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In the present work we study coherent structures in a one-dimensional discrete nonlinear Schrodinger lattice
in which the coupling between waveguides is periodically modulated. Numerical experiments with single-site
initial conditions show that, depending on the power, the system exhibits two fundamentally different behaviors.
At low power, initial conditions with intensity concentrated in a single site give rise to transport, with the energy
moving unidirectionally along the lattice, whereas high-power initial conditions yield stationary solutions. We
explain these two behaviors, as well as the nature of the transition between the two regimes, by analyzing a
simpler model where the couplings between waveguides are given by step functions. For the original model,
we numerically construct both stationary and moving coherent structures, which are solutions reproducing
themselves exactly after an integer multiple of the coupling period. For the stationary solutions, which are
true periodic orbits, we use Floquet analysis to determine the parameter regime for which they are spectrally
stable. Typically, the traveling solutions are characterized by having small-amplitude oscillatory tails, although
we identify a set of parameters for which these tails disappear. These parameters turn out to be independent of
the lattice size, and our simulations suggest that for these parameters, numerically exact traveling solutions are

stable.
DOLI: 10.1103/PhysRevE.108.024214

I. INTRODUCTION

The study of nonlinear lattice dynamics has been funda-
mental in advancing our understanding of, for example, light
propagation in nonlinear optics [1] and the wave-function
properties of atomic condensates [2]. In the former realm, the
relevant models consider the propagation of light in coupled
arrays of optical waveguides, while in the latter setting, they
explore the evolution of the mean-field wave function in the
context of deep optical lattices. In both scenarios, the universal
model of interest (also considered as an envelope wave model
in other discrete settings, including mechanical and electrical
lattices [3,4]) has been the prototypical discrete nonlinear
Schrodinger (DNLS) lattice [5].

Progressively, over the past few years, a topic that has
been gaining significant traction has been the exploration
of topological features in both linear and nonlinear systems
exhibiting wave dynamics. Indeed, recent studies in a di-
verse host of fields including but not limited to photonics
[6], phononics [7,8], metamaterials [9], and atomic physics
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[10] highlight unique dynamical properties resulting from the
interplay of nonlinearity and topology. Relevant realizations
of, e.g., Su-Schrieffer-Heeger lattice systems and associated
anomalous edge states have also been recently proposed in the
work of [11] with the potential for application in the context
of topoelectrical metamaterials. Notably, their interplay has
been leveraged to produce solitonic excitations and domain
walls [12-19] and to generate robust states propagating on
domain edges [20-24] that defy discreteness-induced bar-
riers such as the famous Peierls-Nabarro barrier [25]. The
resulting topologically protected states achieve unidirectional,
uninhibited propagation around lattice defects in topological
lattices [26]. These intense recent efforts have been summa-
rized, e.g., in [27,28] and also in the very recent and detailed
review of [29].

Among the many ongoing efforts in the field of topological
photonics, we single out here a series of highly influential
recent experiments of Rechtsman and co-workers [16,30-32].
Topological photonics has its roots in two seminal papers
[33,34], where the authors delineated in detail the one-on-one
correspondence between condensed-matter physics (CMP)
and photonics. In particular, the propagation direction z plays
the role of time in the original CMP setting and hence leads to
the notion of pseudotime. For the same reason, the conjugate
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wave number is referred to as a pseudofrequency (t <> z; ® <
k). The first of these works [16] showcased the experimental
realization of Floquet solitons in a topological band gap, the
numerical existence and stability of which we subsequently
explored in [35]. More recently, such dispersive nonlinear
systems with a coupling dependent on the evolution variable
were proposed as a suitable realization of nonlinear Thouless
pumps [31], and the topological properties of the bands such
as the Chern number were argued to govern the resulting
soliton motion. In [32] the analogy with the quantum Hall
effect and the original proposal of the Thouless pump [36] was
taken further by studying how nonlinearity acts to quantize
transport via soliton formation and spontaneous symmetry-
breaking bifurcations. In the present work, influenced by these
studies, we consider the system analyzed in [32], but we de-
part from the adiabatic regime of focus in that work. By doing
s0, we are able to capture topologically induced stationary and
dynamic states beyond the adiabatic approximation. We do so
by enabling the computation of numerically exact stationary
solutions but importantly also traveling solutions. Not only
do we generate such waveforms by generic dynamical evo-
lution experiments, but we also study a simple variant of the
model which considers piecewise-constant coupling strengths
(in a way reminiscent of the celebrated Kronig-Penney model
[37]). There it becomes evident that at a qualitative level,
the transition between standing and traveling waves mirrors
the self-trapping transition of the DNLS dimer [38]. This
may provide quite relevant insight towards understanding the
symmetry-breaking transitions and dynamics within the in-
tensely studied topic of nonlinear Thouless pumps.

Our work is structured as follows. In Sec. I we present
the theoretical setup and our quantitative diagnostics used in
the model of interest. In Sec. IIB we rescale the model so
that we can use the propagation distance L as a parameter.
We subsequently turn to numerical computations in Sec. III,
starting with the evolution of single-site initial conditions and
then gaining insights from the simplified piecewise-constant
coupling model. In Sec. Il A we perform evolution exper-
iments which demonstrate that there are two fundamental
behaviors to the system. For low initial power, the initial
intensity moves either to the left or to the right in the lattice.
The direction of motion depends on the lattice site chosen
for the initial condition. For high initial power, the intensity
remains confined to a single lattice site. In addition, there
does not appear to be a sharp transition between these two
behaviors when the starting intensity of the single site is con-
tinuously varied. In Sec. III B we consider a simplification of
the model in which the coupling between waveguides is given
by step functions. An analysis of this simplified model for an
optical dimer explains these two observed behaviors, as well
as the lack of a sharp transition between them. In Sec. III C
we numerically construct both stationary and traveling co-
herent structures. As opposed to what occurs with single-site
initial conditions, these coherent structures reproduce them-
selves exactly after an integer multiple of the coupling period.
We use Floquet theory to determine the spectral stability of
the stationary coherent structures, which are periodic orbits
of the system. In Sec. IV we summarize our findings and
present our conclusions, including a number of directions for
future study.

