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ABSTRACT: Observations of clouds and precipitation in the microwave domain from the active dual-frequency precipi-
tation radar (DPR) and the passive Global Precipitation Measurement (GPM) Microwave Imager (GMI) onboard the
GPM Core Observatory satellite are used in synergy with cloud tracking information derived from infrared imagery from
the GOES-13 and Meteosat-7 geostationary satellites for analysis of the life cycle of precipitating cloud systems, in terms of
temporal evolution of their macrophysical characteristics, in several oceanic and continental regions of the tropics. The life
cycle of each one of the several hundred thousand cloud systems tracked during the 2-yr (2015-16) analysis period is di-
vided into five equal-duration stages between initiation and dissipation. The average cloud size, precipitation intensity, pre-
cipitation top height, and convective and stratiform precipitating fractions are documented at each stage of the life cycle
for different cloud categories (based upon lifetime duration). The average life cycle dynamics is found remarkably homoge-
neous across the different regions and is consistent with previous studies: systems peak in size around midlife; precipitation
intensity and convective fraction tend to decrease continuously from the initiation stage to the dissipation. Over the three
continental regions, Amazonia (AMZ), central Africa (CAF), and Sahel (SAH), at the early stages of clouds’ life cycle,
precipitation estimates from the passive GMI instrument are systematically found to be 15%-40% lower than active radar
estimates. By highlighting stage-dependent biases in state-of-the-art passive microwave precipitation estimates over land,
we demonstrate the potential usefulness of cloud tracking information for improving retrievals and suggest new directions
for the synergistic use of geostationary and low-Earth-orbiting satellite observations.

KEYWORDS: Convective storms/systems; Precipitation; Microwave observations; Radars/Radar observations;
Remote sensing; Satellite observations

1. Introduction water is performed from a closer distance, from low-Earth-orbit
(LEO, typically between 400- and 2000-km altitude). Passive
microwave radiometers on LEO have a scan swath width of
1700 km at most and complete between 15 and 20 orbits
around Earth every day. A minimum of about 8 passive micro-
wave radiometers in LEO is therefore necessary to cover the
whole globe every 3 h, and more than a hundred instruments on
synchronized orbits would be necessary to match the 10-min
temporal sampling of GEO optical imagery.

While frequent sampling and global coverage is more easily
achievable with GEO optical imagers than with LEO micro-
wave radiometers, microwave radiometry provides more direct
information than optical imagery regarding the clouds’ water
content and the precipitation process (as visible and infrared
frequencies cannot penetrate optically thick clouds). Nowadays,
the most accurate satellite global quantitative precipitation
estimation (QPE) products rely essentially on LEO passive
microwave measurements, with GEO infrared measurements
being used to “fill the gaps” between overpasses of passive
microwave radiometers (Kidd et al. 2021). A few attempts

regions of Earth are in fact not covered by GEO optical imagery). have been made to supplement passive microwave brightness
In contrast, in the microwave domain, physical measurement temperature information with GEO infrared brightness tem-

constraints impose that the remote sensing of atmospheric ~ Perature information to improve the accuracy of instantaneous
estimates of precipitation intensity at the times of passive micro-

wave overpasses (Gorooh et al. 2022). However, it is generally
found that adding only the collocated infrared brightness tem-
Corresponding author: Clément Guilloteau, cguillot@uci.edu perature at the time of the microwave observation leads to

The observation of clouds from satellites has a relatively
long history. The first meteorological satellite, Vanguard-2,
carrying a cloud optical scanner (Hanel et al. 1960), was
launched by the United States in 1959, less than 2 years after
the first-ever artificial satellite, Sputnik-1, was put into orbit
by the USSR. Since then, satellite radiometric measurements
of atmospheric water, as vapor, or in condensed phase as hy-
drometeors (liquid drops or ice particles, suspended in clouds
or falling as precipitation), have gone a long way. These radio-
metric measurements are either made in the optical domain
(visible and infrared) or in the microwave domain.

Optical imagery can operate from geostationary orbit (GEO,
36000-km altitude). The GEO allows one single instrument
to cover continuously a wide section of the globe (half of it in
theory); the most recent GEO optical imagers are being able
to perform a full-disk scan every 10 min. In practice, consi-
dering the geometrical distortions arising from projecting a
spherical surface on a plane, a minimum of four GEO satel-
lites is necessary to cover the whole globe (and the polar
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very little improvement as compared to using the microwave
observations alone.

Yet, the ability of GEO imagery to continuously monitor
the life cycle of cloud systems, from their initiation to their
dissipation, is not matched by LEO microwave radiometry.
The operational algorithms retrieving atmospheric hydrome-
teor profiles and atmospheric water content from microwave
spectral signatures operate in an “instantaneous snapshot”
framework, and do not exploit the temporal information in the
observations. We assert here that the complementarity between
GEO and LEO observations is not fully exploited by the current
operational QPE algorithms. The present study suggests new
directions toward efficiently using together these different types
of satellite observations to improve global QPE products.

