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ABSTRACT
Hand gestures provide an alternate interaction modality for blind
users and can be supported using commodity smartwatches with-
out requiring specialized sensors. The enabling technology is an
accurate gesture recognition algorithm, but almost all algorithms
are designed for sighted users. Our study shows that blind user
gestures are considerably different from sighted users, rendering
current recognition algorithms unsuitable. Blind user gestures have
high inter-user variance, making learning gesture patterns diffi-
cult without large-scale training data. Instead, we design a gesture
recognition algorithm that works on a 3D representation of the
gesture trajectory, capturing motion in free space. Our insight is
to extract a micro-movement in the gesture that is user-invariant
and use this micro-movement for gesture classification. To this
end, we develop an ensemble classifier that combines image classi-
fication with geometric properties of the gesture. Our evaluation
demonstrates a 92% classification accuracy, surpassing the next best
state-of-the-art which has an accuracy of 82%.

CCS CONCEPTS
• Human-centered computing → Gestural input; Accessibil-
ity design and evaluation methods; Systems and tools for
interaction design.
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1 INTRODUCTION
Hand gestures made with the arm, wrist, and fingers, are being in-
creasingly used as an alternate modality for interacting with smart-
phones. Hand gestures can support various interaction modes in-
cluding one-handed interactions [44], cross-device interactions [18],
and in-air gesture typing [53].

One important use case of this alternate interaction modality
is in improving accessibility for blind users. Blind users interact
with their smartphone devices using a touchscreen or voice in-
put, but numerous studies have shown that these interactions are
challenging [4, 32, 59]. Instead, hand gestures support an intuitive,
flexible, and versatile interaction platform for blind users [15]. Im-
portantly, with the increasing popularity of hand-worn commodity
devices such as smartwatches, users can leverage alternate gesture
interactions without the need for specialized sensors or hardware.

However, enabling these hand gesture interactions requires a
highly accurate gesture recognition algorithm. A gesture recog-
nition algorithm tracks motion sensors that are available in com-
modity smartwatches and uses the sensor data to classify gestures.
There has been considerable work on designing highly accurate
gesture recognition algorithms [19, 57, 61], but almost all of these
algorithms have been designed for sighted users.

In this work, our goal is to design a gesture recognition algorithm
that works well for blind users. Our user study shows that there are
considerable differences between how blind users perform hand
gestures compared to their sighted counterparts, and these differ-
ences have an implication on the gesture recognition algorithm.
We conducted a comparative study with 10 blind and 16 sighted
users, where each user performed 15 different hand gestures. We
study gesture-specific features including gesture variations, jerk,
jitter noise, and gesture velocity. Based on these features, we find
that blind user gestures exhibit (i) higher inter-user variation, (ii)
have higher noise in terms of jerks and jitters, and (iii) have lower
velocity and more pauses.

These properties make existing gesture recognition algorithms
unsuitable for blind users. Many gesture recognition algorithms [19,
61] work by learning the gesture pattern using large amounts of
training data. However, it is time-consuming and expensive to col-
lect training samples from blind users at such a scale. In addition,
the higher inter-user variation means that the same gesture per-
formed by different blind users is considerably different from each
other, which makes training challenging. We find that even tech-
niques such as few-shot learning with base models from sighted
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users [61] are ineffective (see § 6.2). Further, most gesture recog-
nition algorithms rely on the accelerometer sensor to track linear
motion [2, 58, 60], but there is higher noise in the accelerometer
data due to jerks and jitters. AccessWear [27] is the closest re-
lated gesture recognition work that has similar goals to this work.
AccessWear is designed for blind users and does not require exten-
sive training data. However, AccessWear is designed to work only
for simple forearm gestures and does not work for more complex
gestures (see §6.1). Our work understands this gap and designs a
gesture recognition system for blind users to recognize a set of 15
simple and complex gestures including forearm, compound, and
shape gestures (see Table 1).

Instead, we present a new algorithm that addresses the unique
challenges of blind user gesture recognition. Our intuition is that,
even if the complete gesture signature looks different for different
users (due to the high intra-user variability), there should exist a
nucleus of the gesture that is user invariant. The goal then is to iden-
tify this user-invariant micro-movement in the gesture that remains
consistent across users, which enables learning even with limited
training data. Our gesture recognition algorithm relies only on gy-
roscope sensors because the accelerometer sensor is highly noisy.
Since hand gestures consist of not only lateral movements but also
rotational movements, a gyroscope sensor (which tracks rotational
movement) provides sufficient signal for gesture recognition.

Our gesture recognition algorithm works on a 3D representation
of the gesture trajectory to accurately capture gestures performed
in free space. As a first step, we use a simple signal processing tech-
nique that tracks energy change points to identify an approximate
gesture nucleus in the 3D trajectory. The goal then is to classify the
gesture based on this approximate gesture nucleus. Unfortunately,
the classification problem is more challenging in the 3D space com-
pared to 2D primarily because of a higher degree of freedom. In free
space, different users can perform gestures in different planes and
different orientations. In 2D space, two gestures can be matched
using Dynamic Time Warping (DTW) techniques that align the
gesture temporally [31]. For instance AccessWear [27] uses this
DTW matching for gesture recognition. However, this technique
cannot be extended beyond simple 2D gestures.

Our contribution is a novel ensemble classifier that combines two
models to accurately classify 3D gesture nucleus, even if gestures
are performed in different planes and have different orientations.
The first model formulates the gesture classification problem as a
multi-view image classification problem. To this end, we design
a multi-view CNN model that takes as input the gesture nucleus
from 6 different angles, to account for the different planes and ori-
entations of the gesture, and classifies the gesture. Importantly, we
show how this CNNmodel can be trained with limited training data
from blind users. The second model learns a classifier based on the
geometric properties of the gesture nucleus such as curvature, tor-
sion, and Centroid Distance Function (CDF). Geometric properties
such as curvature and CDF are invariant to plane and orientation
differences, which makes them well-suited to classify gestures per-
formed in free space. Because this second model is learned over
already extracted features, it does not require large amounts of
training data. The final classifier combines the multi-view CNN
model and the geometric properties-based model.

In this research, we make the following contributions:

• We examine hand gestures performed by both blind and
sighted users, quantifying variations in gesture characteris-
tics across dimensions such as inter-user distance, jerk, jitter,
velocity, and pause duration. Analyzing these differences,
we explore their implications in the context of designing
gesture recognition algorithms. Subsequently, we establish
design guidelines specifically tailored for gesture recognition
systems intended for blind users. Our recommendations in-
clude the design of systems capable of effective performance
with limited training data, reliance on gyroscope sensors
exclusively, and the ability to capture subtle gestures.

• We develop an ensemble classifier to classify complex ges-
tures performed by blind users across 3 categories: forearm,
compound, and shape gestures. The classification algorithm
can detect gestures performed in free space by capturing the
3D representation of the gesture. The classifier only requires
limited training samples from the user and works well even
when there is large inter-gesture variation amongst user
gestures.

• We perform a real-world evaluation study to validate our
gesture recognition system for 15 gestures across 10 blind
users. We compare our classifier to state-of-the-art gesture
recognition systems designed for sighted users, including
TapNet [19] which trains a generalized deep learning model,
Serendipity [57] which trains a personalized model, and a
few-shot learning approach based on Xu et. al [61]. Our
system achieves an accuracy of 92%. In comparison, the next
best-performing classifier achieves an accuracy of 82%. We
also compare our system with AccessWear [27] which is
designed specifically for blind users and does not require
training. AccessWear only achieves an accuracy of 68% since
it is designed to work for only simple gestures.

2 BACKGROUND AND RELATED WORK
2.1 Gesture recognition
There has been considerable work in recent years on recogniz-
ing hand gestures using Inertial Measurement Units (IMUs). An
IMU is a low-cost sensor, consisting of an accelerometer, a gyro-
scope, and sometimes a magnetometer. It is commonly available
in commodity devices such as smartwatches, smartphones, and
modern earable devices. The sensors track the various motion ar-
tifacts of a gesture—the accelerometer sensor measures the linear
and gravitational acceleration, the gyroscopes measure the angular
(rotational) velocity and the magnetometer measures the strength
of the magnetic field intensity.

State-of-the-art gesture recognition systems learn the gesture
performed by the user by tracking one or more sensors available
in the IMUs. These algorithms can be broadly classified into two
categories: (1) signal processing-based algorithms and (2) learning-
based algorithms. Early signal processing-based algorithms used
the fusion of accelerometer and gyroscope sensors to recognize
gestures [6, 20, 42] using Kalman filters [7, 33, 45], Hidden Markov
Models (HMMs) [48, 54], or template matching algorithms such as
Dynamic Time Warping (DTW) [35, 36, 62].
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Figure 1: The 15 hand gestures performed by the users under three categories: forearm gestures, compound gestures, and shape
gestures.