II. THEORETICAL ANALYSIS
A. Mathematical model

As discussed above, as well as motivated by experiments
such as those of [31,32], we study light propagation in an
array of coupled optical waveguides, where the coupling is
periodically modulated along the axis of light propagation.
Mathematically, this is described by the nonautonomous vari-
ant of the DNLS model of the form

duy,
l
dz

+ > Hym (Dt + glitn "ty = 0, e

where u,(z) is the complex amplitude of light propagating at
the waveguide in the lattice site indexed n, z is the propa-
gation distance (in the direction along the waveguides), and
H is the linear z-dependent (i.e., dependent on the evolution
variable) tight-binding Hamiltonian or equivalently the lattice
coupling profile. It is important to clarify here that the nonau-
tonomous nature of the system under study is in connection
with the notion of pseudotime (corresponding to the propa-
gation distance), as indicated above. It is with that sense of
nonautonomy in mind that we will proceed hereafter. The pa-
rameter g quantifies the strength of the cubic Kerr nonlinearity.
For H, as in [32], we use an off-diagonal implementation of
the Aubry-André-Harper model [39,40] with three sites per
unit cell, resulting in the model

‘Zt; + L (@utng1 + 1 (Dun—1 + glun|2un =0. )
The z-dependent coupling functions J,(z) are periodic in
z with spatial period L, which we will refer to as the coupling
period. We note that [32] considers this model in the adiabatic
regime, i.e., for very large L (see, for example, Fig. 2 in [32],
where L = 8000), in which case the system is approximately
at a frozen equilibrium for every z. This is a central point
to the analysis presented therein, which is explicitly geared
towards (and limited to) such an adiabatic regime. By contrast,
the parameter regime we consider herein is that of relatively
small L, e.g., L = 2. In this case, stationary solutions are
(genuine) periodic orbits of the system, which in turn enables
us to use the tools of Floquet analysis to determine their
spectral stability. While we consider larger L below (see, in
particular, Fig. 14), we note that our methods do not allow us
to compute exact periodic orbits for which L is very large, i.e.,
ones which would approach the adiabatic regime (see the end
of Sec. III C 1 for further details).

The choice of J,(z),

i

Ju(z) = Jo + C cos? <£Z+4_nn+z> 3)
e L~ 3 "6)

groups the lattice sites into unit cells comprising three waveg-
uides each (Fig. 1; see also Fig. 1 in [32]), since J,,(z) = J,,(2)
for m = n (mod 3). This choice of J,(z) is slightly modified
from Eq. (3) in the Supplemental Material of [32]; squaring
the cosine function ensures that the coupling is always pos-
itive, which would be the case in a physical realization of
the model. We note that if we do not square the cosine (as
in the Supplemental Material of [32]), thus allowing for nega-
tive coupling values, we obtain the same qualitative behavior.
When C = 0, the nearest-neighbor coupling is constant and
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FIG. 1. Coupling functions Jy(z), J;(z), and J,(z) of z-dependent
nearest-neighbor couplings over one spatial period L.

Eq. (2) reduces to the ordinary DNLS equation with coupling
via the discrete second difference operator Eq. (4), written in
a corotating frame with frequency 2Jy, which is given by

du,
dz + JO(un+1 - 214,, + unfl) + g|un|2un + 2.][)1/{,1 =0. (4)

i

B. Model rescaling and density evolution

In order to use the spatial period L as a parameter, we
rescale the propagation distance using the change of variables
7z = LZ so that the coupling period is always 1,

1du, )
lZd_Z + o (Dupr1 + It (Dup—y + glun|"u, = 0,
A 5)
5 o4 b4
J.(Z) =Jy + C cos (nZ + ?n + g)
At any propagation distance Z, the power of the solution is its

squared £? norm

P(,) =) lun(Z)I, 6)

where the sum is taken over the entire lattice. The optical in-
tensity at lattice site 7 is the square amplitude |u,|>. The power
is conserved, i.e., P(u,) is independent of Z. Using Eq. (5)
and its complex conjugate, we derive the flux equations for
the density matrix elements p,,, = U,

d pmn
dz

= iL[Jm(Z)pm+l,n + I (Z)pm—l,n
- Jn(Z)pm,n+1 - Jnfl (Z)pm,nfl]
+ iLg(pmm - /Onn)pmn- (7)

The evolution of the optical intensity (or density) of the solu-
tion at lattice site n, which is given by p,, = |u,|?, is

d pun

= iL[Jn(Z)pn+l,n + Jnfl (Z)pnfl,n

- Jn(Z)pn,nJrl - Jnfl(Z)pn,nfl]
=-2L Im[-]n(Z)pn+l,n + -In—l (Z)pn—l,n]s (8)

0.5
0
10 0 10
n
0
(d)
2 2
10
1 1
0 20 0
10 0 10 10 0 10
n n

FIG. 2. Colormap showing the intensity of the solution of Eq. (5)
evolving in Z, starting with a single excited site at n = 0 with inten-
sity (@) P =0.5,(b) P=1,(c) P =2.25,and (d) P = 2.5.

where we used the fact that p, ,, = Pm... We can split the last
line of Eq. (8) into two components

05(Z) = —2LJ,(D)Imp,—1 .,

©)
ON(Z) = =2LJ,(Z)Impyi1 0,
where Q5(Z) and QR (Z) are the flow of intensity into site n
from the left and the right, respectively, and a positive sign
indicates that intensity is flowing into site n from the labeled
neighboring site.

