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ABSTRACT

We introduce a new reduction of the motion of three point vortices in a two-dimensional ideal fluid. This proceeds in two stages: a change of
variables to Jacobi coordinates and then a Nambu reduction. The new coordinates demonstrate that the dynamics evolve on a two-
dimensional manifold whose topology depends on the sign of a parameter k, that arises in the reduction. For x, > 0, the phase space is
spherical, while for x, < 0, the dynamics are confined to the upper sheet of a two-sheeted hyperboloid. We contrast this reduction with ear-
lier reduced systems derived by Grobli, Aref, and others in which the dynamics are determined from the pairwise distances between the vorti-
ces. The new coordinate system overcomes two related shortcomings of Grobli’s reduction that have made understanding the dynamics
difficult: their lack of a standard phase plane and their singularity at all configurations in which the vortices are collinear. We apply this to
two canonical problems. We first discuss the dynamics of three identical vortices and then consider the scattering of a propagating dipole by
a stationary vortex. We show that the points dividing direct and exchange scattering solutions correspond to the locations of the invariant
manifolds of equilibria of the reduced equations and relate changes in the scattering diagram as the circulation of one vortex is varied to
bifurcations of these equilibria.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0208538

I. INTRODUCTION avoids introducing artificial singularities in the dynamics. Previously
used reductions introduce such singularities because they are incom-
patible with the topology of the manifold on which the dynamics
occur. This has made reasoning about the dynamics more difficult
because the singularities get in the way of applying standard geometric
phase-space arguments.

We apply this reduction to two cases of the three-vortex problem:
the motion of three identical vortices and the scattering of a propagat-
ing dipole by a third, initially stationary vortex. In each case, the new
form of the equations dramatically simplifies the application of
dynamical systems reasoning.

Helmholtz derived the model of point-vortex motion describing
the interaction of N point vortices, defined by the system of 2N ODEs

The mutually induced motion of point vortices in a two-
dimensional inviscid incompressible fluid is a classical topic in fluid
mechanics. The positions of the vortices are described by a Hamiltonian
system of ordinary differential equations that has been well studied for
over 150years.”” These ODEs remain relevant because of their deep
connection to turbulence in Bose-Einstein condensates and other quan-
tum fluids, as summarized, for example, by Lydon et al. :

The point-vortex model idealizes a near-two-dimensional invis-
cid incompressible fluid in which the vorticity is confined to a finite
number of discrete points. Each such point vortex induces a velocity
that, in turn, causes the other vortices to move. It is a standard topic in
elementary fluid mechanics textbooks’ and is well covered in

9S'¥2:1.Z 20T dunr 90

Newton’s textbook devoted to the subject.’ in 1858,
Systems of three vortices are the smallest systems with time- N N
dependent inter-vortex distances. They are integrable yet display vari- d Z T Uiz o di Z T (*i — %) )
ous behaviors depending on the three circulations. Solutions to system dt 7 e = n?’  dt 7 e = rj|
(1) evolve in a 2N-dimensional phase space, so reducing the dimen-
sionality is necessary to understand the dynamics. This paper aims to Here, r; = (x;, ;) denotes the position of the ith point vortex, and
introduce a geometric reduction to the three-vortex problem that 2nI; represents its circulation. The equations conserve an energy,
Phys. Fluids 36, 067110 (2024); doi: 10.1063/5.0208538 36, 067110-1
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H(rl,...,rN):—Ezrir110g||l‘i—l‘j||2~ )

i<j

In 1876, Kirchhoff noted that system (1) has a Hamiltonian
formulation,”

d¢ 10H dy  10H

E:Eﬂ_yﬂ & Tox (3)

System (1) has three well-known conservation laws, which we
write as

N N
M= <Mx,My> = Z F,‘l‘,‘7 and O = ZF,‘HI‘,’HZA (4)
i=1 i=1

The quantities M and © are called the linear impulse and the angular
impulse, respectively. In the case that ',y = Zf\il I'; # 0, then

r) = M/Ftot (5)

defines the location of the conserved center of vorticity. In this case,
taking ry at the origin is natural.

The paper is organized as follows. In Sec. II, we introduce the
reduced equations that Grobli used to integrate the equations of
motion and Aref’s interpretation of this system as trilinear coordinates
for R?. This section concludes by discussing other reductions of the
three-vortex system in the existing literature. In Sec. III, we review
some ideas from Hamiltonian mechanics, including the Poisson
bracket. Section IV describes the reduction techniques, introducing
Jacobi coordinates in Sec. IV A and Nambu brackets in Sec. IV B
before applying these two methods to the three-vortex system in Sec.
[V C. After this, we use the reduced system to explore three cases of
vortex motion. First, in Sec. V, we consider the canonical case of three
identical vortices. Section VI considers vortices with circulation
(1,1, —1), in which a vortex dipole is scattered by a third, initially sta-
tionary vortex of the same absolute circulation. This section contains a
review of the scattering problem. Using the reduced equations, we
derive an evolution equation for the instantaneous scattering angle.
We explain the scattering behavior, including the critical transition
between direct and exchange scattering, entirely in terms of phase
planes of the reduced problems. In Sec. V1I, we extend the analysis to
the case where the initially stationary vortex has circulation I" # 1. We
conclude in Sec. VIII with a discussion of the possible future applica-
tions of the coordinate reduction method. In the supplementary mate-
rial we integrate the equation for instantaneous evolution of the
scattering angle to derive a closed-form expression for this quantity.

Il. GROBLI'S REDUCTION AND TRILINEAR
COORDINATES

Grobli’s 1877 doctoral thesis was the first to explore the complex
dynamics that can arise in systems of three or more vortices. He sim-
plified the three-vortex problem by deriving evolution equations for
the pairwise distances between vortices,” finding that these satisfy

d 0, I (61_22 - 63_12)?
3| G | =2l D6 - 67); |, (6)
4%2 (6 = 67),
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where Zl-j is the distance between vortices i and j, A is the area of the tri-
angle formed by the vortices, and ¢ = *1 gives the orientation of the
triangle spanned by the three vortices visited in numerical order, tak-
ing the value +1 if they appear in clockwise order and -1 if counter-
clockwise. Since the area of a triangle can be obtained from the side
lengths using Heron’s formula,

1
A= (20,6, + 26,0, + 26,6, — 6 — - )",
this is a closed system.
System (6) leads easily to a conservation law,
F1FZZ%Z+FZF3€§3+F3F1€§I :3LF1F2F3. (7)

The constant L may also be obtained by an appropriate combination
of the constants defined in Eq. (4) and is proportional to @ if the cen-
ter of vorticity ry is taken at the origin. Depending on the strengths of
the three vortices, this quadratic invariant may or not be positive defi-
nite, which has consequences for the dynamics. Using this conserva-
tion law to eliminate one variable, say ¢3;, Grobli reduced the system
to quadratures. This system and others derived from it are used in
most subsequent studies of the three-vortex problem,” '* a history that
Aref and his collaborators researched extensively.”'” We have trans-
lated Grobli’s dissertation into English and posted it on arXiv.org,™
For L # 0, Aref defines new variables,

bs 5y B
b1:ﬁ7 b2:1—‘72L7 b3:ﬁ> (8)

which must then satisfy, by Eq. (7),
by + by + by =3.

