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Transgenic approaches are now standard in plant biology
research aiming to characterize gene function or improve crops.
Recent advances in DNA synthesis and assembly make
constructing transgenes a routine task. What remains nontrivial
is the selection of the DNA parts and optimization of the
transgene design. Early career researchers and seasoned
molecular biologists alike often face difficult decisions on what
promoter or terminator to use, what tag to include, and where to
place it. This review aims to inform about the current
approaches being employed to identify and characterize DNA
parts with the desired functionalities and give general advice on
basic construct design. Furthermore, we hope to share the
excitement about new experimental and computational tools
being developed in this field.
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Introduction

Since RNA polymerase II (RNAPII) was first purified
from sea urchin and rat cells more than 50 years ago [1],
major progress has been made in understanding tran-
scription of protein-coding genes in eukaryotes and
identifying the molecular machinery orchestrating the
processes of transcription initiation, promoter-proximal
pausing, clongation, and termination [2], as well as
controlling mRNA translation, mRNA and protein
structure, stability, trafficking, and localization [3,4].
Although the level of our comprehension of these

processes in plant systems has lagged behind that in
select animal and yeast models, the cumulative body of
gene expression regulation literature can be leveraged to
develop a set of guidelines on how to best build syn-
thetic plant genes. In very basic terms, to ensure robust
expression of a transgene of interest, it is important to
identify and include the appropriate DNA sequences for
recruiting the transcription and translation machinery or
for conferring the desired level of RNA or protein sta-
bility. In this review article, we discuss the key com-
ponents of protein-coding synthetic genes — promoters
and enhancers, 5’ and 3’ untranslated regions (UTRs),
coding sequences (CDSs), and protein fusion tags — and
how these are typically identified and employed to op-
timize transgene expression and stability iz planta with
an emphasis on the increasing role of computational
tools.

Promoters and enhancers

When deciding on the optimal way to express a gene of
interest (GOI), the choice between a native or synthetic
promoter needs to be made (Figure la—c). If the goal of
one’s study is to capture the full expression pattern of a
plant gene, for example, to visualize the sites of gene
activity via a reporter fusion or demonstrate the ability of
a tagged GOI to complement a loss-of-function mutant
phenotype, the traditional choice of a 2 kb promoter
region driving a cDNA-reporter fusion may not be
adequate due to the lack of distal or intron-localized
enhancers. For example, transgenic complementation
lines containing FLOWERING LOCUS T (FT) cDNA
driven by F7 promoter fragments of 5.7 kb or more were
able to rescue the mutant f7-/0, whereas those with a
4.0 kb FT promoter could not [5]. This finding suggests
that the more distal region of the promoter may be ne-
cessary for full gene activity. Interestingly, a re-
porter—cDNA fusion of the auxin biosynthesis gene
TAAI driven by a long (10 kb) native promoter,
TAAIp:Y Per-TAAI pyy, was also not able to fully revert
the respective 7aal tarl mutant root defects, whereas an
equivalent construct with introns, 7AAIp:YPer-
TAAI,pna, could [6]. Consistently, the cDNA construct
lacked a critical expression domain in the quiescent
center of the root, implying that 7AA7 introns may
harbor an intronic enhancer critical to this gene’s ex-
pression. Thus, for recapitulating the full expression
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Transgene design. (a) A typical eukaryotic gene. The gene consists of a promoter, 5° UTR, coding region (often with introns), and the 3’/terminator region.
Promoters are sets of regulatory sequences in the 5’ end of a gene that in plants typically extend from two or more kilobases (kbs) upstream of a gene’s
transcription start site (TSS, black arrow) to about 30 bp downstream of TSS. The sequences immediately upstream and downstream of the TSS recruit RNAPII
and general transcription factors (TFs) and are referred to as the core or minimal promoter (orange hexagon). The sequences upstream of the core promoter that
bind gene-specific TFs are often referred to as proximodistal promoters but may also be viewed as enhancers as some of these may be orientation and position
independent. Some enhancers can also be found further upstream or downstream of the genes they control or be harbored in genes’ introns. (b) Natural
promoters. The proximodistal region of natural promoters contains TF-binding sites that impart tissue-specific and developmental regulation of gene expression.
Constitutive heterologous promoters, such as the well-characterized CaMV 35S promoter, are often used to drive high levels of transgene expression in the whole
plant. Native plant promoters more accurately reflect the tissue specificity and developmental context in which a native gene is expressed, though sometimes at
insufficient expression levels to achieve the goals of a transgene. In an attempt to capture the native TF-binding sites that regulate native gene expression,
approximately 2 kb of sequence upstream of the TSS is typically used as the promoter sequence. (c) Synthetic promoters. These can be created by placing TF-
binding sites upstream of a core promoter. TF-specific binding sites, such as the EIN3 TF-binding site, can be used to confer condition specificity on gene
expression, as is the case for the EIN3-binding site containing EBSp:GUS reporter for ethylene. Additionally, synthetic promoter systems rely on a synthetic TF
made of a programmable DNA-binding domain (such as dTALE) fused with a transcriptional activation domain (red flag). Upstream of a natural minimal promoter
or of a synthetic TATA box containing core promoter sequence are programmable DNA-binding domain-binding site(s) (ATALE-binding site) surrounded by neutral
DNA sequence that does not contain any known TF-binding sites. (d) BAC and lambda red recombineering. Plant transformation—-ready BACs (TACs) carry large
pieces of plant gDNA containing all necessary regulatory sequences to achieve native plant gene expression patterns upon transformation into plants. TACs can
be modified to include a reporter gene using recombineering tools. Exogenous DNA containing a reporter gene (GFP) and homology arms (pink overhangs) can be
introduced into an exon of the GOI harbored by the TAC using lambda phage-mediated homologous recombination in recombineering strains of Escherichia coli.
Following the incorporation of a reporter into the GOI, the TAC can be transformed into plants using standard Agrobacterium-mediated transformation methods.
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pattern of a GOI, the detailed knowledge of its enhancer
regions may be necessary. In the absence of an efficient
knock-in approach in plants [7], this remains a major
bottleneck in construct design.