With the advances in machine learning, the more recent ges-
ture recognition algorithms are learning-based, most often us-
ing deep learning techniques. The algorithms use architectures
such as convolutional neural networks (CNNs) [22, 37], recurrent
neural networks (RNNs) [39, 52] and Long Short-Term Memory
(LSTM) [3, 30, 64], to learn the gesture performed by the user. These
systems can learn generalized patterns in gestures, and perform ges-
ture customization. However, these systems require a large amount
of training data.

External and on-body cameras have also been used for hand
tracking and gesture recognition. Sharp et. al [46] and Ma et. al. [38]
used depth cameras to track hand motion in real-time, while mod-
ern VR systems like Quest 2 [1] have also used cameras for hand
tracking. Additionally, wearable cameras have been investigated,
with WristCam [9] and Chen [8] et. al. using wrist-worn RGB cam-
eras for hand gesture recognition. Despite their robustness and
accuracy, these systems necessitate line-of-sight, specific sensors
and lighting conditions, and significant computational resources,
and raise considerable privacy issues.

There are also several other gesture recognition algorithms that
use specialized sensors including proximity detectors [10, 16], baro-
metric pressure sensors [23, 49], electrical impedance tomogra-
phy [21, 66] and WiFi-based gesture recognition [25]. However,
these works require specialized sensors that are not always accessi-
ble to users.

2.2 Gesture-based interactions for blind users
Blind users interact with their computing devices using a screen
reader [26], using touchscreen gestures. Several studies [4, 32, 59]
have shown that these touchscreen gestures are challenging because
users cannot perform one-handed interactions, the gestures are
often overloaded, and the users are subject to shoulder-surfing
attacks.

Instead, there has been recent work on using alternate inter-
action modalities to replace touchscreen gestures. Dim et. al. [13]
study the preferences for mid-air TV gestures of blind users through
user-elicitation and choice-based user studies. Previous works have
explored ring-based gesture interactions [34] and deformable sur-
face interactions [14] as alternate modalities. Blind users also use
voice for interactions. But voice interactions are unreliable in noisy
environments, can compromise the privacy of a user, and are prone
to errors [4].

Hand gesture interactions using smartwatches are an attractive
alternative because users do not have to use specialized sensors.
Malu et al. [40] explore smartwatch interactions for users with
upper body impairments including blind users. They establish that
the physical abilities limit the users’ ability to perform tap ges-
tures on small target areas that need precision. Hand gestures on
a smartwatch have been used to identify "wet floor" signs [43] for
blind users. Recent work, AccessWear [27] finds that blind users
prefer smartwatch gestures as an alternate interaction. They de-
sign a gesture recognition algorithm that uses simple template
matching. However, this technique does not work well for more
complex shape and compound gestures. Our work finds that com-
plex gestures are better represented in 3D space and the 2D template
matching techniques presented in AccessWear do not scale up the
complex gestures (see § 6.2)

3 CHARACTERIZING BLIND USER GESTURES
We conduct an IRB-approved comparative experiment with blind
and sighted user populations to understand how the different pop-
ulations perform hand gestures. The main motivation of this study
is to derive design principles to develop an effective hand gesture
recognition system for blind users.

To this end, we study gesture-specific properties including range
of motion, jerks, jitter noise, and speed, and characterize the differ-
ences in gestures performed by blind users versus sighted users. We



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Khanna et al.

Category Gestures Median SEQ Rating Average Rating

Forearm

1. Forearm upwards
2. Forearm downwards
3. Forearm horizontally left
4. Forearm horizontally right

7
7
7
7

7

Compound

1. Rotate wrist by 90 deg and move right
2. Rotate wrist by 90 deg and move left
3. Flick and forearm upwards
4. Flick and forearm downwards
5. Flick and forearm horizontally left
6. Flick and forearm horizontally right

6.5
6.5
6.5
6.5
7
7

6.66

Shape

1. Square
2. Circle
3. Triangle
4. Question mark
5. Infinity

6.5
7
7
5.5
6

6.4

Table 1: The 15 hand gestures performed by the users under three categories: forearm gestures, compound gestures, and shape
gestures. The table shows the corresponding Single Ease Question (SEQ) rating given by blind users. (7: high preference, 1: low
preference). All the gestures scored high on user preference.

analyze the implications of these differences with an eye towards
designing a better gesture recognition system for blind users.

3.1 Participants
We recruited 10 blind participants between the ages of 38-64 (5
male and 5 female). Out of the 10 users, 8 participants were blind
since birth and 2 participants were blind since ages 3 and 11. None
of the participants had any motor impairments that affected their
ability to perform hand gestures. In addition, we recruited 16 sighted
participants between the ages of 22-36 (10 male and 6 female) to
compare gestures performed by blind vs sighted users.

3.2 Apparatus
All users were asked to wear a Fossil Gen 5 smartwatch. When
the participants performed gestures, the IMU data was streamed at
100Hz via Bluetooth to the Pixel 3 XL smartphone using a custom
data logger application. It took 1 hour to conduct the user study
and each blind participant was paid $75 for their time. The offline
data analysis is performed on a MacBook M1 laptop.

3.3 Design
We designed a comparative experiment in which we studied how
participants (both blind and sighted) perform smartwatch gestures.
We asked each participant to perform 15 gestures in a counterbal-
anced order, repeating each gesture 10 times. We also asked each
participant about their gesture preference. The gestures included
five forearm directional gestures, five compound gestures (i.e., wrist
gesture followed by a directional gesture), and shape-related ges-
tures. Figure 1 shows the gestures and Table 1 shows the details
of the gestures and the preferences of blind users to use these
gestures. We selected this set of gestures because they are widely
recognized and commonly employed in various gesture recognition
studies [29, 55, 57, 61, 65]. Moreover, each of these gestures received
a favorable response from the blind users, with all scoring high on
the Single Ease Question scale (SEQ rating > 6). Users found all
these gestures easy to perform.

3.4 Gesture Characterization
We estimate different gesture properties (Table 2) to characterize
gestures performed by both blind and sighted users. To estimate
these properties we collect time series sensor data from accelerom-
eter and gyroscope. Previous works use a similar set of gesture
properties to characterize touchscreen gestures of blind versus
sighted users [24]. This work finds that there is a quantitative dif-
ference in how blind users perform touchscreen gestures and how
sighted users perform the same gestures. Feiz et al. [15] explore the
differences between how visually impaired users do smartwatch
gestures compared to their sighted peers. AccessWear [27] makes
an observation that gestures performed by sighted and blind users
are different and that the accelerometer sensor has more noise
for blind users’ gestures. Going beyond AccessWear, in this work,
we quantitatively compare the difference in gestures of blind and
sighted users across dimensions such as inter-user distance, jerk,
jitter, velocity, and pause duration. We infer the implications of
these differences with respect to designing gesture recognition al-
gorithms for blind users and distill a set of design guidelines. We
discuss the differences in the following subsections.

3.4.1 High inter-user variance. We estimate the inter-user variation
while performing gestures using Dynamic Time Warping (DTW).
DTW is the standard way to measure variations between two time
series wherein two gesture time series are aligned and then the
Euclidean distance between them is estimated [41]. We use the
significant axis of gyroscope sensor data (the axis that has the
highest rotational movement) for comparing the gestures of the
users. We measure the similarity of a gesture by estimating the
distance between each gesture and a predefined gesture template
across users.

If we use one of the blind user’s gestures as the template and
compare it with the same gestures for all other users, the average
distance is 78.21, 166.27, and 72.45 for forearm, compound, and
shape gestures respectively. In contrast, the distance between the
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Gesture Property Definition
Inter-user variation Measure of the Euclidean distance between each gesture and a predefined

gesture template across users.
Jerk Sudden changes in the acceleration of a signal with respect to time (𝑚/𝑠𝑒𝑐3).
Jitters (Accelerometer Measure of low-frequency noise in the accelerometer and gyroscope (<10Hz) readings
and Gyroscope)
Velocity Cumulative integral of acceleration (𝑚/𝑠𝑒𝑐).
Pause duration Time period in a gesture where the linear acceleration and angular velocity are near zero (𝑠𝑒𝑐).
Table 2: Quantitative gesture properties used to compare the gestures performed by blind and sighted users.

Property Blind Users
(Mean ± Std dev)

Sighted Users
(Mean ± Std dev)

Inter-user distance 78.21 ± 34.19 44.20 ± 20.39
Jerk (𝑚/𝑠𝑒𝑐3) 25.32 ± 14.93 7.79 ± 1.62

Jitter gyroscope 3.26 ± 2.30 2.93 ± 1.63
Jitter accelerometer 5.70 ± 3.81 3.10 ± 1.85
Velocity (𝑚/𝑠𝑒𝑐) 5.07 ± 1.96 7.35 ± 3.04

Pause duration (𝑠𝑒𝑐) 0.51 ± 0.035 0.20 ± 0.052
Table 3: Comparing gesture properties of blind and sighted
users for forearm gestures.

