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Abstract—The COVID-19 pandemic has intensified the need
for home-based cardiac health monitoring systems. Despite ad-
vancements in electrocardiograph (ECG) and phonocardiogram
(PCG) wearable sensors, accurate heart sound segmentation
algorithms remain understudied. Existing deep learning models,
such as convolutional neural networks (CNN) and recurrent
neural networks (RNN), struggle to segment noisy signals using
only PCG data. We propose a two-step heart sound segmentation
algorithm that analyzes synchronized ECG and PCG signals. The
first step involves heartbeat detection using a CNN-LSTM-based
model on ECG data, and the second step focuses on beat-wise
heart sound segmentation with a 1D U-Net that incorporates
multi-modal inputs. Our method leverages temporal correla-
tion between ECG and PCG signals to enhance segmentation
performance. To tackle the label-hungry issue in Al-supported
biomedical studies, we introduce a segment-wise contrastive
learning technique for signal segmentation, overcoming the lim-
itations of traditional contrastive learning methods designed for
classification tasks. We evaluated our two-step algorithm using
the PhysioNet 2016 dataset and a private dataset from Bayland
Scientific, obtaining a 96.43 F1 score on the former. Notably,
our segment-wise contrastive learning technique demonstrated
effective performance with limited labeled data. When trained
on just 1% of labeled PhysioNet data, the model pre-trained
on the full unlabeled dataset only dropped 2.88 in the F1
score, outperforming the SimCLR method. Overall, our proposed
algorithm and learning technique present promise for improving
heart sound segmentation and reducing the need for labeled data.

Index Terms—heart sound (PCG) segmentation, self-
supervised learning, multi-modal signal processing

I. INTRODUCTION

Cardiovascular diseases (CVDs) are a leading cause of death
worldwide. Heart diseases pose a significant threat as they of-
ten go unnoticed until they reach a severe and potentially fatal
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Fig. 1. Tllustration of our self-monitoring system workflow. First, the user’s
physiological data is collected by the wearable device and subsequently
uploaded to the server. The server-side algorithm then performs data analysis
on the collected information. If any abnormalities are detected, a clinical alert
will be sent to the user, and the filtered data, along with an analysis report,
will be forwarded to the clinician. The clinical can diagnose based on the
report and data, and develop a further treatment plan.

stage. With hospitals overwhelmed by COVID-19 patients, the
demand for at-home self-monitoring systems has grown. These
systems can detect potential CVDs by monitoring patients’
physiological signals, alerting them to abnormal data, and
transmitting information to doctors for diagnosis and treatment
planning.

We have developed a self-health monitoring system, as
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Fig. 2. Tllustration of the Bayland Scientific wearable device used for data
collection.

shown in Fig. 1. Patients can attach wearable electrocardio-
graph (ECG) and phonocardiograph (PCG) sensors to their
chest, collect ECG and PCG signals at home, and upload
them to a server for analysis. Any detected abnormalities are
then sent to patients and clinicians for further diagnosis. The
collection of ECG and PCG signals is enabled by a novel
technology developed by WENXIN and Bayland Scientific
Technology: a band-aid-like wearable ECG and PCG device,
illustrated in Fig. 2. The device has received Chinese National
Medical Products Administration (NMPA) approval and has
been used in a heart failure study [1] for data collection
purposes. Patients can attach the device to their chest and
easily perform ECG and PCG tests at home. The sensed
data can then be recorded and transmitted to the server in
real time. Being a wearable device, the chest sticker enables
continuous signal monitoring without interfering with daily
activities. Furthermore, it significantly diminishes the impact
of environmental noise on the PCG signal, unlike other types
of wearable devices, such as wristbands and life vests, which
have a looser fit to the body. This study concentrates on ad-
vancing the system by developing the algorithm for analyzing
the ECG and PCG data gathered by the wearable sensors.

While both ECG and PCG are crucial for diagnosing
and treating CVD, PCG is particularly useful in detecting
abnormalities in heart valve function. Recent publications have
explored the direct use of machine-learning-aided techniques
to diagnose CVDs from PCG signals [2], [3]. These expert
algorithms focusing on particular cardiac tasks normally could
achieve high accuracy on their specific tasks and datasets.
However, the usage of expert diagnosing algorithms in real
health-monitoring scenarios might be limited due to the variety
of diseases and the need to provide enough interpretability to
clinicians for further diagnosis. Therefore, we focus on the
heart sound segmentation task, which allows us to accurately
locate key components of heart sounds. These locations can
be used to detect the presence of extra sound components or
measure the left ventricular ejection time (LVET), which is
often associated with heart failure [4], [5]. The segmentation
results provide users and clinicians with interpretable measures
of heart activities for diagnosis and reference.

