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ABSTRACT: This study quantifies the state of the art in the rapidly growing field of seasonal 
Arctic sea ice prediction. A novel multimodel dataset of retrospective seasonal predictions of 
September Arctic sea ice is created and analyzed, consisting of community contributions from 17 
statistical models and 17 dynamical models. Prediction skill is compared over the period 2001–20 
for predictions of pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) 
initialized on 1 June, 1 July, 1 August, and 1 September. This diverse set of statistical and dynami-
cal models can individually predict linearly detrended pan-Arctic SIE anomalies with skill, and a 
multimodel median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these 
respective initialization times. Regional SIE predictions have similar skill to pan-Arctic predictions 
in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and 
central Arctic sectors. The skill of dynamical and statistical models is generally comparable for 
pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional 
and local predictions. The prediction systems are found to provide the most value added relative 
to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors 
do not show clear trends over time, suggesting that there has been minimal change in inherent 
sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright 
prospects for skillful operational predictions of September sea ice at least 3 months in advance.
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SIGNIFICANCE STATEMENT: The observed decline of Arctic sea ice extent has created an emerg-
ing need for predictions of sea ice on seasonal time scales. This study provides a comparison of 
September Arctic sea ice seasonal prediction skill across a diverse set of dynamical and statistical 
prediction models, quantifying the state of the art in the rapidly growing sea ice prediction research 
community. We find that both dynamical and statistical models can skillfully predict September 
Arctic sea ice 0–3 months in advance on pan-Arctic, regional, and local spatial scales. Our re-
sults demonstrate that there are bright prospects for skillful operational seasonal predictions of 
Arctic sea ice and highlight a number of crucial prediction system design aspects to guide future  
improvements.
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1. Introduction
The rapid decline of summer Arctic sea ice over the satellite era (Fig. 1) has led to increased socio-
economic activity in the region and an emerging need for skillful predictions of sea ice conditions 
(Jung et al. 2016; Wagner et al. 2020). Following the then-record-setting 2007 September Arctic 
sea ice extent (SIE) minimum, a new research subfield emerged focused on scientific understand-
ing of sea ice predictability and prediction. At the core of this research community has been the 
Sea Ice Outlook (SIO), which collects, analyzes, and synthesizes real-time seasonal predictions 
of September pan-Arctic SIE [Stroeve et al. (2014); see arcus.org/sipn/sea-ice-outlook]. From 2008 
to the present, the SIO has collected predictions of September SIE initialized on 1 June, 1 July, 
and 1 August, months that span the summer Arctic melt season. The SIO began additionally 
collecting 1 September initialized predictions in 2021. The number of annual SIO submissions 
has grown steadily over time, with approximately 40 groups submitting predictions in recent 
years. These submissions are provided by an international community of polar scientists and 
employ a diverse mix of dynamical modeling, statistical, and heuristic approaches.