Even when observations are available at regular time inter-
vals and with high-frequency sampling, as is the case with the
10-min GEO imagery, exploiting temporal information and
analyzing the temporal dynamics of clouds are rendered non-
trivial by the clouds’ motion. Indeed, as clouds can travel over
thousands of kilometers, one cannot fully comprehend their
life cycle by analyzing the temporal variability of the observed
atmospheric signal at a fixed location (Eulerian approach). To
follow the evolution of clouds over time, one must be able to
track their displacements (Lagrangian approach). Over the
years, various cloud-tracking algorithms have been developed
to automatically detect and track clouds systems in sequences
of GEO infrared satellite images (Smith and Phillips 1972;
Wolf et al. 1977; Escrig et al. 2013; Ai et al. 2016; Feng et al.
2021, 2023). In the present article, we utilize the outputs of
the Tracking of Organized Convection Algorithm through a 3D
segmentation (TOOCAN) cloud tracking algorithm (Fiolleau
and Roca 2013a) to analyze the life cycle of cloud systems in the
tropics over South America, Africa, and the Atlantic Ocean.
The TOOCAN information is cross analyzed with passive
and active microwave observations from the Global Precipi-
tation Measurement (GPM) Core Observatory satellite. The
first objective of our analysis is to establish a climatology of
cloud systems focusing on their macrophysical characteristics,
including size, life duration, precipitation intensity, precipita-
tion top height, convective, and stratiform fractions. The
cloud tracking information allows us to derive a dynamical
climatology by statistically characterizing the quantities of
interest and their interrelationships at every stage of the life
cycle of cloud systems. The second objective of our analysis
is to assess the consistency between the estimates of precipi-
tation intensity derived, respectively, from the active radar
(DPR) and passive radiometer (GMI) onboard the GPM Core
Observatory satellite, at the different stages of the clouds’ life
cycle. As part of this second objective, we analyze in particular
the biases and errors in the operational NASA Goddard profil-
ing algorithm (GPROF), which derives precipitation intensity
from passive microwave spectral signatures, and which is the
basis of the global satellite mapping of precipitation operated
through the international GPM constellation (Hou et al. 2014;
Kidd et al. 2021). We eventually aim at demonstrating the
potential of GEO cloud tracking information for improving
global satellite precipitation mapping products, in particular
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FIG. 1. Map of the five tropical areas retained for the study,
which are AMZ, CAF, SAH, GG, and CAO. In those regions,
respectively, 110000, 115000, 48000, 47000, and 88000 unique
systems have been tracked by the TOOCAN algorithm for the
2015-16 period, out of which 9500, 9900, 5100, 4500, and 8000, respec-
tively, have been sampled by both the GMI and DPR instruments.

their representation of the life cycle of precipitating cloud
systems.

The article is organized as follows: section 2 presents the
study areas, the data, and the analysis methods; section 3 pre-
sents the results, in terms of climatology of cloud systems
and in terms of evaluation of precipitation intensity estimates
derived from GPM passive microwave measurements against
estimates derived from active measurements; section 4 pre-
sents a discussion of the results and perspectives for improved
global cloud and precipitation products.

2. Study regions, data, and methods

a. Study regions: Amazonia, central Africa, Sahel, Gulf
of Guinea, and central Atlantic Ocean

Five tropical regions are selected for the analysis (see Fig. 1):
Amazonia (AMZ; land between latitudes 8°N and 20°S and
longitudes 43° and 65°W), central Africa (CAF; land between
latitudes 8°N and 10°S and longitudes 8° and 35°E), Sahel (SAH;
land between latitudes 25° and 8°N and longitudes 18°W and
30°E), Gulf of Guinea (GG; ocean between latitudes 7°N and
20°S and longitudes 20°W and 14°E), and central Atlantic Ocean
(CAO; ocean between latitudes 30°N and 0° and longitudes 55°
and 15°W). Each of these regions is selected to have a spatially
homogeneous climate. Amazonia and central Africa have a
tropical humid climate (Marengo and Nobre 2001; Garreaud
et al. 2009; Farnsworth et al. 2011). Sahel has a hot semiarid cli-
mate with more than 90% of the annual precipitation amount
occurring during the wet season (June-September) (Nicholson
2018; Biasutti 2019). The selected regions of the Atlantic Ocean
are both part of the tropical belt with strong influence of the in-
tertropical convergence zone (Biasutti et al. 2004; Gu and Adler
2006). Sea surface temperature warm pools regularly occurring
in the Gulf of Guinea lead to the formation of a high number
of oceanic mesoscale convective cloud systems in this region
(Gu and Adler 2004).



MAY 2024

b. TOOCAN tracking data, DPR data, and GMI data

The present study relies on the conjoint analysis of the
TOOCAN cloud tracking data derived from GEO infrared
imagery with estimates of precipitation type (convective or
stratiform) and intensity, as well as precipitation top height,
derived from active and passive microwave radiances mea-
sured by the GMI and DPR instruments onboard the GPM
Core Observatory satellite.