To experimentally define native proximal promoters and
distal enhancer sequences important for transcription,
several approaches can be employed, from classical pro-
moter deletions for a specific GOI to modern high-
throughput molecular and computational tools at the
whole-genome level [8-11]. With the adoption of next-
generation sequencing, genome-wide approaches have
been implemented to pinpoint ¢s-regulatory elements that
affect gene expression. In plants, DNase I hypersensitive
site sequencing  (DNase-seq),  chromatin  im-
munoprecipitation sequencing using anti-histone H3K9ac
antibodies (H3K9ac ChIP-seq), bisulfite sequencing (BS-
seq), the assay for transposase-accessible chromatin using
sequencing (ATAC-seq), and self-transcribing active reg-
ulatory region sequencing (STARR-seq) have been em-
ployed to define accessible chromatin regions (ACRs) and
putative enhancers [12-15]. A key takeaway from these
studies is that there may be more putative enhancers in the
genome than there are genes, and thus, many (if not all)
genes may be regulated by distal elements, many of which
are tissue specific or condition specific. Therefore, to
truthfully recapitulate a gene’s activity pattern, long-range,
distally located enhancers may need to be included in a
construct along with proximal and core promoter and intron
sequences. However, on a gene-by-gene basis, it is still
very challenging to translate the information from these
whole-genome ACR studies into the design of individual
constructs, and thus, multiple constructs often need to be
made to explore and leverage native regulation of in-
dividual genes of interest [11].

One possible alternative to the still technically proble-
matic knock-in strategy [7] is to build much larger, for
example, 100 kb, constructs that should contain most or
all of the regulatory sequences, for example, in the
pseudogenomic context of a bacterial artificial chromo-
some (BAC) harboring a large piece of plant genomic
DNA (gDNA) [16]. In that scenario, a reporter is in-
tegrated into the GOI carried by a transformable BAC
clone via recombineering, that is, phage-protein-assisted
(aka lambda red) homologous recombination in bacteria
(Figure 1d) [17]. The BAC can be trimmed (also via
recombineering) to preserve only the desired regions
upstream and downstream of the gene and transformed
into plants via standard transformation methods [18-21].

Another way around not knowing all of the regulatory
sequences of a GOI is to use well-characterized con-
stitutive heterologous promoters such as 35§ from the
Cauliflower mosaic virus (CaMV), FMV from Figwort
mosaic virus, CmYLCV from Cestrum yellow leaf curling
virus, and nopaline synthase (NOS) promoter from
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Agrobacterium tumefaciens to maximize gene expression in
plants [8-11]. For example, for the genetic constructs in
most commercially available genetically modified plants,
the 358 promoter is used. Currently, this is the most
common approach in plant sciences [22]. However, these
strong ubiquitous promoters are not well suited when
precise spatiotemporal expression patterns are required,
as in many cases, overexpression of a gene may or may
not be able to complement a respective mutant in full,
be toxic to plants, or provide misleading functional in-
formation due to physiologically irrelevant levels or
distribution of the resulting protein [23-25]. Likewise,
the analysis of overexpressed gene-reporter fusions can
give incorrect subcellular protein localization patterns
upon overwhelming the protein trafficking ma-
chinery [26].

The third alternative for driving gene expression in de-
sired patterns or at preferred levels is to utilize synthetic
promoters where a known core promoter is preceded by
native, heterologous, or synthetic proximodistal se-
quences (Figure 1c). These sequences serve the purpose
of recruiting tissue-, stage-, or condition-specific tran-
scription factors (T'Fs) to turn the GOI on in a con-
trollable spatiotemporal manner. For example, to make a
reporter gene responsive to the hormone ethylene in
Arabidopsis thaliana, multiple copies of a binding site for a
transcriptional master regulator of ethylene signaling,
EIN3, were stacked upstream of a 35§ core promoter
driving a histochemical marker GUS [27]. Likewise,
photosynthetic tissue—specific and drought-inducible
promoters were built in poplar [28]. The major advantage
of well-designed synthetic promoters is that these can be
developed to specifically recruit only the TF(s) of interest
and thus have less background or leaky expression
stemming from unrelated TF binding. For example, to
temporally control transgene expression, inducible pro-
moters can be generated by stacking the binding sites for
synthetic TFs regulated by specific stimuli or chemical
inputs. Common synthetic inducible promoter choices in
plants include heat-, steroid-, ethanol-, copper-, and light-
responsive systems [29].

T'o build a functional synthetic promoter regulated by
native TFs, in theory, an enhancer-like sequence from
any source can be placed upstream of a core promoter, as
demonstrated by Jores et al. [30] via STARR-seq in
agroinfiltrated Nicotiana benthamiana leaves for enhancer
sequences sourced from the 358 promoter, wheat and
pea CHLOROPHYLIL. A-B BINDING PROTEIN genes
CAB-1 and ABS&0, and a pea RIBULOSE-1,5-BISPHOS-
PHATE CARBOXYLASE SMALL SUBUNIT gene rbcS-
E9 placed upstream of the 35§ core. Since promoter
testing in this study was limited to leaf agroinfiltration
assays in N. benthamiana, it remains to be seen if these
synthetic sequences are universally functional in dif-
ferent tissues and plant species.
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Briickner et al. [31] set out to rationally design the
proximodistal sequences. The library of synthetic pro-
moters these researchers constructed contains an 18-bp-
long cis-element corresponding to the binding site of a
single designer transcription activator-like effector
(dTALE) and a TATA box flanked by degenerate se-
quences (19 bp upstream and 43 bp downstream; Figure
1c). Based on the GUS reporter activity in transient as-
says in N. benthamiana, the expression level of the syn-
thetic promoters was inferred to range from around 5%
to almost 100% of the 358 promoter, suggesting that this
simple promoter architecture is a useful platform for
plant synthetic promoter design. Cai et al. [32] replaced
the 18-bp-long dTALE-binding site from the Briickner
et al. [31] design with various computationally devel-
oped cs-regulatory elements, as well as swapped the
original 43-bp-long degenerate sequence for an un-
named core promoter that includes the transcription start
site ('T'SS). A good correlation (R* =0.7076) was found in
a Luciferase (Luc) reporter assay between computationally
predicted gene expression levels and the actual values
determined experimentally for 24 MinSyn promoter se-
quences that were randomly selected from a library of
1000 constitutive MinSyns.