Fig. 1.  Observations of (a) September pan-Arctic SIE from NSIDC v3 and OSI SAF v2.1 sea ice indices; (b) September regional SIE 
from NSIDC CDR SIC (G02202); and (c) September-mean SIC interannual standard deviation and sea ice edge positions in the 
extreme years of 1996 (black), 2007 (magenta), and 2012 (blue). (d) The regional domain definitions for the Alaskan, Siberian, 
Atlantic, Canadian, and central Arctic regions. Note that the central Arctic time series in (b) is plotted using a shifted y axis on 
the right (values in gray).
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In parallel to the growth of the SIO, a body of work on sea ice predictability has been 
developed, which underpins the expectation that sea ice could be predictable on seasonal 
time scales. Coupled global climate models (GCMs) have been used to estimate the upper 
limits of sea ice predictability based on “perfect model” ensemble experiments, which 
quantify potential prediction skill in the case of perfectly known initial conditions, forcing, 
and model physics. These studies have shown that, with typical sample sizes, Arctic SIE 
potential predictability is statistically significant up to 12–36 months in advance (Koenigk 
and Mikolajewicz 2009; Blanchard-Wrigglesworth et al. 2011b; Holland et al. 2011; Tietsche 
et al. 2014; Day et al. 2014; Bushuk et al. 2019; Holland et al. 2019); however, they may 
overestimate nature’s true predictability limits due to the overly persistent SIE anomalies 
present in most modern GCMs (Blanchard-Wrigglesworth and Bushuk 2019; Giesse et al. 
2021). The inherent predictability of Arctic sea ice is determined by a competition between 
the slowly evolving predictable components of the ice–ocean–land system and the com-
paratively unpredictable variability of the atmosphere (Tietsche et al. 2016). A number of 
physical mechanisms for summer Arctic SIE predictability have been demonstrated. These 
include the persistence and reemergence of SIE and sea ice concentration (SIC) anomalies 
(Blanchard-Wrigglesworth et al. 2011a; Bushuk and Giannakis 2015; Ordoñez et al. 2018; 
Giesse et al. 2021; Zhang et al. 2021), the persistence and advection of sea ice thickness 
(SIT) anomalies (Holland et al. 2011; Blanchard-Wrigglesworth et al. 2011b; Chevallier and 
Salas y Mélia 2012; Krumpen et al. 2013; Blanchard-Wrigglesworth and Bitz 2014; Day et al. 
2014; Collow et al. 2015; Massonnet et al. 2015; Guemas et al. 2016; Williams et al. 2016; 
Blanchard-Wrigglesworth et al. 2017; Bushuk et al. 2017b; Dirkson et al. 2017; Blockley 
and Peterson 2018; Holland et al. 2019; Babb et al. 2019; Bonan et al. 2019; Brunette et al. 
2019; Ponsoni et al. 2020; Babb et al. 2020; Balan-Sarojini et al. 2021), ocean heat transport 
and persistence of upper ocean heat content anomalies (Serreze et al. 2016; Lenetsky et al. 
2021; Bushuk et al. 2022), melt onset and summer ice–albedo feedback processes (Schröder 
et al. 2014; Kapsch et al. 2014; Landy et al. 2015; Liu et al. 2015; Cox et al. 2016; Zhan and 
Davies 2017; Kwok et al. 2018; Bushuk et al. 2020), and summertime atmospheric circulation 
patterns (Ding et al. 2017, 2019; Baxter et al. 2019; Baxter and Ding 2022). Taken together, 
these studies have laid critical groundwork, showing that sea ice should be potentially pre-
dictable on seasonal time scales.

Have modern prediction systems capitalized upon this potential predictability and 
produced skillful predictions of observed Arctic sea ice? There is a tension in the sea ice 
prediction literature regarding this question. On the one hand, a number of studies have 
evaluated the performance of September SIE predictions submitted in real-time to the SIO 
and found that these predictions have only a modest skill advantage relative to a baseline 
linear trend prediction (Stroeve et al. 2014; Blanchard-Wrigglesworth et al. 2015; Hamilton 
and Stroeve 2016; Lukovich et al. 2021; Blanchard-Wrigglesworth et al. 2023). The initial 
assessment performed by Stroeve et al. (2014) on SIO predictions submitted over the period 
of 2008–13 found that, regardless of the method, predictions struggled to capture years 
with large SIE anomalies relative to the linear trend. These initial findings have been largely 
corroborated over the longer assessment periods of 2008–15 and 2008–22 considered 
by Hamilton and Stroeve (2016) and Blanchard-Wrigglesworth et al. (2023), respectively. 
Blanchard-Wrigglesworth et al. (2023) found that the SIO multimodel median prediction has 
a similar skill to a damped anomaly persistence forecast from 1 July to 1 August initialization 
dates and is slightly more skillful than damped persistence from 1 June. They found that 
the skill of individual models was lower than the multimodel median skill and had worse 
skill than damped persistence.