During a cardiac cycle, the heart generates two fundamental
sounds that are related to different phases of the cycle. The first
sound, S1, is produced by the closure of the atrioventricular
valves when the heart’s ventricles begin to contract. The
second sound, S2, is produced by the closure of the aortic and
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Fig. 3. Illustration of the four states of the heart cycle, along with the
corresponding ECG and PCG signals.

pulmonary valves and their vibrations. Occasionally, additional
sounds may be heard. The systole interval spans from S1 to
S2, while the diastole interval covers the period from S2 to the
beginning of the subsequent S1. Fig. 3 visually illustrates these
states and intervals. Our task involves accurately segmenting
these four states from the PCG signal, which poses challenges
due to the sequential nature of the data. Some recent works on
heart sound segmentation used Convolutional Neural Network
(CNN) [6] and Recurrent Neural Network (RNN) [7], [8].
Their methods may struggle to sequentially segment PCG
signals with interference caused by significant noise, murmurs,
or extra heart sound components. Since their algorithms only
take PCG signals as input, this problem might be inevitable.
With synchronized ECG and PCG signals, we can utilize the
periodic nature of heart sounds to aid segmentation. Knowing
that the first and second heart sounds appear only once in
one heartbeat cycle, the segmentation task for a single heart-
beat becomes much easier. Motivated by the recent success
of two-step detection algorithms, such as Mask RCNN in
semantic segmentation tasks [9], we developed a two-step
heart sound segmentation algorithm: the first step involves
finding a bounding box for each heartbeat based on ECG R-
peak detection, and the second step segments the heart sounds
within the bounding box. This two-step algorithm divides the
challenging heart sound segmentation task into two sub-tasks.
For the first step, building upon previous research [10] for R-
peak prediction, we developed a variant model with the same
stacked 1D-CNN and LSTM structure for R-peak prediction.
Since the number of R-peaks is significantly lower than non-R
points, we developed a regression objective for algorithm opti-
mization to replace the commonly used classification objective
for segmentation. For the second task of segmentation within a
heartbeat cycle, we developed a 1-D CNN-based U-Net variant
model to perform fine-grained segmentation on the PCG signal
with a length of one heartbeat. ECG information is also taken
as multi-modal input to improve model performance.

Deep learning algorithms for biomedical tasks often suffer
from insufficient labeled data due to a lack of experts. Prior
deep learning methods, such as LSTM [7], have not achieved
the same level of accuracy on partially synchronized ECG
and PCG datasets from Physionet 2016 as on full databases.
Furthermore, using multi-modal input requires more labeled
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data to prevent overfitting caused by the curse of dimension-
ality. To reduce reliance on a large amount of data, researchers
developed semi-supervised learning methods that pre-train the
input encoder on a pretext task with data whose labels are
pseudo-labels created by itself. Among all pretext tasks, the
contrastive learning method, such as SimCLR [11], achieved
high accuracy on multiple downstream image classification
tasks using limited labeled data. However, transferring the
contrastive learning method to our fine-grained signal seg-
mentation task resulted in sub-optimal outcomes. Thus, we
developed a contrastive learning method for downstream sig-
nal segmentation that contrasts between embeddings of each
signal segment. The trained encoder and decoder are then fine-
tuned on the labeled dataset.

The main contributions of this work can be summarized as
follows:

o We propose a novel two-step heart sound segmentation
algorithm that utilizes the temporal correlation between
two modalities of heart activity, and evaluate its advan-
tages on both public and private PCG and ECG datasets.

o We propose a novel semi-supervised learning method for
the signal segmentation task that overcomes the short-
comings of using contrastive learning methods designed
for classification.

o We evaluate the semi-supervised learning algorithm with
respect to the required labeled data size and for transfer
learning, and demonstrate its effectiveness in reducing the
need for labels.

II. RELATED WORK
A. Heart Sound Segmentation

Early heart sound segmentation approaches relied on tradi-
tional signal processing techniques, such as envelope-based
methods or wavelet transforms, for feature extraction, fol-
lowed by threshold-based peak-finding algorithms to identify
the boundaries of Sls and S2s [12]-[15]. However, these
traditional methods rely on threshold-based peak-finding al-
gorithms and cannot be generalized to signals from different
sources. Additionally, they are not robust against the signifi-
cant noise typically associated with PCG signals.