The TOOCAN (Fiolleau and Roca 2013a) detects cloud sys-
tems and tracks them over time in series of GEO infrared images
produced by the imagers onboard the GOES (operated by
NOAA), Meteosat (operated by EUMETSAT), and Himawari
(operated by IMA) satellite series. TOOCAN operates at the
30-min and 4-km resolution, which corresponds to the coarsest
instrumental resolution among the different imagers it relies
on. (It is, however, worth noting that the newest generations of
GEO meteorological satellites, such as GOES-R, MTG, and
Himawari-8/9, offer capabilities to perform the cloud tracking
at a finer resolution of 10 min and about 1 km.) For the areas
and period of our study, the input images of TOOCAN come
from the GOES-13 imager and the SEVIRI imager onboard
Meteosat-10. The TOOCAN algorithm attributes a unique ID
to each individual cloud system it detects and defines its cover-
age area in each individual GEO infrared image, every 30 min.
The algorithm relies on image thresholding, on object detection
(segmentation) and object dilation procedures, and on the
computation of overlapping ratios between the objects de-
tected in successive images (Fiolleau and Roca 2013a).

The GPM Core Observatory satellite carries the active
dual-frequency precipitation radar (DPR) as well as the pas-
sive GPM Microwave Imager (GMI) (Hou et al. 2014). The
Combined Radar-Radiometer Algorithm (CORRA) derives
precipitation intensity in three dimensions within the swath
of the DPR (which is embedded within the larger swath of
GMI) with a 5-km horizontal resolution and a 250-m vertical
resolution (Grecu et al. 2016). The GPROF (Randel et al. 2020;
Pfreundschuh et al. 2024) provides the estimates of near-surface
precipitation intensity from the GMI passive radiometric
measurements alone, with a 13 km X 5 km horizontal resolution.
For both CORRA and GMI-GPROF, the product version 7 is
used in the present study. While the DPR has a swath width of
250 km and is currently the only scanning precipitation radar in
space whose data are made available to the research community,
GMI has a swath width of 885 km, and moreover, several other
passive microwave imagers similar to GMI, such has AMSR-2
and the SSMI/S series, orbit the Earth. Consequently, at any
point of Earth, passive microwave measurements are more than
ten times more frequent than active measurements from the
DPR, hence the interest in providing as accurate as possible
quantitative precipitation estimates from passive microwave
measurements alone. The less frequent active radar reflectivity
measurements provide direct observation of the 3D structure
of clouds and precipitation, allowing accurate estimation of the
hydrometeor content of the atmosphere, and ultimately of
the precipitation rate at the surface. The CORRA estimates
therefore serve as a global reference for the calibration and
training of passive microwave precipitation retrieval algorithms.
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The GPROF in particular relies on an a priori database made
of a large set of passive microwave spectral signatures associ-
ated with coincident estimates of surface precipitation inten-
sity from the CORRA. GPROF is thus designed to reproduce
CORRA estimates as accurately as possible. For this reason,
in the present study, the CORRA precipitation estimates are
considered as the reference for the evaluation of GPROF. In
addition to the estimates of precipitation intensity, we also
utilize the estimates of precipitation type (i.e., stratiform or
convective precipitation) and of precipitation top height de-
rived from the DPR to assess the dependence of GPROF’s
retrieval accuracy on these quantities.

It is worth noting that, in the present study, we use “level-2”
GPM estimation products, which rely on direct radiometric
observations, without interpolation or dynamical physical
simulations involved (NASA 2021). The level-2 estimation
products are sparse in the sense that they are orbit-based and
only provide estimations at the locations and times of the
satellite overpasses. Other studies have performed similar
analyses relying on higher-level products (e.g., Roca et al.
2014; Berthet et al. 2017; Roca and Fiolleau 2020; Cui et al.
2020; Feng et al. 2021), such as the IMERG multisatellite
QPE product, which provide precipitation estimates projected
on a regular spatiotemporal grid, by dynamically integrating
radiometric measurements from several satellite platforms,
referred as level-3 and level-4 products (NASA 2021). While
level-3 and level-4 gridded products can potentially provide
a much larger sample size, they are subject to larger state-
dependent biases and inaccuracies than level-2 products; the
interpolation and data-merging procedures leading to level-3
and level-4 products are also prone to alter the temporal
dynamics of the precipitation signal (Guilloteau et al. 2021,
2022; Li et al. 2023).

¢. Data collocation

In each one of the five study regions, for each GPM overpass
over the 2015-16 study period, GMI-GPROF precipitation
estimates falling within the swath of the DPR are collocated
with CORRA estimates and mapped on the CORRA 5-km grid
using a simple nearest-neighbor interpolation. Each CORRA
pixel and its corresponding remapped GPROF pixel are then
associated to the closest TOOCAN system (if any within a 4-km
radius). Because the DPR and GMI are onboard the same
platform, their coincident observations are only a few seconds
apart. Given the 30-min temporal sampling of the TOOCAN
product, the maximum temporal delay between any DPR
measurement and its collocated TOOCAN cloud system is
15 min. Figure 2 shows an illustrative example of a cloud system
tracked by TOOCAN over southwestern Brazil for 12.5 h (from
1400 UTC 13 November 2015 to 0230 UTC 14 November 2015)
and sampled once by GPM on 1930 UTC 13 November 2015.

