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Abstract—The COVID-19 pandemic has intensified the need
for home-based cardiac health monitoring systems. Despite ad-
vancements in electrocardiograph (ECG) and phonocardiogram
(PCG) wearable sensors, accurate heart sound segmentation
algorithms remain understudied. Existing deep learning models,
such as convolutional neural networks (CNN) and recurrent
neural networks (RNN), struggle to segment noisy signals using
only PCG data. We propose a two-step heart sound segmentation
algorithm that analyzes synchronized ECG and PCG signals. The
first step involves heartbeat detection using a CNN-LSTM-based
model on ECG data, and the second step focuses on beat-wise
heart sound segmentation with a 1D U-Net that incorporates
multi-modal inputs. Our method leverages temporal correla-
tion between ECG and PCG signals to enhance segmentation
performance. To tackle the label-hungry issue in AI-supported
biomedical studies, we introduce a segment-wise contrastive
learning technique for signal segmentation, overcoming the lim-
itations of traditional contrastive learning methods designed for
classification tasks. We evaluated our two-step algorithm using
the PhysioNet 2016 dataset and a private dataset from Bayland
Scientific, obtaining a 96.43 F1 score on the former. Notably,
our segment-wise contrastive learning technique demonstrated
effective performance with limited labeled data. When trained
on just 1% of labeled PhysioNet data, the model pre-trained
on the full unlabeled dataset only dropped 2.88 in the F1
score, outperforming the SimCLR method. Overall, our proposed
algorithm and learning technique present promise for improving
heart sound segmentation and reducing the need for labeled data.

Index Terms—heart sound (PCG) segmentation, self-
supervised learning, multi-modal signal processing

I. INTRODUCTION

Cardiovascular diseases (CVDs) are a leading cause of death

worldwide. Heart diseases pose a significant threat as they of-

ten go unnoticed until they reach a severe and potentially fatal

This work was supported in part by the Directorate for Computer and
Information Science and Engineering (CISE) under award number 1822085;
and in part by Bayland Scientific.

Fig. 1. Illustration of our self-monitoring system workflow. First, the user’s
physiological data is collected by the wearable device and subsequently
uploaded to the server. The server-side algorithm then performs data analysis
on the collected information. If any abnormalities are detected, a clinical alert
will be sent to the user, and the filtered data, along with an analysis report,
will be forwarded to the clinician. The clinical can diagnose based on the
report and data, and develop a further treatment plan.

stage. With hospitals overwhelmed by COVID-19 patients, the

demand for at-home self-monitoring systems has grown. These

systems can detect potential CVDs by monitoring patients’

physiological signals, alerting them to abnormal data, and

transmitting information to doctors for diagnosis and treatment

planning.

We have developed a self-health monitoring system, as
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Fig. 2. Illustration of the Bayland Scientific wearable device used for data
collection.

shown in Fig. 1. Patients can attach wearable electrocardio-

graph (ECG) and phonocardiograph (PCG) sensors to their

chest, collect ECG and PCG signals at home, and upload

them to a server for analysis. Any detected abnormalities are

then sent to patients and clinicians for further diagnosis. The

collection of ECG and PCG signals is enabled by a novel

technology developed by WENXIN and Bayland Scientific

Technology: a band-aid-like wearable ECG and PCG device,

illustrated in Fig. 2. The device has received Chinese National

Medical Products Administration (NMPA) approval and has

been used in a heart failure study [1] for data collection

purposes. Patients can attach the device to their chest and

easily perform ECG and PCG tests at home. The sensed

data can then be recorded and transmitted to the server in

real time. Being a wearable device, the chest sticker enables

continuous signal monitoring without interfering with daily

activities. Furthermore, it significantly diminishes the impact

of environmental noise on the PCG signal, unlike other types

of wearable devices, such as wristbands and life vests, which

have a looser fit to the body. This study concentrates on ad-

vancing the system by developing the algorithm for analyzing

the ECG and PCG data gathered by the wearable sensors.

While both ECG and PCG are crucial for diagnosing

and treating CVD, PCG is particularly useful in detecting

abnormalities in heart valve function. Recent publications have

explored the direct use of machine-learning-aided techniques

to diagnose CVDs from PCG signals [2], [3]. These expert

algorithms focusing on particular cardiac tasks normally could

achieve high accuracy on their specific tasks and datasets.

However, the usage of expert diagnosing algorithms in real

health-monitoring scenarios might be limited due to the variety

of diseases and the need to provide enough interpretability to

clinicians for further diagnosis. Therefore, we focus on the

heart sound segmentation task, which allows us to accurately

locate key components of heart sounds. These locations can

be used to detect the presence of extra sound components or

measure the left ventricular ejection time (LVET), which is

often associated with heart failure [4], [5]. The segmentation

results provide users and clinicians with interpretable measures

of heart activities for diagnosis and reference.