As machine learning techniques have advanced, researchers
have explored combining signal processing techniques for
feature extraction with machine learning algorithms for clas-
sification [16], [17]. Deep learning frameworks have also
been employed for heart sound segmentation, with a sig-
nificant focus on using temporal models such as Hidden
Markov Models (HMM) [18]-[20] and Deep Recurrent Neural
Networks (DRNN) [7], [8]. The Logistic Regression Hid-
den Semi-Markov Model (LR-HSMM) [18] was considered
highly accurate and used in the 2016 PhysioNet Challenge
for generating heart sound segmentation labels. In another
study, RNN [7] demonstrated better performance than CNN
in analyzing the sequential states of PCG signals. However,
these temporal methods lack the ability to process raw sig-
nals, so feature extraction algorithms must be applied first.
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Typically, frequency-domain features are extracted and have
proven effective, such as wavelet transform in [18] and Mel-
frequency spectral coefficients (MFCC) in [7], [8]. As an
alternative or complement to signal processing techniques,
CNNs have also been employed to extract features from raw
or processed signals [6], [21], and CNN modules can be
effectively combined with temporal models for heart sound
segmentation tasks [22]-[24].

The joint processing of ECG and PCG signals has been
applied in heart sound classification and the detection of
heart diseases, where deep learning techniques are employed
to extract and fuse features from both modalities [25]-[27].
Despite this, the synchronized analysis of ECG and PCG
signals remains relatively unexplored in the context of heart
sound segmentation. Some studies have attempted to enhance
heart sound segmentation by incorporating information from
the ECG signal [28], [29]. Their approaches, based on HMMs,
leverage events (e.g. R-peaks and T waves) detected in ECG
signals to inform more accurate segmentation predictions on
PCG signals, based on their temporal relationship. Utilizing
ECG events is very inspiring; however, this integration occurs
only at the decision-making level. The actual detection within
ECG and PCG signals relies on conventional feature extraction
methods, without a true coupling of the ECG and PCG data
streams.

In our proposed two-step approach, we first employ our
R-peak detection algorithm to separate data into single heart-
beats, and then apply a 1D variant of the U-Net model [30]
for fine-grain segmentation. In this case, the heartbeat signal
feeding the U-Net is treated as a static object rather than
having temporal dependency, allowing us to leverage the
strengths of CNN-based models in recognizing spatial patterns
on raw signals and achieve higher accuracy.

B. Semi-Supervised Learning

Semi-supervised learning (SSL) effectively utilizes large
unlabeled datasets to learn data representations for supervised
downstream tasks, reducing the reliance on labeled data. It
achieves this by designing a self-supervised learning method
that transforms unsupervised learning problems into super-
vised ones through pretext tasks”. One powerful pretext
task is contrastive learning, which conforms similar (positive)
and contrasts dissimilar (negative) pairs of examples. Sev-
eral contrastive learning methods, such as SimCLR [11] and
MoCo [31], have established benchmarks in computer vision
(CV), particularly in image classification tasks. Contrastive
learning has also been employed to learn representations for
medical images [32]. However, transferring the data repre-
sentations learned from contrastive learning to downstream
segmentation tasks, which involve pixel-level predictions, is
challenging. Building on the intuition of extracting local
features and contrasting local regions or pixels, region-level
contrastive learning has shown promising results in image
segmentation tasks [33]-[36]. The methods for generating
pseudo-labels in these approaches can be classified into two
categories: label-based [33], [35], [36] and indices-based [34].
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There have been numerous efforts to apply SSL methods
to enhance the performance of biosignal processing. Some of
these efforts involve defining new pretext tasks, such as SSL-
ECG [37], which learns ECG representations by separating
augmented signals based on their augmentation types. How-
ever, typical image data augmentation methods, like clipping
or rotation used by SimCLR [11], are not suitable for time-
series data, making it difficult to apply contrastive learning
to biosignal data. In [38], the authors utilized domain-specific
transformations to augment EEG signals; in [39], they used
additional temporal, source of collected position, and source
patient labels to generate pseudo-labels; and in [40], they
applied spectrogram augmentation, widely used in audio-
related tasks [41], to create augmentations for heart and lung
sound signals. Despite these attempts, there is still a lack of
research on applying contrastive learning to biosignal seg-
mentation, particularly for PCG signal or multi-modal signal
segmentation.

In this work, we propose a novel contrastive learning
method to obtain general representations for synchronized
ECG and PCG signals. The learned representations contain
distinctive local representations that are beneficial for down-
stream segmentation tasks.

III. PROPOSED METHODS

In this section, we present the details of our two-step heart
sound segmentation algorithm, which includes the first step
of heartbeat detection, the second step of heartbeat-level heart
sound segmentation, and the representation learning method
for the downstream segmentation task. The overall algorithm
is described in Algorithm 1.