These may be interpreted as trilinear coordinates for the plane. That is,
given three points p;, p,, and p; that form an equilateral triangle of
height 3, any point in the plane is uniquely specified by the triplet of
signed distances b; from this point to the lines containing sides j of the
triangle, as illustrated in Fig. 1(a). This has precedent in earlier works
of Synge and Novikov,”'’ which use a trilinear coordinate system
somewhat different from Aref’s.

For L =0, we may omit the factor of L~! from the definition of
the trilinear coordinates in Eq. (8) and find instead

by +b,+bs=0.

The dynamics of the trilinear coordinates b; describe the motion
of a point in the plane. Since coordinates /;; represent the sides of a tri-
angle, they must satisfy the triangle inequality, and not all triples repre-
sent physical configurations that satisfy this constraint. Let
D phys C R? denote the domain of physical configurations. Each point
on its interior represents two distinct phase points related by mirror
symmetry. The boundary 0%y consists of collinear configurations
of the three vortices, and Aref showed it describes a conic section in
the plane. It is an ellipse for certain sets of circulations; for others, it is
a hyperbola. Figure 1 shows three such images. Panel (a) is the phase
diagram for circulation values (1, 1, 1), and the trajectories (level sets
of a rescaled Hamiltonian) are confined to lie inside the circle, which is
interior and tangent to the triangle formed by the three axes of the tri-
linear coordinate system. The phase diagram for circulations
(1,1, —1) is shown in the phase diagram for circulations (1, 1, —1) for
L # 0 in panel (b) and for L=0 in panel (c). In the first, Zppy, is
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FIG. 1. Phase diagrams in frilinear coordinates. Solid black lines are level sets of
the Hamiltonian, but only the portions of these curves in s, shown here as
shaded regions, are meaningful. Portions of the level sets lying outside them have
no physical meaning. Collinear relative equilibria are marked ° and equilateral trian-
gle relative equilibria . Heavier curves are separatrices. (a) Vortices of circulations
(1,1, 1). (b) Vortices of circulation (1,1, —1) with L 7 0. (c) Vortices of circulation
(1,1, —1) with L=0.

bounded by a circle; in the second, a hyperbola; and in the third, the b,
and b, axes. These correspond to Figs. 2, 4, and 5 in Ref. 8.

We briefly summarize the reasoning Aref uses to interpret these
figures. The evolving vortex configurations move along level sets of the
Hamiltonian in the shaded %y, regions. Components of these level
sets outside Zpnys have no physical meaning. When a trajectory
reaches 0Zppys, the three vortices are collinear. The motion passes
through the collinear configuration and continues on the phase dia-
gram by reversing direction and retracing its path. Thus, each point in
Dphys corresponds to two configurations of opposite orientation.
Points where trajectories are tangent to 0% pys correspond to collinear
relative equilibria, and the orbits connected to them are their stable
and unstable manifolds.

Panel (b) shows the phase diagram for circulations (1,1, —1) and
L # 0, for which 0%y, is a hyperbola. The portions of curves lying
outside the boundary are nonphysical. Trajectories that cross % phys
transversely immediately reverse direction and retrace the same path.
Trajectories tangent to 0%y, from the interior are invariant mani-
folds, and their points of tangency are hyperbolic fixed points. When
L =0, the triangle in panel (b) shrinks to a point, and the two regions
bounded by hyperbolas become wedges. The dynamics on the upper
wedge of Zppys is shown in panel (c).

Points on 0y in Fig. 1 correspond to collinear arrangements.
Such arrangements are common: many families of periodic orbits pass
through such states twice per period, and three of the five possible rig-
idly rotating configurations of three vortices are collinear. The evolu-
tion equations are singular on 0%phys due to the square root that
appears in Heron’s formula. Thus, linearization fails, and even finding
the linear stability of the collinear states is difficult. The singularity of
the reduced ODE system is an artifact of the reduced coordinate sys-
tem. It is not present in the vortex motion equations (1), which are

ARTICLE pubs.aip.org/aip/pof

singular only at singularities of the Hamiltonian (2), i.e., when two or
more vortices occupy the same location.

The images in Fig. 1 are phase planes. Still, the above-mentioned
considerations show that reading the dynamics from this phase plane
takes more effort than from a standard one. Certain information, like
the stability of collinear fixed points, is not obtainable in this representa-
tion. Previous studies have approached different aspects of three-vortex
dynamics using various reduction approaches. The first is Conte’s 1979
These d’Etat, which appeared only as a technical report until its 2015
publication.”’ This reduces the system to an evolution equation for a sin-
gle complex parameter (, which, according to the authors, describes the
shape of the triangle formed by the three vortices. The authors study
many aspects of the dynamics using this reduction, but we have found
the change of variables difficult to interpret. Tavantzis and Ting used
Synge’s trilinear coordinates to make a detailed study of the dynamics’
dependence on the circulation of the three vortices,"" but this has similar
problems to Aref’s trilinear formulation. In 2009, Aref returned to the
stability of collinear arrangements and introduced yet another reduc-
tion.” This algebraic approach describes only the relative equilibria and
does not apply to the dynamics more broadly.

Other reductions have included the angles between the triangle’s
edges. For example, Krishnamurthy derived a system for the three
angles plus the radius of the circle circumscribing the triangle,”” and
Makarov derived a phase-plane representation for one side-length and
one angle.”* Stremler derived an especially useful system of equations,
noting that since the interior angles of a triangle must sum to 7, they
can be used as a trilinear coordinate system.”” Since all interior angles
must be positive, the physical domain coincides with the triangle’s
interior, and collinear states occur at the triangle’s vertices. The vertices
are singular since all collinear configurations with the same central
vortex degenerate to a single point, including any collinear relative
equilibria. Thus, this coordinate system runs into difficulties near col-
linear arrangements, mirroring the weakness of trilinear coordinates.

Ill. FURTHER MATHEMATICAL PRELIMINARIES

The Poisson bracket used to describe the dynamics of N point
vortices is defined by

N 1 /OFOG OF G
( ) o

{Fr), 60} =) = (5-5-—5-75-
;F,— 0x; 8}/,- 8y,~ Ox;

where

r= (;), and x,y e RV,

Together with the chain rule, this implies that if r evolves according to
Eq. (3), any function F(r) evolves according to

dr

—=1F,H}. 10

o = FH) (10)

Due to the factor of rL in these equations, Hamiltonian system (3)

is not in canonical form. It may be canonically normalized by intro-
ducing variables

gi = V/|Tilx; and p; = /|Tilsign(I;)y;, (11)

which renders both the equations and the Poisson brackets into the
standard forms
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dqi - OH dp, - OH
dt - 6]], ’ dt B 6!], ’ (12)

and
N.(OF0G OF 9G
T (L)
; 8!];6]), 8p,8q,

A. The three-vortex system

In this paper, we confine our attention to a system of three vorti-
ces with non-vanishing total circulation. The dynamics conserve the
Hamiltonian