During a cardiac cycle, the heart generates two fundamental

sounds that are related to different phases of the cycle. The first

sound, S1, is produced by the closure of the atrioventricular

valves when the heart’s ventricles begin to contract. The

second sound, S2, is produced by the closure of the aortic and

Fig. 3. Illustration of the four states of the heart cycle, along with the
corresponding ECG and PCG signals.

pulmonary valves and their vibrations. Occasionally, additional

sounds may be heard. The systole interval spans from S1 to

S2, while the diastole interval covers the period from S2 to the

beginning of the subsequent S1. Fig. 3 visually illustrates these

states and intervals. Our task involves accurately segmenting

these four states from the PCG signal, which poses challenges

due to the sequential nature of the data. Some recent works on

heart sound segmentation used Convolutional Neural Network

(CNN) [6] and Recurrent Neural Network (RNN) [7], [8].

Their methods may struggle to sequentially segment PCG

signals with interference caused by significant noise, murmurs,

or extra heart sound components. Since their algorithms only

take PCG signals as input, this problem might be inevitable.

With synchronized ECG and PCG signals, we can utilize the

periodic nature of heart sounds to aid segmentation. Knowing

that the first and second heart sounds appear only once in

one heartbeat cycle, the segmentation task for a single heart-

beat becomes much easier. Motivated by the recent success

of two-step detection algorithms, such as Mask RCNN in

semantic segmentation tasks [9], we developed a two-step

heart sound segmentation algorithm: the first step involves

finding a bounding box for each heartbeat based on ECG R-

peak detection, and the second step segments the heart sounds

within the bounding box. This two-step algorithm divides the

challenging heart sound segmentation task into two sub-tasks.

For the first step, building upon previous research [10] for R-

peak prediction, we developed a variant model with the same

stacked 1D-CNN and LSTM structure for R-peak prediction.

Since the number of R-peaks is significantly lower than non-R

points, we developed a regression objective for algorithm opti-

mization to replace the commonly used classification objective

for segmentation. For the second task of segmentation within a

heartbeat cycle, we developed a 1-D CNN-based U-Net variant

model to perform fine-grained segmentation on the PCG signal

with a length of one heartbeat. ECG information is also taken

as multi-modal input to improve model performance.

Deep learning algorithms for biomedical tasks often suffer

from insufficient labeled data due to a lack of experts. Prior

deep learning methods, such as LSTM [7], have not achieved

the same level of accuracy on partially synchronized ECG

and PCG datasets from Physionet 2016 as on full databases.

Furthermore, using multi-modal input requires more labeled
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data to prevent overfitting caused by the curse of dimension-

ality. To reduce reliance on a large amount of data, researchers

developed semi-supervised learning methods that pre-train the

input encoder on a pretext task with data whose labels are

pseudo-labels created by itself. Among all pretext tasks, the

contrastive learning method, such as SimCLR [11], achieved

high accuracy on multiple downstream image classification

tasks using limited labeled data. However, transferring the

contrastive learning method to our fine-grained signal seg-

mentation task resulted in sub-optimal outcomes. Thus, we

developed a contrastive learning method for downstream sig-

nal segmentation that contrasts between embeddings of each

signal segment. The trained encoder and decoder are then fine-

tuned on the labeled dataset.

The main contributions of this work can be summarized as

follows:

• We propose a novel two-step heart sound segmentation

algorithm that utilizes the temporal correlation between

two modalities of heart activity, and evaluate its advan-

tages on both public and private PCG and ECG datasets.

• We propose a novel semi-supervised learning method for

the signal segmentation task that overcomes the short-

comings of using contrastive learning methods designed

for classification.

• We evaluate the semi-supervised learning algorithm with

respect to the required labeled data size and for transfer

learning, and demonstrate its effectiveness in reducing the

need for labels.

II. RELATED WORK

A. Heart Sound Segmentation

Early heart sound segmentation approaches relied on tradi-

tional signal processing techniques, such as envelope-based

methods or wavelet transforms, for feature extraction, fol-

lowed by threshold-based peak-finding algorithms to identify

the boundaries of S1s and S2s [12]–[15]. However, these

traditional methods rely on threshold-based peak-finding al-

gorithms and cannot be generalized to signals from different

sources. Additionally, they are not robust against the signifi-

cant noise typically associated with PCG signals.

As machine learning techniques have advanced, researchers

have explored combining signal processing techniques for

feature extraction with machine learning algorithms for clas-

sification [16], [17]. Deep learning frameworks have also

been employed for heart sound segmentation, with a sig-

nificant focus on using temporal models such as Hidden

Markov Models (HMM) [18]–[20] and Deep Recurrent Neural

Networks (DRNN) [7], [8]. The Logistic Regression Hid-

den Semi-Markov Model (LR-HSMM) [18] was considered

highly accurate and used in the 2016 PhysioNet Challenge

for generating heart sound segmentation labels. In another

study, RNN [7] demonstrated better performance than CNN

in analyzing the sequential states of PCG signals. However,

these temporal methods lack the ability to process raw sig-

nals, so feature extraction algorithms must be applied first.