Much like the many options of proximodistal sequences,
the choice of core promoters is not limited by a handful
of well-characterized promoters such as 358. Jores et al.
[33] used STARR-seq to measure the strengths of 18 329
Arabidopsis, 34 415 maize, and 27 094 sorghum core
promoters in transient assays in the context of synthetic
genes containing histone A3 5’UTR sequences placed
upstream of a barcoded green fluorescent protein gene
(GFP). The presence of a TATA box, promoter GC con-
tent, and promoter-proximal TF-binding sites were all
found to affect promoter strength, with the 7TATA box
positioning ~30-40 bp upstream of the T'SS being the
most critical feature determining the level of gene ex-
pression. Furthermore, Jores et al. [33] designed novel
synthetic promoters by generating 170-bp-long random
sequences with nucleotide frequencies similar to an
average Arabidopsis or maize promoter. These se-
quences were further modified by introducing a TATA
box (TATAAATA) at position 133-140, a Y patch at po-
sition 147-154, and/or an [witiator element (yyyyT-
CAyyyy, where y indicates a change of A to T or G to C)
at positions 147-154. The strongest synthetic core pro-
moters Jores et al. [33] developed could reach activities
comparable to the 35§ minimal promoter (-46 to +5
relative to the 'T'SS), indicating that rationally designing
synthetic core promoters of varying strength is possible.
In addition, these researchers took a machine learning
approach using a convolutional neural network to predict
promoter strengths and used /7 sifico evolution to design
synthetic promoters with increased activity. After 3-10
rounds of sequence evolution, a prominent increase in
promoter strength was observed. This work provides a

great resource for expanding the synthetic core promoter
options. It is, however, still necessary to validate these
sequences in the context of transgenes to show that the
enhanced activity of the new promoters results in greater
protein expression, as higher levels of transgene activity
at a transcriptional level do not always lead to increased
protein levels in all tissues and conditions, presumably
due to processes such as translational regulation via 5’
UTRs that overlap with core promoters and post-tran-
scriptional gene silencing [34].

Despite the growing arsenal of both natural and syn-
thetic promoter elements and of our understanding of
the grammar rules governing their activities, the design
of promoters with prescribed spatiotemporal expression
and strength characteristics remains extremely challen-
ging. Although still in its early days, synthetic biology
approaches based on Boolean logic are starting to be
developed in plants that hold the promise of generating
novel expression patterns using complex computational
combinations of existing promoter elements [35-37].

To summarize, there are multiple choices of promoters
for driving a transgene in plants. With the implementa-
tion of genome-wide studies in plants and the adoption
of synthetic biology methods in species beyond
Arabidopsis, we anticipate that the use of synthetic
promoters can provide an unprecedented level of gene
regulation and exceed the strength of standard con-
stitutive promoters such as 358.

5’ untranslated region/leader sequences

Traditionally, when making a construct for a GOI, a
promoter is often fused directly to the coding region
without including a 5’UTR sequence. However, a
number of studies suggest that a 5’UTRs can have a
profound effect on the expression of a GOI at both
transcriptional and post-transcriptional level [38]. The
inclusion of a 5’UTR can be used to enhance or reduce
the activity of a GOI by controlling processes, such as
transcription initiation (e.g. due to the inclusion or
omission of downstream core promoter elements and
TF-binding sites), transcription elongation (e.g. by af-
fecting RNA structure and RNA Pol II promoter-prox-
imal pausing), RNA stability (e.g. due to the presence of
RNA destabilization cis-elements), and translation effi-
ciency (e.g. by containing inhibitory upstream open
reading frames [uORFs] or stable hairpins or by har-
boring internal ribosome entry sites) [39]. The two best-
known translational enhancers are the 5° UTRs of the
Tobacco mosaic virus (TMV) RNA and Alfalfa mosaic
virus (AMV) RNA4 known in the field as omega and
AMV leader sequences, respectively [40,41]. Besides
these TMV and AMV sequences, other plant viral RNAs
may also harbor efficient translational enhancers in their
5’ ends [42]. In addition, a few plant-sourced 5> UTRs
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have also been reported to enhance gene expres-
sion [43-45].

To expand the very limited toolbox of characterized 5’
UTR/leader sequences, De Amicis et al. [46] leveraged
the structure of the omega leader sequence [consisting
of three octamer direct repeats of ACAAUUAC and a
poly(CAA) region] to design the first synthetic 78 bp 5’
UTR. These researchers incorporated the 5bp 5 UTR
of the 358 transcribed sequence (+1 to +5 relative to
T'SS) and a cytosine and thymine (CT)-rich region into
the omega backbone (containing a single octamer and
nine CAA repeats) in the context of the pSTART vector.
The resulting synthetic 5> UTR was found to be 8.6- to
12.5-fold stronger than the gusA leader in the pBI121
vector at supporting gusA reporter expression. Kanoria
and Burma [47] developed a small synthetic 5> UTR
(28 bp in length), syz/, which contained only the first
5bp of the 5> UTR of 358 transcript (+1 to +5 relative to
TSS) and a near-perfect Kozak translation initiation
context. These scientists found that syz/ was equivalent
to the omega leader sequence at enhancing GUS gene
expression in transformed cotton callus and in the leaves
of transgenic tobacco (Nicotiana tabacum) plants relative
to the 5" UTRs in pBI121 and pRT100 vectors. Tanaka
et al. [48] generated artificial synthetic 5° UTRs in rice
(Oryza sativa) using an efficient machine learning model,
named ‘R-STEINER’, that could predict the amount of
protein of interest (POI) with a correlation coefficient of
0.89. Finally, Peyret et al. [49] used rational design to
generate four synthetic 5> UTRs with desirable char-
acteristics (such as low GC content, low secondary
structure, repeats of an AAC motif, and a strong Kozak
consensus sequence). All synthetic 5° UTRs these re-
searchers created were superior in their performance
relative to the control construct that harbored a modified
5" UTR from the bipartite Comovirus cowpea mosaic
virus (CPMV) RNA-2 [50].