LI, I

H=-—

log [[r; — 1,]|* — log [[r; — 13]|*

r2F3 2
log [[r2 — 13|,

the center of vorticity
o Iiry +or, + 113
A VS P

and the angular impulse
© = Iy |ry[[* + Fa | |* + s3]
Without loss of generality, we can assume that

Fl 2 Fz 2 F3 and FZ > 0. (13)

IV. REDUCTION BY STAGES

Choosing the proper coordinate system may significantly clarify
the study of a particular phenomenon, but how to construct such a
coordinate system may not be obvious. In the ideal case, any such
coordinates should be easy to interpret, which implies, among other
things, that they should have a clear meaning and be invertible so that
we may reconstruct the original motion from the transformed motion.
We insist on using canonical changes of variables, those which pre-
serve the Hamiltonian form of the evolution equations. The reduction
proceeds in two steps. The first change of variables to Jacobi coordi-
nates is canonical, while the second change, a Nambu reduction,
requires us to generalize the framework of Hamiltonian systems. In
between, we apply a normalization of the form (11).

A. Jacobi coordinate reductions

Jacobi coordinates are a standard tool for reducing #n-body prob-
lems, especially in celestial mechanics, and are discussed at length in
Jacobi’s 1866 Lectures on Dynamics.”® The method is straightforward
and underlies the reductions used in many studies of vortex interac-
tions.”” Still, the only point-vortex paper we have found that references
the method by name is a recent one by Luo et al.”*

The Jacobi coordinate transformation consists of iteratively
applying the change of variables,

- = nr,
Iy =1 — I F1:m; .
f2:7r1r1+r‘2r2. f2:r1+r2
r,+0, ' ’

where I'; + I'; #£ 0.

ARTICLE pubs.aip.org/aip/pof

The variables l~"1 and l~"2 are known, respectively, as the reduced
circulation and total circulation of the pair.

Solving for r; and r, and substituting these values back in the
Hamiltonian (2) yields a new Hamiltonian H (¥, 2,13, ...,ry) and
evolution equations of the form (3) with circulations 0,05, ...,
I'y. We then apply a similar transform to Eq. (14) to f5, 13, 5, and
I';, repeating the process for each pair until ry has been transformed.
The transformed circulations redefine the Poisson bracket (9) and thus
the evolution equations (10).

To prevent division by zero in the reduction procedure, we
assume that

k
> Ti#0, forall k<N. (15)
j=1

For k=N, this represents an assumption about the set of vortices,
while for k < N, it is merely an assumption about their labels’” ordering
and is consistent with assumption (13) and (14). Because the mass of
the jth body, which serves as the analog to the circulation I';, must be
positive, condition (15) is never an issue in the gravitational problem.

We assign the names R; to the final transformed variables and x;
to the transformed circulations. Then, R; is the displacement from r,
to ry, and, similarly, R, is the displacement from r; to the center of
vorticity of the ry, r, subsystem. A similar definition holds for the
remaining R; with j < N, whereas Ry coincides with our previously
defined ry, the center of vorticity defined in Eq. (5). Since this quantity
is conserved, we have reduced the dimension of the phase space by
two.

B. Nambu brackets

The reduced equations of motion we derive will make use of a
Nambu bracket, which takes the following form:

{F,G}. = —VC- (VF x VG),

where C,F,G:R> - R, and C is a distinguished function or
Casimir. The Nambu bracket obeys all the defining properties of a
Poisson bracket. Namely, it is a skew-symmetric bilinear operator that
obeys the Leibnitz rule and the Jacobi identity. Nambu introduced it in
1973” to generalize Hamiltonian mechanics to systems with three-
dimensional phase space. Holm et al.’s textbooks provide an excellent
overview of the mathematical theory and many applications to prob-
lems in optics, classical mechanics, and fluid dynamics.‘m 2

For a system with coordinates (X, Y, Z), the system of evolution
equations analogous to system (12) is

a (X
—| v | =vCxVH, (16)
dt z

under which any function F(X, Y, Z) evolves according to

dF(X,Y,Z)

={F,H
dr {7}C

in analogy with Eq. (10).

Miiller and Névir showed that Grobli’s reduced equations could
be reinterpreted as Nambu dynamics,"” but their construction does
not solve the problem of those coordinates’ singularity. This
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formulation was subsequently applied to study self-similar collapse in
a generalized point-vortex problem.”’

The Nambu formulation of mechanics is often used in situations
for which polar coordinates or their Hamiltonian equivalents may be
applied. For example, Luo et al. arrived at an equation equivalent to
Eq. (18) below and then introduced polar coordinates. Polar coordi-
nates introduce a singularity at the origin, similar to the singularity of
the trilinear coordinate system. The more modern Nambu formulation
avoids this. This point of view is well articulated in the aptly named
lecture notes in Ref. 34.

C. Application to the three-vortex system

The Jacobi coordinates and the virtual circulations for the three-
vortex problem under assumptions (13) and (15) are

R nr,
=r —I; K =—-—";
1=11—1 S A
I I I )
yhnthn o ARG
F1+F2 F1+F2+F3
[y + oy + T
Ry— T2 sl 4T, 4T
3 I +1, T, 3 1 2 3

Choosing the center of vorticity R; as the origin, we may invert these
equations to find

SUNLE T R B
D+, T+, +05
_ T, N YR
L+, +0 2 T, +0, ©

S <&> R
’ L+L+05)
In these coordinates, the Hamiltonian and angular impulses are
then

r

I

505
2

LI,

K
H = =2 log [R* = =2 log [R, — £ R’
2

I
2

K1

I

log||R; + =Ry ||?, (18)

and
0 = 1 |[Ry[* + | [Rs |
For the remainder of the paper, we assume that
I>TI,>o0.

This is generic as two of the vortices must have circulations of match-
ing signs, and we may assume they are positive by reversing the direc-
tion of time if necessary. Under this assumption, x; > 0, but x, may
take either sign, which plays an essential role in the following analysis.

1. The case k2>0

Under assumptions (13) and (15), the virtual circulation «, is
positive if I'; > 0 or I'; < —I'; — I',. In both these cases, Aref finds
that the physical domain Z s in the trilinear coordinate system is the
interior of an ellipse.” In the first case, the ellipse lies inside the central

pubs.aip.org/aip/pof

triangular region as in Fig. 1(a); in the second, it lies in one of the
unbounded regions of the figure.