Property Blind Users
(Mean ± Std dev)

Sighted Users
(Mean ± Std dev)

Inter-user distance 166.28 ± 63.25 96.37 ± 63.30
Jerk (𝑚/𝑠𝑒𝑐3) 37.05 ± 10.74 4.04 ± 4.80

Jitter gyroscope 9.44 ± 6.73 6.54 ± 5.06
Jitter accelerometer 14.48 ± 3.44 9.56 ± 5.33
Velocity (𝑚/𝑠𝑒𝑐) 4.57 ± 2.33 7.12 ± 4.15

Pause duration (𝑠𝑒𝑐) 0.882 ± 0.04 0.11 ± 0.0147
Table 4: Comparing gesture properties of blind and sighted
users for compound gestures.

Property Blind Users
(Mean ± Std dev)

Sighted Users
(Mean ± Std dev)

Inter-user distance 72.45 ± 37.13 49.35 ± 42.16
Jerk (𝑚/𝑠𝑒𝑐3) 14.13 ± 4.57 4.98 ± 2.04

Jitter gyroscope 2.75 ± 2.47 1.97 ± 0.95
Jitter accelerometer 10.50 ± 4.11 5.44 ± 3.33
Velocity (𝑚/𝑠𝑒𝑐) 6.67 ± 2.30 11.36 ± 3.46

Pause duration (𝑠𝑒𝑐) 0.79 ± 0.17 0.18 ± 0.028
Table 5: Comparing gesture properties of blind and sighted
users for shape gestures.

gestures performed by sighted users is 44.19, 96.37, and 49.34 re-
spectively (see Table 3, 4, 5). An Independent two-sample t-test was
performed (𝑡24 = 6.399, 𝑝 = 0.00076), indicating a highly significant
difference between the DTW distances for blind and sighted users.
To illustrate this difference, Figure 2 shows how different users
perform the square gesture. This figure shows the gyroscope time
series data of 5 different blind (a-e) and sighted users (f-j). We can
see that the gestures of sighted users follow a similar pattern, while
the gestures of blind users are different from each other.

Implication: The gestures performed by blind users exhibit a
greater variation among individual users. This significant diversity
makes learning-based approaches more challenging to design. Hav-
ing lots of training data is the key when high variance is observed,

but a large amount of training data is difficult to obtain from the
blind user population.

3.4.2 More jerk and jitter. Jerk and jitter are two gesture features
that quantify the noise in a gesture. We use these features to get
an estimate of the noise recorded in the motion sensor data. Jerk
measures changes in the acceleration of a signal with respect to
time. The higher the jerk, the more sudden the change in accel-
eration. Mathematically, Jerk is calculated as a third derivative
of the acceleration data estimated over time On average, blind
users had 136% more jerky gestures than sighted users. (see Ta-
ble 3, 4, 5). An Independent two-sample t-test was performed
(𝑡24 = 10.41, 𝑝 = 0.000019), indicating a highly significant difference
in the jerk for blind and sighted users’ accelerometer data.

Jitter estimates the low-frequency noise present in the gestures
induced due to motion artifacts contributing to the sensor noise. To
calculate jitter we smoothen the raw accelerometer and gyroscope
data using a 10 Hz smoothing filter. We then calculate the Normal-
ized Mean Squared Error (NMSE) between the raw and smoothened
signal to obtain the jitter.

On average, blind users’ accelerometer data had 51.56% more
jitter than sighted users’ accelerometer data. An independent two-
sample t-test demonstrated (𝑡24 = 15.93, 𝑝 = 0.00073) significantly
more jitters in accelerometer data of blind than sighted users Fig-
ure 3 visually compares the jerk in the accelerometer data of a blind
user and a sighted user.

Whereas blind users’ gyroscope data had only 29.91% more jitter
than sighted users’ gyroscope data. An Independent two-sample
t-test was performed (𝑡24 = 0.75, 𝑝 = 0.43), which signifies that
more jitters in blind users’ gyroscope data than sighted users’ is
not statistically significant.

Implication: Most existing gesture recognition systems fuse
time-series data from both the accelerometer and the gyroscope
sensors (or in some cases, use the accelerometer alone [58, 60]).
However, high jerk and jitter in the accelerometer data indicates
that the accelerometer data (which captures lateral motion) for
blind users is noisy as compared to sighted users. This makes the
accelerometer sensor less reliable for blind users.

In fact, we show in our evaluation that using even a small per-
centage of data from the accelerometer sensors considerably re-
duces the gesture recognition performance. In other words, gesture
recognition systems that either use an accelerometer alone or in
combination with gyroscope [19, 57] will work poorly for blind
users.

3.4.3 Lower velocity and more pauses. We next estimate the ve-
locity of gestures and the duration of pauses during the gesture.
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Figure 2: High variation is observed in the blind user population while performing the same gesture as compared to the sighted
user population. The figure shows the time series signal of the significant axis of the gyroscope data for 5 different blind users
and sighted users while they perform a square gesture.
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Figure 3: Measure of jerk for two sample users that illustrates
that the magnitude of jerk observed for a blind user (a) is
higher than a sighted user (b).
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Figure 4: Accelerometer readings shown for two sample users
to illustrate pauses in gestures. A sample blind user (a) takes
an extended pause to complete a compound gesture (pause
duration ismarked by the red box). No such pause is observed
for this sample sighted user (b).

Velocity is calculated as the cumulative integral of acceleration over
time. On average sighted users performed a gesture 35.06% faster
than blind users. An independent two-sample t-test was performed
(𝑡24 = 10.10, 𝑝 = 0.0006), which signifies that the gestures of blind
users are slower than sighted users and this difference is statistically
significant.

The pause duration is estimated as the amount of time (sec)
where the linear acceleration and angular velocity were near zero.

These instances are those when the user takes pauses to complete a
single gesture. On average pause duration for blind users was 126.6%
more than sighted users, meaning blind users took more extended
pauses to complete a gesture. An independent two-sample t-test
was performed (𝑡24 = 3.94, 𝑝 = 0.0019), which signifies that the
gestures of blind users had significantly more pauses than sighted
users. Figure 4 shows that the blind user took an extended pause to
complete the compound gesture; while no such pause was observed
for the sighted user.

Implication: The slow motion and extended gesture pauses
make the gestures of blind users more subtle compared to sighted
user gestures. Gesture recognition algorithms designed for sighted
users can miss these subtle movements and classify them as noise.
This can lead to poorer gesture recognition performance.

4 GESTURE RECOGNITION SYSTEM FOR
BLIND USERS

Our user study uncovers characteristics of blind user gestures that
require rethinking the design of gesture recognition algorithms.
Below we describe the design guidelines we distill from the user
study.

4.1 Design guidelines
Overcoming inter-user variability using limited training data. The

high inter-user variance in gestures indicates that each user has
a different style of performing a gesture, which makes learning
a generalized gesture pattern difficult. A common approach to
learning gesture patterns is to use large amounts of training data.
For example, state-of-the-art gesture recognition work [19] requires
135K training samples. Collecting large-scale data from blind users
is expensive and time-consuming.

Another approach is to train the model on sighted users’ data
and then use few-shot learning approaches [61] to personalize the
model for blind users. However, we find that this approach does not
work well (§6.2) because of the difference between how blind users
and sighted users perform gestures. Our design goal, therefore, is
to design a gesture recognition system that works well with limited
training data.
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Figure 5: Three phases of a gesture: pre-stroke, nucleus, and
the post-stroke phase. The nucleus (marked in red) is the
phase, where the actual gesture is performed. There is typi-
cally less user variance in the nucleus compared to the rest
of the gesture.

Designing gesture recognition with gyroscope data only. Most ex-
isting gesture recognition systems fuse data from accelerometer
and gyroscope or use accelerometer alone. Unfortunately, our user
study shows that the jitter in blind user accelerometer data is high,
and is jerky, making accelerometer data highly noisy. The third sen-
sor in IMUs, namely the magnetometer, is known to work poorly in
environments with large ferromagnetic interference; for example,
in the presence of computer machines. To this end, our system lever-
ages the gyroscope sensor alone. This is based on the insight that
all arm movements have a significant rotational component since
the motion is restricted to the surface of a sphere that is centered
at the shoulder, elbow, or wrist. One challenge is that gyroscope
data suffer from large drifts that add noise over time [47].

Capturing subtle gestures. Gestures performed by blind users are
slower and have more pauses. These signals could be mistaken to
be noise by gesture recognition systems. To avoid this, we should
use a generous first-cut filter that has lower thresholds for noise. In
other words, the system should trade off processing more (possibly)
spurious gesture signature for missing subtle gestures.

4.2 Insight: Identifying micro-movements in 3D
representation

Gestures comprise of three phases [5, 63]: (i) a pre-stroke phase,
where the user positions their hand to perform a gesture, (ii) the
nucleus which is when the gesture is performed, and (iii) post-stroke
phase, where the user takes the hand back to resting position after
performing a gesture. For example, Figure 5 shows the gyroscope
time series as a user is performing the flick gesture. The figure
marks the pre-stroke, nucleus, and the post-stroke phase. Here we
use the lightweight change point detection algorithm designed for
simple gestures [27] to mark the different phases. The algorithm
calculates the root-mean-square (RMS) energy of the signal over
a window and calculates the windows with the highest change in
RMS.