Over the three land areas, Amazonia, central Africa, and
Sahel, respectively, 110000, 115000, and 48000 unique sys-
tems have been tracked by the TOOCAN algorithm for the
2015-16 period. Regarding the oceanic regions, 88000 cloud
systems have been tracked over the central Atlantic Ocean
and 47000 over the Gulf of Guinea. Because of the sparsity of
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FIG. 2. Illustration a of cloud system tracked by TOOCAN over southwestern Brazil from 1400 UTC 13 Nov 2015 to 0230 UTC 14 Nov
2015 and sampled by GPM at 1930 UTC 13 Nov 2015. The ID number attributed to this system by TOOCAN is 12895354. (a) Track of
the system’s barycenter derived from TOOCAN. (b) Precipitation fields from the CORRA and GPROF at the time of the GPM overpass.
The precipitation statistics computed at the time of the GPM overpass are cloud precipitation fraction (CPF), cloud mean conditional pre-

cipitation intensity (CMCPI), CMAPI, mean precipitation top height

(MPTH) relative to the freezing level, stratiform precipitation frac-

tion (SPF), CPF, and undetermined type precipitation fraction (UPF). (c) Samples of the TOOCAN cloud mask at the five stages of the

cloud life cycle. While TOOCAN’s temporal sampling is 30 min, only

one sample per stage is shown here. (d) Size of the cloud system de-

rived from TOOCAN as a function of time. As individual cloud systems are rarely sampled by GPM more than once during their lifetime,
the evolution of the different statistics during the life cycle of cloud systems (Figs. 4-8, 10, and 11) is computed as composites over thou-

sands of cloud systems.

GPM direct observations, only a fraction of these systems has
been sampled by both GMI and the DPR. However, the 2-yr
length of the analysis period and the size of the chosen study
areas (all five areas greater than 4 million km?) ensure that, in
each region, the number of unique systems sampled is of several
thousands (9500, 9900, 5100, 8000, and 4500 over Amazonia,
central Africa, Sahel, central Atlantic Ocean, and Gulf of Guinea,
respectively). Because individual cloud systems are rarely
sampled by GPM more than once during their lifetime, all the
statistics describing the evolution of GPM-observed quantities
during the life cycle of cloud systems in the present study are
computed as composites over thousands of cloud systems.

d. System’s life stage

For each TOOCAN system that could be tracked continu-
ously from its initiation to its dissipation, we segment its life
cycle into five equal-duration development stages. The devel-
opment stage at time ¢ is defined as

r—t

o)

S(t) = ceil(S X
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with

where ceil(.) designates the “ceiling” function which, to a real x,
associates the smaller integer I, such as I, > x; t; designates
the initiation time of the system; and ¢, is its dissipation time,
D therefore being the total life duration of the system. For our
study, the five-stage segmentation is applied to all systems with
3 h < D < 48 h. Systems with a life duration of less than 3 h are
excluded because of the limiting 30-min temporal resolution
of TOOCAN. In our analysis, systems are separated into
three duration categories: short-lived systems (3-6 h), medium-
lived systems (6-12 h), and long-lived systems (12-48 h). The
48-h upper duration limit for long-lived systems excludes hurri-
canes, for which we assessed that 2 years of GPM observations
were insufficient to accurately resolve the average life cycle.
Because of the relative rarity of hurricanes, combined with
DPR’s narrow swath and its several-day revisit time, only a
few dozens of DPR overpasses per year over hurricanes are
available for analysis.
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FIG. 3. Frequency distribution of the duration of the TOOCAN cloud systems for each one of the five tropical
areas. The percentage of short-/medium-/long-lived systems is 58%/35%/7% over AMZ, 55%/37%/8%, over CAF,
56%/35%/9% over SAH, and 53%/37%/10% over both GG and CAO.

It is important to note that the initiation and dissipation times
of each system are defined only from the outputs of TOOCAN.
The TOOCAN algorithm is designed for tracking the trajectory
of organized cloud systems rather than for detecting areas of
initiating convection. The very early stages of the development
of clouds, before they meet the conditions for being identified
as an organized system by TOOCAN, are therefore not ac-
counted for in this study, although precipitation may occur dur-
ing this earlier phase. Detecting and tracking clouds at their
earliest development stages, when they are still scattered and
not yet organized as compact objects, would likely require a dif-
ferent method than TOOCAN.

3. Results

a. Climatology of cloud’s morphology and dynamics
from GEO tracking

In this section, only the outputs of the TOOCAN tracking
algorithm are considered, to extract statistics regarding the
life duration of cloud systems and the variation of cloud system’s
size (i.e., their horizontal extent) during the different stages
of cloud’s life cycle.

Figure 3 shows the frequency distribution of TOOCAN
cloud systems’ duration in the five regions of interest. To com-
pute these distributions, for each climatic region, the life dura-
tion of every system that passed through is computed. This
means in particular that systems that moved from one region
to another (e.g., systems that initiated over the Sahel and
moved over the central Atlantic Ocean) are included in the
statistical distribution for both regions. For these systems that
entered or exited a given region through their lifetime, the
life duration is still computed from initiation to dissipation.
The computed life duration of a given system therefore poten-
tially includes the amount of time the system lived outside of
the climatic region of interest. The distributions of systems’
duration are very similar across Amazonia, central Africa,
and Sahel with, respectively, 58%, 55%, and 56% of the systems
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lasting less than 6 h, and 7%, 8%, and 9% of the systems last-
ing more than 12 h. The distributions of system duration are
quasi-identical between the two oceanic areas, with 53% of
the systems lasting less than 6 h and 10% of the systems lasting
more than 12 h.