We normalize the system using Eq. (11) and the values of x; from
Eq. (17), which gives

Q =KXy, Pi=vVKiY, Q =Xy, P=KY (19)

Defining #; = (Q;, P;) and #; = (Q;, —P;), which we can treat
as complex variables, the Hamiltonian becomes

rr I, NEE
H=——2log|||] — 2 2log |7, — V2 g,
2 2 I,
r,r v |1
——log ,%ﬁ%% ‘ , (20)
1

and the angular impulse becomes
© = ||| + 121"

Both H and © are invariant under the S' transformation (%,, #,) —
(€%, ,eR,) for arbitrary phase ¢ and depend only on quadratic
monomials. Holm suggests the following coordinates for such
dynamics: ™’

Z=| - 1%, X+iY =29R,. (1)
These new coordinates satisfy
' =2"+X"+Y? (22)

and give a Hamiltonian,

H(X,Y,Z,0)=— 1"121"2 log (Z; ®)
Ky

F2F310 ®7Z+K1(Z+®) kX
2 8| o, a?l T

2 21, 212 r,)

where k? = o

The conservation law (22) provides a geometric interpretation of
Aref’s observation that the physical domain Zpy is bounded by an
ellipse: the natural phase space of the system is the sphere S*. A simple

calculation shows that
Y =-2 K1k, R X R, = (r2 — 1‘1) X (r3 — 1'1)7

so that the great circle Y=0, which we will call the equator, corre-
sponds to the set of collinear configurations, i.e., to BEthys in the trilin-
ear coordinates. In the present coordinate system, the dynamics are
regular along this curve.

It is then an exercise in the chain rule to show that the system
evolves under system (16) with C = 2@? in the coordinates defined by
Eq. (21). Since 9 = 0, this yields

oz ax— (23)
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2. The case x2<0

The virtual circulation r, is negative if —I'; — I, < I's < 0.1In
this, Aref finds that the physical domam D phys in the trilinear coordi-
nate system is bounded by a hyperbola.”

We normalize the system using Eq. (11) and the values of k; from
Eq. (17), which gives

=VvKiXi, Pi=vkiY1, Q=KX P=—y/-KY.

(24)
Defining #; and @j as done between Egs. (19) and (20) we find
Hamiltonian,
Ir ] I, — \/
H=—"log||2,|]" — —="log||Z, —ﬂ%ﬁ
2 2 I,
_nr N=srePls
2 —log||%, + e Rl (25)
I
and angular impulse

© = ||211|* — || 2"

Both H and © are invariant under the S' transformation
(R, Ry) — ('R, e 9 R,) for arbitrary phase ¢ and depend only
on quadratic monomials. Holm suggests the following coordinates for
such dynamics: "’

Z = ||l + 1217,

(26)

These coordinates satisfy
0’ =7'-X*-Y? 27)
which we know to be conserved Thus, the trajectory
(X(#),Y(t),Z(t)) is confined to a hyperbola of two sheets, which
degenerates to a cone when ® = 0. Because Z > 0 by definition, the
trajectories lie on the upper sheet. As in the 1, > 0 case, Y =0 when
the vortices are collinear, so that Eq. (27) is the hyperbola that forms

O phys in the trilinear coordinates.
The Hamiltonian becomes

rr z
H(X,Y,Z,0) = fszlog< i ®>

2K1
F2F3 Z—0 Kl(Z+®) IX
_ 1 _=
2 8 ( w a2 L
- 1 — 2
2 Og(z;cz HEEETER o B
where > = <1,
The system evolves under Eq. (16) with C = 202, Since § 9 — o,
this yields
dx OH
=gy S
de oz’
dy OH OH
= D _ax s
dt )¢ oz’
dz 4y(9H
dt e

V. THE SYSTEM OF THREE IDENTICAL VORTICES

We illustrate the reduction for the case of three equal circulations
Iy =, = I's = 1. In this case, k; = and i, = £ > 0, so the reduc-
tion follows Sec. IV C 1 and

H= ﬁlog(®+2) fflog <®,§,g)
- log (@’*g sz>

This Hamiltonian is unchanged under rotations of the XZ plane by
+ 2%, which correspond to permutations of the vortex labels. The
dynamics are equivariant under a rescaling of ®, so we may take
® =1 without loss of generality. The dynamics are singular at the
points on the sphere where the arguments of the logarithms defining
H vanish, which occur at three points evenly spaced around the equa-
tor, here given by Y=0,

(X,Y,2) = (0,0,—1) and (X,Y,Z) = (i \/750%)
These are points where two of the three vortices coincide, and the rota-
tional frequencies of the closed orbits surrounding these points diverge
as they approach the singular points. Each point on the three meri-
dians running from the north to the south pole through a singularity
corresponds to a “tall” isosceles triangle with legs longer than its base.

The system has five equilibria. Three of them lie on the equator,

3 1
(X,Y,Z) = (0,0,1) and (X,Y,Z)= <¢§,o, —5>.
These alternate with the three singular points as one moves around the
equator. They correspond to collinear relative equilibria, each with one
of the three vortices at the midpoint of a line segment connecting the
other two. The other two, which lie at the poles

(X,Y,Z) =(0,%1,0)

correspond to rigidly rotating equilateral triangular arrangements.
Each point on the three meridians running from the north to the south
pole through a saddle point on the equator corresponds to a “wide”
isosceles triangle whose base is longer than its legs.

Because the dynamics defined by system (23) are regular, the lin-
ear stability of all relative equilibria is determined by the eigenvalues of
the Jacobian. We include the following elementary calculations to
demonstrate their straightforwardness compared to previous formula-
tions of the problem. The Jacobian matrices at, respectively, a triangu-
lar relative equilibrium and a collinear one are

0 0 3 03 0
J(0,1,00={ 0 0 o], and J(1,0,00=[9 0 0
-3.0 0 000

Each has a null eigenvector corresponding to a perturbation in the
radial direction, i.e., to a change to the conserved angular impulse ©.
The first has eigenvalues *3i and is neutrally stable. The second has
eigenvalues =3+/3 and is a saddle.

The global phase space for three identical vortices is shown in
Fig. 2. When this sphere is viewed from above the north pole, it
reduces to Aref’s phase plane shown in Fig. 1(a). The three collinear
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FIG. 2. The phase-sphere of the three-vortex system with identical circulations, plot-
ted with transparency so trajectories on the rear are visible. The equator Y=0,

where the vortices are collinear, and the meridians, where they form an isosceles
triangle, are indicated.

"

states are saddle points, and their invariant manifolds coincide in six
heteroclinic orbits. The periodic orbits can be classified into two types:
two families of orbits that encircle the triangular configurations at the
poles and three families that surround the singular points on the
equator.

Figure 3(a) shows a periodic orbit from the family surrounding
the north pole with an initial point on the meridian between the Y axis
and the Z axis in Fig. 2 close to the saddle point. In laboratory coordi-
nates, it is a relative periodic orbit whose initial condition is a wide
isosceles triangle in which the vortices are nearly collinear. The figure
shows one period of motion on the sphere, which crosses all six isosce-
les meridians but remains in the upper hemisphere.

Figure 3(b) shows a periodic orbit from the family surrounding a
singular point on the equator. The initial condition is collinear, with
the points nearly equally spaced, corresponding to a point on the equa-
tor near a saddle point. Two of the vortices alternate, moving to the
center as the orbit approaches two of the saddle points in turn.

VI. THREE VORTICES WITH CIRCULATIONS (1,1, -1)

Welet I'y = I'y = —I'3 = 1, in which case the transformed cir-
culations are

K = — K2:—2, K3:1.