Previously, researchers have shown that even though the
entire gesture signature is different for different users, small
micro-movements in the gesture (i.e., the nucleus) can be user-
invariant [27]. For example, Figure 6 shows the gyroscope trace

as 5 blind users perform the forearm-up gesture. Even though the
trace looks different, the nucleus (marked in red) is visually similar.

The key challenge is that, while the user-invariance is established
for simple gestures, it is not clear if such a user-invariant micro-
movement can be identified for more complex gestures. We find
that for complex gestures such as shape and compound gestures,
the micro-movement is hard even to identify. For example, Figure 7
shows 5 blind users performing the square gesture. Visually, it
is hard to identify a consistent nucleus in this time series. Our
analysis reveals that finding such user-invariant micro-movements
is challenging across the more complex shapes and compound
gestures.

Instead, we turn our attention to the 3D representation of com-
plex gestures. The complex gestures are performed in free space
that spans across multiple planes, unlike 2D gestures performed
on a touchscreen. For example, Figure 8 shows the approximate
extracted nucleus for 2 blind users when they are performing the
shape gesture, but this time represented in 3D (See § 5.2 for details
on how to extract the 3D representation and identify the approxi-
mate nucleus for complex gestures.) Compared to Figure 7 which
is a 2D representation of the same gesture, visually, one is able to
match the two nucleus when viewed in 3D.

One additional advantage of leveraging these short micro-
movements to identify gestures is that it naturally overcomes the
gyroscope drift problem. Recall that gyroscope sensors can drift
over time; but since the micro-movements are short, we do not
encounter problems with drift. In fact, our experiments reveal that
the average duration of micro-movements is 620 msec where the
gyroscope drift is negligible. Additionally, the intermittent nature
of gestures allows for sensor re-calibration between gestures.

5 GESTURE RECOGNITION BY TRACKING 3D
GESTURE TRAJECTORY

We present a gesture recognition system that works well for blind
user gestures based on the insights described above. Figure 9
presents the system overview. The input to the system is a trace of
gyroscope data (x, y, and z-axis). The system identifies the approx-
imate (potential) nucleus in the data. The input and the nucleus
detection are marked "Pre-processing" in the figure. The approxi-
mate nucleus is detected using a low threshold filter, to ensure that
subtle movements are not missed.

The nucleus is fed to the classification module (marked "Classi-
fier"). This module uses the 3D representation of the gesture and an
ensemble classifier model to accurately classify the gesture. Below,
we first describe the classification module and then describe the
rest of the system.

5.1 Classification based on 3D representation
The central idea is to classify a gesture based on the (approximate)
nucleus data, where the nucleus is represented in 3D space. Recall
that the nucleus is only a small part of the entire gesture and the
nucleus exhibits higher similarity across users. In contrast, the
entire gesture signature is dissimilar across different users.

The challenge is that users can perform gestures in different
planes and orientations when performing the gesture in free space.
Classically, when gestures are performed/represented in 2D, the
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(a) (b) (c) (d) (e)

Figure 6: The nucleus (marked in red) when a forearm up gesture is performed by 5 different blind users. The pre-stroke and
post-stroke phases look visually dissimilar, but the nucleus is visually consistent across users. The figure shows the significant
axis of gyroscope data.

(a) (b) (c) (d) (e)

Figure 7: The figure shows the significant axis of gyroscope data when a shape gesture (square) is performed by 5 different
users. In this figure, it is difficult to identify a nucleus. In general, identifying the nucleus of complex gestures such as shape
gestures and compound gestures is difficult in 2D space.

Figure 8: The figure shows the approximate nucleus for a
square gesture performed by 2 blind users, but this time
represented in 3D space. Visually, one can match the two
nucleus.

time series data is matched using techniques such as DTW [41],
that align the gestures temporally. However, DTW techniques do
not work well when gestures can be performed in different planes
and orientations.

We address this challenge by designing an ensemble classifier
that consists of two models. For the first model (multi-view CNN),
we formulate the gesture classification problem as an image classi-
fication problem by converting the gesture trajectory to an image.
Image classification is a well-studied problem with sophisticated
and accurate classifiers. To account for the different planes and ori-
entations, we design a multi-view CNN model that takes as input
the trajectory image from multiple angles.

However, reducing the gesture trajectory to an image means that
the geometric features of the trajectory are lost. These geometric
features such as curvature and Centroid Distance Function (CDF)
capture the shape of the gesture and are agnostic to plane and
orientation. To this end, the second model (geometric-property-
based) extracts geometric properties and uses a 1-D CNN model to

classify the gestures based on the properties. The ensemble classifier
combines both the multi-view model and the geometric-property-
based model for the final classification. Below, we describe the two
models and our approach to train the models with limited data from
blind users.

5.1.1 Multi-viewCNNmodel. The gesture trajectories produced
by blind users resemble 2D hand-drawn images but within a 3D
spatial context. We cast the gesture classification problem to an
image classification problem, but look at the image from multiple
angles to take into account the different planes and orientations of
the gesture. For example, Figure 10 shows images of the gesture
trajectory from different views.

We then use a multi-view CNN to classify these images. Multi-
view CNN is a well-studied problem [50] with models attaining
high accuracy. However, these models require large amounts of
training data that is not available

Instead, our approach is to build on a pre-trained classifier. Specif-
ically, we use the EfficientNetB0 CNN architecture [51] pre-trained
on ImageNet [11] as a foundational feature extractor for each view.
We modify this architecture by removing its top layers and append-
ing a 2D convolution layer, followed by a subsequent max-pooling
layer. We use the blind user data to train the weights for the 2D
convolution and pooling layers, but the weights of the pre-trained
model remain the same. We note here that are able to use the pre-
trained weights because we work with the gesture nucleus and not
the entire gesture. We discuss why this works better than state-of-
the-art transfer learning approaches in §6.1.

5.1.2 Geometric property-based model. In three-dimensional
(3D) geometry, curvature, torsion, and centroid distance function
(CDF) concepts describe the shape and orientation of curves or
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Figure 9: The end-to-end design of the gesture recognition algorithm.

Figure 10: The gesture trajectory of a square gesture per-
formed by a blind user, viewed as an image from 6 distinct
angles.

paths in 3D space. Curvature and CDF are considered to be invari-
ant across different orientations and planes. We calculate these
properties on the estimated 3D nucleus trajectory and use these
properties to learn a classifier.

Curvaturemeasures how much the gesture deviates from being
a straight line at a particular point on the curve. Curvature can be
thought of as a measure of how "curved" or "bent" a trajectory is at
a specific point.

Torsion measures how much a gesture trajectory twists or ro-
tates as it moves along its path in 3D space. Detecting torsion is
valuable for recognizing compound gestures that involve not only
changes in direction but also rotational motion.

Centroid Distance Function (CDF) measures how far a spe-
cific point on the trajectory is from this "center" or "centroid." For
hand gestures, CDF identifies the moments in the gesture where
the hand is positioned closer to or farther away from the "aver-
age" (resting) hand position. High CDF values correspond to points
where the hand is extended away from the resting position, while
low CDF values indicate points where the hand is closer to the
resting position.

Our goal is to build a gesture classifier using these three geo-
metric properties. Figure 11 shows the curvature, torsion, and CDF
plots for a square gesture. To this end, we design a 1D CNN model

to learn the geometric property-based model. We then extract the
statistical features of the three properties to feed as an input to
the 1D CNN pipeline. The statistical features used are minimum,
maximum, range, mean, median, standard deviation, coefficient of
variation, zero-crossing rate, skewness, kurtosis, area under the
curve, energy, inter-quartile range, energy, and first 10 FFT coef-
ficients. This model comprises of three 1D convolutional layers, a
max-pool layer followed by a dropout layer to enhance generaliza-
tion. Since this model is learned over already extracted features, it
does not require large amounts of training data.

5.2 End-to-End system
We discussed the classifier above. In this section, we discuss the
rest of the system including the parameters used for learning.

The input to the classifier is the 3D orientation estimate over
time of the approximate nucleus of the gesture. We first determine
the gyroscope axis with the highest rotational variation (referred
to as the significant axis). To approximate the nucleus boundaries,
we employ a change-point detection algorithm that assesses the
empirical change in root-mean-square (RMS) values along the sig-
nificant axis of the gesture sequence [28]. We use a more liberal
threshold (empirically chosen value: 10) in the RMS change-point
algorithm to accommodate the subtle gestures made by blind users.
This can trigger false positives for the gesture instances, but these
false positives are filtered by the subsequent classifier block. Fig-
ure 7 shows the approximate nucleus boundaries detected for the
square gesture.

