)), and the fifth singular value is calculated for
the origami chain (Fig. C.7(b)). Fig. C.7(a) reveals that the intrawell
periodic motion, interwell periodic motion and chaotic motion can be
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initially identified by distinct values when the training ratio is only
10%, although it should be noticed that at this training ratio the
giDMD models for different frequencies are not adequate to describe
the origami dynamics. In the origami chain, the fifth singular value
is used to conduct identification to have a stronger contrast although
other singular values also work. The topological boundary state can be
identified when the training ratio is 20% even though the model is not
effectively built. This study on different training ratios indicates that
our approach of giDMD can identify the ‘state’ of origami structures at
the early stage, which helps with the early diagnosis and identification
of the origami structure.
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