In light of these studies convincingly demonstrating the
ability of 5" UTR sequences to improve gene expression,
it is advisable to include a well-studied viral, en-
dogenous, or synthetic leader downstream of a core
promoter immediately upstream of the CDS. It is,
however, risky to incorporate an uncharacterized 5 UTR
as it may harbor negative regulatory sequences such as
uORFs [51].

Coding regions

In synthetic construct designs, the CDS is inherently the
most variable part. While all constructs require a pro-
moter, 5’UTR, and terminator sequence to ensure that
the CDS is transcribed and translated in the correct
cellular context, the user-defined CDS provides a
readout or function to the construct (IFigure 2). In CDS
design, one must carefully consider what questions the
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experiment aims to answer to inform design decisions.
For example, if one is interested in purifying their pro-
tein of interest (POI), they should consider expressing a
tagged version. If one wants to capture the native pat-
tern of expression and all possible splicing variants of a
GO, its intron-containing version should be used. Given
that many CDS inputs are possible, this section will
focus on common design considerations and applications
for expressing a GOI, from monitoring gene activity to
transgene sequence optimization.

Reporter tags

Perhaps, the most common application of transgenes
involves fusing a GOI to a reporter gene to visualize
when and where the gene is active. Reporters can be
fused to a gene’s promoter to study GOI’s transcription
or in frame with the full or partial CDS to monitor POI
levels and distribution at cellular and subcellular levels
(Figure 2a). Histochemical markers such as beta-glu-
curonidase (GUS), fluorescent proteins (FPs) such as
GFP, luminescent proteins such as Luc, and, more re-
cently, a colorimetric reporter RUBY are widely adopted
in plant research [52,53].

GUS, the oldest of the reporters used in plants, converts
a colorless substrate, X-gluc, to an easy-to-see blue
product. Despite some disadvantages of GUS reporters
(such as relatively long protein half-life, lack of cellular
resolution due to diffusion of cleaved product, and false-
positive signal caused by native GUS activity) [52,54,55],
the high sensitivity of GUS (with every molecule of the
enzyme hydrolyzing multiple molecules of the sub-
strate) makes this reporter a popular tool widely em-
ployed by the plant biology community. For example,
Lauressergues et al. [56] utilized GUS transcriptional
fusions to monitor the expression of micropeptides for
nine different Arabidopsis pre-microRNAs . The GUS
fusions used in this experiment demonstrated that the
first adenine, thymine and guanine (AT'G) start codon of
each gene tested was sufficient to initiate translation, as
indicated by GUS detection.

GFP and other FPs are, perhaps, the most versatile and
ubiquitous reporters of gene expression. Applications of
such reporters are vast and have been reviewed [57,58].
FPs can be used in transcriptional or translational re-
porters to provide tissue-level and subcellular localiza-
tion information in a noninvasive or destructive manner
(Figure 2a). The expression levels and pattern of a GOI
can be inferred by using the intensity of FP expression
as a proxy for transcriptional activity or protein abun-
dance. For example, Wang et al. [59] used live-cell
confocal microscopy imaging to monitor programmed
cell death in Arabidopsis root cap cells. Researchers
examined the breakdown of the nuclear envelope, ER
membrane, and mitochondria by observing nuclear-,
ER- and mitochondria-localized FP diffusion into the
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Figure 2
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Transgene applications. (a) Transcriptional and translational reporter fusions. A typical transcriptional fusion construct uses ~2 kb of sequence
upstream of the TSS to capture most of the native elements controlling gene expression. The CDS is composed of a reporter (GUS in this figure),
followed by a terminator, typically a well-characterized terminator such as Tnos from Agrobacterium, though the native terminator is sometimes used.
The goal of a transcriptional fusion is to observe the patterns of gene transcription, that is, where and when RNA is produced. A translational fusion, on
the other hand, serves the purpose of analyzing protein levels and distribution at the cellular and subcellular levels. Translational fusions may use a
native promoter and terminator to capture native expression levels and patterns. In a translational fusion, a full-length or truncated CDS is fused in
frame with a reporter gene to capture protein localization. Given that introns can harbor regulatory elements, the CDS of the GOl is depicted as broken
up to represent the use of gDNA instead of cDNA. Sometimes, a translational fusion does not provide sufficient protein signal to detect subcellular
localization. In those cases, one strategy to increase reporter signal is to use a strong constitutive promoter such as 35S or FMV to drive the construct,
though such reporter will not be suitable for monitoring tissue-specific protein expression patterns. (b) Varying tag location. When constructing a
translational fusion, one must consider where the reporter tag will be fused with the GOI. N-terminal fusions involve the reporter CDS preceding the
GOI CDS, whereas C-terminal fusions have the GOl CDS preceding the reporter CDS. N- and C- terminal fusions are the most common options when
tagging a POI; however, one can also create an internal fusion by inserting the reporter CDS within the GOl CDS. Protein structure predictions are
commonly used to infer the safe sites for internal reporter integration, but as with N- and C-terminal fusions, the functionality of the construct needs to
be tested via respective loss-of-function mutant complementation. (c) Dual luciferase assays. These make use of two distinct enzymes, typically firefly
Luciferase (FLuc) and Renilla Luciferase (RLuc), and can provide a high-throughput means to quantify the impact of regulatory elements on gene
expression. The figure illustrates a tobacco leaf infiltration experiment in which promoter elements are the independent variable, and the dependent
variable is FLuc expression. Given FLuc expression will vary between leaves and experiments, it is important to include RLuc under a constitutive
promoter as an internal experimental control for normalization. 3-5 days following infiltration, leaf tissue is harvested and ground for Luc quantification
with a fluorometer. (d) Synthetic RUBY gene structure. RUBY is a reporter composed of a single transcriptional unit that combines three enzymes for
betalain (pigment) synthesis. The three enzyme genes are expressed under a single promoter, connected together by P2A peptides that induce
ribosomal skipping, resulting in three separate proteins following translation. The resulting pigment can be visualized by eye. (e) E3-DART. This is an
inducible protein degradation system, which involves fusion of a POI (pink) with the Hr1b domain (cyan) of the human target PKN1. The Hr1b domain
can be bound by the LRR (blue) and ubiquitinated (black circles) by the E3 ligase domain of Salmonella-secreted protein H1. The construct depicted
contains a constitutive promoter driving expression of GVG, a TF that binds dexamethasone (DEX). Upon DEX binding, GVG translocates to the
nucleus and interacts with the promoter driving LRR-E3 expression. Thus, in the presence of DEX, LRR-E3 is expressed, while in the absence of DEX,
GVG remains sequestered in the cytosol and LRR-E3 transcription is turned off. (f) Proximity labeling. This is a method used to study protein—protein
interactions and organelle proteomes. In proximity labeling experiments, a POI (pink) is fused to a biotin ligase (blue, e.g. TurbolD) and an FP reporter
(green) to visualize protein localization and assess protein expression. The biotin ligase attaches a biotin (black) to proteins (yellow) within a given
radius (~35 nm for TurbolD), thus labeling all proteins within certain proximity to the POI. Biotin-labeled proteins are then affinity purified using
streptavidin beads for mass spectrometry analysis. (g) Programmable DNA-binding domains. dTALEs, ZFs, and dCas9 can be fused to a variety of
effector domains (FP tags, transcriptional activation or repression domains, DNA methylation or histone modification enzymes, nucleases, or base
editors) to impart a function on the DNA-binding domain. (h) RNA aptamers. MS2 and other aptamers (striped structures) are leveraged along with
their associated RNA-binding proteins (blue) tagged with an FP tag (green) to visualize target RNA in the cell. Binding of the FP fusion to the aptamer
can be detected by monitoring protein fluorescence. Other effector proteins can be attached to aptamer-binding proteins, such as TurbolD to capture
RNA-protein interactions. (i) Protein—protein interactions. These can be leveraged to promote TF (blue circles) co-operativity by fusing protein
interaction domains (white lines) to TFs to maximize their recruitment to target DNA (black line). (j) Cre-lox recombination. Cre recombinase target sites
(LoxP, yellow) are integrated into the genome via a transgene. Site-specific recombinase Cre (green) recognizes them and induces precise genome
modifications. Two common applications of this technology are controlled excision of DNA fragments, as shown in the figure, or targeted insertion of
DNA from a donor DNA fragment into the genome.