A. ECG R-peak Detection

Accurately identifying the R-peaks in an ECG signal is the
initial step toward localizing the complete heartbeat, thereby
enabling the subsequent identification of detailed cardiac
activities. Deep learning-based R-peak detection algorithms
have been well-developed in previous research. CNN-based
methods extract local features from waveforms, exhibiting
noise robustness, while RNN-based methods effectively utilize
temporal information for sequential detection. We employ a
CNN-LSTM structure that combines the strengths of CNN
and LSTM architectures, which has been shown to perform
effectively under noisy conditions [10]. Given that the original
model structure is designed for a sampling rate lower than that
of our dataset and to reduce complexity while maintaining
accuracy, we have slightly modified the model structure. This
modified model accepts the ECG signal as input and comprises
two ID-CNN layers, each with a kernel size of 101 and
8 channels, followed by an average pooling layer. These
convolutional layers are followed by an LSTM layer with a
dimension of 8. The output of the LSTM layer is then passed
to a fully connected layer to produce the final output. The
CNN employs the ReLU activation function, and the LSTM
layer employs the Tanh activation function.
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Algorithm 1 Training and inference of two-step heart sound
segmentation algorithm

Input: training set (X,y), ECG R-peak detection algorithm
fr(+), our U-Net model fgec(fenc(-)), and a projection
head fproj ()

Output: The final U-Net model and the segmentation results

B Xeeg, P Xpeg

: Optimize fR llSiIlg the l]WSE(fR(E)7 y’r'—pcaks)

: R-peak positions R,s < fr(E)

: {zs,y:} + (X,y) based on R,,s {heartbeats detection}

. for x; € {x;} do

e; < z; by masking the pcg channel

pi < x; by masking the ecg channel

Zie < fproj (fcnc(ei))

Zip < fproj(fenc(pi))

Optimize fyr0;(fenc(+))) by gradient descent using lose

function lsegeon (%ie, Zip) {pre-training }
end for

for Ti,Yi € {x“yz} do

g’i — fdec(fenc(xi))
Optimize fen. and fen. together by gradient descent
using lose function log (i, v:) {finetuning }

: end for

16: Y + fdec(fenc(X))

R A O T

=

11:
12:
13:
14:

{inference}

Due to the relatively small number of R-peaks compared to
other points, the classes are imbalanced. For a 7" ms heartbeat,
the proportion of R-peaks to the entire heartbeat is only %
To address this issue, a weighted classification loss function is
necessary for detecting R-peaks through a classification task
that works through each point in the sequence [10]. However,
determining the appropriate weight would be challenging since
the length of heartbeats varies among individuals. To overcome
this challenge, we convert the task from classification to
regression by converting the label to a Gaussian-shaped target.
Specifically, if we consider = on the time axis centered at the
R-peak position (i.e., = 0 at the R-peak), then the label can
be expressed as follows:

(z—b)2
f(z) = ae™ 33

)]

Set it in a standard form by letting ¢ = 1, b =0 and ¢ = 1,
then:

22

fla)=e 5. @

In our private dataset, we conduct an ablation study to com-
pare the continuous Gaussian-shaped labeling and categorical
labeling approaches. In this experiment, the categorical label
for R-peaks is set to 1, while the rest of the sequence is labeled
as 0. We utilize a weighted Cross-Entropy loss function with
a weight ratio of 1 : 550 for class 0 versus class 1. For R-peak
detection using regression with Gaussian-shaped labeling, we
apply the Mean Squared Error (MSE) as the loss function. The
model’s predictions are depicted in Fig. 4. Within a tolerance
of 50 ms from the true R-peak locations in this dataset,
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Fig. 4. The illustration depicts typical CNN-LSTM model predictions for R-
peak, where the red line represents the prediction and the purple line represents
the true label. The upper figure displays the output using a categorical labeling
strategy, while the lower figure displays the output with Gaussian-shaped
labeling.

the categorical labeling strategy yields 99.96% precision and
99.11% recall, whereas the Gaussian-shaped labeling strategy
achieves 99.89% precision and 99.84% recall. The lower recall
observed with the categorical labeling strategy suggests a
higher probability of the model misclassifying normal ECG
points as R-peaks. This issue could be due to the sub-optimal
class weight setting for Cross-Entropy Loss, whereas the
Gaussian-shaped labeling does not exhibit such a problem.
Furthermore, when evaluated on the MIT-BIH dataset [42], the
algorithm achieves an F1 score of 99.68% which demonstrates
its adequate accuracy in R-peak detection.

B. Heartbeat Level Segmentation Task

Since we have already developed an algorithm that can
identify heart sound cycles, our next task is to segment the
individual heart states within a specific heartbeat extracted by
our R-peak identification algorithm.

1) Data Preprocessing: Let s represent a normalized 2-
channel signal from ECG and PCG, containing N heartbeats
as segmented by the R-peak identification algorithm. Each
heartbeat b is defined as starting from 100ms before one R-
peak and ending at 100ms before the subsequent R-peak, so
s = [b1,...,b,]. In this configuration, the heartbeat period
encompasses all four states of the cardiac cycle.