III. NUMERICAL COMPUTATIONS

A. Single-site evolution

As an initial experiment, we consider dynamical simu-
lations starting with a single excited site at Z = 0. Unless
otherwise specified, the parameters in the section are g = 1,
L =2m,Jy=0.05, and C = 0.4 and the simulations are run
on a finite lattice with m = 30 lattice points, with periodic
boundary conditions on the ends of the lattice (i.e., a ring,
which allows for waves to loop around when they reach
the boundaries). Evolution in Z is performed with ode45
in MATLAB using a tolerance of 10~°. For a single-site ini-
tial condition of sufficiently high power (above a threshold
between P = 2.25 and 2.5 for input intensity at n = 0 and
between P = 2.15 and 2.25 for input intensity at n = —1),
the energy remains concentrated at a single site and the re-
sulting excitation appears to be stable [see Figs. 2(d) and
3(d)]. We will address the associated slight difference in the
power threshold between initial excitations at n = 0 and —1
below.

As the initial power is lowered, this single-site solution
becomes prone to mobility; in both cases, this leads the ini-
tially concentrated intensity to leak to the right within the
lattice before dispersing throughout the lattice [Figs. 2(c) and
3(c)]. For lower-power initial conditions (between P = 0.5
and 1), the initial intensity moves either to the left in the

024214-3



ROSS PARKER et al.

PHYSICAL REVIEW E 108, 024214 (2023)

0 > 0

N 10 1 10

20 0o 20
-10 0 10 -10 10

30

FIG. 3. Colormap showing the intensity of the solution of Eq. (5)
evolving in Z, starting with a single excited site at n = —1 with
intensity (a) P = 0.5, (b) P =1, (c) P =2.15,and (d) P = 2.25.

lattice [for the initial excited site at n = 0, see Figs. 2(a) and
2(b)] or to the right [for the initial excited site at n = —1,
see Figs. 3(a) and 3(b)] before dispersing through the lattice.
One explanation for this observation is as follows: For the
first third of the period (Z € [0, %]), the strongest coupling
is between sites n = 0 and n = —1 via J_; = J;, [see Eq. (3)
and Fig. 1], so intensity can flow to the left from n = 0 to
n = —1, which occurs when the initial power is sufficiently
low. For Z € [%, %], the strongest coupling is betweenn = —1
and n = -2, and for Z € [%, %], the strongest coupling is
between n = —2 and n = —3; thus we expect the intensity
to travel three sites to the left over one period. Similarly,
for the rightward-moving solution starting at n = —1, the
rightward coupling is strongest for a rightward sequence of
sites on the Z intervals [O, %], [%, 1], and [‘3—‘, %]; thus this
solution moves to the right three sites in two periods. A similar
rightward-moving behavior occurs when the initial excited
site is n = 1 (not shown). The first coupling for n = 1 is to
the right on the interval [%, %]; the behavior is then similar
to that of the rightward-moving solution for n = —1. We
thus conclude that this fundamental difference between the
leftward- and rightward-moving solutions and the associated
speeds is a direct consequence of the form of the periodic
coupling function, together with the lattice site at which the
initial intensity is placed; this is suggestive also towards the
difference in power thresholds noted above. In addition, we
believe that this intuitive explanation is quite straightforward
and thus appealing towards understanding solitary-wave mo-
tion in such nonautonomous discrete nonlinear systems.

B. Simplified model

A further heuristic and qualitative (yet in our view informa-
tive and intuitive) explanation of these different behaviors can
be obtained by considering the simplification of the system
of Eq. (2) obtained by approximating the coupling functions
J.(Z) with step functions, as is done, e.g., in the setting of

J1

Jo

0 1/3 2/3 1
Z

FIG. 4. Simplified coupling functions Eq. (10) for Z € [0, 1].

the Kronig-Penney model [37]. Note that such a perspective
has also been beneficial in a quantitative fashion in the case
of nonlinearity (rather than dispersion) management in works
such as [41,42]. Specifically, we define

Cx0.1/31(2), n =2 (mod 3)
J.(Z) = { Cxpy3231(Z), n=1(mod 3) (10)
Cxp/3.11(2), n =0 (mod 3)

for Z € [0, 1] and extend periodically for all Z (Fig. 4). The
function x(,.5(Z) is the characteristic function of the interval
[a, b], defined by

_ |1 forZ e [a,b]
Xiap)(Z) = {0 otherwise.

Using this approximation, on the interval Z € [0, %], the only
active coupling is between the sites n = 0 (mod 3) and their
left neighbors, which effectively creates a string of indepen-
dent dimers. Our analysis follows Kenkre and Campbell’s
study of self-trapping in a DNLS dimer [38]. Similar to what
was done in that work, we will derive a second-order differ-
ential equation for the difference in intensity between the two
sites of the dimer. This ordinary differential equation (ODE)
will have solutions in terms of Jacobi elliptic functions and
these will be used to explain the observed transition between
mobile and trapped solutions as the coupling strength is in-
creased. We note that this allows us to write the intensities
lu,|? (not the complex amplitudes u,) in terms of Jacobi ellip-
tic functions. Looking only at the sitesn = Q0andn = —1,i.e.,
one of these dimers, the system of equations Eq. (8) reduces
to the four equations

dpoo .
. = LC — - — k)
17 iLC(p—1,0 — Po,—1)
dp_1,_1
— = LC(pp.—1 — P-1.0),
17 iLC(po,—1 — p-1,0)
dp_10 .
Z iL[C(p0,0 — p—1,-1) + &(0—1,—1 — 00,0)P—1,0],
dpo-1 .
A IL[C(p-1,-1 — po,0) + &(00,0 — p—1,—1)p0,~1].