Typically, frequency-domain features are extracted and have

proven effective, such as wavelet transform in [18] and Mel-

frequency spectral coefficients (MFCC) in [7], [8]. As an

alternative or complement to signal processing techniques,

CNNs have also been employed to extract features from raw

or processed signals [6], [21], and CNN modules can be

effectively combined with temporal models for heart sound

segmentation tasks [22]–[24].

The joint processing of ECG and PCG signals has been

applied in heart sound classification and the detection of

heart diseases, where deep learning techniques are employed

to extract and fuse features from both modalities [25]–[27].

Despite this, the synchronized analysis of ECG and PCG

signals remains relatively unexplored in the context of heart

sound segmentation. Some studies have attempted to enhance

heart sound segmentation by incorporating information from

the ECG signal [28], [29]. Their approaches, based on HMMs,

leverage events (e.g. R-peaks and T waves) detected in ECG

signals to inform more accurate segmentation predictions on

PCG signals, based on their temporal relationship. Utilizing

ECG events is very inspiring; however, this integration occurs

only at the decision-making level. The actual detection within

ECG and PCG signals relies on conventional feature extraction

methods, without a true coupling of the ECG and PCG data

streams.

In our proposed two-step approach, we first employ our

R-peak detection algorithm to separate data into single heart-

beats, and then apply a 1D variant of the U-Net model [30]

for fine-grain segmentation. In this case, the heartbeat signal

feeding the U-Net is treated as a static object rather than

having temporal dependency, allowing us to leverage the

strengths of CNN-based models in recognizing spatial patterns

on raw signals and achieve higher accuracy.

B. Semi-Supervised Learning

Semi-supervised learning (SSL) effectively utilizes large

unlabeled datasets to learn data representations for supervised

downstream tasks, reducing the reliance on labeled data. It

achieves this by designing a self-supervised learning method

that transforms unsupervised learning problems into super-

vised ones through ”pretext tasks”. One powerful pretext

task is contrastive learning, which conforms similar (positive)

and contrasts dissimilar (negative) pairs of examples. Sev-

eral contrastive learning methods, such as SimCLR [11] and

MoCo [31], have established benchmarks in computer vision

(CV), particularly in image classification tasks. Contrastive

learning has also been employed to learn representations for

medical images [32]. However, transferring the data repre-

sentations learned from contrastive learning to downstream

segmentation tasks, which involve pixel-level predictions, is

challenging. Building on the intuition of extracting local

features and contrasting local regions or pixels, region-level

contrastive learning has shown promising results in image

segmentation tasks [33]–[36]. The methods for generating

pseudo-labels in these approaches can be classified into two

categories: label-based [33], [35], [36] and indices-based [34].
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There have been numerous efforts to apply SSL methods

to enhance the performance of biosignal processing. Some of

these efforts involve defining new pretext tasks, such as SSL-

ECG [37], which learns ECG representations by separating

augmented signals based on their augmentation types. How-

ever, typical image data augmentation methods, like clipping

or rotation used by SimCLR [11], are not suitable for time-

series data, making it difficult to apply contrastive learning

to biosignal data. In [38], the authors utilized domain-specific

transformations to augment EEG signals; in [39], they used

additional temporal, source of collected position, and source

patient labels to generate pseudo-labels; and in [40], they

applied spectrogram augmentation, widely used in audio-

related tasks [41], to create augmentations for heart and lung

sound signals. Despite these attempts, there is still a lack of

research on applying contrastive learning to biosignal seg-

mentation, particularly for PCG signal or multi-modal signal

segmentation.

In this work, we propose a novel contrastive learning

method to obtain general representations for synchronized

ECG and PCG signals. The learned representations contain

distinctive local representations that are beneficial for down-

stream segmentation tasks.

III. PROPOSED METHODS

In this section, we present the details of our two-step heart

sound segmentation algorithm, which includes the first step

of heartbeat detection, the second step of heartbeat-level heart

sound segmentation, and the representation learning method

for the downstream segmentation task. The overall algorithm

is described in Algorithm 1.

A. ECG R-peak Detection

Accurately identifying the R-peaks in an ECG signal is the

initial step toward localizing the complete heartbeat, thereby

enabling the subsequent identification of detailed cardiac

activities. Deep learning-based R-peak detection algorithms

have been well-developed in previous research. CNN-based

methods extract local features from waveforms, exhibiting

noise robustness, while RNN-based methods effectively utilize

temporal information for sequential detection. We employ a

CNN-LSTM structure that combines the strengths of CNN

and LSTM architectures, which has been shown to perform

effectively under noisy conditions [10]. Given that the original

model structure is designed for a sampling rate lower than that

of our dataset and to reduce complexity while maintaining

accuracy, we have slightly modified the model structure. This

modified model accepts the ECG signal as input and comprises

two 1D-CNN layers, each with a kernel size of 101 and

8 channels, followed by an average pooling layer. These

convolutional layers are followed by an LSTM layer with a

dimension of 8. The output of the LSTM layer is then passed

to a fully connected layer to produce the final output. The

CNN employs the ReLU activation function, and the LSTM

layer employs the Tanh activation function.