Since CNN processing requires inputs to have the same
shape, we resize the heartbeat sequences to have equal lengths.
For heartbeats with a length less than 1536, we pad them
with zeros after the original sequence to reach 1536; for
those longer ones, we only retain the first 1536 samples.
After resizing the signals, we obtain a set of equal-length
heartbeats from the original sequence to use in our training
set: X = [b},...,0,] and Y = [y1,...,yn), Where each y; is
a 1D array filled with class index (0,1,2,3) corresponding to
systole, S1 period, diastole, and S2 period respectively.

2) U-Net Based CNN model: Inspired by the widespread
use of 2D U-Net in biomedical image segmentation tasks, we
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designed a 1D variant of U-Net for our heart sound segmen-
tation framework. Similar to the original U-Net, we retain
the Encoder-Decoder structure, the two convolutional layers
per block architecture with ReLU activation function, and the
skip connections. However, we modify all the convolution
layers, max-pooling layers, and up-convolution layers to be
one-dimensional. Additionally, we adjust the number of filters
in each convolution layer to better extract spatial features from
1D signals. The kernel size is set to 7 for smooth feature
extraction on signals, with padding applied to maintain the
sizes of input and segmented output. We use average pooling
layers instead of max-pooling layers, and the step of the
pooling and up-convolution layers is set to 4. The structure
of the model is shown in Fig. 5.

3) Loss Function: For this segmentation task, we try to
minimize the categorical difference on each pixel between our
model output and the true segmentation. In the experiment, we
use Cross-Entropy Loss function for our optimization problem.
The optimization object for a segmentation object in the batch
is shown as:

1 L
argming ZZ Z pj(yi)logfj(b§§9), 3)

i=15€(0,1,2,3)

where (b}, y;) is a pair of input point on heartbeat and label at
index ¢; L is the heartbeat’s length which in our case is 1536;
pj(y;) = 1 when j is the same as the class in y;, 0 otherwise;
and the function f;(b};6) denotes the output probability on
class j from the U-Net model. Thus our optimization aims
to minimize the pixel-wise difference between the model
prediction and the true labeling of original signals.

C. Self-supervised Training

We propose a self-supervised learning strategy that encour-
ages the encoder of a U-Net to extract distinctive local repre-
sentations suitable for segmentation by the decoder. The first
step is to perform a temporal invariant data augmentation on
all the heartbeat signals, which will not change the location of
each sampling point on the time-axis. For each input heartbeat,
b’, we generate two augmentations, Aug;(b') and Auga (V).
In our case, since we use synchronized ECG and PCG signals,
we mask one input channel respectively as two augmentations,
which will not perturb the temporal information of the original
signals. Then we pass the signals to the encoder of our U-Net,
Ene, which maps Aug;(b') and Augs(b') to representation
vectors, 1 Enc(Augy (V') and ro Enc(Augs(V')).
Then the representations are passed through a projection
network, Proj, to obtain the feature maps z; = Proj(ry)
and zo = Proj(ry), each of dimensions L' x C, with L' < L.
We instantiate Proj as a 1D Convolutional layer with a kernel
size of 1 and an output dimension of 128, so the z has the same
dimension as the output of U-Net encoder. Then the feature
maps z with length L’ can be considered as having L’ pixels,
where each pixel corresponds to a segment from the input
signal with overlapping. Based on the understanding that two
segments of signals from different views of cardiac activities
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to the same dimensions to obtain b’. Then, apply two temporal invariant augmentations. 2. Generate feature maps for two augmented heartbeat signals for
contrastive learning. Each feature map is divided into n segments. Pairs of segments from the two feature maps are labeled as positive or negative pairs based
on their indices, which are used for optimizing the encoder and projection layer using segment-wise contrastive loss. 3. Remove the projection layer from the

encoder and perform supervised training jointly with U-Net’s decoder.

should reflect similar cardiac activity if they are collected at
the same time, contrasting the representations of segments with
different indices from the feature maps of two views will make
the representation have distinctive features for heart activity
detection. Then our segment-based contrastive loss for a given
input signal can be defined as:

exp (sim(z1,4, 22,4)/T)
geL’ exp (sim(z1,4, 22,5)/7)’

721

ieL’

“

lsegcon =

where the sim(-,-) computes the cosine similarity between
two vectors sim(a,b) = %. In this optimization problem,
segments from different views that share the same indices are
considered as positive pairs, while those with different indices
are considered as negative pairs. The framework of proposed

contrastive learning is shown in Fig. 6.
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IV. EXPERIMENT
A. Heart Sound Segmentation Performance Evaluation

1) Datasets: We use both the 2016 Physionet Challenge
database and the private Bayland Scientific dataset to evaluate
our method.