Figure 4 shows the distribution of TOOCAN cloud system’s
size as a function of the life stage for short-lived (3-6 h),
medium-lived (6-12 h), and long-lived (12-48 h) systems, in
each one of the five tropical areas. The most striking element
is the symmetry in the temporal evolution of the size of cloud
systems. In all areas and for all system durations, the mean
system size reaches its maximum during the stage 3 (middle
stage) of the life cycle. These results are consistent with those
of Roca et al. (2017), whose analysis also relied on the outputs
of the TOOCAN algorithm. Our analysis shows that the average
temporal dynamics of cloud systems is extremely consistent
across all areas, including between land and ocean, and across
systems’ duration. The most noticeable difference across the
regions is that, at every stage of the cloud life cycle, the mean
system size is greater over land than over ocean, and greater
over Sahel than over central Africa and Amazonia.

b. Precipitation and vertical structure of clouds from
GPM observations as a function of cloud’s life stage

In this section, observations from the GPM Core Observa-
tory satellite collocated with the TOOCAN data are analyzed.
Figure 5 shows the average precipitating fraction within the
TOOCAN:-delimited cloud area as a function of the cloud life
stage, according to CORRA and GMI-GPROF. The precipi-
tating fraction is defined as the fraction of pixels (at the 5-km
native resolution of CORRA) with precipitation intensity
above 0.2 mm h™!. One can immediately notice that the pre-
cipitating fraction in GPROF is always higher than that in
CORRA, especially over the Amazonia and central Africa re-
gions. As a Bayesian algorithm, GPROF tends to artificially
generate a large number of pixels with very low precipitation
intensity. Indeed, because the inversion of passive microwave
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FIG. 4. Distribution of TOOCAN cloud system’s size as a function of the life stage for short-lived (3-6 h), medium-lived (6-12 h), and
long-lived (12-48 h) systems, in each one of the five tropical areas. The thick black line indicates the mean of the distribution; the colored

dashed lines indicate the 10th-90th percentiles (every 10th percentile).

radiances into precipitation intensity is an underconstrained
problem, the GPROF estimation is probabilistic: the esti-
mated value given by GPROF is the mean of the a posteriori
probabilistic distribution of precipitation intensity given the
observed radiances. In the frequent cases when the a posteri-
ori distribution contains both zero and nonzero values, those
are averaged together, inducing a low value of the estimated
intensity. This is the reason why a 0.2 mm h™' threshold is
used here to define precipitating fraction instead of counting
all pixels above 0.0 mm h™!. Indeed, with a 0.0 mm h™!
threshold, the cloud precipitating fraction in GPROF is found
nearly constant at 100%. Beyond the fact that GPROF mean
precipitating fraction at 0.2 mm h™! is always higher than that
of CORRA, one can see that the two estimates are consistent
with each other in terms of the temporal evolution of the
mean precipitating fraction during the life cycle of cloud sys-
tems. For short-lived systems, in all the studied regions, the
precipitating fraction decreases monotonically as the systems
mature. For long-lived systems, the precipitating fraction is
relatively constant during the first half of the life cycle and de-
creases during the second half. It must be noted that the aver-
age cloud precipitating fraction is lower and varies less in the
Sahelian region as compared to the other regions.

Besides the temporal evolution of the cloud precipitating
fraction, we are interested in the evolution of precipitation in-
tensity during clouds’ life cycle. Figure 6 shows the mean con-
ditional precipitation intensity, which is computed as the
mean intensity for pixels above 0.2 mm h™!, as a function of
clouds’ life stage. The counterpart of the systematically higher
precipitating fraction in GPROF is a systematically higher
conditional intensity in CORRA. This can be seen as a
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compensation mechanism, as GPROF estimates are designed
to preserve the mean value of CORRA. It must be noted that
in Bayesian minimum mean-square error estimation methods,
the mean is the only moment of the statistical distribution of
the target variable that is strictly preserved in theory. Addition-
ally, the statistical distribution of the estimates is generally
biased toward the mean, leading to compressed dynamical
range, reduced statistical variance, and underrepresentation
of the extremes on both sides of the distributions (Guilloteau
et al. 2023). We note that, from a statistical point of view, for
precipitation rates, zero is an extreme value, as it is the abso-
lute minimal possible value (even if zeros are very frequent).
This explains why the statistical distribution of precipitation
rates in GPROF is so different from that of CORRA. GPROF
estimates are always “smoother,” with a higher number of low-
intensity pixels and lower high extreme values than CORRA.
Another element contributing to the differences between GMI-
GPROF and CORRA in terms of statistical distribution of pre-
cipitation rates is their different native resolution, and, in a more
extensive way, their different “effective resolution.” As men-
tioned in the data collocation section 2c, the nominal resolution
of GMI-GPROF estimates is 13 km X 5 km. For this study,
GPROF estimates are interpolated on the 5 km X 5 km grid
of CORRA using a nearest neighbor interpolation (which pre-
serves the statistical distribution of the interpolated variable).
Because GPROF uses information from different microwave
channels with different footprint sizes, its actual resolution is
not trivial to define. Published studies have shown that over
land, GMI-GPROF can only resolve precipitation features at
scales down to about 40 km at best (Guilloteau et al. 2017;
Pfreundschuh et al. 2024); we therefore stipulate that the
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FIG. 5. Mean cloud precipitating fraction as a function of TOOCAN cloud system’s life stage according to the CORRA (blue line)
and GMI-GPROF (black line) estimates. The precipitating fraction is defined as the fraction of the cloud area with precipitation in-
tensity above 0.2 mm h™ L.
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FIG. 6. Mean conditional precipitation intensity as a function of TOOCAN cloud system’s life stage according to the CORRA (blue
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effective resolution of GMI-GPROF over land is approxi-
mately 40 km.