Algorithm 1 Training and inference of two-step heart sound

segmentation algorithm

Input: training set (X,y), ECG R-peak detection algorithm

fR(·), our U-Net model fdec(fenc(·)), and a projection

head fproj(·)
Output: The final U-Net model and the segmentation results

1: E ← Xecg, P ← Xpcg

2: Optimize fR using the lMSE(fR(E), yr−peaks)
3: R-peak positions Rpos ← fR(E)
4: {xi, yi} ← (X,y) based on Rpos {heartbeats detection}
5: for xi ∈ {xi} do
6: ei ← xi by masking the pcg channel

7: pi ← xi by masking the ecg channel

8: zi,e ← fproj(fenc(ei))
9: zi,p ← fproj(fenc(pi))

10: Optimize fproj(fenc(·))) by gradient descent using lose

function lsegcon(zi,e, zi,p) {pre-training}
11: end for
12: for xi, yi ∈ {xi, yi} do
13: ŷi ← fdec(fenc(xi))
14: Optimize fenc and fenc together by gradient descent

using lose function lCE(ŷi, yi) {finetuning}
15: end for
16: Ŷ ← fdec(fenc(X)) {inference}

Due to the relatively small number of R-peaks compared to

other points, the classes are imbalanced. For a T ms heartbeat,

the proportion of R-peaks to the entire heartbeat is only 1
T .

To address this issue, a weighted classification loss function is

necessary for detecting R-peaks through a classification task

that works through each point in the sequence [10]. However,

determining the appropriate weight would be challenging since

the length of heartbeats varies among individuals. To overcome

this challenge, we convert the task from classification to

regression by converting the label to a Gaussian-shaped target.

Specifically, if we consider x on the time axis centered at the

R-peak position (i.e., x = 0 at the R-peak), then the label can

be expressed as follows:

f(x) = ae−
(x−b)2

2c2 . (1)

Set it in a standard form by letting a = 1, b = 0 and c = 1,

then:

f(x) = e−
x2

2 . (2)

In our private dataset, we conduct an ablation study to com-

pare the continuous Gaussian-shaped labeling and categorical

labeling approaches. In this experiment, the categorical label

for R-peaks is set to 1, while the rest of the sequence is labeled

as 0. We utilize a weighted Cross-Entropy loss function with

a weight ratio of 1 : 550 for class 0 versus class 1. For R-peak

detection using regression with Gaussian-shaped labeling, we

apply the Mean Squared Error (MSE) as the loss function. The

model’s predictions are depicted in Fig. 4. Within a tolerance

of 50 ms from the true R-peak locations in this dataset,
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Fig. 4. The illustration depicts typical CNN-LSTM model predictions for R-
peak, where the red line represents the prediction and the purple line represents
the true label. The upper figure displays the output using a categorical labeling
strategy, while the lower figure displays the output with Gaussian-shaped
labeling.

the categorical labeling strategy yields 99.96% precision and

99.11% recall, whereas the Gaussian-shaped labeling strategy

achieves 99.89% precision and 99.84% recall. The lower recall

observed with the categorical labeling strategy suggests a

higher probability of the model misclassifying normal ECG

points as R-peaks. This issue could be due to the sub-optimal

class weight setting for Cross-Entropy Loss, whereas the

Gaussian-shaped labeling does not exhibit such a problem.

Furthermore, when evaluated on the MIT-BIH dataset [42], the

algorithm achieves an F1 score of 99.68% which demonstrates

its adequate accuracy in R-peak detection.

B. Heartbeat Level Segmentation Task

Since we have already developed an algorithm that can

identify heart sound cycles, our next task is to segment the

individual heart states within a specific heartbeat extracted by

our R-peak identification algorithm.

1) Data Preprocessing: Let s represent a normalized 2-

channel signal from ECG and PCG, containing N heartbeats

as segmented by the R-peak identification algorithm. Each

heartbeat b is defined as starting from 100ms before one R-

peak and ending at 100ms before the subsequent R-peak, so

s = [b1, ..., bn]. In this configuration, the heartbeat period

encompasses all four states of the cardiac cycle.

Since CNN processing requires inputs to have the same

shape, we resize the heartbeat sequences to have equal lengths.

For heartbeats with a length less than 1536, we pad them

with zeros after the original sequence to reach 1536; for

those longer ones, we only retain the first 1536 samples.

After resizing the signals, we obtain a set of equal-length

heartbeats from the original sequence to use in our training

set: X = [b′1, ..., b
′
n] and Y = [y1, ..., yn], where each yi is

a 1D array filled with class index (0,1,2,3) corresponding to

systole, S1 period, diastole, and S2 period respectively.