The Physionet 2016 database [43] is the most widely used
database for heart sound research. Although the objective of
this challenge is the heart sound normal/abnormal classifica-
tion, this database is also the primary benchmark for research
on the heart sound segmentation task. This database includes
3,126 heart sound recordings. Each recording lasts from 5
seconds to 120 seconds with a sampling frequency of 2000
Hz. Since signals in this database are collected from different
locations of the body, from both adults and children, under
clinical and non-clinical settings, with or without diseases, the
scales and the patterns vary among different signals. Also due
to the uncontrolled environment, significant noise including
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TABLE 1
RESULT ON PHYSIONET 2016 DATASET

Method PPV Se Spe Acc F1

U-Net [6] 93.2 92.3 98.2 95.0 92.7
BiLSTM Attention [7]  94.2 95.0 95.1 935 9475
GRNN [8] 9241 93.16 9792 9447 92.77
U-Time [44] 83.58 8293 95.66 93.75 83.24
HRNet [45] 94.05 9237 9826 974  93.16
Proposed U-Net 96.3 9655 99.12 97.53 96.42

talking, breathing and etc. will be captured by the sensors.
For the classification task, this dataset contains annotations
of normal/abnormal. For the segmentation task, this challenge
provides annotations for fundamental heart sound, S1, systole,
S2, and diastole on signals. These annotations are generated
by the LR-HSMM algorithm [18] and manually decide their
correctness. The challenge provides five training sets, but
only the ’training-a’ subset contains 2-channel ECG and PCG
signals. Therefore, we only use data from ’training-a’ with
accurate labels. In total, 288 recordings are used for evaluation,
with 186 recordings designated for training, 43 recordings for
validation, and 59 recordings for testing purposes.

The second dataset we use is collected by Bayland Scientific
using the wearable device stuck on the chest. The private
dataset is collected from 2,072 adult patients in a clinical
setting. This dataset contains 2,076 dual-channel synchronized
ECG and PCG signals with an average length of 50 seconds.
The recordings have a sampling rate of 1,000 Hz. This ECG
signal is a single lead signal of Lead II, which is the same
one used in the MIT-BIH dataset. Professionals from Bayland
Scientific have fully labeled all the R-peak positions. For the
PCG signal, professionals identify and label the positions of
S1 start, S1 end, S2 start, and S2 end. We split the dataset
into training, validation, and testing sets with sizes of 1272,
300, and 500, respectively.

2) Evaluation Metrics: We assess the performance of our
heart sound segmentation algorithm using five metrics: positive
predictive value (PPV), sensitivity (Se), specificity (Spe), F1
score, and accuracy (Acc). Heart sound segmentation perfor-
mance is evaluated for each of the four states of the heart cycle,
and to evaluate the overall performance of the segmentation
algorithm, we compute the final metrics by globally averaging
across the four classes. Accuracy is calculated globally as the
ratio of correctly classified states to the total number of pixels.

3) Implementation: The initial learning rate is set to 0.001
for contrastive learning, training the U-Net segmentation
model from scratch, and finetuning the U-Net segmentation
model with a pre-trained encoder. We use the Adam optimizer
to train the proposed model. Training is terminated if the
validation loss does not decrease within 20 epochs, and we set
the maximum training epoch at 200 for both encoder training
and U-Net training.

4) PhysioNet Results: Table I presents the evaluation results
of our proposed segmentation algorithm on the PhysioNet
dataset, compared to other state-of-the-art algorithms. All
values in the table are expressed as percentages. For our pro-
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TABLE II
PRE-TRAINING RESULT ON PHYSIONET 2016 DATASET
Method PPV Se Spe Acc F1
Train from scratch 96.3 96.55 99.12 97.53 96.42
SimCLR [11] 96.12  96.51 98.69 97.24  96.40
Proposed U-Net+Pre-train  96.13  96.76  99.11 9755 96.43

posed method, we included and applied two-step segmentation
and multi-modal inputs as previously discussed. The baseline
models we compared include a U-Net model with the same
structure as in [6] with a moving window for segmentation,
a GRNN model [8], and a Bi-LSTM with attention mecha-
nism [7]. Due to the unavailability of public implementations
and differences in evaluation metrics, we implemented the
algorithms based on the descriptions in the original papers
and reported their performance using our metrics. Another
two baselines are widely used benchmarks for segmentation
from different tasks. The first is U-time [44] for sleep stage
segmentation, we made adaptations by setting the input length
as 2560 ms and segmenting resolution as 20 ms, removing
dilation for the encoder, setting all kernel sizes for pooling
and up-sampling as 4. For the HRNet [45], we adopted the 4-
stage HRNet-18. The adaptations include converting the model
to 1D CNN, setting the input length as 2560 ms, and setting
the kernel sizes by branch as 16, 32, 64, and 128.