cytoplasm. T'o observe dynamic cellular processes, an FP
modified with decreased protein half-life can be used to
increase the time resolution of a reporter [52]. A chal-
lenge associated with using FP fusions in plant tissues is
the autofluorescent signal from plant cell walls and
chloroplasts that overlaps with FP spectra [52]. Though
modern microscopy techniques can filter auto-
fluorescence to some degree, plant biologists are pri-
marily limited to FPs that emit in red, green, and yellow
spectra.

In FP fusion design, it is important to consider how a
protein fusion might impact protein function, folding, or
localization. There are many computational programs that
can predict cellular localization [60,61] and protein
structure [62,63]. These tools can be useful in deciding
where to attach a FP tag. For example, if a protein is
expected to localize to the chloroplast, an N-terminal
fusion would likely disrupt proper localization. Given the
effects of a given protein fusion are difficult to foresee, it
is prudent to generate both N- and C-terminal fusion
constructs when possible (Figure 2b). Internal FP fusions

may also be helpful when protein structure is known or
can be modeled [64].

Luc and other luminescent reporters are optimal for
quantifying gene expression in the context of tran-
scriptional or translational fusions. Firefly Luc (FLuc) is
an enzyme that catalyzes the oxidative decarboxylation
of its substrate, D-luciferin to oxyluciferin, releasing a
flash of light at 560 nm that can be easily quantified
using a fluorimeter [65]. Due to the lack of native lu-
minescent molecules in plant tissue, luciferase-based
reporter systems have high signal-to-noise ratios. High-
throughput studies, particularly in N. benthamiana leaf
infiltration experiments, benefit from the use of a dual
luciferase system to create an internal control for Agro-
bacterium infection efficiency and leaf developmental
differences that affect overall protein expression. The
dual luciferase system takes advantage of two distinct
luciferase molecules: FLuc, described above, and Renilla
Luc (RLuc), which involves the conversion of its sub-
strate, coelenteraxine, to coelenteramide in an oxygen-
dependent, ATP-independent manner, releasing light at
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480 nm [66]. Typically, FLuc expression is driven by
experimental regulatory elements, while RLuc expres-
sion is driven by a constitutive promoter, enabling ra-
tiometric analysis of protein abundance (Figure 2¢) [67].
Some of the drawbacks associated with Luc-based assays
are lack of tissue- or cell-level resolution, high variability
in signal between replicates, uneven substrate penetra-
tion into samples, and the need for specialized equip-
ment to detect the luminescence signal. To reduce assay
costs and remedy nonuniform substrate penetration,
Khakhar et al. [68] and Mitiouchkina et al. [69] im-
plemented a fungal autoluminescent Luc-based reporter
system in plants that does not require substrate input.
By applying directed evolution as well as random and
consensus mutagenesis to the fungal bioluminescence
pathway and screening orthologous genes from different
species of bioluminescent fungi, Shakova et al. [70]
further optimized the system. The resulting synthetic
pathway was transformed into six diverse plant species,
including Arabidopsis, petunia, poplar, tobacco (V. ben-
thamiana and N. tabacum), and chrysanthemum, resulting
in visibly glowing plants. When compared with tradi-
tional FLuc in plant tissue culture, the engineered au-
toluminescent Lzc was an order of magnitude brighter
without substrate input [70]. Further development of
autoluminnescent L#c pathways combined plant and
fungal genes to create a more compact autoluminescent
reporter system that functions well in yeast, mammals,
and plants [71].