2) U-Net Based CNN model: Inspired by the widespread

use of 2D U-Net in biomedical image segmentation tasks, we

designed a 1D variant of U-Net for our heart sound segmen-

tation framework. Similar to the original U-Net, we retain

the Encoder-Decoder structure, the two convolutional layers

per block architecture with ReLU activation function, and the

skip connections. However, we modify all the convolution

layers, max-pooling layers, and up-convolution layers to be

one-dimensional. Additionally, we adjust the number of filters

in each convolution layer to better extract spatial features from

1D signals. The kernel size is set to 7 for smooth feature

extraction on signals, with padding applied to maintain the

sizes of input and segmented output. We use average pooling

layers instead of max-pooling layers, and the step of the

pooling and up-convolution layers is set to 4. The structure

of the model is shown in Fig. 5.

3) Loss Function: For this segmentation task, we try to

minimize the categorical difference on each pixel between our

model output and the true segmentation. In the experiment, we

use Cross-Entropy Loss function for our optimization problem.

The optimization object for a segmentation object in the batch

is shown as:

argminθ
1

L

L∑

i=1

∑

j∈(0,1,2,3)

pj(yi) log fj(b
′
i; θ), (3)

where (b′i, yi) is a pair of input point on heartbeat and label at

index i; L is the heartbeat’s length which in our case is 1536;

pj(yi) = 1 when j is the same as the class in yi, 0 otherwise;

and the function fj(b
′
i; θ) denotes the output probability on

class j from the U-Net model. Thus our optimization aims

to minimize the pixel-wise difference between the model

prediction and the true labeling of original signals.

C. Self-supervised Training

We propose a self-supervised learning strategy that encour-

ages the encoder of a U-Net to extract distinctive local repre-

sentations suitable for segmentation by the decoder. The first

step is to perform a temporal invariant data augmentation on

all the heartbeat signals, which will not change the location of

each sampling point on the time-axis. For each input heartbeat,

b ′, we generate two augmentations, Aug1(b
′) and Aug2(b

′).
In our case, since we use synchronized ECG and PCG signals,

we mask one input channel respectively as two augmentations,

which will not perturb the temporal information of the original

signals. Then we pass the signals to the encoder of our U-Net,

Enc, which maps Aug1(b
′) and Aug2(b

′) to representation

vectors, r1 = Enc(Aug1(b
′)) and r2 = Enc(Aug2(b

′)).
Then the representations are passed through a projection

network, Proj, to obtain the feature maps z1 = Proj(r1)
and z2 = Proj(r2), each of dimensions L′×C, with L′ < L.

We instantiate Proj as a 1D Convolutional layer with a kernel

size of 1 and an output dimension of 128, so the z has the same

dimension as the output of U-Net encoder. Then the feature

maps z with length L′ can be considered as having L′ pixels,

where each pixel corresponds to a segment from the input

signal with overlapping. Based on the understanding that two

segments of signals from different views of cardiac activities
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Fig. 5. Illustration of Proposed U-Net Structure. In this example, the input length is set to 1536 with 2 channels for ECG and PCG. The numbers inside the
boxes represent the number of signal channels, while the numbers below the boxes indicate the signal length.

Fig. 6. Illustration of contrastive learning Framework. 1. Prepare data by applying R-peak detection on signal S, segmenting heartbeats, and reshaping them
to the same dimensions to obtain b′. Then, apply two temporal invariant augmentations. 2. Generate feature maps for two augmented heartbeat signals for
contrastive learning. Each feature map is divided into n segments. Pairs of segments from the two feature maps are labeled as positive or negative pairs based
on their indices, which are used for optimizing the encoder and projection layer using segment-wise contrastive loss. 3. Remove the projection layer from the
encoder and perform supervised training jointly with U-Net’s decoder.

should reflect similar cardiac activity if they are collected at

the same time, contrasting the representations of segments with

different indices from the feature maps of two views will make

the representation have distinctive features for heart activity

detection. Then our segment-based contrastive loss for a given

input signal can be defined as:

lsegcon = − 1

L′
∑

i∈L′
log

exp (sim(z1,i, z2,i)/τ)∑
j∈L′ exp (sim(z1,i, z2,j)/τ)

, (4)

where the sim(·, ·) computes the cosine similarity between

two vectors sim(a, b) = aT b
‖a‖‖b‖ . In this optimization problem,

segments from different views that share the same indices are

considered as positive pairs, while those with different indices

are considered as negative pairs. The framework of proposed

contrastive learning is shown in Fig. 6.