Observations indicate that RNNs achieve overall better
results than the regular 1D U-Net, suggesting that temporal
models and their frequency-domain feature extraction methods
are effective in processing cardiac sequential data. Our two-
step multi-modal techniques make the U-Net competitive. By
using an R-peak detection algorithm to select an appropriate
heartbeat-long window size, the CNN-based method can now
perform fine-grained segmentation. Since recurrent networks
can only classify a selected small window, this approximation
is likely to result in less accurate predictions at the boundaries
of fundamental heart sounds. Since the convolutional struc-
tures from U-time and HRNet, as well as the RNN structures
from BiLSTM and GRNN, are not less complex than those
from the two-step detection structure, the improvements in
accuracy and F1 scores are likely due to the adoption of
multi-modal inputs and the effective leverage of combined
information.

We also implemented SimCLR [11] as a benchmark self-
supervised training method to compare with our segment-wise
contrastive learning. The same U-Net segmentation architec-
ture is used for both the benchmark and proposed methods.
Since augmentations such as clipping or rotation from the
original paper are difficult to apply to signal data, we used
two types of augmentation: the frequency masking method
from SpecAugment [46] and masking the ECG channel. The
results from Table II show that SimCLR does not perform
well on the downstream segmentation task, and the pre-trained
weights can even compromise the effect of finetuning. This
demonstrates the necessity of an alternative pretext task. Our
proposed segment-wise contrastive training either matches or
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slightly exceeds the performance of the model trained from
scratch, indicating that the proposed pretext training task
does not adversely affect the downstream fine-grained task.
The benefits of label-efficient training will be analyzed in
subsequent experiments.

B. Pre-training Effect on Reduced Training Data Size

Besides improving the performance of the U-Net model,
a more important motivation to utilize contrastive learning
pre-training is to reduce the need for labeled training data.
We designed an experiment to assess its efficacy by using
the full training dataset without labels as the self-supervised
set and partially revealing labels for the labeled set. We
compared our segment-wise contrastive learning approach
with the baseline and SimCLR [11], using the same U-
Net architecture. The baseline involved training U-Net from
scratch on the labeled set. We trained two U-Net encoders
using SimCLR and our method on the self-supervised set.
The SimCLR-trained encoder was finetuned with the decoder
on the labeled set. For the encoder trained with our method,
we conducted experiments with gradients frozen and finetuned
when jointly trained with the decoder on the labeled set. In
both Bayland and Physionet datasets, we progressively reduced
the proportion of revealed labels to investigate the relation-
ship between labeled data size and self-supervised training
methods. For the Bayland dataset, we conducted experiments
with label proportions ranging from 100% to 30%, 10%,
5%, and 1%, corresponding to 9000, 2700, 900, 450, and 90
labeled heartbeats. For the Physionet dataset, we performed
experiments with label proportions ranging from 100% to
30%, 10%, 5%, 1%, and 0.1%, corresponding to 7807, 2342,
781, 390, 78, and 8 labeled heartbeats. The number of training
epochs will be increased corresponding to the decrease in data
size of supervised learning. We used the F1 score to evaluate
the results, as shown in Fig. 7.

As observed, with a 100% labeled dataset, finetuning the
encoder pre-trained with the proposed segment-wise con-
trastive learning improves accuracy on the Bayland dataset.
On the Physionet dataset, the scratch, SImCLR, and proposed
methods show no significant difference, but the F1 scores
are consistently lower for the proposed method with frozen
gradient finetuning on both datasets. The advantage of using a
pre-trained encoder with finetuning over training U-Net from
scratch becomes more evident as the training set size reduces.
As the labeled portion of the Physionet dataset decreases from
100% to 30%, 10%, 5%, 1%, and 0.1%, the differences in
F1 scores between the proposed method with finetuning and
training from scratch increase from 0.01 to 0.18, 0.49, 0.56,
1.95, and 10.60. This indicates that the pre-trained encoder has
better generalization ability than random weight initialization.
However, the improvement is not substantial with SimCLR
when the labeled data size is small. Using only 5%, 1%, and
0.1% of labeled data, our proposed method results in F1 score
drops of only 0.94, 2.88, and 11.59 compared to training with
the complete labeled data.
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TABLE III
COMPARISON OF TRANSFER LEARNING PERFORMANCE
Method B2P10% B2P1% P2B10% P2B1%
Frozen Encoder
Our Semi-supervised 94.94 93.46 88.31 86.08
Supervised 94.94 92.24 88.89 86.7
Finetuned
Our Semi-supervised 95.53 93.43 89.65 87.09
Supervised 95.63 93.37 90.11 87.27
Scratch 95.33 92.08 89.65 86.14

Interestingly, the model with a gradient-frozen pre-trained
encoder achieves higher F1 scores when the data size shrinks,
even outperforming the finetuned encoder in extreme cases
with only 8 heartbeats. This suggests that our pre-trained
encoder generates better-informed and more-generalized rep-
resentations of the input. Sample outcomes are shown in
Fig. 8. The U-Net with a gradient-frozen encoder makes
accurate predictions with only 0.1% labeled data, although
it has less smooth and accurate heart sound boundaries and
may misclassify extra heart sounds not covered in the limited
labeled set.