Since the gesture is performed in a 3D space, we convert the ex-
tracted approximate nucleus to 3D orientation estimate using only
the gyroscope data. This process involves utilizing the boundaries
identified by the change-point algorithm and extracting the 3-axis
gyroscope data within these limits. Gyroscopes measure the rate
of rotation (angular velocity) around 3 axes (X, Y, Z), and to obtain
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Figure 11: Curvature, torsion, and the centroid distance function (CDF) plots for a square gesture. The user makes 4 sharp
changes in direction while making a square gesture, this is represented by the 4 peaks in the curvature curve. The torsion curve
shows how the user’s hand rotated over time. CDF curve shows how the user’s hand moved farther and closer from the resting
hand position.

the 3D orientation (angular position) from this data, we integrate
the angular velocity with respect to time. In mathematical terms,
if 𝜔 (𝑡) represents the angular velocity at time 𝑡 , then the orienta-
tion 𝜃 (𝑡) at a given time 𝑡 is obtained by integrating the angular
velocity:

𝜃 (𝑡) =
∫ 𝑡

0
𝜔 (𝜏) 𝑑𝜏

In practice, to represent orientation quaternion integration using
Euler’s method is used [12]. Estimated orientation provides insight
into how the hand is positioned in three-dimensional space at the
specific moment 𝑡 . Figure 8 shows the Euler angle based orientation
estimate [56] over time of the approximate 3D nucleus, which is
input to the model.

The final classifier combines the multi-view CNN model and
the geometric properties-based model. We perform a 3-fold cross-
validation split to make test and train sets, with 1050 samples in
the train and 450 samples in the test set for each fold.

We jointly train the top of the multi-view CNN and the complete
geometric properties-based model using a learning rate of 0.0001
on the Adam optimizer. ReLU activation was used for all the layers,
and soft-max activation with L2-regularization was used on the
output classifier layer. The loss function used is sparse-categorical-
cross-entropy. We trained the model for 100 epochs.

6 EVALUATION AND RESULTS
We evaluate our gesture recognition algorithm using real gesture
traces collected from blind users. We conducted a real-world, IRB-
approved user study with 10 blind participants where we collect
IMU sensor data as users perform 15 gestures (described in §3). We
stream this sensor data to our gesture recognition algorithm and
evaluate the accuracy, false positives, and false negatives, against
ground truth. We collected a video (of only the hands) as users
perform gestures to obtain the ground truth.

We use the same traces to compare our algorithm to the state-
of-the-art and perform ablation studies.

6.1 Accuracy of gesture recognition
Figure 12 shows the overall accuracy of the system for 15 gestures
across 10 blind users. We perform 3-fold stratified cross-validation
with 70-30 train-test split and the average accuracy across all the
folds is 92% (precision: 92%, recall: 91%). The confusion matrix

Fo
re

ar
m

 u
p

Fo
re

ar
m

 d
ow

n

Fo
re

ar
m

 le
ft

Fo
re

ar
m

 ri
gh

t

R
ot

at
e 

w
ris

t &
m

ov
e 

ar
m

 ri
gh

t

R
ot

at
e 

w
ris

t &
m

ov
e 

ar
m

 le
ft

Fl
ic

k 
an

d
fo

re
ar

m
 u

p

Fl
ic

k 
an

d
fo

re
ar

m
 d

ow
n

Fl
ic

k 
an

d
fo

re
ar

m
 le

ft

Fl
ic

k 
an

d
fo

re
ar

m
 ri

gh
t

Sq
ua

re

C
irc

le

Tr
ia

ng
le

Q
ue

st
io

n
m

ar
k

In
fin

ity

Forearm up

Forearm down

Forearm left

Forearm right

Rotate wrist &
move arm right
Rotate wrist &
move arm left

Flick and
forearm up

Flick and
forearm down

Flick and
forearm left

Flick and
forearm right

Square

Circle

Triangle

Question
mark

Infinity

0.92 0 0 0 0 0 0 0 0.038 0 0.038 0 0 0 0

0 0.85 0 0 0.03 0 0.03 0.061 0 0 0 0 0.03 0 0

0.051 0.1 0.82 0.026 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.97 0.032 0 0 0 0 0 0 0 0 0

0 0 0 0 0.028 0.94 0 0 0 0 0 0 0 0 0.028

0 0 0 0 0 0 0.85 0.12 0 0 0 0 0 0 0.029

0.034 0 0 0 0 0 0.1 0.86 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0.028 0 0 0 0 0 0 0.028 0.94 0 0 0 0 0

0.029 0 0 0 0 0 0 0 0 0.029 0.91 0.029 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0.027 0.054 0 0 0.027 0 0.84 0.054 0

0 0 0 0 0 0 0 0.031 0 0 0 0 0 0.97 0

0 0 0 0 0.029 0 0 0 0.029 0 0 0.029 0.029 0 0.89

Figure 12: Confusion matrix for the gesture recognition sys-
tem across 10 blind users for 15 gestures. Overall average
accuracy is 92%

shows the accuracy of gesture recognition, as well as the percentage
of the time the algorithm misclassified the gesture.

Some of the gestures such as circle and forearm right are recog-
nized with a 100% accuracy. In general, the gestures with relatively
lower accuracy are those that can be confused with other gestures
because of how the gestures are performed. For example, forearm
up gesture is recognized with an accuracy of 92%, because the algo-
rithm gets it confused with the flick and forearm left gesture. This
is because the flick gesture looks like a forearm up gesture for some
users.

This high accuracy is achieved even when users perform ges-
tures differently. For example, for the shape gestures, some users
performed the gesture using their fingers to trace the shape, while
others used their fists. The algorithm is able to classify the gestures
accurately despite these differences.

For the previous experiment, we train a single classifier to clas-
sify gestures across all three categories. We next look at the ac-
curacy of gesture recognition if we build a different classifier for
each category of gesture: forearm, shape, and compound. Figure 13
shows the results. The forearm gesture model has an accuracy of
94% in recognizing forearm gestures, the compound gesture model
achieves 91% accuracy, and the shape gesture model achieves 92%
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pound. The average accuracy across all models is 92.3%. This
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Figure 14: The average leave-one-user-out accuracy is 80%.
Fine-tuning the model with 3 samples of each gesture from
a user increases the accuracy to 90%.

accuracy. Overall average accuracy is 92.3%, compared to the 92%
accuracy achieved when training a single model. In other words,
our algorithm is able to achieve similar accuracy by training a single
model, rather than train a separate model for each gesture category.

To evaluate the generalization capabilities of the model, we per-
form the leave-one-user-out evaluation, a cross-validation tech-
nique involving the training of the model on nine users while
testing on the omitted user iteratively. This method assesses the
model’s performance across diverse users by leaving out one user
at a time during training and evaluating on that user separately.
The average leave-one-user-out accuracy for blind users is 80%.
However, just by adding 3 samples of each gesture per user for fine-
tuning, the model achieves an accuracy of 90%. Figure 14 shows the
increase in average accuracy as the model is fine-tuned with some
samples from a new user. The accuracy saturates at 3 samples from
a new user. Thus, with less than 1 minute of training data from a
new user, the model can recognize gestures with high accuracy.

6.2 Comparing with the State-of-the-art gesture
recognition systems

We compare the performance of our gesture recognition algorithm
with three state-of-the-art (SOTA) learning-based models and one
gesture recognition technique that is designed for blind users, that

Accuracy Precision Recall
Our system 92% 92% 91%
TapNet [19]
(CNN based) 77% 77% 77%

Modified TapNet
(without accelerometer data) 80% 81% 82%

Serendipity [57]
(personalized SVM based) 82% 82% 82%

Modified Serendipity
(without accelerometer data) 86% 86% 87%

Few shot learning approach
(closely following
Xu et al. [61]

45% 45% 47%

AccessWear [27]
(simple gesture recognition
for blind users)

68% 65% 68%

Table 6: Comparing our gesture recognition algorithm to
three state-of-the-art learning models and one model for
blind users. The three learning based models are (i) Tap-
Net [19] which learns a generalized deep learning model, (ii)
Serendipity [57] which learns a personalized model for each
user, (iii) a model that uses few-shot learning, based on Xu et
al [61]. AccessWear [27] is a simple gesture recognition for
blind users.

does not require extensive training data.. Each baseline model repre-
sents a different framework: TapNet [19] is the SOTA deep learning
model and Serendipity [57] is the SOTA model that uses person-
alization. The third baseline is the SOTA few-shot learning-based
model that closely follows Xu et al. [61]. All of these models are
designed for sighted users. The fourth baseline, AccessWear [27]
is SOTA gesture recognition for blind users that is designed to
recognize simple gestures.

Table 6 shows the results across all the baseline comparisons;
we present the results of the three baselines individually below.

TapNet [19] (SOTA deep learning model): This is a CNN-based
tap detection model designed for mobile phones. TapNet runs both
accelerometer and gyroscope data through a multi-task network to
classify between tap and not tap and to learn the location of the tap.
We modified the TapNet model so that it will take the same input,
but will classify gestures. We split our data (10 users, 15 gestures
performed 10 times by each user) into training (70%) and test (30%)
sets to train a generalized model.

The accuracy of this baseline against the blind user gesture data
is 77%, compared to the 92% accuracy achieved by our algorithm.
The original TapNet model is trained with 135K samples, but such a
large training set is not available in this scenario. Coupled with the
high inter-user variance observed in our dataset, TapNet is not able
to learn the gesture patterns for accurate classification. Since the
accelerometer data is noisy in our dataset, we trained a modified
TapNet model that used only gyroscope data. This improved the
accuracy to 80% which is still considerably lower compared to our
algorithm.