Because x, < 0, this system is reduced to Nambu form using Egs.
(24)~(26). The Hamiltonian reduces to

H= f%log(ZnL@)Jr%log(Zz - X?), (29)

and the angular impulse is given by Eq. (27).
The evolution equations are

dx =2Y 4zY

& Z10 Zox (30a)
dy 2X
i Z+0° (30b)
dz 4XY
a = 722 — XZ . (30C)
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FIG. 3. Periodic orbits near separatrices (relative periodic orbits in physical coordi-
nates). (a) A periodic orbit in the upper hemisphere that makes close approaches to
all three saddle points but never crosses the equator. At all the numbered times,
corresponding to sixths of a period, the vortices form an isosceles triangle, the first
two of which are drawn. (b) A periodic orbit crosses the equator and closely
approaches saddle points. At numbered times, corresponding to quarter-periods,
the points alternate between collinear and isosceles arrangements.

It is worth relating the (X, Y,Z, ®) coordinate system for this
problem to the physical coordinates, and we find a straightforward
geometric interpretation. Consider Fig. 4. By assumption (5), the cen-
ter of vorticity lies at the origin, and we let v; denote the vector from
the origin to vortex j. Relation (5) implies that v3 = v; 4+ v, so that
the positions of the three vortices and the origin form a parallelogram,
a fact mentioned by Grobli,” Sec. I11. We let ¢ be the angle from v; to
v,. We then find by following through the sequence of changes of vari-
ables that

2 2
X = =[]+ vl
Y =2(vy x v3) - k = 2[[vy]|[|v2]| sin ¢;
2 2
Z = |will” + (w2l
O = —2vy - v, = =2|vi]|||v2]| cos ¢.

(31)

A few observations on these coordinates follow:

* X is the signed difference between the lengths of v; and v, so
vanishes when the triangle of vortices is isosceles.
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(0,0)

FIG. 4. Diagram used to interpret the (X, Y, Z, ®) coordinates. See the text for an
explanation.

¢ Y vanishes when the three vortices are collinear, which is not a
singularity of the coordinate system.

* For ®=0, cos¢ = 0, so at all times, the three vortices form a
right triangle, with vortex 2 at the right angle. Then, trivially,
they cannot be collinear, so Y # 0, which can also be deduced
from the singularity of the Hamiltonian (29) when ® =0.

A. Scattering

The most noteworthy behavior for this set of circulations is scat-
tering: two vortices with circulations of identical magnitude but oppo-
site orientation form a dipole that propagates at constant velocity
perpendicular to the line joining them. The presence of a third vortex
deflects or scatters this motion. Three such scattering solutions are
shown in Fig. 5. While these three solutions obey very similar condi-
tions before the interaction (as the time t — —o0), their behavior as
t — o0 is quite different. Subfigures (a) and (b) show exchange scatter-
ing events: the dipole that exits the collision region is not composed of
the same two vortices as the dipole that entered. By contrast, subfigure
(c) displays direct scattering; the same two vortices form the dipole
before and after the interaction.

A fundamental question about this scattering is whether a given
initial condition leads to direct or exchange scattering. The second
question is the change in angle Ao between the incoming dipole and
the exiting dipole. Aref derived a formula that answers both questions
about scattering, but this is based entirely on integrating the ordinary

ARTICLE pubs.aip.org/aip/pof
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d
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(@0, 30) = (0,0)
: J
(w2, y2)

FIG. 6. Setup of the scattering problem. The dipole formed by vortices 1 and 3
propagates toward the target, vortex 2.

differential equations and not on the interpretation of the phase dia-
gram in Fig. 1(b).” Aref’s plot of the dependence of A« on initial con-
tains a sign error that was fixed by Lydon et al.’

The reduced system of equations allows us to apply phase space
reasoning directly to the scattering problem, so we review it here. A
schematic of the scattering experiment is shown in Fig. 6. A dipole con-
sisting of a positive-circulation vortex at position r; = (—L,p +9),
where L>> 1, and a negative-circulation vortex at position
r; = (—L,p — 9) propagates to the right toward a positive-circulation
vortex at position r, = (0, —d). These are chosen to set ry = 0.
Without loss of generality, we take d = 1.

Eventually, vortex 3 escapes to infinity as part of a dipole. We call
the case when the escaping dipole comprises vortices 1 and 3 a direct
scattering event and the case when it comprises vortices 2 and 3 an
exchange scattering event.

Examples are shown in Fig. 5. The initial conditions are posed as
in the schematic, showing exchange scattering in panels (a) and (b)
and direct scattering in panel (c). Since vortex 3 has opposite circula-
tion to the two others, it must be a part of both the entering and exiting
dipoles. We define the scattering angle Ao as its change of heading; see
Eq. (32). Figure 7 shows the scattering angle as a function of the offset
p, with the scattering angles of the three solutions shown in Fig. 5
marked.

If |p| > 1, the isolated vortex will scarcely deflect the dipole, so
direct scattering will occur. Previous authors have determined, via
fairly involved calculations, that exchange scattering occurs for
—-1<p< %, and direct scattering outside this interval.”® The points
p = —1 and p = separate distinct behavior domains in this system,
and the scattering angle diverges as p approaches these values.

FIG. 5. Three solutions of the scattering problem showing (a) exchange scattering for p = —0.999. (b) Exchange scattering for p = 2.5. (c) Direct scattering for p = 3.8. The
vortex dipole arrives from —oo traveling parallel to the x axis, and vortex 3 sits at rest at the marked pointas t — —oc.
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p

FIG. 7. The deflection of the angle of vortex 3 plotted as a function as the distance p, showing singularities at p = —1 and p = % as expected. The solid line is the result of
direct simulation, and the red dots are the formulas derived in the supplementary material. The points marked (a)—(c) correspond to the three simulations shown in Fig. 5.

B. Recovering some angles

Equation (31) shows that the (X, Y, Z, ®) variables are insensi-
tive to a rigid rotation of the parallelogram in Fig. 4 about the origin
and will not allow us to compute the scattering angle. Therefore, we
introduce a canonical form of polar coordinates (the action-angle vari-
ables of a harmonic oscillator) to recover this angle.

Returning to the coordinates %, and %, used in Eq. (25), we let

Ry = (V21 sin 0y, /21, cos 0y);

.%2 = <\/ 212 sin 02, vV 212 Ccos 92) .
Two observations are important here. First, the Hamiltonian
depends on the angles only through the combination 0; + 6,. Second,

the vector v; in the figure has argument 0, — 7. Therefore, we make
one additional canonical transformation,

=0 +0,, Y,=0,, h=5L, L=5L-1I.

In these variables, the Hamiltonian takes the following form (again
ignoring additive constants):

1 1
H = Elog (4]12 sinzlﬁ1 + 451 ), sinzlp1 —0—]22) — Elog (h)-

Since the equation is cyclic in ¥,, the action J, = —®/2 is conserved.
The dynamics of J; and /; are equivalent to system (30). We may
recover the evolution of 0, = 1/, by integrating

B 2]y sin®y; + J;
4]% sin®y, + 4], ], sin®y, + J3

P
along a scattering trajectory. In terms of the Nambu variables, this
becomes

_2Y2VO + X2+ Y2 - 20X?
- xev)@+y)
The angle just calculated describes the argument of v in Fig. 4,

which is distinct from the scattering angle o = arg% plotted in Fig. 7.
In terms of the reduced coordinates, we find that

0

do 80Y?

dr (X2 +Y2)(@% +Y2) (32)

Integrating this over a trajectory then gives Aa. This calculation is
described in the supplementary material. It is equivalent to a calcula-
tion by Lydon and is included for completeness.”