Despite their differences, GPROF and CORRA both show
the mean conditional precipitation intensity generally decreas-
ing monotonically as systems mature over both ocean and land
(Fig. 6). We can, however, notice that for long-lived systems
over oceans, the mean conditional precipitation intensity re-
mains quasi-constant from stage 1 to stage 2. Figure 7 shows
the evolution of the mean areal cloud precipitation intensity,
which is computed over all pixels, including nonprecipitating
pixels. In contrast to what is shown in Fig. 4 for the cloud hori-
zontal extent, what is striking in Figs. 5-7 for the precipitation
occurrence and precipitation intensity is the temporal asym-
metry, with precipitation occurrence and intensity generally
decreasing with aging cloud systems. For short-lived systems,
the curves of cloud mean areal precipitation intensity (CMAPI)
against time (Fig. 7) are rather convex, with a stronger decrease
rate at the beginning of the event. In contrast, the curves are
rather concave for long-lived events with a weak decrease
rate at the beginning. For medium-lived events, the curve is
more linear with a nearly constant decrease rate.

As expected, the differences between GPROF and CORRA
in terms of precipitating fraction and conditional intensity tend
to compensate each other; significant stage-dependent biases,
however, persist over land (Fig. 7). Over the two oceanic areas,
GPROF and CORRA estimates of the cloud mean areal pre-
cipitation intensity as a function of cloud’s life stage are highly
consistent, both in terms of absolute magnitude and in terms
of dynamics (shape of the curve). Over Amazonia, central Africa,
and Sahel, GPROF is found to significantly underestimate
precipitation intensity as compared to CORRA at the stages 1
and 2 of the life cycle, for all short-, medium-, and long-lived
systems. This underestimation pattern is remarkably consis-
tent across the three land regions and the different system life
durations. Altogether, GPROF overestimates the mean pre-
cipitation intensity inside TOOCAN-identified-systems’ areas
by about 4% over the two oceanic regions and underestimates
it by about 16% over the three land regions. From Fig. 7, we
also notice that the standard deviation of the GPROF error
(gray dashed line), computed as the standard deviation of the
pixelwise differences between GPROF and CORRA at the
5-km resolution, is higher at the early stages of cloud life
cycle, when the mean precipitation intensity is the highest.

Figure 8 also shows the comparison between GPROF and
CORRA during the five stages of clouds’ life cycle, but in
terms of the distribution of the total rain volume instead of
precipitation intensity, i.e., taking into account both the mean
areal intensity and the system’s size. One can see that the
stage-dependent intensity biases of GPROF over land induce
a shift of the center of mass of the precipitation volume to-
ward the later stages of the cloud life cycle as compared to the
distribution derived from CORRA. For medium- and long-
lived systems over land, while the intensity is the highest and
the intensity bias is the strongest at the stage 1 (Fig. 7), this
stage only moderately contributes to the total precipitation
volume and to the volume bias (because of the relatively small
size of the systems at this stage, as shown in Fig. 4). One shall
note, however, that even if they only marginally contribute to
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the global precipitation amount, high intensity precipitation
rates concentrated over small areas can result in extreme im-
pacts (e.g., flash floods and landslides), hence the importance
of accurately retrieving them and properly identifying their
associated retrieval biases if any.

Figure 9 shows the cumulative fractional contribution of
systems of increasing life duration to the total rainfall amount
in the different regions, as estimated from the CORRA and
GPROF products, collocated with the TOOCAN informa-
tion. In each region, the curve derived from the CORRA data
nearly perfectly matches the curve derived from the GPROF
data; the curves are in fact barely visually distinguishable on
the figure. This demonstrates that the life-stage-dependent
biases of GPROF do not induce a duration-dependent bias,
i.e., that the relative bias of GPROF against CORRA, when
integrated over the whole life cycle, is identical for all system
durations. The cumulative distributions shown in Fig. 9 reveal
the importance of long-lived systems (above 12-h duration),
which, while they account for only 7%-10% of all systems,
contribute to 50%-60% of the precipitation amount over the
land regions and around 70% over the oceanic regions. We
shall here give attention to the fact that only the CORRA and
GPROF pixels that could be associated to a TOOCAN sys-
tem are accounted for in this study (see section 2c). Precipitat-
ing pixels that are not within 4 km of a TOOCAN system
account for 25% and 32% of the total precipitation volume in
CORRA and GPROF, respectively, over the analyzed areas
and period. Part of this unaccounted precipitation comes
from precipitating systems other than the MCSs tracked by
TOOCAN. Part of it may be due to precipitation occurring
before the start of TOOCAN’s tracking. It appears from our
analysis that, when TOOCAN starts tracking a cloud system,
most of the time, it has already entered a precipitating phase.