(an
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Let p = poo — p—1,—1 be the difference between the intensi-
ties of site n = 0 and site n = 1. As in [38], we will derive a
second-order ODE for p. Following the analysis in [43], we
define

q =1(p-1,0 — Po,~1)s

F=p-10— P01 (12)
Using Eq. (11), we obtain the system of first-order ODEs
Z—g =2LCq, (13)
99 _ _Lacp - g, (14)
dz
o —Lgpg. (15)
dz
Since
d dp
de =2p— 7= =4Lcpq,
Eq. (15) becomes
dr 8 d 3
dz ~ " acdz’

which has the solution

r=r 4c(” — 1) (16)
where ryp and pg are the initial conditions for r and p, re-
spectively, at Z = 0. Differentiating Eq. (13) and substituting
Eq. (14) and Eq. (16), we obtain the second-order differential
equation for p,

d*p

7= L*(Ap — Bp),

g

B= > 17
This second-order autonomous differential equation with a
linear term and a cubic nonlinearity has an exact solution in
terms of Jacobi elliptic functions [see Sec. 22.13(iii) of [44]
as well as [45]]. We are interested in the case of a single-site
initial condition with intensity P at site n = 0, for which
po = P and ry = 0. Following [38], for fixed C and g, Eq. (17)
has an exact solution

A = —4C* 4 2Cgry + %2 e

Pen(2CLZ:k = &), P < P* "
Z) =
PO = pan (£EZ:k=%), P> P, (1%)
gP
where the critical intensity P* is given by

4C
Pr=—. (19)

8

The functions cn(z; k) and dn(z; k) are the Jacobi elliptic
functions with elliptic modulus k (we note that these are often
written in terms of the elliptic parameter m, where m = k?).
Since the power of the solution is conserved, i.e., |ug(Z)|* +
lu_1(Z)|> = P, the intensity at sites n = 0 and n = —1 on the
interval Z € [0, %] is given by

luo(Z)|* =
lu_1(2)]* =

P+ p2)1,
1P — p2)1. (20)

P
TN

[CRR]
- v

=0.250"

—
~-
~—

0o 13 23 1 0o 13 23 1
z Z

FIG. 5. Plot of |ug|? in simplified model, given by Eq. (20), vs Z
for initial intensity (a) P < P* and (b) P > P*. Although this solution
holds only for Z € [0, 3] Z = % is marked with a solid vertical
line), it is continued to Z = 1 for illustrative purposes. The other

parameters are C = 0.5, g = 1, and P* = 2.

There are two fundamental behaviors of the single-site initial
condition in the simplified model, depending on whether P <
P* or P > P*. In the dimer, a sharp transition between the
two behaviors occurs at P = P* (see [38]). We note that this
transition is somewhat blurred in this model, even with the
simplified coupling function, since the initial dimer coupling
is broken [J,(Z) = 0] at Z = % Below we will discuss P <
P* and P > P* separately.

1. Case 1: P < P*

For P < P*, the solution p(Z) involves the Jacobi cn func-
tion, which oscillates about 0 with period 2K (k)/CL, where

/2
Kio= [ = e

0 V1—k2sin’6
is the complete elliptic integral of the first kind. (We note
that the period of oscillation becomes infinite as P approaches
P* from below.) The intensity |uo|?, given by Eq. (20), ex-
hibits large-amplitude oscillations with this period from 0
to P, centered at P/2 [Fig. 5(a)]. Intensity initially flows
to the left; if the coupling is not cut off at Z = g (and no
other couplings are activated), there is a critical value Z; of
Z at which the intensity from site n = 0 has been completely
transferred to site n = —1; after this point, intensity starts
flowing back in the other direction. This critical value Z{ is
larger for larger starting intensity P [see Fig. 5(a)]. For most
configurations, including all of the examples in Fig. 5, the
critical value Z} > %; thus there is still intensity remaining in

site 0 when the coupling switches off at Z = % Fig. 6(a) plots
the fraction of intensity that has been transferred from site
n=0tositen=—latZ = 3 as the starting intensity varies.
If this fraction is close to 1, numerical evolution experiments
find leftward-moving solutions starting from a single-site ini-
tial condition [see Figs. 7(a)-7(c)]. As the initial intensity P
approaches P* from below, the fraction of intensity transferred
atZ = % decreases to approximately 0.5 and we do not expect
to see pure leftward-moving solutions. Numerical evolution
experiments in this case show that the initial intensity splits
into a leftward- and a rightward-moving solution [Fig. 7(d)].
We note that it is possible to choose parameters so that, for
the simplified model, the period of p(Z) is —, ie., Zf =
so that the initial intensity has been completely transferred
from n = 0 to n = —1 when the coupling switches off. The
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FIG. 6. (a) Fraction of intensity transferred from site n = 0 to site
n=-latZ = % for P < P* for varying C. (b) Fraction of intensity
remaining at site n =0 at Z = % for P > P* for varying C. For each
curve, P* is indicated with a star. The other parameter is g = 1.

next coupling is then between n = —1 and —2 for Z € [%, %].
This pattern continues, and so for this choice of parameters,
the simplified model supports an exact leftward-moving solu-
tion which persists for a large interval in Z [Figs. 8(a) and
8(b)]. A comparison between the evolution of the original
and simplified systems from single-site initial conditions for
P < P*, illustrating the similarity of the model dynamics, is
shown in Figs. 9(a)-9(c). We will see below in Sec. IIIC2
that left-moving coherent structures exist in the full model, but
these do not have pure single-site initial conditions. We also
note that by symmetry of Eq. (11), a similar analysis holds
for rightward-moving solutions starting with single-site initial
conditions at n = —1 on the interval Z € [0, %].

2. Case 2: P > P*

For P > P*, the solution p(Z) involves the Jacobi dn func-
tion, which oscillates about 1 with period 4K (k)/gPL, where
K (k) is defined by Eq. (21). (We again note that the pe-

FIG. 7. Colormap showing the intensity of the solution of Eq. (5)
with the simplified coupling function Eq. (10) for P < P* evolving in
Z, starting with a single excited site at n = 0 with intensity (a) P =
0.5, (b) P=1, (c) P=2, and (d) P = 3. The fraction of intensity
transferred from site n =0 to site n = —1 at Z = % is (a) 0.9910,
(b) 0.9959, (c) 0.9909, and (d) 0.6636. The other parameters are P* =
32,C=038,andg=1.