C. Phase space of the (1,1, —1) system

We first derive the fixed points and singularities of system (30)
before visualizing the system’s phase space. We set the right-hand sides
of system (30) to zero while enforcing the constraints (27) and Z > 0.
Similarly, we find singularities where the argument of either logarith-
mic term in the Hamiltonian (29) vanishes, enforcing the same two
constraints. Which equilibria and singularities exist depends on ©.

When © < 0, the system has two equilibria &, and a singularity
11 found by setting Z + © = 0, which requires X = Y = 0. These
are

0 0
gtir-i = i\/§® and yll = 0
—20 -0

When © =0, there are no equilibria, but the system is singular
when Z = |X|, which requires Y =0.
When © > 0, the system has a single equilibrium,

Xo 0
(0@71 = YO = 0 5
Zy S}

and no singularities.

The fixed points &; and &_; are relative equilibria in the labora-
tory coordinates, i.e., they are equilibria when viewed in an appropriate
rotating reference frame. We may interpret them using Eq. (31). For
both equilibria, X=0 implies ||v|| = ||v2||. The equilibrium &;
exists for ® < 0. For the equilibrium &, the value of the component
Z = —20 implies that ¢) = = £ and the three vortices lie at the verti-
ces of an equilateral triangle, motivating the naming convention. The
equilibrium & _; exists for ® > 0. This implies ¢ = 7 so that the three
vortices are collinear with the two positive vortices equally spaced
from the negative vortex at the center. The subscript -1 indicates that

the vortex with circulation -1 sits at the center. By similar reasoning,
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we find that at the singularity %;;, the two vortices with circu-
lation + 1 coincide, again motivating the notation.

By the conservation law (27), the phase space of system (30) is
the upper sheet of a two-sheeted hyperbola. We visualize the dynamics
by projecting this surface into the XY plane in Fig. 8. The conserved
angular impulse © is a bifurcation parameter, but up to scaling when
©® # 0, there are only three possible phase planes.

For ® < 0 in panel (a), the point at the origin is the singularity
1. The two equilibria &; sit on the Y axis and are saddle points
connected by a pair of homoclinic orbits. The two homoclines sur-
round a family of periodic orbits, which shrink to a point at .%’;;. Each
corresponds to a hierarchical orbit in which the two positive vortices
orbit about each other rapidly, while their mutual center of vorticity
and the third vortex orbit each other; Grobli computed this orbit in
closed form and plotted it in Ref. 7, Fig. 1. As the diameter of these
closed orbits goes to zero, the rotation rate of this tightly bound pair
diverges, and the orbits approach the singularity .#’;;. The unbounded
portions of the stable and unstable manifolds separate the remainder
of the phase plane into four unbounded quadrants. This will be impor-
tant for the scattering problem.

When © =0 in panel (b), the entire X axis is singular, and all sol-
utions are confined to the upper or lower half-planes. For ® > 0 in
panel (c), the collinear equilibrium &'_; at the origin is a saddle point.
Its invariant manifolds also separate the plane into four unbounded
quadrants.

The phase plane for ® < 0 in panel (a) corresponds to the upper
disconnected component of %y in Fig. 1(b), the phase plane for
® =0 in panel (b) to Fig. 1(c), and phase plane for ® > 0 in panel (c)
to the lower disconnected component of %y in Fig. 1(b).

Finally, note that rescaling X and Y by @] and ¢ by |©| " (when
©® # 0) shows that the dynamics for any negative (respectively, posi-
tive) value of ® has a phase plane equivalent to that shown in panel
(a) [respectively, panel (c)].

D. Explaining the scattering

The analysis of Sec. VIC enumerated the ingredients needed to
explain the behavior of the three-vortex scattering problem setup in
Fig. 6. The most important features of a phase plane in organizing the
dynamics are the invariant sets: equilibria, periodic orbits, and their

SC]

a
210
O]
N~ 0
-9
—2[0|
-3|©]

30
ONSNS—
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stable and unstable manifolds, which form separatrices between
regions of distinct behavior. The goal of this section is to show that the
transitions between direct and exchange scattering at p = —1 and
p = Zin Fig. 7 are due to these features.

The separatrices shown in Fig. 8 divide the phase plane into fami-
lies of trajectories with identical topology, and the topology of the
phase plane is determined, in turn, by the conserved parameter ©.
Panel (a) depicts the case @ < 0, where the energy level of the separa-
trices equals that of the rotating triangular configurations &,;, given by

B(6Z) = %log (—40). (33)

tri

*

The energy in the two regions to the left and right of &; (those
containing the X-axis) is lower than E(&p;), while the energy in the
regions above and below the separatrices is higher than E(& ;).

Panel (c) shows the case ® > 0, where the energy level on the
separatrices equals that of the collinear equilibrium &_;, which we

compute to be

1. 0
E(6_) = 2log 5 (34)
The energy in the two regions to the left and right of &_; (those con-
taining the X-axis) is lower than E(&_;), while the energy in the
regions above and below the separatrices is higher than E(&_,).

We must compare these energies with those of the pre-scattering
condition depicted in Fig. 6. In this arrangement, the center of vorticity
is at the origin, so we may compute the limiting behavior of X and Y
using the equations in Eq. (31). We directly compute that, independent

of L,
®=1+2p. (35)

We assume that as t — —o0, L — oo, thus ||v{|| — oo, while [|v,]| is
finite, so that X — —oo. This also implies that Y — oo. Thus, for the
situation depicted in Fig. 6, trajectories in the phase planes depicted in
Fig. 8 arrive from infinity from the northwest direction heading
southeast.

Then, suppose the initial energy exceeds the separatrix energy. In
that case, the trajectory begins above the separatrix and crosses the line
X =0, where % = 0 before escaping to infinity in the northeast direc-
tion. Because X — 400 as t — 00, ||v,|| must diverge, and this is an

o —————
\/

N N VO D -5
200 S e

X

—3(6
0 5 3N N ™ N
o N I R

FIG. 8. The XY phase planes of system (30). (a) The case ® < 0 with singularity .11 (point) and triangular configurations at the intersections of the thick curves. (b) The
case ® =0. The gray line Y=0is singular. (c) The case ® > 0 with collinear equilibrium & _1. Note that the contours are not evenly spaced level sets of the energy (29) but

were chosen to illustrate the topology clearly.
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exchange scattering event. At the instant the solution crosses, X =0,
then ||v;|| = ||v2|| at which point the vectors v; and v, form the legs
of an isosceles triangle.

If the initial energy lies below the separatrix energy, then the
trajectory begins below the separatrix. It will cross Y=0 at which
point % =0. When Y=0, sin ¢ = 0, and the three vortices are col-
linear. Because X <0 along the entire trajectory and X — —oo as
t — oo, then ||vi|| — oo and this solution represents a direct scat-
tering event.