IV. EXPERIMENT

A. Heart Sound Segmentation Performance Evaluation
1) Datasets: We use both the 2016 Physionet Challenge

database and the private Bayland Scientific dataset to evaluate

our method.
The Physionet 2016 database [43] is the most widely used

database for heart sound research. Although the objective of

this challenge is the heart sound normal/abnormal classifica-

tion, this database is also the primary benchmark for research

on the heart sound segmentation task. This database includes

3,126 heart sound recordings. Each recording lasts from 5

seconds to 120 seconds with a sampling frequency of 2000

Hz. Since signals in this database are collected from different

locations of the body, from both adults and children, under

clinical and non-clinical settings, with or without diseases, the

scales and the patterns vary among different signals. Also due

to the uncontrolled environment, significant noise including
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TABLE I
RESULT ON PHYSIONET 2016 DATASET

Method PPV Se Spe Acc F1
U-Net [6] 93.2 92.3 98.2 95.0 92.7

BiLSTM Attention [7] 94.2 95.0 95.1 93.5 94.75
GRNN [8] 92.41 93.16 97.92 94.47 92.77

U-Time [44] 83.58 82.93 95.66 93.75 83.24
HRNet [45] 94.05 92.37 98.26 97.4 93.16

Proposed U-Net 96.3 96.55 99.12 97.53 96.42

talking, breathing and etc. will be captured by the sensors.

For the classification task, this dataset contains annotations

of normal/abnormal. For the segmentation task, this challenge

provides annotations for fundamental heart sound, S1, systole,

S2, and diastole on signals. These annotations are generated

by the LR-HSMM algorithm [18] and manually decide their

correctness. The challenge provides five training sets, but

only the ’training-a’ subset contains 2-channel ECG and PCG

signals. Therefore, we only use data from ’training-a’ with

accurate labels. In total, 288 recordings are used for evaluation,

with 186 recordings designated for training, 43 recordings for

validation, and 59 recordings for testing purposes.

The second dataset we use is collected by Bayland Scientific

using the wearable device stuck on the chest. The private

dataset is collected from 2,072 adult patients in a clinical

setting. This dataset contains 2,076 dual-channel synchronized

ECG and PCG signals with an average length of 50 seconds.

The recordings have a sampling rate of 1,000 Hz. This ECG

signal is a single lead signal of Lead II, which is the same

one used in the MIT-BIH dataset. Professionals from Bayland

Scientific have fully labeled all the R-peak positions. For the

PCG signal, professionals identify and label the positions of

S1 start, S1 end, S2 start, and S2 end. We split the dataset

into training, validation, and testing sets with sizes of 1272,

300, and 500, respectively.

2) Evaluation Metrics: We assess the performance of our

heart sound segmentation algorithm using five metrics: positive

predictive value (PPV), sensitivity (Se), specificity (Spe), F1

score, and accuracy (Acc). Heart sound segmentation perfor-

mance is evaluated for each of the four states of the heart cycle,

and to evaluate the overall performance of the segmentation

algorithm, we compute the final metrics by globally averaging

across the four classes. Accuracy is calculated globally as the

ratio of correctly classified states to the total number of pixels.

3) Implementation: The initial learning rate is set to 0.001

for contrastive learning, training the U-Net segmentation

model from scratch, and finetuning the U-Net segmentation

model with a pre-trained encoder. We use the Adam optimizer

to train the proposed model. Training is terminated if the

validation loss does not decrease within 20 epochs, and we set

the maximum training epoch at 200 for both encoder training

and U-Net training.

4) PhysioNet Results: Table I presents the evaluation results

of our proposed segmentation algorithm on the PhysioNet

dataset, compared to other state-of-the-art algorithms. All

values in the table are expressed as percentages. For our pro-

TABLE II
PRE-TRAINING RESULT ON PHYSIONET 2016 DATASET

Method PPV Se Spe Acc F1
Train from scratch 96.3 96.55 99.12 97.53 96.42

SimCLR [11] 96.12 96.51 98.69 97.24 96.40
Proposed U-Net+Pre-train 96.13 96.76 99.11 97.55 96.43

posed method, we included and applied two-step segmentation

and multi-modal inputs as previously discussed. The baseline

models we compared include a U-Net model with the same

structure as in [6] with a moving window for segmentation,

a GRNN model [8], and a Bi-LSTM with attention mecha-

nism [7]. Due to the unavailability of public implementations

and differences in evaluation metrics, we implemented the

algorithms based on the descriptions in the original papers

and reported their performance using our metrics. Another

two baselines are widely used benchmarks for segmentation

from different tasks. The first is U-time [44] for sleep stage

segmentation, we made adaptations by setting the input length

as 2560 ms and segmenting resolution as 20 ms, removing

dilation for the encoder, setting all kernel sizes for pooling

and up-sampling as 4. For the HRNet [45], we adopted the 4-

stage HRNet-18. The adaptations include converting the model

to 1D CNN, setting the input length as 2560 ms, and setting

the kernel sizes by branch as 16, 32, 64, and 128.

Observations indicate that RNNs achieve overall better

results than the regular 1D U-Net, suggesting that temporal

models and their frequency-domain feature extraction methods

are effective in processing cardiac sequential data. Our two-

step multi-modal techniques make the U-Net competitive. By

using an R-peak detection algorithm to select an appropriate

heartbeat-long window size, the CNN-based method can now

perform fine-grained segmentation. Since recurrent networks

can only classify a selected small window, this approximation

is likely to result in less accurate predictions at the boundaries

of fundamental heart sounds. Since the convolutional struc-

tures from U-time and HRNet, as well as the RNN structures

from BiLSTM and GRNN, are not less complex than those

from the two-step detection structure, the improvements in

accuracy and F1 scores are likely due to the adoption of

multi-modal inputs and the effective leverage of combined

information.