10 0 10 0 1/3
A
0
(d)
10
N 20
30
40
-10 0 10 0 1/3
n A

FIG. 8. (a) and (c) Colormap of evolution in Z of the single-site
initial condition in the simplified model and (b) and (d) intensity
lug|? of site n = 0 (right) on Z € [0, 1] (right). The parameters are
chosen so that (a) and (b) Z} = % and (c)and (d) Z7 = % The starting
intensity (a) and (b) P = 0.0625 and (c) and (d) P = 1.9453. The
other parameters are C = 0.75 and g = 1.

riod of oscillation becomes infinite as P approaches P* from
above.) The intensity |up|? exhibits small-amplitude oscilla-
tions (which become progressively smaller as P is increased)
with this period about the initial intensity P [Fig. 5(b)]. As in
case 1, the intensity initially flows to the left. If the coupling
is not cut off at Z = % (and no other couplings are activated),
there is a critical value Z; of Z at which point the system has
returned to its initial state, i.e., the intensities at sites n = 0
and n = —1 are once again P and 0, respectively. For most
configurations, including all of the examples in Fig. 5, the
critical value Z7 # %; thus when the coupling switches off,
there is some net transfer of intensity to the neighboring site

(a) 0 (0) 15
0.4 . Y

o 0 \ 5 1\
0.2 —original (—original
01 ] simplified| . 05 simplified| )

0 0 1/3 0 1/3
Z Z
(d) 2.6 3.5 (f) 4.5

—original (e)
simplified|

0 1/3
Z

3.4

3.2

—original |
simplified

3.1
0 1/3

0 1/3
4

FIG. 9. Intensity |u|> of site n =0 on Z € [0, 1] for P < P*

[@)P=0.5,(b)P=1,and (c) P=1.5]and P > P* [(d) P = 2.5,
(e) P = 3.5, and (f) P = 4.5] for the original system (blue solid line)
and the simplified system (orange dotted line). The other parameters
areC=05,g=1,and P* = 2.
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FIG. 10. Colormap showing the intensity of the solution of
Eq. (5) with the simplified coupling function Eq. (10) for P > P*
evolving in Z, starting with a single excited site at n = 0 with inten-
sity (a) P =4, (b) P =5, (c) P =6, and (d) P = 7. The fraction of
intensity remaining at sitten = 0 at Z = % is (a) 0.9938, (b) 0.8853,
(c) 0.9815, and (d) 0.9797. The other parameters are P* = 3.2,
C=038,andg=1.

n = —1. Fig. 6(b) plots the fraction of intensity remaining at
siten=0atZ = % for varying C. If this fraction is close to
1, numerical evolution simulations show stationary solutions
starting from a single-site initial condition; the closer this frac-
tion is to 1, the longer these stationary solutions will persist
before breaking up (see the case examples in Fig. 10).

As in case 1, we note that it is possible to choose
parameters so that, for the simplified model, the system re-
turns exactly to its starting condition at Z = %, ie, Z) = %
[Fig. 5(b)]. In this case, for a single-site initial condition with
a specific starting intensity, the simplified model supports
a localized in space, time-periodic solution which persists
for a large interval in Z. A comparison between the evo-
lution of the original and simplified systems for P > P* is
shown in Figs. 9(d)-9(f). We discuss genuinely time-periodic
(numerically exact) coherent structures in the full model in
Sec. IIIC 1.

C. Coherent structures in the full model

These evolution experiments are strongly suggestive of the
fact that the system Eq. (5) supports two classes of coherent
structures: localized in space, time-periodic solutions, which
are centered at a particular lattice site, and moving solutions,
which reproduce themselves exactly a specific number of sites
to the left or to the right. Recall that for the rescaled system
Eq. (5), the coupling period is 1. The stationary coherent
structures will be periodic orbits whose period is a multiple
of the coupling period, i.e., a positive integer N. We note that
while it may be possible to find such solutions which have
a noninteger period, Floquet analysis requires that the period
of the solutions be commensurate with that of the coupling.
Similarly, we will look for moving solutions that reproduce
themselves, shifted left or right, after an integer period.

For appropriate choices of system parameters, we can com-
pute both types of solutions numerically. For both localized
(i.e., nonmoving) and moving solutions, we use a shooting
method with periodic boundary conditions imposed on Z,
starting with a single-site initial guess. In addition, for the
former case, we validate this method by using numerical
parameter continuation with AUTO [46] to solve a periodic
boundary value problem. Unless otherwise specified, the pa-
rameters in the section are the same as in the preceding one.

1. Stationary (nonmoving) solutions

First, we look at the stationary solutions. At the anti-
continuum limit (Jy =0 and C = 0), the lattice sites are
decoupled and an initial intensity P at lattice site n will yield
a standing-wave solution of frequency P, i.e., of the form
un(Z) = +/Pe*™*Z_ Since such a solution has period 1/P and
stationary solutions must have an integer period, these solu-
tions will exist in a discrete family for every integer period N,
i.e., approximately P = k/N for sufficiently large positive in-
teger k. For period N = 1 and the parameters in the preceding
section, for example, we expect to have time-periodic non-
moving solutions for approximate integer intensities P > 2
(see Figs. 11 and 12 for the first two of these solutions). By
looking at the intensity [Figs. 11(c) and 12(c)] and the real
part [Figs. 11(d) and 12(d)] of the central site n = 0, we see
that they are approximately standing waves with frequencies
2 and 3, respectively. We note that the stationary solutions
do not decay to 0 with increasing |n|, but rather the tails
exhibit small-amplitude oscillatory patterns [see Figs. 11(b)
and 12(b)]; the specific pattern of oscillations depends on
the lattice size (not shown). Looking at the sites adjacent to
the central one, the left neighbor u_; peaks on the interval
[0, %] when the coupling J>(z) is most active, and the leftward
flow Qé < 0, indicating flow of intensity out of site 0 to the
left. The right neighbor peaks on the interval [%, 1] when the
coupling Jo(z) is most active, and the rightward flow OF < 0,
indicating flow of intensity out of site O to the right. Both 0}
and Qg are close to 0 on the interval [%, %], when neither has
strong nearest-neighbor coupling.