For © < 0, that is, for p < —1, the critical energy is given by Eq.
(33), which, combined with Eq. (35), gives a critical energy,

P = 1. (36)

For ® > 0, that is, for p > — 1, the critical energy is given by Eq.
(34), which, combined with Eq. (35), gives a critical energy,

7
P :rrit = 3 (37)
Figure 7 shows the deflection in the angle of vortex two following the
interaction is singular as p — —1 and p — 2 as expected.

To calculate the scattering angle, we must integrate Eq. (32) over
each scattering trajectory. This is equivalent to a calculation by Lydon
et al,” and we present it for completeness in the supplementary material.

We end this section by remarking that the values p=1
B®=-1),p= —% (®=0), and p :% (® =8) divide the space of
initial conditions into four intervals on which the behavior is qualita-
tively distinct. Grobli made the same observation (using a constant
) = ©/2) as did Lydon et al.,” but without referencing a phase plane
to organize the orbits. Because both prior works focus on integrating
the ODE system via quadrature, these intervals are distinguished
mainly by the change in the algebraic forms of those integrals rather
than the phase space topology.

E. The borderline case ® =0

The approach taken here is especially illuminating for the transition
at @ = 0 where Lydon noticed an algebraic change in the form of the inte-
grals but found no visible discontinuity in the scattering angle in Fig, 7.”

As p increases from —oo to 0o, it crosses the two critical values
found above and, in between them, crosses p = —1 at which point
® = 0. In this case, the conservation law (31) confines the dynamics to
a cone, whose projection into the XY plane is shown in Fig. 8(b).

The schematic in Fig. 6, which is defined for finite L, is somewhat
misleading, as the trajectories of all three vortices lie along straight
lines parallel to the line connecting vortices 1 and 3 in the figure and
are not horizontal. Rotating the coordinate system so that the trajecto-
ries are horizontal, we find that

t— Vit +4 t+vVE2E+4

X\ =——F7, Xp=—7" X3:t;
, Y=l y3=-2.

The dynamics of this case are shown in Fig. 9 and were known to
Grobli,” Sec. I'V. Vortex 1 slows down and comes to rest at x=0,
transferring its energy to vortex 2.

VIl. GENERALIZATION TO I'; #1

In this section, we will generalize to the case in which
I''=-Is5=1but0 < I'; =I" # 1, ie, the case when the remaining

ARTICLE pubs.aip.org/aip/pof
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FIG. 9. The x-component of the solution for p =0, corresponding to a trajectory in
the middle phase plane of Fig. 8.

vortex has a distinct positive circulation. Exchange scattering is no lon-
ger possible since vortices 2 and 3 can no longer form a dipole and
escape. Consequently, some bifurcation must reconfigure the phase
plane dynamics depicted in Fig. 8.

The Jacobi coordinate reduction yields transformed circulations,

r 14T r
= — Ky=——", Kz=1I.
r+17 2 3

r
As in the previous case, k; < 0, so change of variables and Hamiltonian
structure of Sec. IV C 2 apply, and the Hamiltonian (28) reads

K1

H(X,Y,Z,0) :glog (Z(T? +1) + (1 - T?)® — 2I'X)
r 1
—Elog(Z-i- 0) —O—Elog(Z—t—X).

While we were unable to find as useful a geometric interpretation
of the coordinates as in Eq. (31), we still have that Y= 0 whenever the
three vortices are collinear. Moreover, X — —o0 as ||r; — 13| — oo
and X — +00 as ||[r; — r3|| — oo. This last observation allows us to
discriminate between direct and exchange scattering.

The system evolves according to

dx ory 2y 2r(1+ 1)y .
dt Z+© X+Z (T*+1)Z+(1-T%0 -2IX’

v, 2rx 21+ )X -4’z (38)
dt ~ Z+0 Z(I+1)+(1-T?)0 -2Ix’
dz 2y 4arty

dt  Z+X Z(CP+1)+(1-12)0—2rx’

A. The phase space for I'; # 1
The equilibria of (38), which must satisty Z > 0 by Eq. (26) and
satisfy the constraint (27), are
rr-1
=0 T+1 |, ©<0;
+/3I

re (1—2r2+\/4rz—3> V3

E1== 0>0I>—;
I“—1 0 2

(39)

re 22— Var?— 3
r=— I-2r 4 =3 , ®>0,£<1‘<1;
I“—1 0 2
re — 2T —Var? —
15 1<1 2l . 4r 3), ©<0,I>1.
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The same formula describes these last two, but they represent dif-
ferent vortex configurations and are defined for different parameter
values. Only the X and Y coordinates are displayed; the Z coordinate is
the positive solution to Eq. (27).

The system also has singularities at

0
yll"-(()), ®<0, I'>o0;

2O (40)
v r=|T2-1), er-1>o0.
0

The dependence of the equilibria and singularities on I" and @
are most easily understood graphically using a bifurcation diagram, as
shown in Fig. 10. Only the equilibria &; and &_; and the singularity
Sr exist for I' = 1 and satisfy & v — &1; as I’ — 1. The other
equilibria and singularities all satisfy Y= 0 and diverge with X — 400
as I' — =1. The points & _ir, &y, and &1 all diverge to oo as
I' — 1%. The equilibria & ; and & merge in a saddle-node bifurca-
tionatI' = @ ~ 0.866.

The equilibria &1 and &, correspond to collinear arrangements
with the vortices of strength I" and 1 in the middle, respectively. The
singularity &’_r corresponds to the limit of a family of hierarchical
orbits in which vortices 2 and 3, with circulations I" and -1, form a
tight pair orbiting vortex 1 some distance away.

We now consider the phase space as I” varies, again plotting the
projection of the upper sheet of the hyperboloid onto the XY plane.
First, we show the case I" > 1 as shown in Fig. 11. For ® < 0, a collin-
ear state & appears on the X-axis to the right of the region of closed
orbits seen in Fig. 8, while for ® > 0, a new singular state .&_;r
appears on the positive X-axis. Each of these is surrounded by a family
of periodic orbits that limit to a separatrix. In contrast to Fig. 8, all
orbits in the right half plane cross the X-axis and do not extend to co.

r | |
ORI |
104 ‘ ‘
b | |
sb
-y
|

FIG. 10. The X component of the equilibria (solid lines) and singularities (dashed
lines) given in Egs. (39) and (40) for (a) ® = —1 and (b) ® = 1. Figures 8, 11, 13,
and 14 show phase plane diagrams at the I" values indicated by the vertical lines.
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X

FIG. 11. The phase planes for ' = 1.7 > 1. (a) © < 0, showing the equilibria &;
at the separatrix intersections, the singular point &4~ (point) and the collinear state
&1 (+). (b) ® > 0, with singular point %41~ (point) and collinear state &4 at the
separatrix intersection.