On the other hand, there has been a recent proliferation of studies that document the devel-
opment of seasonal prediction systems capable of skillfully predicting detrended September 
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Arctic SIE anomalies. These skill assessments are based on retrospective seasonal predic-
tions (also known as hindcasts or reforecasts), which use a fixed initialization and modeling 
formulation to make seasonal predictions of past observations using only data that would 
have been available at the time of initialization. Many dynamical prediction systems, which 
are based on initialized coupled dynamical models, have recently shown skillful seasonal 
predictions of detrended September Arctic SIE anomalies (Chevallier et al. 2013; Merryfield 
et al. 2013; Sigmond et al. 2013; Wang et al. 2013; Msadek et al. 2014; Collow et al. 2015; 
Peterson et al. 2015; Guemas et al. 2016; Sigmond et al. 2016; Bushuk et al. 2017a; Dirkson 
et al. 2017, 2019; Harnos et al. 2019; Kimmritz et al. 2019; Batté et al. 2020; Shu et al. 2021; 
Bushuk et al. 2022; Zhang et al. 2022; Martin et al. 2023). Simultaneously, many statistical 
prediction systems, which leverage empirical relationships in past observational data, have 
also demonstrated skillful detrended SIE predictions (Drobot et al. 2006; Lindsay et al. 2008; 
Kapsch et al. 2014; Schröder et al. 2014; Williams et al. 2016; Yuan et al. 2016; Serreze et al. 
2016; Petty et al. 2017; Kondrashov et al. 2018; Brunette et al. 2019; Ionita et al. 2019; Walsh 
et al. 2019; Gregory et al. 2020; Andersson et al. 2021; Chi et al. 2021; Horvath et al. 2021). 
Both dynamical and statistical predictions (see section 2b ahead) have been shown to outper-
form the damped persistence forecast in most cases. This discrepancy between retrospective 
and real-time prediction skill represents a key tension in the sea ice prediction literature.

While many dynamical and statistical prediction systems have documented “skillful” 
SIE predictions, it is arguably more important to consider the quantitative level of skill and 
whether such predictions could provide value to end users (Murphy 1993). The sea ice predic-
tion community gathered for a Sea Ice Outlook Contributors Forum in 2021 where this and 
many other issues were discussed (Steele et al. 2021). Many workshop attendees expressed 
a need to rigorously quantify the current state of the art across modern sea ice prediction 
systems. Unfortunately, this quantitative skill comparison is challenging due to differences 
in the evaluation time period and skill metrics considered across different studies and the 
relatively short period of real-time SIO predictions. This knowledge gap led to a key outcome 
of the SIO Forum—the expressed need for an “apples-to-apples” skill comparison of modern 
dynamical and statistical sea ice prediction systems. This community intercomparison of sea 
ice prediction skill forms the basis of the present study.

The outline for this paper is as follows. In section 2, we describe a retrospective predic-
tion data request that was sent to the SIO contributor community, summarize the prediction 
methodologies used by the 35 groups who contributed predictions, and outline our methods 
for assessing prediction skill against multiple observational products. In section 3, we assess 
pan-Arctic September SIE prediction skill across dynamical and statistical models and con-
sider whether SIE prediction skill has changed over time. In section 4, we consider smaller 
spatial scales, evaluating regional SIE prediction skill in five Arctic regions and comparing 
pan-Arctic and regional performance. Finally, we assess the prediction skill for local SIC and 
ice edge predictions in section 5. We discuss our findings in section 6, focusing on the key 
elements of successful sea ice prediction systems and the skill differences between retrospec-
tive and real-time predictions. Conclusions and a future outlook are presented in section 7.