Serendipity [57] (SOTA personalized model): This work trains
an SVM classifier for each user individually. Accordingly, we trained
a personalized model for each blind user using the features de-
scribed in the paper. The features are extracted from the time-series
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Nucleus detection Pipeline A Pipeline B Accuracy
Nucleus detection Multi-view CNN Geometric property 1D CNN 92%
No nucleus detection Multi-view CNN Geometric property 1D CNN 85%
Nucleus detection Multi-view CNN (no base model) Geometric property 1D CNN 55%
Nucleus detection Multi-view CNN (with accelerometer) Geometric property 1D CNN 71%
Nucleus detection No multi-view CNN Geometric property 1D CNN 78%
Nucleus detection Multi-view CNN Geometric property (LSTM) 78%
Nucleus detection Multi-view CNN Geometric property (Transformer) 72%
Nucleus detection Multi-view CNN No geometric property 1D CNN 66%

Table 7: Ablation study that removes/modifies one the three components of the algorithm: nucleus detection, multi-view CNN
model, and geometric property based 1-D CNN model.

data obtained from both accelerometer and gyroscope and take into
consideration the orientation in which the gesture was performed.

The mean accuracy across all the user’s personalized models is
82%, which is compared to the 92% accuracy achieved by our work.
As before, we train a modified Serendipity model by removing
accelerometer data because of its noise. This modified model has an
improved accuracy of 86%, but this is still lower than our approach.

Personalized models do perform better than generalized models
such as TapNet because it can capture the unique characteristics
of the user. Nevertheless, our algorithm performs better than the
personalized models, because it is able to learn an accurate general
classifier with relatively small amounts of training data.

Few shot learning based on Xu et al [61] The Xu et al. work
introduces a deep learning-based gesture recognition model that
uses a few-shot learning approach. A base model is trained with
data from 512 participants, and the model is fine-tuned for each
user’s custom gesture with a small amount of personal data (only 3
samples). The model uses accelerometer and gyroscope data filtered
at various frequencies as the input.

Since we do not have access to the base model, we train our
own model with data from both sighted users and 70% of blind user
data. We then augment this data set using the data augmentation
techniques described in the paper. We implement the data synthesis
pipeline described in the paper to simulate the natural motion
variance of the gestures. This pipeline is a self-supervised encoder-
decoder model. Finally, we implement a few-shot learning approach
over the base model.

However, the accuracy of this approach is only 45%. This poor
performance is due to multiple reasons. First, we find that data
augmentation approaches do not work for blind users’ gestures
as they create even larger variance in the data. Further, there is
a large difference between data from sighted users and data from
blind users. Therefore, a base model using sighted user data does
not work.

AccessWear [27] (SOTA gesture recognition for blind users):
AccessWear uses pre-defined templates and matches the single axis
of gyroscope data (one with the highest rotation) to this template.
However, this technique is designed for simple forearm gestures
that can be identified in 2D and does notworkwell formore complex
gestures performed in 3D space like shape and compound gestures.

We implemented the AccessWear pipeline for blind users and the
accuracy of this baseline is 68%. If separate models are trained for
forearm, compound, and shape gestures, AccessWear achieves an
accuracy of 91%, 37%, and 23% respectively. Templates are unique

for forearm gestures owing to higher classification accuracy. For
more complex gestures performed in the 3D space, the simple micro-
movement templates do not scale up. Figure 7 shows the nucleus for
the square gesture and due to high variance, the template matching
technique does not scale up for such gestures.

6.3 Ablation Study
To evaluate how each module of the gesture recognition system
contributes to the accuracy, we conducted an ablation study. Our
gesture recognition pipeline consists of three components (see
Figure 9): (A) Approximate nucleus detection (B) Multi-view CNN
pipeline, and (C) Geometric property-based 1-D CNN model. We
describe the effect of removing each of these components. Table 7
summarizes the results of the study (the first row represents the
complete algorithm with all three components).
Approximate nucleus detection: As a first step, we remove the
approximate nucleus detection and input the full gesture sequence
to the ensemble classifier. In this case, the accuracy drops to 85%.
Gestures have high inter-user variance in the pre-stroke and post-
stroke phases, while the nucleus is more consistent across users.
Therefore, learning is harder when using the entire gesture signa-
ture rather than using the gesture nucleus.
Multi-view CNN: Our multi-view CNN pipeline uses a baseline
model that is pre-trained using ImageNet. If we remove this model,
the accuracy drops to 55%. This is because we have limited training
samples from blind users and learning a generalized model with a
small number of samples is difficult.

We note that using a pre-trainedmodel in our algorithm is similar
to the transfer learning approach (Xu et.al. [61]) described in the
previous section, which worked poorly. However, our work uses
the pre-trained model to learn the gesture nucleus. The nucleus of
the gesture remains fairly consistent across all users. However, the
SOTA transfer learning model [61] uses the pre-trained weights
to learn the entire gesture; since the gestures of sighted users and
blind users vary considerably, their approach does not work well
in our setting.

Recall that we do not use accelerometer data in our learning
pipeline because it is noisy. In the next ablation study, we look at
how accelerometer data will affect the accuracy. We use a standard
sensor fusion technique called complementary filtering [17] to
combine the gyroscope and accelerometer data. The rest of the
pipeline remains the same. The accuracy drops to 71% because of
the noise in the accelerometer. Finally, if we remove the multi-view
CNN model completely from the algorithm, the accuracy drops to
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78%. The multi-view CNN model is able to classify gestures based
on powerful image classification techniques, which is critical to the
accuracy of the algorithm.
Geometric-property based 1D CNN: The next pipeline is a 1D
CNN model that classifies gestures based on geometric properties.
As a first ablation study, we use different architectures to learn
the classifier instead of the 1D CNN model. Specifically, we use an
LSTM and Transformer architecture instead of the 1D CNN. In each
case, the accuracy drops to 78% and 72% respectively.

Finally, if we remove the geometric property-based model, the
accuracy drops to 66%, showing the importance of including geo-
metric properties in the classification algorithm.

We chose the 1D CNN model as it has the maximum accuracy
(92%) when combined with the Multi-view CNN pipeline, among
all the other models tested.

7 LIMITATIONS AND FUTURE WORK
This work shows that 3D representation can be used to recognize
free-form gestures performed by blind users, without requiring
extensive training data. However, one limitation of our work is that
our evaluations are based on a user study with only 10 blind users.
In the future, we will conduct a more comprehensive, longitudinal
study, involving a larger and more diverse group of blind users.
Further, our leave-one-user-out evaluation shows that we only need
a small number of samples (three in our case) from a given user to
recognize a gesture with high accuracy. We will expand this work to
more (possibly user-defined) gestures to evaluate the effectiveness
of our approach to recognizing more free-form gestures with a
limited number of samples. Another avenue of research is to make
the gesture recognition algorithm more generalizable so that even
a small number of samples are not needed.

Finally, the ideas presented in this work can be used to recognize
gestures not only for blind users but also for sighted users. While
large companies may be able to collect training samples with a
large number of users, this is not practical for others. Designing a
gesture recognition system that requires limited training data can
help with deployability and with adding new gestures. Our initial
pilot study shows that indeed our approach is able to recognize
gestures performed by sighted users with high accuracy. However,
we need to perform extensive experiments and comparison studies
to evaluate the efficacy of our gesture recognition algorithm for
sighted users.

8 CONCLUSION
We design a hand gesture recognition algorithm that can recognize
blind user gestures using a commodity smartwatch with high accu-
racy, without requiring extensive training data. In our formative
user study with 10 blind users and 16 sighted users, we find that
hand gestures made by blind users are significantly different from
those of sighted users for a range of gesture properties including
inter-user variance, jitter, jerk, and velocity. The implications of our
findings is that existing gesture recognition algorithms, almost all
of which are designed for sighted users, are not well-suited to rec-
ognize blind user gestures. The principle problem is that blind user
gestures exhibit high inter-user variance, which makes learning ges-
ture patterns extremely challenging. This problem is exacerbated

by the limited training data available from blind users. Instead, our
algorithm uses the insight that there are micro-movements within
the gesture that are more consistent across users. We extract the
micro-movements and design an ensemble classifier to classify the
gestures from the micro-movements. The classifier works on a 3D
representation of the gesture trajectory; 3D helps better capture ges-
tures performed in free space. The classifier combines a multi-view
CNNmodel with geometric properties of the gesture trajectory. The
resulting algorithm achieves 92% classification accuracy and has an
improvement in accuracy compared to the next best state-of-the-art
which has an accuracy of 82%.

ACKNOWLEDGMENTS
We sincerely thank the reviewers for their insightful comments
and suggestions. This work was supported in part by a Google
Research Scholar award, Google Inclusion Research Award, the Na-
tional Science Foundation under award numbers 2153056, 2125147,
2113485, 2110193, and the National Institutes of Health under award
numbers R01EY030085, R01HD097188, R01EY035688.