C. Transfer Learning Performance

Transferring knowledge from a more accessible dataset
without the desired labels to a private labeled dataset offers a
way to leverage the need for labels. The efficacy of transfer
learning is also a measure of the quality of the learned rep-
resentations. We evaluate the performance of representations
learned through our segment-wise contrastive learning for
transfer learning across the Physionet and Bayland datasets,
both with a frozen encoder and in finetuning settings. The
dataset configuration involves pre-training the model on one
complete but unlabeled dataset and then further training it on
10% and 1% of another labeled dataset, in settings where the
encoder gradients are either frozen or finetuned. The baselines
include supervised training on a complete and labeled dataset,
followed by finetuning with encoder frozen or finetuned, and
a model that is randomly initialized and trained from scratch
in a finetuned setting.

The results from Table III demonstrate that the proposed
semi-supervised learning approach with finetuning attains
higher F1 scores compared to supervised training from scratch
across all dataset combinations. Without finetuning, neither
the semi-supervised nor the supervised method successfully
transfers to the new dataset. When finetuned, supervised
training on complete labeled data does not reach the same F1
score levels as the model pretrained and finetuned on the same
set, as shown in Fig 7; however, it does recover some of the
performance gap resulting from the limitation in labeled data
size. Our proposed semi-supervised learning method achieves
performance close to the supervised method, indicating that
its learned representation is not significantly worse than that
learned from labeled data.
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Fig. 8. The segmented results of the proposed two-step heart sound segmentation algorithm on the Physionet training-a subset. Left plots use a U-Net
with a pre-trained encoder finetuned on 100% labeled data; right plots use a U-Net with a frozen encoder and a decoder trained on 0.1% labeled data. The
corrected annotations and our algorithm predictions are shown in each sub-figure as green and orange staircase plots respectively. The level of the staircase
plot corresponds to the heart states of diastole, S1, systole, and S2 in ascending order.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we developed a deep learning framework
for automatic heart sound segmentation in self-monitoring
systems using multi-modal signals. By leveraging the periodic
nature of heart activity, we designed a two-step heart sound
segmentation algorithm that first detects heartbeats based on
R-peaks from ECG signals and then segments heart sounds
within heartbeat durations. The modified R-peak detection
achieves accurate results, and we analyze the advantages of
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regression on Gaussian-shaped labels over classification on
categorical labels. Our beat-wise heart sound segmentation
method attains state-of-the-art results on the PhysioNet 2016
dataset, and we investigate the benefits of using synchronized
multi-modal ECG and PCG signals for segmentation instead
of a single channel.

To reduce the reliance on large annotated training sets, we
proposed an extension to contrastive loss-based pre-training.
Since traditional contrastive learning methods are designed for
classification tasks, we developed a method suitable for signal
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segmentation tasks. We introduced a contrastive loss for learn-
ing local segment representations of signals based on temporal
information, useful for dense prediction tasks like segmenta-
tion. Evaluating contrastive learning as self-supervised, semi-
supervised, and transfer learning demonstrates performance
improvement in segmentation tasks and less dependence on
costly labeled data. The developed method can benefit few-
shot learning, enabling the transfer to different yet related tasks
with minimal additional labeling. It can also support domain
adaptation, where a model trained on data from one hospital
or medical agency can be transferred to another.

However, our proposed method has some limitations. Al-
though our two-step algorithm is more accurate than a CNN
model with moving window processing, it has more param-
eters to train (U-Net has 176K Params and Conv-LSTM has
2K Params), resulting in more FLOPs during the inference
stage. However, to achieve higher accuracy with the moving
window method, a temporal model like the Viterbi algorithm
or HMM may be needed for post-processing. In comparison
to RNN-based methods, the U-Net model’s parameters are
considered extra, as our algorithm takes raw signals as inputs,
while RNN-based methods typically employ signal processing
methods like MFCC to extract features. Another trade-off is
the need for two-step training and inference. Although some
methods can stack Conv-LSTM and U-Net into a single model
using a soft-argmax layer [47], making the heartbeat detection
process differentiable, outputting R-peak prediction results can
be beneficial for other medical diagnostic tasks and filtering
to improve heartbeat detection accuracy.

Building upon our proposed method, one important future
aspect of this work is to improve the efficiency of the uti-
lized deep learning models. As we would like to deploy the
proposed method into the mobile devices or smart sensors
of end-users, the memory usage and computation cost are
typically constrained by the limited resources available on
the target hardware. To enable wider and more efficient
deployment of deep-learning-based methods, model compres-
sion and efficient computation techniques like pruning [48],
[49], quantization [50], parallel computation [51], and neural
architecture search [52] on vital signal processing tasks are
worth investigating.
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