The family of unbounded orbits corresponding to exchange scat-
tering has been replaced by a family of orbits that cross the X-axis and
approach infinity heading southwest. We call these extended direct
scattering orbits. One such orbit with I' =2 is shown in Fig. 12.
Remarkably, the coordinates of this trajectory, but not its time-
parameterization, are given by Grobli and displayed in his dissertation
[Ref. 20, Egs. (7.17), (7.19), and (7.20) and Fig. 5]. As t — %00, vorti-
ces 1 and 3 form a dipole that moves along a nearly straight line, while
at intermediate times, vortex 3 has changed partners and forms a
dipole with vortex 2 that moves along a roughly circular orbit.

Figure 13 shows representative phase planes with % <I'<L
While the topology in Figs. 11 and 13 looks the same, they differ in the
kinds of singularities and fixed points. For ® < 0, the singularity &,
remains unchanged from Fig. 11, while the equilibrium &' to the right
of the origin is replaced by a singularity .’ _;r. For ® > 0, the equilib-
rium &_; is unchanged from Fig. 11, while the singular point .%_r is
replaced by the equilibrium &'y

Figure 14 shows phase planes for I' < ‘/75 The phase plane for
® < 0 is equivalent to that in Fig. 13. However, the ® > 0 phase

FIG. 12. An extended direct scattering solution with I’ =2 and p = — % This is a
direct simulation of a solution whose trajectory Grobli computed in closed form.
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FIG. 13. The phase planes for ' = 0.9 € (‘/757 1). (@) ©® <0, with two singular
points, %41 and .%’ _4r (points), and two equilibria (ﬁ at the separatrix intersections.
(b) ® > 0, with collinear equilibria &'~ (+) and & _1 at the separatrix intersection.

plane has changed significantly. At I" = @, the equilibria & and &_,
collide and annihilate in a saddle-node bifurcation, so the phase plane
contains no equilibria or singularities. All the orbits for @ > 0 are of
the (non-extended) direct scattering type.

B. Explaining the scattering for I' # 1

The setup of the three-vortex scattering phenomenon in the gener-
alized system remains as shown in Fig. 6, except that I', = I" # 1 and
the two points forming the dipole are separated by a distance % with
positions r; = (—L, p +L14), r, = (0,—d), and r; = (-L,p —L9).
We will again take d=1. The generalized Hamiltonian and angular
momentum in the new coordinates, H — log (") as L — +o0, and,

O =TI(1+2p).
We follow the process described in Sec. VI D to calculate the criti-
cal energy. For ® < 0, that is, for p < f%, the critical energy level
remains the energy of the equilibria &;. This again leads to the value

Poiw = —1 given by Eq. (36). For ® >0 and I" > 4, the critical
energy is again that of the collinear equilibrium &,

B+ 1)(C+ 12 -1) )F
) 1

(T +1)*(T - 1)(
—2AT2+B(I*—1)—(1-12

p:rit = — 5
2(AT + B) 2
(a) 3l6| (b) 3l©|
2|0 20|
] 3 5]
Y o " Y o0
~lel / -lelf
oo b ’ 2ol —
30| A > » p p 36| E A £ y /
/{h\e\ ;7,\9\ @\ ; o\ (L\e\ A\ /{b\e\ /{)\Q\ B ; O @\ g

FIG. 14. The phase planes for I' = 0.4 € 0,@ . (@) The case ® < 0 with sin-
gular points %11 (left) and % _4r- (right). (b) The case ® > 0, which has no fixed
points or singular points.
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FIG. 15. (a) The scattering angle as a function of p for I' = 0.4. (b) The case
r=17.

where

A=1-2I7+V4I? -3 and B=/(?—1)"+I242
This matches the value % given by Eq. (37) for I'" = 1. Since there is no
hyperbolic fixed point when ® > 0 and I' < Y3, there should be only
one singular point in the scattering diagram. Two such diagrams are
shown in Fig. 15, demonstrating the disappearance of the second sin-
gularity for small I. For I =0.4, the curve jumps by 27 at
p ~ —0.88. This is explained by the disappearance of a loop in the
path of vortex 3; see Fig. 16.

VIIl. CONCLUSION

In this paper, we have introduced a coordinate system for the
three-vortex system that, in contrast with previously used reduction
methods, avoids introducing artificial singularities into the equations
of motion by preserving the topology of the dynamics. It maintains the
problem’s Hamiltonian structure by introducing Nambu brackets.
These coordinates simplify phase-space reasoning and shed new
insight into the scattering between a vortex dipole and an isolated vor-
tex. The singular dynamics in trilinear coordinates are equivalent to
projecting the dynamics described here into the plane Y = 0, with the
singular curve 0%y equivalent to the symmetry line Y=0 of the
spherical or hyperboloidal phase surface.

This reduction should help analyze additional problems in point-
vortex dynamics. We mention several such problems. First, the trilin-
ear coordinate system has been applied to related systems of point

7

FIG. 16. (a) The vortex trajectories with I' = 0.4 and p = —0.9. (b) The trajecto-
ries with p = —0.85. The insets show a small loop on the trajectory of vortex 3 in
the left image that has disappeared in the right image, explaining the 27 jump in the
dependence of the scattering angle shown in Fig. 15.
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vortices, and the reduction developed in this paper should simplify
their analysis. A simple example is quasigeostrophic vortices in which
a Bessel function replaces the logarithmic potential, but the dynamics
is essentially equivalent.”” More interestingly, the four-vortex problem
in the integrable case where the total circulation and linear impulse
both vanish, has been reduced to trilinear coordinates,”® and here, the
dynamics become more complicated.

Second, classifying all the changes to the dynamics as the circula-
tions change is surprisingly complicated. Many papers get partway to
this goal. Aref first attempted this in the 1979 paper introducing the
trilinear coordinate system,” but the singularity of collinear relative
equilibria in these coordinates hampered this effort. Conte classified
the bifurcations of the relative equilibria and performed a partial stabil-
ity analysis’' using a reduction that is very difficult to interpret.
Tavantzis and Ting made another study using Synge’s trilinear formu-
lation."" Aref, citing his difficulty in following this analysis, returned to
the problem in 2009.”* That approach finds the bifurcations of relative
equilibria and their stability but does not describe the dynamics
beyond this. The analysis of other phenomena, such as the self-similar
collapse of the vortex triple, has required yet other coordinate sys-
tems.”"” By contrast, the coordinate system introduced here describes
the global dynamics in the simplest form possible while yielding equa-
tions that can be analyzed using standard methods, even near collaps-
ing states and collinear relative equilibria.

Finally, we mention the motion of four vortices. It is well
known that the interaction of two dipoles leads to chaotic scatter-
ing,” " but the analysis in previous results is somewhat cursory
and makes few quantitative predictions. The motion is non-
integrable, so Nambu bracket reductions do not apply. However,
Ref. 38 demonstrates a chaotic scattering process consisting of a
sequence of three-vortex interactions in which the fourth vortex
remains far from the three strongly interacting vortices during each
interaction. Thus, our analysis of the three-vortex problem will serve
as the leading-order part of an asymptotic analysis of the problem in
this limit.

SUPPLEMENTARY MATERIAL

See the supplementary material for the steps required to integrate
Eq. (30) to obtain the formula for the scattering angle plotted in Fig. 7.
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