REFERENCES
[1] Diar Abdlkarim, Massimiliano Di Luca, Poppy Aves, Sang-Hoon Yeo, R Chris

Miall, Peter Holland, and Joseph M Galea. 2022. A methodological framework to
assess the accuracy of virtual reality hand-tracking systems: A case study with
the oculus quest 2. BioRxiv (2022), 2022–02.

[2] Ahmad Akl, Chen Feng, and Shahrokh Valaee. 2011. A novel accelerometer-based
gesture recognition system. IEEE transactions on Signal Processing 59, 12 (2011),
6197–6205.

[3] Sara Ashry, Reda Elbasiony, and Walid Gomaa. 2018. An LSTM-based descrip-
tor for human activities recognition using IMU sensors. In Proceedings of the
15th International Conference on Informatics in Control, Automation and Robotics,
ICINCO, Vol. 1. 494–501.

[4] Shiri Azenkot and Nicole B Lee. 2013. Exploring the use of speech input by
blind people on mobile devices. In Proceedings of the 15th international ACM
SIGACCESS conference on computers and accessibility. 1–8.

[5] Gibran Benitez-Garcia, Muhammad Haris, Yoshiyuki Tsuda, and Norimichi Ukita.
2020. Continuous finger gesture spotting and recognition based on similarities
between start and end frames. IEEE Transactions on Intelligent Transportation
Systems (2020).

[6] K Abhijith Bhaskaran, Anoop G. Nair, K Deepak Ram, Krishnan Anantha-
narayanan, and H.R. Nandi Vardhan. 2016. Smart gloves for hand gesture
recognition: Sign language to speech conversion system. In 2016 International
Conference on Robotics and Automation for Humanitarian Applications (RAHA).
1–6. https://doi.org/10.1109/RAHA.2016.7931887

[7] Ting Kwok Chan, Ying Kin Yu, Ho Chuen Kam, and Kin HongWong. 2018. Robust
hand gesture input using computer vision, inertial measurement unit (IMU) and
flex sensors. In 2018 IEEE International Conference on Mechatronics, Robotics and
Automation (ICMRA). IEEE, 95–99.

[8] Feiyu Chen, Jia Deng, Zhibo Pang, Majid Baghaei Nejad, Huayong Yang, and Geng
Yang. 2018. Finger angle-based hand gesture recognition for smart infrastructure
using wearable wrist-worn camera. Applied Sciences 8, 3 (2018), 369.

[9] Feiyu Chen, Honghao Lv, Zhibo Pang, Junhui Zhang, Yonghong Hou, Ying Gu,
Huayong Yang, and Geng Yang. 2018. WristCam: A wearable sensor for hand
trajectory gesture recognition and intelligent human–robot interaction. IEEE
Sensors Journal 19, 19 (2018), 8441–8451.

[10] Heng-Tze Cheng, An Mei Chen, Ashu Razdan, and Elliot Buller. 2011. Contactless
gesture recognition system using proximity sensors. In 2011 IEEE International
Conference on Consumer Electronics (ICCE). IEEE, 149–150.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition. 248–255. https://doi.org/10.1109/CVPR.
2009.5206848

[12] James Diebel et al. 2006. Representing attitude: Euler angles, unit quaternions,
and rotation vectors. Matrix 58, 15-16 (2006), 1–35.

[13] Nem Khan Dim, Chaklam Silpasuwanchai, Sayan Sarcar, and Xiangshi Ren. 2016.
Designing mid-air TV gestures for blind people using user-and choice-based
elicitation approaches. In Proceedings of the 2016 ACM conference on designing
interactive systems. 204–214.

[14] Matthew Ernst, Travis Swan, Victor Cheung, and Audrey Girouard. 2017. Typhlex:
Exploring deformable input for blind users controlling a mobile screen reader.

https://doi.org/10.1109/RAHA.2016.7931887
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848


CHI ’24, May 11–16, 2024, Honolulu, HI, USA Khanna et al.

IEEE Pervasive Computing 16, 4 (2017), 28–35.
[15] Shirin Feiz and IV Ramakrishnan. 2019. Exploring feasibility of wrist gestures for

non-visual interactions with wearables. In Proceedings of the 16th International
Web for All Conference. 1–4.

[16] Jun Gong, Xing-Dong Yang, and Pourang Irani. 2016. Wristwhirl: One-handed
continuous smartwatch input using wrist gestures. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology. 861–872.

[17] Pengfei Gui, Liqiong Tang, and Subhas Mukhopadhyay. 2015. MEMS based IMU
for tilting measurement: Comparison of complementary and kalman filter based
data fusion. In 2015 IEEE 10th conference on Industrial Electronics and Applications
(ICIEA). IEEE, 2004–2009.

[18] Steven Houben and Nicolai Marquardt. 2015. Watchconnect: A toolkit for proto-
typing smartwatch-centric cross-device applications. In Proceedings of the 33rd
annual ACM conference on human factors in computing systems. 1247–1256.

[19] Michael Xuelin Huang, Yang Li, Nazneen Nazneen, Alexander Chao, and Shumin
Zhai. 2021. TapNet: The Design, Training, Implementation, and Applications of
a Multi-Task Learning CNN for Off-Screen Mobile Input. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 1–11.

[20] Yangjian Huang, Weichao Guo, Jianwei Liu, Jiayuan He, Haisheng Xia, Xinjun
Sheng, Haitao Wang, Xuetao Feng, and Peter B Shull. 2015. Preliminary testing
of a hand gesture recognition wristband based on emg and inertial sensor fusion.
In Intelligent Robotics and Applications: 8th International Conference, ICIRA 2015,
Portsmouth, UK, August 24-27, 2015, Proceedings, Part I 8. Springer, 359–367.

[21] Dai Jiang, Yu Wu, and Andreas Demosthenous. 2020. Hand gesture recognition
using three-dimensional electrical impedance tomography. IEEE Transactions on
Circuits and Systems II: Express Briefs 67, 9 (2020), 1554–1558.

[22] Weibin Jiang, Xuelin Ye, Ruiqi Chen, Feng Su, Mengru Lin, Yuhanxiao Ma, Yanxi-
ang Zhu, and Shizhen Huang. 2021. Wearable on-device deep learning system for
hand gesture recognition based on FPGA accelerator. Mathematical Biosciences
and Engineering 18, 1 (2021), 132–153.

[23] Pyeong-Gook Jung, Gukchan Lim, Seonghyok Kim, and Kyoungchul Kong. 2015.
A wearable gesture recognition device for detecting muscular activities based
on air-pressure sensors. IEEE Transactions on Industrial Informatics 11, 2 (2015),
485–494.

[24] Shaun K Kane, Jacob O Wobbrock, and Richard E Ladner. 2011. Usable gestures
for blind people: understanding preference and performance. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. 413–422.

[25] Bryce Kellogg, Vamsi Talla, and Shyamnath Gollakota. 2014. Bringing gesture
recognition to all devices. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14). 303–316.

[26] Brian Kemler. 2021. Our all-new talkback screen reader. https://blog.google/
products/android/all-new-talkback

[27] Prerna Khanna, Shirin Feiz, Jian Xu, IV Ramakrishnan, Shubham Jain, Xiaojun
Bi, and Aruna Balasubramanian. 2023. AccessWear: Making Smartphone Appli-
cations Accessible to Blind Users. In Proceedings of the 29th Annual International
Conference on Mobile Computing and Networking. 1–16.

[28] Rebecca Killick, Paul Fearnhead, and Idris A Eckley. 2012. Optimal detection of
changepoints with a linear computational cost. J. Amer. Statist. Assoc. 107, 500
(2012), 1590–1598.

[29] Sven Kratz and Michael Rohs. 2010. The $3 recognizer: simple 3D gesture
recognition on mobile devices. In Proceedings of the 15th international conference
on Intelligent user interfaces. 419–420.

[30] Daniel Lauss, Florian Eibensteiner, and Phillip Petz. 2022. A Deep Learning based
Hand Gesture Recognition on a Low-power Microcontroller using IMU Sensors.
In 2022 21st IEEE International Conference on Machine Learning and Applications
(ICMLA). IEEE, 733–736.

[31] Hansheng Lei and Venu Govindaraju. 2004. Direct image matching by dynamic
warping. In 2004 Conference on Computer Vision and Pattern RecognitionWorkshop.
IEEE, 76–76.

[32] Barbara Leporini, Maria Claudia Buzzi, and Marina Buzzi. 2012. Interacting with
mobile devices via VoiceOver: usability and accessibility issues. In Proceedings of
the 24th Australian Computer-Human Interaction Conference. 339–348.

[33] Tzuu-Hseng S. Li, Min-Chi Kao, and Ping-Huan Kuo. 2016. Recognition System for
Home-Service-Related Sign Language Using Entropy-Based𝐾 -Means Algorithm
and ABC-Based HMM. IEEE Transactions on Systems, Man, and Cybernetics:
Systems 46, 1 (2016), 150–162. https://doi.org/10.1109/TSMC.2015.2435702

[34] Guanhong Liu, Yizheng Gu, Yiwen Yin, Chun Yu, Yuntao Wang, Haipeng Mi,
and Yuanchun Shi. 2020. Keep the Phone in Your Pocket: Enabling Smartphone
Operation with an IMU Ring for Visually Impaired People. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 2 (2020),
1–23.