To better understand the temporal patterns of the bias of
GPROF against CORRA and try to relate them to cloud’s
physical properties, we analyze the evolution of precipitation
top altitude relatively to the altitude of the freezing level
(Fig. 10) and precipitation type (Fig. 11) along the life cycle
of the clouds. Precipitation top height is found to generally
decrease from stage 2 to stage 5. During the first two stages,
the average precipitation top height is relatively constant; this
contrasts with the mean precipitation intensity (Fig. 7), which
was found to significantly decrease from stage 1 to stage 2,
particularly for short-lived systems. From the quantile curves
in Fig. 10, we can also see that the dispersion in the statistical
distribution of precipitation top height decreases as the sys-
tem matures, revealing a stronger variability of the vertical
structure of precipitation across different systems (and within
systems) at the earlier stages of clouds’ life cycle. This higher
variability of precipitation top height at the early stages coin-
cides with higher standard deviation of the error (against the
CORRA reference) in GPROF estimates of precipitation in-
tensity (Fig. 7, gray dashed curves). Figure 11 shows that the
average convective fraction of clouds significantly decreases
from stage 1 to stage 3. In short-lived systems, the decrease of
the convective fraction over time coincides with the increasing
rate of “undetermined” precipitation type, i.e., DPR reflectivity
profiles that could not unambiguously be labeled as convective
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or stratiform by the classifier algorithm. In long-lived systems,
the rate of undetermined precipitation type is relatively constant
and the decrease of the convective fraction over time coincides
with increasing stratiform fraction. It is worth noting that, over
the land regions, the magnitude of both the systematic bias and
the random errors (Fig. 7) of GPROF against CORRA scale
positively with the convective fraction but seem to be relatively
unaffected by the rate of undetermined reflectivity profiles.

The general pattern of GPROEF’s biases over land as a func-
tion of clouds’ life stage is consistent with the already-known
pattern of systematic underestimation of high-intensity con-
vective precipitation (Henderson et al. 2017; Petkovi¢ et al.
2019; Pfreundschuh et al. 2024). This intensity-dependent bias
can again be partially attributed to the Bayesian minimum
mean-square error estimation process of GPROF, which, by
design, produces smooth estimates with compressed dynami-
cal range and reduced temporal variability. The excessively
smooth dynamics of GPROF over land indicates that the al-
gorithm has difficulty differentiating clouds in their growing
phase, with intense active convection and high precipitation
intensity, from more mature clouds, with less intense or de-
caying convection. Over land, as the emission signal by liquid
raindrops is hardly distinguishable from the background sur-
face emission signal in the microwave domain, the GPROF
essentially exploits the signal resulting from the scattering ef-
fect of ice particles in the upper levels of the clouds. While
the ice scattering signal is certainly a strong indicator of atmo-
spheric convection, the maximum intensity of the ice scatter-
ing is likely delayed in time as compared to the maximum of
convective activity. Indeed, when convection is active, ice par-
ticles are expected to progressively accumulate in the upper
cloud levels. Later, in the dissipating phases of the clouds’ life
cycle, even if the convective activity decreases rapidly, the ice
particles may remain suspended in the upper cloud levels for
several tens of minutes and up to a few hours. Supplementing
the inputs of the GPROF with information on the temporal
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dynamics of clouds could therefore help improve the estima-
tion of the instantaneous precipitation intensity.

4. Discussion, conclusions, and perspectives
a. Climatology of cloud systems

The collocation of GPM active and passive microwave
measurements with the TOOCAN data allowed us to statisti-
cally characterize several properties of cloud systems at differ-
ent stages of their life, including size, precipitation intensity,
precipitation type, and precipitation top height. The average
temporal evolution of systems’ properties is remarkably ho-
mogeneous across the different analyzed regions and across
systems of different life duration.

The most salient aspect of the temporal evolution of the
horizontal size of cloud systems is its time symmetry. On average,
systems peak in size halfway through their lifetime. On the
contrary, precipitation-related characteristics are strongly asym-
metrical, and the average convective fraction and precipitation
intensity decrease continuously as systems mature. The average
precipitation top height is relatively constant in the first third
of the clouds’ life cycle and decreases continuously in the
second and third thirds of the life cycle. In addition to being
highly consistent across different climatical regions and across
systems of different life duration, the statistics presented here
are consistent with those of previous regional or pan-tropical
studies (Fiolleau and Roca 2013b; Bouniol et al. 2016; Roca
et al. 2017; Elsaesser et al. 2022), which tend to indicate that
the general features of the life cycle of tropical mesoscale
convective systems are relatively universal.

b. Systematic underestimation of precipitation intensity in
GMI passive microwave retrievals in the early stages of
clouds’ life cycle