We also implemented SimCLR [11] as a benchmark self-

supervised training method to compare with our segment-wise

contrastive learning. The same U-Net segmentation architec-

ture is used for both the benchmark and proposed methods.

Since augmentations such as clipping or rotation from the

original paper are difficult to apply to signal data, we used

two types of augmentation: the frequency masking method

from SpecAugment [46] and masking the ECG channel. The

results from Table II show that SimCLR does not perform

well on the downstream segmentation task, and the pre-trained

weights can even compromise the effect of finetuning. This

demonstrates the necessity of an alternative pretext task. Our

proposed segment-wise contrastive training either matches or
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slightly exceeds the performance of the model trained from

scratch, indicating that the proposed pretext training task

does not adversely affect the downstream fine-grained task.

The benefits of label-efficient training will be analyzed in

subsequent experiments.

B. Pre-training Effect on Reduced Training Data Size

Besides improving the performance of the U-Net model,

a more important motivation to utilize contrastive learning

pre-training is to reduce the need for labeled training data.

We designed an experiment to assess its efficacy by using

the full training dataset without labels as the self-supervised

set and partially revealing labels for the labeled set. We

compared our segment-wise contrastive learning approach

with the baseline and SimCLR [11], using the same U-

Net architecture. The baseline involved training U-Net from

scratch on the labeled set. We trained two U-Net encoders

using SimCLR and our method on the self-supervised set.

The SimCLR-trained encoder was finetuned with the decoder

on the labeled set. For the encoder trained with our method,

we conducted experiments with gradients frozen and finetuned

when jointly trained with the decoder on the labeled set. In

both Bayland and Physionet datasets, we progressively reduced

the proportion of revealed labels to investigate the relation-

ship between labeled data size and self-supervised training

methods. For the Bayland dataset, we conducted experiments

with label proportions ranging from 100% to 30%, 10%,

5%, and 1%, corresponding to 9000, 2700, 900, 450, and 90

labeled heartbeats. For the Physionet dataset, we performed

experiments with label proportions ranging from 100% to

30%, 10%, 5%, 1%, and 0.1%, corresponding to 7807, 2342,

781, 390, 78, and 8 labeled heartbeats. The number of training

epochs will be increased corresponding to the decrease in data

size of supervised learning. We used the F1 score to evaluate

the results, as shown in Fig. 7.

As observed, with a 100% labeled dataset, finetuning the

encoder pre-trained with the proposed segment-wise con-

trastive learning improves accuracy on the Bayland dataset.

On the Physionet dataset, the scratch, SimCLR, and proposed

methods show no significant difference, but the F1 scores

are consistently lower for the proposed method with frozen

gradient finetuning on both datasets. The advantage of using a

pre-trained encoder with finetuning over training U-Net from

scratch becomes more evident as the training set size reduces.

As the labeled portion of the Physionet dataset decreases from

100% to 30%, 10%, 5%, 1%, and 0.1%, the differences in

F1 scores between the proposed method with finetuning and

training from scratch increase from 0.01 to 0.18, 0.49, 0.56,

1.95, and 10.60. This indicates that the pre-trained encoder has

better generalization ability than random weight initialization.

However, the improvement is not substantial with SimCLR

when the labeled data size is small. Using only 5%, 1%, and

0.1% of labeled data, our proposed method results in F1 score

drops of only 0.94, 2.88, and 11.59 compared to training with

the complete labeled data.

TABLE III
COMPARISON OF TRANSFER LEARNING PERFORMANCE

Method B2P10% B2P1% P2B10% P2B1%
Frozen Encoder

Our Semi-supervised 94.94 93.46 88.31 86.08
Supervised 94.94 92.24 88.89 86.7
Finetuned

Our Semi-supervised 95.53 93.43 89.65 87.09
Supervised 95.63 93.37 90.11 87.27

Scratch 95.33 92.08 89.65 86.14

Interestingly, the model with a gradient-frozen pre-trained

encoder achieves higher F1 scores when the data size shrinks,

even outperforming the finetuned encoder in extreme cases

with only 8 heartbeats. This suggests that our pre-trained

encoder generates better-informed and more-generalized rep-

resentations of the input. Sample outcomes are shown in

Fig. 8. The U-Net with a gradient-frozen encoder makes

accurate predictions with only 0.1% labeled data, although

it has less smooth and accurate heart sound boundaries and

may misclassify extra heart sounds not covered in the limited

labeled set.