Since these nonmobile solutions are true periodic orbits
with integer period, so their period is equal to or commen-
surate with that of the coupling, their spectral stability can
be determined by Floquet theory. Numerical computation of
the Floquet multipliers of the stationary solutions is shown
in the insets in Figs. 11(a) and 12(a). The lower-power solu-
tion has two pairs of Floquet multipliers off the unit circle,
which is characteristic of an oscillatory instability. Long-term
evolution in Z [Fig. 11(f)] shows that this solution re-
mains coherent until approximately Z = 130. By contrast, the
Floquet spectrum of the higher-power solution lies on the
unit circle, indicating spectral stability. Long-term evolution
in Z [Fig. 12(f)] shows that this solution is still coherent at
Z = 500.

Using numerical parameter continuation, we start with the
DNLS soliton at C = 0 and slowly vary C, tracing the curves
in Fig. 13 (Jy = 0.05 throughout). Since we are looking for
solutions with period 1, the starting single-site intensity must
take integer values so that the frequency of the DNLS standing
wave at C = 0 is commensurate with this period. In all cases,
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FIG. 11. (a) Initial intensity |u,(0)%>, with the inset showing
Floquet multipliers, and (b) logarithm of the initial intensity for the
stationary solution with an approximate power of 2. (c) Intensity and
(d) real part of three central sites over one period. (¢) Leftward flow
Q% and rightward flow QF of the intensity at the central site n = 0
and (f) long-term evolution in Z. The other parameters are C = 0.4
and Jy = 0.05.

a turning point is reached, as C is increased, at which point the
parameter continuation in the coupling parameter C reverses
direction. This turning point occurs at a larger value of C for
solutions which start at a higher initial intensities at C = 0. All
stationary solutions initially have their Floquet spectrum con-
fined to the unit circle and thus are spectrally stable. Spectral
stability is lost at some point before the turning point observed
in the graph, when Floquet multipliers collide and leave the
unit circle, creating an oscillatory instability. Solutions on
the upper branches of the bifurcation diagram are periodic
solutions to the DNLS equation which are not pure standing
waves. To leading order, these upper solutions are the sum
of two Fourier modes, as opposed to standing waves, which
comprise a single Fourier mode. Substituting the finite Fourier
ansatz

N
Mn(Z): Z an’keZTFikZ
k=—N

-10

10

n
3 o
ot
3 o

. 2
0 1/3 2/3 1 0o 1/3 2/3 1
Z Z

2.5
2
1.5
1
0.5
) 0 )
n

FIG. 12. Same as Fig. 11 but for the nonmoving solution with an
approximate power of 3.

0 1/3 2/3
Z

into Eq. (5) and projecting onto each of the Fourier basis
functions, we can obtain expressions for the coefficients a, x
for each wave number k. A fast Fourier transform of the
numerical solution on the upper branches suggests that the so-
lutions at each site are composed predominantly of the modes
with wave numbers 0 and 1. Thus, to leading order, these
solutions are of the form u,(Z) = a,.o + a,.1e*"“%, where the
coefficients a, o and a, ; satisfy

3 2
Jo(@nt1,0 + an-10) + a;, o + 2a, 1a,0 = 0,

3 2
Jo(@nt11 + an—11) + a, | — wan + 2a,,1a, = 0.

We note that if a, o = O for all , the second equation reduces
to the DNLS equation, in which case the solution is a standing
wave.

We can also continue solutions in the coupling period L
(Fig. 14). The intensity of the central peak, hence the overall
power of the solution, decreases with increasing L; thus solu-
tions with greater starting power at L = 2 persist for higher
L. For example, solutions with (approximate) starting powers
of 2, 3, and 4 at L = 2m persist up to L = 11.7, 15.7, and
16.6, respectively (see Fig. 14). Again, there is a turning point
where the continuation reverses directions, which occurs at
larger L for higher-power branches. The central site for the

024214-8



STANDING AND TRAVELING WAVES IN A MODEL OF ...

PHYSICAL REVIEW E 108, 024214 (2023)

(@) bt

........
.....
. .
______
.
.t
(e
.
.t
.

....................
........
.....
-----
.......
.
.
.
I

Power
[SV)

o
.
.

)
@
1¢ ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8
(b) C
3 3 3 3
-, e ,® L@
§ 1 1 1
— 0 0 0
-10 0 10 -10 O 10 -10 O 10 -10 O 10

,
[
t

-10 -10 -104 » -10
-10 0 10 -10 0O 10 -10 O 10 -10 0 10
n n n n

FIG. 13. (a) Branches of stationary solutions with spatial
period (in Z) of 1, obtained from numerical parameter continuation
starting with the DNLS soliton at C = 0. (b) Intensity (top row)
and logarithm of the intensity (bottom row) of the initial condition,
corresponding to C = 0.05 at the labeled points on the bifurcation
diagram in (a). Solid lines correspond to solutions with the Floquet
spectrum contained in the unit circle and dotted lines correspond to
solutions with some of the Floquet spectrum outside the unit circle.
Solutions on other branches at these values of C are qualitatively
similar.

upper and lower branches of each loop has approximately
the same intensity; the higher power of the upper branches
is due to higher intensity in the tails of the solutions. For
contrast, the spatial period of the solutions in Fig. 2 in [32]
is L = 8000, which simulates the adiabatic regime; since the
power of the solution decreases as L is increased by parameter
continuation, we would have to start with a solution with
extremely high power at L = 27 to be able to reach such a
large L using this method. Obtaining such solutions with a
very large spatial period L directly by a shooting method is
similarly computationally impractical.