The most salient and consistent result of the study in terms
of comparison of the passive GMI-GPROF estimates of
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FIG. 11. SPF, CPF, and UPF as a function of cloud system’s life stage according to the DPR precipitation type classification. The pre-
cipitation type fractions are computed as fractions of precipitating pixels within the cloud systems (nonprecipitating pixels are not ac-
counted for in the computation of the fractions).
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near-surface precipitation rate against the active-passive CORRA
estimates is the strong systematic underestimation of the mean
precipitation intensity in the early stages of the cloud’s life
cycle (stages 1 and 2) over lands in the tropics (Amazonia, central
Africa, and Sahel), independently of the total life duration of
the system (between 3 and 48 h). We note that the early
stages of the life cycle are also the stages for which the aver-
age convective precipitation fraction is the highest according
to the DPR precipitation type classification. Past studies have
consistently shown the tendency of precipitation retrievals
from passive radiometric measurements to underestimate pre-
cipitation intensity in convective areas over land (Henderson
et al. 2017; Petkovi¢ et al. 2019; Pfreundschuh et al. 2024).
The underestimation of precipitation intensity at the early
stages of the life cycle of convective systems, i.e., their grow-
ing stages, when the convective activity is at its maximum, is
therefore unsurprising. While this bias tendency is expected
to generalize to most of the convective systems over land
globally, its relative magnitude likely locally depends on the
specific nature of convection and may vary with regions, sea-
sons, and synoptic climate and weather conditions (Houze
et al. 2015; Sullivan et al. 2019; Schumacher and Funk 2023).

Over ocean (central Atlantic and Gulf of Guinea), the
biases of GMI-GPROF against CORRA are much smaller
than over land, the main noticeable pattern being a slight neg-
ative bias for short-lived systems and a slight positive bias for
long-lived systems. It must be noted that the GPROF is
trained differently over different surface types. The GPROF
training process has indeed been repeated for each one of the
14 surface classes accounted for by the algorithm, with a
unique a priori database used for each class (Randel et al. 2020).
Over ocean, the low-frequency radiances (below 30 GHz)
measured by passive microwave imagers closely relate to the
emission by liquid rain drops in the lower atmospheric levels
and are therefore good predictors of near-surface precipita-
tion intensity, allowing accurate estimation with low biases
from passive measurements. Over land, the low-frequency mi-
crowave atmospheric signal is entangled with the spatially and
temporally variable emission signal from the surface, making
the interpretation of radiances measured at the top of the
atmosphere much more ambiguous (Turk et al. 2021).

While only estimates from GMI are compared to CORRA re-
trievals in the present study, one may expect that passive micro-
wave retrievals from similar instruments, such as the AMSR-2
and SSMI-S radiometers, show similar systematic biases. Unfor-
tunately, coincident observations of the DPR with these other
passive microwave radiometers are too sparse to perform such a
detailed bias analysis with required statistical robustness (unlike
for GMI and DPR which are onboard the same platform). Ulti-
mately, the biases of the level-2 passive microwave retrievals are
likely to propagate into level-3 products such as IMERG.

¢. Including GEO-tracking information in future passive
microwave retrievals of precipitation for improved
accuracy

With the present study, we assessed the potential informa-
tion provided by the GEO infrared regarding the “history” of
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individual cloud systems, through cloud tracking. The results
presented here demonstrate that the information derived
from the GEO infrared cloud tracking algorithm TOOCAN
can to a certain degree be used to predict the biases and errors
of passive microwave precipitation retrievals. Indeed, we show
that the development stage of a convective cloud system is a
strong statistical indicator of the intensity of convection, which
itself strongly influences the sign and magnitude of biases and
errors in passive precipitation estimates. While the estimates of
the convective fraction of cloud systems generally rely on the
availability of radar observation, the cloud development stage
can be computed anytime and anywhere using global GEO
cloud tracking. Allowing precipitation retrieval algorithms to
utilize this information has the potential to improve the accuracy
of passive satellite precipitation retrievals. In its future versions
(8 and beyond), the GPROF will migrate toward a deep convo-
lutional neural network retrieval approach instead of the current
Bayesian k-nearest neighbor algorithm (Pfreundschuh et al.
2022, 2024). The deep learning framework offers the possibil-
ity to add any number of ancillary variables as predictors
(without having to rely on a priori classification, or segment
the training database, or perform multiple training/parameter
regression under different environmental conditions). The re-
sults of the present study advocate for including information
derived from GEO cloud tracking, such as cloud systems’ age
or development stage, as inputs of deep learning algorithms
for the remote sensing of precipitation. Our results also advo-
cate for continuing the development of GEO cloud tracking
algorithms toward operational real-time/short-latency algo-
rithms and products. The high homogeneity of all the com-
puted stage-dependent statistics across the different land
regions on the one side, and across the two oceanic regions on
the other side, and across systems of different life duration, is
also a positive indicator regarding the potential global predic-
tive power of the cloud tracking information.

The cloud development stage, besides being a good statisti-
cal predictor of systematic biases in passive microwave re-
trievals (and thus being potentially usable for bias correction),
is also a good predictor of the average magnitude (in absolute
value) of the random errors. The cloud development stage in-
formation could therefore also be utilized for uncertainty
quantification, for the purpose of systematically providing a
measure of uncertainty/accuracy along with each estimated
value in satellite QPE products (Guilloteau et al. 2022).
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