C. Transfer Learning Performance

Transferring knowledge from a more accessible dataset

without the desired labels to a private labeled dataset offers a

way to leverage the need for labels. The efficacy of transfer

learning is also a measure of the quality of the learned rep-

resentations. We evaluate the performance of representations

learned through our segment-wise contrastive learning for

transfer learning across the Physionet and Bayland datasets,

both with a frozen encoder and in finetuning settings. The

dataset configuration involves pre-training the model on one

complete but unlabeled dataset and then further training it on

10% and 1% of another labeled dataset, in settings where the

encoder gradients are either frozen or finetuned. The baselines

include supervised training on a complete and labeled dataset,

followed by finetuning with encoder frozen or finetuned, and

a model that is randomly initialized and trained from scratch

in a finetuned setting.

The results from Table III demonstrate that the proposed

semi-supervised learning approach with finetuning attains

higher F1 scores compared to supervised training from scratch

across all dataset combinations. Without finetuning, neither

the semi-supervised nor the supervised method successfully

transfers to the new dataset. When finetuned, supervised

training on complete labeled data does not reach the same F1

score levels as the model pretrained and finetuned on the same

set, as shown in Fig 7; however, it does recover some of the

performance gap resulting from the limitation in labeled data

size. Our proposed semi-supervised learning method achieves

performance close to the supervised method, indicating that

its learned representation is not significantly worse than that

learned from labeled data.
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Fig. 7. Illustration of labeled data size influence on the performance of U-Net on Bayland and Physionet dataset. The U-Net is evaluated in 4 cases: i) trained
from scratch; ii) encoder pre-trained with SimCLR and finetuned on partially labeled data; iii) encoder pre-trained using proposed segment-wise contrastive
learning and finetuned on partially labeled data; iv) encoder pre-trained with segment-wise contrastive learning, weights frozen during finetuning.

Fig. 8. The segmented results of the proposed two-step heart sound segmentation algorithm on the Physionet training-a subset. Left plots use a U-Net
with a pre-trained encoder finetuned on 100% labeled data; right plots use a U-Net with a frozen encoder and a decoder trained on 0.1% labeled data. The
corrected annotations and our algorithm predictions are shown in each sub-figure as green and orange staircase plots respectively. The level of the staircase
plot corresponds to the heart states of diastole, S1, systole, and S2 in ascending order.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we developed a deep learning framework

for automatic heart sound segmentation in self-monitoring

systems using multi-modal signals. By leveraging the periodic

nature of heart activity, we designed a two-step heart sound

segmentation algorithm that first detects heartbeats based on

R-peaks from ECG signals and then segments heart sounds

within heartbeat durations. The modified R-peak detection

achieves accurate results, and we analyze the advantages of

regression on Gaussian-shaped labels over classification on

categorical labels. Our beat-wise heart sound segmentation

method attains state-of-the-art results on the PhysioNet 2016

dataset, and we investigate the benefits of using synchronized

multi-modal ECG and PCG signals for segmentation instead

of a single channel.

To reduce the reliance on large annotated training sets, we

proposed an extension to contrastive loss-based pre-training.

Since traditional contrastive learning methods are designed for

classification tasks, we developed a method suitable for signal
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segmentation tasks. We introduced a contrastive loss for learn-

ing local segment representations of signals based on temporal

information, useful for dense prediction tasks like segmenta-

tion. Evaluating contrastive learning as self-supervised, semi-

supervised, and transfer learning demonstrates performance

improvement in segmentation tasks and less dependence on

costly labeled data. The developed method can benefit few-

shot learning, enabling the transfer to different yet related tasks

with minimal additional labeling. It can also support domain

adaptation, where a model trained on data from one hospital

or medical agency can be transferred to another.

However, our proposed method has some limitations. Al-

though our two-step algorithm is more accurate than a CNN

model with moving window processing, it has more param-

eters to train (U-Net has 176K Params and Conv-LSTM has

2K Params), resulting in more FLOPs during the inference

stage. However, to achieve higher accuracy with the moving

window method, a temporal model like the Viterbi algorithm

or HMM may be needed for post-processing. In comparison

to RNN-based methods, the U-Net model’s parameters are

considered extra, as our algorithm takes raw signals as inputs,

while RNN-based methods typically employ signal processing

methods like MFCC to extract features. Another trade-off is

the need for two-step training and inference. Although some

methods can stack Conv-LSTM and U-Net into a single model

using a soft-argmax layer [47], making the heartbeat detection

process differentiable, outputting R-peak prediction results can

be beneficial for other medical diagnostic tasks and filtering

to improve heartbeat detection accuracy.

Building upon our proposed method, one important future

aspect of this work is to improve the efficiency of the uti-

lized deep learning models. As we would like to deploy the

proposed method into the mobile devices or smart sensors

of end-users, the memory usage and computation cost are

typically constrained by the limited resources available on

the target hardware. To enable wider and more efficient

deployment of deep-learning-based methods, model compres-

sion and efficient computation techniques like pruning [48],

[49], quantization [50], parallel computation [51], and neural

architecture search [52] on vital signal processing tasks are

worth investigating.
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