Finally, we note that, while we have only considered non-
moving solutions with period of 1, stationary solutions do
exist for other positive integer periods. For example, if we
start with a single-site initial condition with intensity k/2
for positive odd integer k, we expect that we will obtain a
stationary solution with period 2. (We have verified that this is
the case for single-site initial conditions with intensities % and

Power

FIG. 14. Parameter continuation in coupling period L. The plot
shows the power of the solution vs L, starting with solutions of
approximate power 2, 3, and 4 at L = 2x. Solid lines correspond
to solutions with the Floquet spectrum contained in the unit circle
and dotted lines correspond to solutions with some of the Floquet
spectrum outside the unit circle. The diagram is shown only for
L > 2m. The other parameters are Jy = 0.05 and C = 0.25.

%.) While in principle this can be done for any integer period,
it becomes computationally intractable for larger periods.

2. Moving solutions

Next we look for moving solutions. For a given lattice
size m, we find that leftward-moving solutions exist (Fig. 15)
for all values of C within an interval [C;(m), Cr(m)] [see
Figs. 16(b) and 16(c)]. These are true coherent structures,
in that the entire solution reproduces itself exactly after one
period, shifted three sites to the left. (In the numerical sim-
ulation, where we are using periodic boundary conditions on

(a) 0.4 (b) 0
e 5
=02 52
= =
O L
-10 0 10 -10 0 10
(d 0
jZU 0.3
N I 0.2
0.1
S 10
2 -10 0 10

FIG. 15. (a) Initial intensity |u,(0)|> and (b) logarithm of the ini-
tial intensity for the left-moving solution. (c) Intensity of the solution
evolved in Z over a period for a few select sites and (d) space-time
contour plot evolution of the intensity for the traveling wave.
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FIG. 16. (a) Intensity of the tails for the left-moving solution
and for three values of the lattice size m. (b) Interval of existence
[CL(m), Cr(m)] of the left-moving solution. (c) Power of the left-
moving solution vs C for parameter continuation in C. (d) Maximum
intensity of the tails for the left-moving solution vs C. The minimum
is at C* = 0.4709 for all lattice sizes m.

the lattice, we can think of this as a circular shift.) We note
that is possible to find solutions which reproduce themselves
modulo a phase multiplier e after one period, and these will
have different power from the true coherent structures; we
will not consider these solutions herein. Generically, these
solutions have oscillatory tails [Fig. 15(b)] and the amplitude
of these oscillations depends on the lattice size [Fig. 16(a)].
Notice, however, that the corresponding wave number in the
far field does not. At a critical value C* of C (C* = 0.4709 for
Jo = 0.05 and L = 2m), the tail oscillations vanish, leaving
a localized traveling solution [Fig. 16(d)]. Most notably, the
value of C* is independent of the lattice size m, although
it does depend on both L and Jy (Fig. 17). The left-moving
solution appears to be stable when C = C* [see Fig. 20(a)];
at minimum, it persists unchanged for at least 1000 periods.
In addition, the solution appears to be stable for an interval
in C containing C* (not shown). The presence of C* seems to

(a)

1
0.8
O
0.6
0.4 . |
5 10 0 0.1 02
L Jo

FIG. 17. (a) Plot of the critical value C* of C at which the inten-
sity of the tails of the left- and right-moving solutions is a minimum
vs L, with J, = 0.05. (b) Plot of C* vs Jy, with L = 2.

b) 0
@06 )
~ =2
=04 —=
= =4
=02 S
0 &0
-10 0 10 100 10

I\ [—u

—_—Uy

FIG. 18. (a) Initial intensity |u,(0)> and (b) logarithm of the
initial intensity for the right-moving solution. (c) Intensity of the
solution evolved in Z over a period for a few select sites and
(d) space-time contour plot evolution of the intensity for the traveling
wave.

suggest an analogy with the so-called Stokes constant calcula-
tion in similar traveling (DNLS-type) problems, as in the work
of [47]. Further expanding on this connection could be an
interesting problem for the future (but is outside the scope of
the present work). Since the traveling solution is not a periodic
orbit, we cannot use standard Floquet analysis to determine its
spectral stability. Nevertheless, since the traveling solution is
periodic modulo a shift by an integer number of lattice points,
it might be possible to adapt some aspects of Floquet theory
to this case. We note that while the parameter continuation
in Fig. 16(c) continues past the turning points at Cy(m) and
Cgr(m) (so that there are solutions with different powers for
the same value of C), this merely represents growth of the
tail oscillations, while the intensity of the central site remains
essentially unchanged; since none of these solutions are sta-
ble, the continuation diagram is not shown past these turning
points.

Similar results are obtained for the right-moving solutions
(Figs. 18 and 19). Once again, the tail oscillations vanish
at a critical value C* of C (C* = 0.5054 for J; = 0.05 and
L = 2m), which is close but not equal to the value for the
left-moving solution. The right-moving solution also appears
to be stable at (and near) C = C* [see Fig. 20(b)]. Unlike
the left-moving solution, which is symmetric [Fig. 15(a)],
the right-moving solution is asymmetric [Fig. 18(a)]. For the
initial condition of the right-moving solution, the intensity
profile is skewed to the right. In addition, the intensity of
the central site for the right-moving solution (approximately
0.6842) is significantly higher than that of the left-moving
solution (approximately 0.3416).

D. Collisions

Finally, we briefly explore the resulting phenomenology
when a left-moving and a right-moving solution collide, an
event shown in Fig. 21. For the relevant initial condition,

024214-10



STANDING AND TRAVELING WAVES IN A MODEL OF ...