[35] Siyu Liu, Jian Chen, Cheng Wang, and Lin Lin. 2023. Ultrasonic positioning and
IMU data fusion for pen-based 3D hand gesture recognition. Multimedia Tools
and Applications (2023), 1–19.

[36] Yuqi Luo, Jiang Liu, and Shigeru Shimamoto. 2021. Wearable air-writing recogni-
tion system employing dynamic timewarping. In 2021 IEEE 18th Annual Consumer
Communications & Networking Conference (CCNC). IEEE, 1–6.

[37] Yuntao Ma, Yuxuan Liu, Ruiyang Jin, Xingyang Yuan, Raza Sekha, Samuel Wilson,
and Ravi Vaidyanathan. 2017. Hand gesture recognition with convolutional
neural networks for the multimodal UAV control. In 2017 Workshop on Research,
Education and Development of Unmanned Aerial Systems (RED-UAS). IEEE, 198–
203.

[38] Ziyang Ma and Enhua Wu. 2014. Real-time and robust hand tracking with a
single depth camera. The Visual Computer 30 (2014), 1133–1144.

[39] Oleg Makaussov, Mikhail Krassavin, Maxim Zhabinets, and Siamac Fazli. 2020.
A low-cost, IMU-based real-time on device gesture recognition glove. In 2020
IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE,
3346–3351.

[40] Meethu Malu, Pramod Chundury, and Leah Findlater. 2018. Exploring accessible
smartwatch interactions for people with upper body motor impairments. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1–12.

[41] Meinard Müller. 2007. Dynamic time warping. Information retrieval for music
and motion (2007), 69–84.

[42] Chaithanya Kumar Mummadi, Frederic Philips Peter Leo, Keshav Deep Verma,
Shivaji Kasireddy, Philipp M Scholl, Jochen Kempfle, and Kristof Van Laerhoven.
2018. Real-time and embedded detection of hand gestures with an IMU-based
glove. In Informatics, Vol. 5. MDPI, 28.

[43] Lorenzo Porzi, Stefano Messelodi, Carla Mara Modena, and Elisa Ricci. 2013. A
smart watch-based gesture recognition system for assisting people with visual
impairments. In Proceedings of the 3rd ACM international workshop on Interactive
multimedia on mobile & portable devices. 19–24.

[44] Barbara Šepić, Abdurrahman Ghanem, and Stephan Vogel. 2015. BrailleEasy:
one-handed braille keyboard for smartphones. In Assistive Technology. IOS Press,
1030–1035.

[45] Ionut Cristian Severin, Dan Marius Dobrea, and Monica Claudia Dobrea. 2020.
Head gesture recognition using a 6dof inertial IMU. International Journal of
Computers Communications & Control 15, 3 (2020).

[46] Toby Sharp, Cem Keskin, Duncan Robertson, Jonathan Taylor, Jamie Shotton,
David Kim, Christoph Rhemann, Ido Leichter, Alon Vinnikov, Yichen Wei, et al.
2015. Accurate, robust, and flexible real-time hand tracking. In Proceedings of the
33rd annual ACM conference on human factors in computing systems. 3633–3642.

[47] Sheng Shen, Mahanth Gowda, and Romit Roy Choudhury. 2018. Closing the
gaps in inertial motion tracking. In Proceedings of the 24th Annual International
Conference on Mobile Computing and Networking. 429–444.

[48] Guangyi Shi, Yuexian Zou, Yufeng Jin, Xiaole Cui, and Wen J Li. 2009. Towards
HMM based human motion recognition using MEMS inertial sensors. In 2008
IEEE International Conference on Robotics and Biomimetics. IEEE, 1762–1766.

[49] Peter B Shull, Shuo Jiang, Yuhui Zhu, and Xiangyang Zhu. 2019. Hand gesture
recognition and finger angle estimation via wrist-worn modified barometric pres-
sure sensing. IEEE Transactions on Neural Systems and Rehabilitation Engineering
27, 4 (2019), 724–732.

[50] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015.
Multi-view convolutional neural networks for 3d shape recognition. In Proceed-
ings of the IEEE international conference on computer vision. 945–953.

[51] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on machine learning.
PMLR, 6105–6114.

[52] Edwin Valarezo Añazco, Seung Ju Han, Kangil Kim, Patricio Rivera Lopez, Tae-
Seong Kim, and Sangmin Lee. 2021. Hand gesture recognition using single
patchable six-axis inertial measurement unit via recurrent neural networks.
Sensors 21, 4 (2021), 1404.

[53] Tijana Vuletic, Alex Duffy, Laura Hay, Chris McTeague, Gerard Campbell, and
Madeleine Grealy. 2019. Systematic literature review of hand gestures used in
human computer interaction interfaces. International Journal of Human-Computer
Studies 129 (2019), 74–94.

[54] DanpingWang, JinaWang, Yang Liu, and XianmingMeng. 2023. HMM-based IMU
data processing for arm gesture classification and motion tracking. International
Journal of Modelling, Identification and Control 42, 1 (2023), 54–63.

[55] Zhengjie Wang, Yushan Hou, Kangkang Jiang, Wenwen Dou, Chengming Zhang,
Zehua Huang, and Yinjing Guo. 2019. Hand gesture recognition based on active
ultrasonic sensing of smartphone: a survey. IEEE Access 7 (2019), 111897–111922.

[56] Eric W Weisstein. 2009. Euler angles. https://mathworld. wolfram. com/ (2009).
[57] Hongyi Wen, Julian Ramos Rojas, and Anind K Dey. 2016. Serendipity: Finger

gesture recognition using an off-the-shelf smartwatch. In Proceedings of the 2016
CHI conference on human factors in computing systems. 3847–3851.

[58] Renqiang Xie and Juncheng Cao. 2016. Accelerometer-based hand gesture recog-
nition by neural network and similarity matching. IEEE Sensors Journal 16, 11
(2016), 4537–4545.

[59] Jian Xu, Syed Masum Billah, Roy Shilkrot, and Aruna Balasubramanian. 2019.
DarkReader: bridging the gap between perception and reality of power consump-
tion in smartphones for blind users. In The 21st International ACM SIGACCESS
Conference on Computers and Accessibility. 96–104.

https://blog.google/products/android/all-new-talkback
https://blog.google/products/android/all-new-talkback
https://doi.org/10.1109/TSMC.2015.2435702


Hand Gesture Recognition for Blind Users by Tracking 3D Gesture Trajectory CHI ’24, May 11–16, 2024, Honolulu, HI, USA

[60] Ruize Xu, Shengli Zhou, and Wen J Li. 2011. MEMS accelerometer based
nonspecific-user hand gesture recognition. IEEE sensors journal 12, 5 (2011),
1166–1173.

[61] Xuhai Xu, Jun Gong, Carolina Brum, Lilian Liang, Bongsoo Suh, Shivam Kumar
Gupta, Yash Agarwal, Laurence Lindsey, Runchang Kang, Behrooz Shahsavari,
et al. 2022. Enabling hand gesture customization on wrist-worn devices. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
1–19.

[62] Chan-Yun Yang, Pei-Yu Chen, Te-Jen Wen, and Gene Eu Jan. 2019. Imu consensus
exception detectionwith dynamic timewarping—a comparative approach. Sensors
19, 10 (2019), 2237.

[63] Ying Yin and Randall Davis. 2014. Real-time continuous gesture recognition
for natural human-computer interaction. In 2014 IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC). IEEE, 113–120.
[64] Guan Yuan, Xiao Liu, Qiuyan Yan, Shaojie Qiao, Zhixiao Wang, and Li Yuan. 2020.

Hand gesture recognition using deep feature fusion network based on wearable
sensors. IEEE Sensors Journal 21, 1 (2020), 539–547.

[65] Yu Zhang, Tao Gu, Chu Luo, Vassilis Kostakos, and Aruna Seneviratne. 2018.
FinDroidHR: Smartwatch gesture input with optical heartrate monitor. Proceed-
ings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 1
(2018), 1–42.

[66] Yang Zhang and Chris Harrison. 2015. Tomo: Wearable, low-cost electrical
impedance tomography for hand gesture recognition. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology. 167–173.


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Gesture recognition
	2.2 Gesture-based interactions for blind users

	3 Characterizing blind user gestures
	3.1 Participants
	3.2 Apparatus
	3.3 Design
	3.4 Gesture Characterization

	4 Gesture recognition system for blind users
	4.1 Design guidelines
	4.2 Insight: Identifying micro-movements in 3D representation

	5 Gesture Recognition by Tracking 3D Gesture Trajectory
	5.1 Classification based on 3D representation
	5.2 End-to-End system

	6 Evaluation and Results
	6.1 Accuracy of gesture recognition
	6.2 Comparing with the State-of-the-art gesture recognition systems
	6.3 Ablation Study

	7 Limitations and Future work
	8 Conclusion
	Acknowledgments
	References