The newest reporter type implemented in plants is
RURBY, an artificial gene containing the sequences of
three enzymes required for betalain biosynthesis, pro-
ducing a bright red-violet pigment that can be seen with
the naked eye (Figure 2d) [53,72]. The fact that RUBY
generates a robust visible signal that, unlike GUS, does
not require substrate infiltration resulted in a rapid
adoption of this reporter in many plant species. For ex-
ample, Wang et al. [73] applied the RUBY marker in
haploid inducer lines in maize and tomato plants, en-
abling rapid identification of haploid progeny by eye.
Due to the relative stability of betalain in plant cells, the
RUBY reporter is not suitable for tracking dynamic
processes.

Degradation tags

In some cases, it may be desirable to make the POI short
lived, for example, to enable its rapid turnover upon
removal of a stimulus to reset the state of the cell, by
adding a destabilization tag (aka degron) to the POIL. For
example, Khakhar et al. (2018) [74] combined a syn-
thetic Cas9-based transcription repressor with a highly
sensitive auxin-induced degron domain. The authors
demonstrated that this system could be leveraged to
reprogram development in Arabidopsis upon targeting
the auxin transporter, PIN-FORMED/ [74]. The newest
tool for targeted protein degradation in plants, E3-

targeted Degradation of Plant Proteins (E3-DART),
takes advantage of the E3 catalytic activity of Sa/monella-
secreted protein H1 (SspH1) and its association with the
human target protein kinase N1 (PKN1). Following in-
duction with the glucocorticoid system, a POI fused with
the HR1b domain of PKNT1 is targeted for rapid protein
degradation by the SspH1 Leucine-Rich Repeat and E3
ligase domain [75] (Figure Ze).

Other protein tags and functional domains

Besides the aforementioned CDS options, additional
tags have been developed to further expand the cap-
abilities of a transgene (Figure 2f-1). For example, a
variety of affinity purification tags can be used de-
pending on the requirements of protein yield, level of
nonspecific binding, size of affinity tag, position of tag
(N- or C-terminus, as described above), or live detection
needs (whether the protein needs to be visualized) [76].
Similarly, an array of localization signals to target pro-
teins to different subcellular compartments, such as the
nucleus, chloroplast, mitochondria, endoplasmic re-
ticulum, Golgi apparatus, and plasma membrane, have
also been developed and are commonly used in plants
[77]. Viral ribosomal skipping peptides such as P2A and
T2A allow for the co-expression of multiple proteins
from a single transcript (Figure 2d) [72]. Proximity la-
beling tags such as TurbolD enable the characterization
of molecular interactions that occur in the cell (Figure
2f) [78]. Various other functional domains enable re-
searchers to study transcriptional regulation, promote
protein—-DNA, protein—-RNA, and protein—protein in-
teractions, or confer enzymatic activity (Figure
2g-1) [79-82].

Codon optimization and intron inclusion

All organisms exhibit codon-usage bias or nonrandom
use of codons that encode identical amino acids (sy-
nonymous codons). It is important to consider optimal
codon use when introducing a heterologous gene to
achieve high levels of gene expression as codon usage
can impact translational efficiency and cotranslational
protein folding [83-85]. There are a number of compu-
tational codon optimization tools available to aid in
synthetic gene design in plants (e.g. OPTIMIZER,
CodonWizard, etc.) [86].

Traditional gene complementation experiments and
translational fusions use cDNA sequences in the CDS
position instead of gDNA. As mentioned above, introns
can host functional elements that affect transcription and
splicing. Thus, when expressing native genes, it is
generally recommended to use the gDNA sequence.
Likewise, the inclusion of introns in heterologous genes
can enhance gene expression at post-transcriptional le-
vels [87,88]. In crop engineering, it is common to use the
intron-containing 5° UTR of maize polyubiguitin-1 (Ubi-
1) gene, particularly in monocot species due to low
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expression resulting from the 358 promoter [89]. One of
the major advantages of including an intron in the CDS
is it will abolish any leaky protein expression in bacteria
(because prokaryotes lack the spliceosomal machinery)
and thus ensure that the POI will not have an effect on
bacterial health. Additionally, Agrobacterium can express
a GOI from T-DNA, creating false-positive reporter
gene signals in leaf infiltration experiments unless an
intron is included in the CDS [35].

One of the major drawbacks to including introns in CDS
design is that the exact mechanism by which introns
increase gene expression is not well understood, and
there is no clear and reliable guidance on the inclusion of
intron sequences for a given GOI. A webtool to aid in
intron insertion in transgenes called Intronserter is
available [90], but it has not yet been widely adopted by
the plant community. Nonetheless, in one re-
presentative study in energy cane (a Saccharum spp.
hybrid), using this tool to augment the sequence of a
garden nasturtium (Tropaeolum majus) DIACYLGLYCE.-
ROL ACYLTRANSFERASE gene (that was codon-opti-
mized for Sorghum bicolor and equipped with a 110 bp
intron from another Sorghum gene) resulted in a seven-
fold enhancement of transgene expression in energy
cane [91]. In general, it is advisable to use intron se-
quences that have been validated in previous studies
and to create a parallel construct that does not include
introns.

Perhaps, the most illustrative recent example of the
beneficial effects of codon optimization and introns in
synthetic constructs comes from the genome-editing
study in Arabidopsis, where the efficiency of Cas9-
mediated editing was increased from 0 to 70%-100%
following maize codon optimization and the introduction
of 13 Arabidopsis introns in the protein CDS [92]. This
study demonstrates the largely understudied potential
for increasing heterologous protein expression through
codon optimization and intron inclusion.