PHYSICAL REVIEW E 108, 024214 (2023)

(@) 0.02 (b)
—m = 30
—m = 36 0.6 \/\_~_~_4
- m =42
3: 0.01 @) 04 ,.. ..... oe®
0 LANNNY 02l C(m)
0 10 20 0 500
n m
(© @ 5
2 1 —m = 300 % 10 L .
g , ..... m = 210 S _______ ” }.’/_,
m =120
qé 1.5 \ —em=30 B8 102 500
@) \ ':‘. Y o —_m =
o, \ H VO e m = 210
1 .\\ ) '; % m = 120 !
R =Y 1o-41C m =30
0.4 0.5 0.6 0.4 0.5 0.6
C C

FIG. 19. (a) Intensity of the tails of the right-moving solution
for three values of the lattice size m. (b) Interval of existence
[CL(m), Cr(m)] of the right-moving solution. (c) Power of the right-
moving solution vs C for parameter continuation in C. (d) Maximum
intensity of tails of the right-moving solution vs C. The minimum is
at C* = 0.5054 for all lattice sizes m.

we splice together well-separated copies of the left-moving
and right-moving solutions. To avoid combining the tail
oscillations of the two solutions, we choose to simulate such
a scenario when C = C* for the left-moving solution so that
its tail oscillations are suppressed. The reasons for this are
threefold. First, since we are interested in collisions between
the localized structures, we seek to minimize effects stemming
from the small but nonzero background oscillations. Second,
we wish to minimize the effect of lattice size, since these
tail oscillations depend on the size of the underlying lattice
(and hence would impact the reproducibility of the results for
different size lattices). Finally, in a different case, the tail os-
cillations would be superposed, producing more drastic events
of dispersive radiation wave packets throughout the course of

L 0.342 . 0.746
g [ ] ¢ l
£ 0.3415[ 18 0.745
2 0.341 2.0.744! ‘
250 500 750 1000 0 250 500 750 1000
VA VA

FIG. 20. Colormap of long-term evolution in Z of (a) the
left-moving solution (C = 0.4703 and m = 240) and (b) the right-
moving solution (C = 0.5054 and m = 300) for C = C*. (c) Inten-
sity of the site with a peak intensity of the moving solution over
1000 periods.

—left-moving
«==« right-moving

80 100

FIG. 21. Colormap of evolution in Z and the space denoted by
n of the collision between the (a) left-moving and (b) right-moving
solutions. Shown in (b) is a zoomed-in view of the first collision,
representing more clearly the intensity loss that the waves incur as
a result. (c) Evolution of the site with peak intensity for the profile
bearing the left- and right-moving solutions. The other parameters
are m = 120 and C = 0.4703.

our simulations. Numerical evolution experiments show that
although both structures emerge from the first collision, they
both lose intensity in the form of radiation of intensity to the
left (recall that the overall power of the solution is conserved).
Intensity is lost with each subsequent collision [Fig. 21(c)]
within the periodic ring of our domain. Accordingly, the
waveforms keep disintegrating (a feature possibly due to the
nonintegrability of the solitary waves) as a progressive out-
come of the relevant collisions.

IV. CONCLUSION

In the present work we have studied coherent structures
in a one-dimensional optical waveguide array with periodi-
cally modulated coupling, which was directly motivated by
a sequence of impactful physical experiments in the work of
[16,30-32]. We have found that the system exhibits two fun-
damental coherent structures in which the bulk of the intensity
is concentrated on a single site. At low intensity, we find
moving solutions, in which the intensity propagates leftward
or rightward along the lattice. The direction and speed of
propagation depend on which site is initially excited; this can
be explained in terms of the coupling function which is most
active at a given propagation distance z. At high intensity,
we find stationary solutions, which are periodic orbits of the
system. By analyzing a simplification of the model where the
couplings between waveguides are given by step functions,
we are able to explain this behavior by looking at an effec-
tive dimer setting, which features the celebrated self-trapping
transition. Indeed, in the dimer, when the couplings do not
change, there is a sharp transition between solutions in which
intensity is completely transferred back and forth between the
two adjacent nodes and ones in which the intensity is mainly
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confined to one of the waveguides. For larger lattices, the cou-
plings change three times every spatial period. This interrupts
the intensity transfer in the dimer, which explains the fact that
the sharp transition is now smoothened (i.e., is more gradual)
in larger lattices. Nevertheless, the principal phenomenology
is still present, as is also revealed by the direct comparison of
the two models (the original one and the variant with the step
functions). Using Floquet analysis, we find that the stationary
coherent structures are stable for a wide range of parameters.
The moving solutions are characterized by small-amplitude
oscillatory tails, whose amplitude and configuration depend
on the lattice size. There is however a critical set of parameters
for which these tail oscillations disappear. Interestingly, these
critical parameters do not depend on the lattice size, and the
moving solution appears to be stable for these parameters.
One potential avenue for future investigation would be to
examine what happens for very large spatial period L, which
is the regime studied in [32]. Using our numerical param-
eter continuation methods, this would require starting with
very-high-power single-site solutions at C = 0 (see Fig. 14).
So far, this has not been found to be computationally feasi-
ble and would likely require a different numerical approach
(indeed, an adiabaticity-based one was used earlier in [32]).
Another direction would be to explore the solutions on the
upper branches of the bifurcation diagram in Fig. 13. These
solutions, to leading order, involve Fourier modes of two
different wavenumbers. Although we expect that the qualita-
tive behavior will be the same for similar coupling functions,
we could explore similar systems with unit cells comprising
different numbers of sites. For a two-site unit cell, there would

be left-right symmetry, and we expect that the rightward- and
leftward-moving solutions would be mirror images of each
other. It would be interesting to investigate what occurs if the
unit cell comprises more than three sites, a setting that has also
been explored in the above experiments. Furthermore, in the
vein of the earlier work of [35], understanding the impact of
higher dimensions (and possibly topological lattices therein)
in the relevant phenomenology would also be of substantial
interest. Finally, it is relevant to point out that the study of
non-Hermitian systems has been gaining considerable traction
in recent years (see, e.g., the review in [48] as well as [49]). It
would be interesting to explore the impact of different types of
boundary conditions (including of ones violating Hermiticity)
to the nonautonomous lattice settings considered herein.
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