3’ untranslated region/terminators

When a transcribing RNAPII finishes reading the coding
part of a gene, it continues copying the 3’ UTR and the
rest of the terminator region (Figure 3). The terminator is
thus a transcribed sequence of a gene that spans the
mRNA cleavage and polyadenylation site and serves to
recruit a set of the 3’ end processing and polyadenylation
factors [2]. The poly(A) tail is critical to mRNA stability
and plays an important role in mRNA export to the cy-
toplasm from the nucleus [93]. In mammals and yeast, the
machinery responsible for these 3’ end processing events
has been well defined, and the plant homologs of a ma-
jority of these factors have been identified [94]. RNA-seq
approaches have been instrumental to defining the
3’ UTRs of most protein-coding genes in the genome, but
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the more downstream terminator sequences not con-
tained in the 3’ UTR are not well mapped.

When building a plant transgene of interest, to ensure its
optimal expression, traditionally, a terminator from
constitutive genes with high levels of expression, such as
that of CaMV 35§ (135S), Agrobacterium NOS (Tnos) and
octopine synthase (OCS), or plant housekeeping genes,
such as ACTIN (ACT) or UBIQUITIN (UBQ), is com-
monly used [94]. However, the 3’ end processing and
polyadenylation factors do not function in isolation, and
numerous lines of evidence show that these proteins
physically interact or functionally cross-talk with the
general T'F TFIIB, at least in humans [95,96]. Thus, for
a chosen promoter, different terminators may sig-
nificantly affect the reporter gene expression [94]. Mit-
suhara et al. [97] compared the 7358 and 7uos
terminators combined with a series of chimeric pro-
moters in transient and stable expression systems in
tobacco (N. tabacum) and rice (O. sativa). The authors
found that the 7358 terminator was more effective than
the Tnos. To expand the choice of available terminators,
Diamos and Mason [98] systematically compared 20
different plant and viral terminators in combination with
the 358 promoter and TMV 5° UTR and found that in V.
benthamiana transient assays, eight terminators sig-
nificantly enhance the expression of the reporter genes
(GFP or DsRed) relative to the 7358 or Tnos terminators.
Similarly, Tian et al. [99] compared 13 plant and viral
terminators combined with the cassava vein mosaic virus
(CsVMV) promoter in N. benthamiana leaves and N. fa-
bacum BY2 cells. These authors found that the termi-
nator of the Arabidopsis HEAT SHOCK PROTEIN1S8.2
(AtHsp18.2) gene produced 1.4- and 2.4-fold higher ex-
pression of the reporter gene compared with the 7358
and 77os terminators, respectively. Recently, Gorjifard
et al. [100] measured the activity of over 50,000 termi-
nators from Arabidopsis and maize in combinations with
the 358 promoter using STARR-seq in tobacco leaves
and maize protoplasts. These authors found that thou-
sands of Arabidopsis and maize terminators were better
than the 7nos and Agrobacterium mannopine synthase
(MAS) terminators at enhancing GFP reporter gene ex-
pression, with a handful of these outperforming the
7358 terminator. The authors concluded that the op-
timal terminators for the 358 promoter in dicots are that
of An3G46230 (HEAT SHOCK PROTEINI7.4),
Ar2G05530 (a Glycine-rich protein gene), and Ar4G39730
(PLAT DOMAIN POTEINT), whereas in monocots, the
terminators of maize genes Zm00001d016542 (anthrani-
late 1, 2-dioxygenase), Zm00001d047961 (unknown), and
Zm00001d017119 (glucose-6-phosphate dehydrogenase 5) are
the best.

Interestingly, in multiple plant systems (tobacco leaves,
sugarcane leaf segments, and sorghum), a double terminator
combining the 7358 and 7nos sequences was reported to
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Transcription termination. (@) mRNA cleavage and polyadenylation. RNAPII (orange ovals) transcribes the 5’ UTR, the CDS, and the 3’ UTR/terminator.
The resulting nascent RNA is cleaved roughly in the middle of the terminator region, and a poly(A) tail is added. (b) 3’ UTR and terminator. The 3’ UTR
is the 5’-most part of the terminator (cyan) that extends from the stop codon of the CDS to the mRNA cleavage polyadenylation site. This is the part of
the terminator that is straightforward to infer from RNA-seq data. It contains several cis-elements (colored boxes) important for 3’ end processing,
including the polyadenylation site (AAUAAA or a related sequence). Addition of the 3' UTR in the 3’ end of a construct is usually insufficient to obtain
efficient transcription termination, as downstream terminator elements are lacking. The full terminator extends past the mRNA cleavage and

polyadenylation site and includes additional cis-elements (gray box) necessary for the mRNA cleavage and polyadenylation machinery to process the

3’ end of the transcript.

significantly increase the ¢YFP reporter gene expression
relative to either terminator alone in constructs driven by
the maize Ubi-1 promoter, as shown by Beyene et al. [101].
Diamos and Mason [98] found that combining terminators
in tandem produced synergistic effects and that seven
double terminators significantly exceeded the strength of
the 735S8-1nos double terminator. In addition, instead of
combining two terminators, Meshcheriakova et al. [102]
fused the 3> UTR of CPMV RNA-2 to the 770s terminator
and found that these sequences increased GFP expression
in N. benthamiana transient assays threefold relative to the
NOS terminator alone.

T'o avoid reusing natural regulatory elements, including
classical terminators/3” UTRs derived from plant viruses,
Peyret et al. [49] designed ecight synthetic 3> UTRs
based on the properties of highly expressed genes of
plant viruses, such as low 3’ UT'R GC content and the
presence of the polyadenylation signal AAUAAA, as well
as CA and UUUU motifs. Some synthetic 3’ UTRs also
contained the Y-loop structure from the 3° UTR of
CPMYV RNA-2. However, none of the synthetic 3 UTRs
were better at supporting gene expression than the 3’
UTR of CPMV RNA-2. Gorjifard et al. [100] used the
DenseNet model for iz silico evolution of 222

Current Opinion in Biotechnology 2024, 87:103140

www.sciencedirect.com



terminators (111 terminators from Arabidopsis and maize
each). After 10 rounds of evolution, several terminators
generated by an iz si/ico evolution approach had greater
strength than the 735§ terminator in N. benthamiana
leaves and maize protoplasts, indicating that combining
iterative in sz/ico and STARR-seq is a promising strategy
for optimizing DNA parts.

With this body of literature in mind, when deciding on the
best terminator for one’s construct of interest, especially, if a
novel synthetic promoter is used, the well-studied viral and
bacterial terminators of 358, NOS, and OCS genes and those
from highly expressed plant genes such as RUBISCO or
HEAT SHOCK PROTEIN are typically chosen [94,103] and
continue to be the safest option. However, if a readthrough
transcription is of concern, especially in multigene con-
structs with the potental for silencing, a double terminator
may be preferred, and the seven aforementioned double
terminators identified by Diamos and Mason [98] and the
1358-Tnos double terminator evaluated by Beyene et al.
[101] should be considered.

Other DNA parts

Not all transgenes are intended for protein expression. If the
goal of a transgene is, for example, to monitor RNA levels
and distribution, then a DNA part encoding a functional
RNA may need to be included in the construct. RNA ap-
tamers are short RNA sequences that fold into tertiary
structures that can be applied to studying RNA localization.
One common approach adopted in plants involves the use
of hairpin-shaped RNA aptamers, such as that from the
bacteriophage MS2, alongside a sequence-specific RNA-
binding protein; in this case, MS2 coat protein (MCP)
tagged with an FP (Figure 2g) [104]. RNA transcripts of a
GOI are tagged with one or more MS2 aptamers (typically
placed downstream of the stop codon), and the fluorescence
of MCP-FP recruited to the MS2 aptamers is tracked to
infer the tagged RNA trafficking and localization. Aptamer/
FP-based detection is the current standard technique for
live-cell imaging of RNA in plants. For example, Alamos
et al. [105] tagged RNA transcripts with either MS2 or an-
other aptamer, PP7. Aptamer-binding bacteriophage MCP
and PP7 coat protein were fused to a GFP tag, which en-
abled the identification of active transcription sites using
laser-scanning confocal microscopy to visualize RNAPII
activity in Arabidopsis and N. benthamiana under different
treatment conditions. Live-cell RNA imaging techniques
have enabled researchers to understand dynamic processes
in plant cells with an unprecedented detail and will likely
continue to transform our current understanding of biolo-
gical processes.

Besides expressing RNA aptamer fusions, transgenic ex-
pression of noncoding RNAs, such as miRNA, circular
RNA, long noncoding RNA, or CRISPR guideRNAs, etc., is
routine in plants [106]. Additionally, a transgene or its part
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may be intended to function at the DNA level and serve to
deliver recombination sites into the plant genome (Figure
2j). Upon co-expression of a heterologous recombinase,
planta removal, addition, or inversion of sequences of in-
terest can be triggered. Recombination sites are often used
in conjunction with selectable marker and reporter genes so
that the recombination events can be visualized. For ex-
ample, Chamness et al. [107] generated transgenic N. ben-
thamiana lines harboring an inactive RUBY reporter
separated from a dual 35§ promoter by a Kanamycin re-
sistance marker, Np#ll, flanked by different recombination
sites. Upon expressing a recombinase to excise the Nprll
gene, betalain accumulation was observed, indicative of the
efficient recombination. Furthermore, insulators and in-
sulator-like elements can be incorporated into transgenic
constructs to overcome challenges associated with the po-
sitional effects of T-DNA insertions and unwanted inter-
actions of transgenes with endogenous genetic elements.
Insulators are DNA elements that can block en-
hancer—promoter interactions and create chromosomal
boundaries that shield transgenes from heterochromatin
[108]. To date, there are few well-characterized true in-
sulators in plants, with matrix attachment regions (MARs)
being the best-studied class of insulator-like elements. Al-
though most MARs lack the enhancer-blocking activity of
true insulators, they can shield a transgene from the sur-
rounding chromosomal environment by facilitating the for-
mation of chromatin loops that separate the genome into
independently regulated domains [109].

Finally, additional design decisions on what vectors to
employ, which molecular cloning technologies to utilize,
whether to include linkers, scars, or stuffers between
DNA parts, and how to arrange the genes in a construct
are all important for the success of one’s project. Even
minor considerations such as the order, spacing, and
relative orientations (head-to-head, head-to-tail, or tail-
to-tail) of genes in a plasmid may have profound effects
on transgene functionality due to the promoter of one
gene potentially serving as an enhancer for a neighboring
gene or the possible leakiness of gene terminators re-
sulting in a transcriptional readthrough and construct
silencing [110]. In the end, testing multiple construct
designs remains the safest option for most applications.

Concluding remarks

In the past few vyears, transgenic approaches in plants
shifted toward an early-stage adoption of synthetic biology
as an enabling tool to overcome some of the limitations of
traditional constructs made of well-characterized natural
parts. The fact that most of the synthetic DNA elements
described to date were originally characterized in a limited
set of conditions (often in just one species, developmental
stage, tissue, environment, and assay) restricts the ability of
a researcher to extrapolate the behavior of man-made parts
from one biological system or experimental setting to
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another. Therefore, we anticipate that a more universal,
systematic, standardized testing of select DNA parts would
need to be implemented before their broad adoption by
the plant biology community. The functional validation
work would need to take into account not only how spe-
cific DNA parts behave in the context of a given construct
but also consider its interactions with all other DNA parts
in a library to identify optimal combinations and minimize
its interference with other components of the cell. We
foresee that high-throughput strategies to measure the ef-
fects of synthetic DNA elements and their architecture on
different aspects of gene expression, likely in combination
with mathematical modeling and machine learning—based
approaches, will become more mainstream in plant sci-
ences and will augment and empower the design of
growingly more functionally complex DNA constructs.
The ultimate goal would be to move from modeling the
effect of individual DNA components to predicting the
behaviors of whole genes, pathways, cells, and biological
systems. In the meantime, we hope this brief overview of
what is currently feasible in plant sciences can serve as a
starting point for a beginner looking to design an optimal
construct and for a professional aiming to build new tools
to advance the horizons of plant biology.
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