2. Methods
a. Retrospective prediction data request. To facilitate a direct apples-to-apples skill com-
parison of SIO models, a data request for retrospective predictions of September Arctic sea 
ice was sent to the SIO contributor community in early 2022. The data request was for ret-
rospective predictions initialized on the SIO initialization dates of 1 June, 1 July, 1 August, 
and 1 September and spanning a minimum period of 2001–20. The requested target vari-
ables were September monthly mean pan-Arctic SIE, regional SIE, and gridded SIC fields. 
Pan-Arctic SIE is defined as the area of all Northern Hemisphere grid cells covered by at least 
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15% SIC. We define monthly mean SIE following the NSIDC sea ice index convention, which 
defines the monthly mean extent as the monthly mean of the daily SIE values. Regional 
SIE was requested for four regional domains: the Alaskan Seas (Chukchi and Beaufort), 
Siberian Seas (East Siberian and Laptev), Atlantic Seas (Kara, Barents, and Greenland), and 
Canadian Seas (Canadian Archipelago and Baffin Bay). These regions were defined based 
on a recently updated NSIDC region mask, which has better agreement with the regional 
definitions used by the International Hydrographic Organization (Meier and Stewart 2023; 
see map in Fig. 1d). We also later derived central Arctic regional SIE using the submitted 
pan-Arctic and regional SIE values by taking their difference. SIO contributors were invited 
to submit any combination of the requested target variables and initialization dates along 
with metadata describing the design of their prediction system. We also requested submis-
sion of individual ensemble members, if applicable, and the initial SIC and SIT conditions 
used for dynamical predictions. Contributors were informed that the NSIDC sea ice index 
and SIC climate data record would be the official verification products, but we also utilize 
Ocean and Sea Ice Satellite Application Facility (OSI SAF) observations for verification in 
this study (see section 2c ahead). For groups that only provided SIC predictions, pan-Arctic 
and regional SIE were computed on the native model grid and a postprocessing was applied 
to remove biases (see ahead), including those related to land–sea mask differences.

Retrospective prediction contributions were received from 17 statistical models, 17 dynami-
cal models, and 1 heuristic prediction (see summary of submitted data in Table 1). These 
contributions span 11 countries across Europe, Asia, and North America and provide a total 
of 2807 individual predictions of September pan-Arctic SIE (1267 statistical; 1526 dynamical; 
14 heuristic). All data have been subsequently formatted into a common format and made 
publicly available via an online repository (https://zenodo.org/doi/10.5281/zenodo.10124346). The 
online repository also contains scripts for processing the raw data, computing skill metrics, 
and producing all figures for this study. This is the most comprehensive dataset of multimodel 
Arctic sea ice predictions that has been assembled to date and is intended to provide an open 
community resource for future sea ice prediction research. In this study, we will focus on 
ensemble-mean sea ice predictions in order to compare ensemble and deterministic contri-
butions, since this is the primary focus of the SIO and allows for the largest set of models to 
be compared.

b. Statistical and dynamical prediction systems. The submitted predictions can be grouped 
into two main categories—dynamical and statistical predictions. Dynamical predictions are 
based on numerical dynamical models that are initialized from observationally constrained 
initial conditions and integrated forward in time. Statistical predictions are based on em-
pirical predictor–predictand relationships and are trained using past observational or re-
analysis data. It should also be noted that the distinction between dynamical and statistical 
methods is not perfect, for example, many dynamical models use statistical postprocess-
ing techniques to bias correct their predictions and many statistical models are trained on 
reanalysis-based predictor data. There is also one submitted “heuristic” prediction from the 
NCAR/University of Colorado sea ice pool. This office pool collects September SIE predic-
tions each summer on 1 June from NCAR/University of Colorado (CU) scientists and serves 
as a useful “human expert assessment” baseline to compare against the skill of dynamical 
and statistical models (Hamilton et al. 2014).

Table 2 summarizes the dynamical prediction systems, which come in three main variet-
ies: fully coupled global models, fully coupled regional models driven by specified lateral 
boundary conditions, and ice–ocean models driven by specified atmospheric forcing. Fully 
coupled global models are the most common model formulation, likely because many centers 
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have carefully developed these models for climate modeling applications. Regional models 
offer the advantage of substantial computational savings, allowing for Arctic simulations at 
higher resolution, but come with the additional challenges of requiring high-quality bound-
ary conditions and significant research investment in model development. The ice–ocean 
models that use specified atmospheric forcing are driven either using atmospheric fields 

Table 1.  Summary of submitted retrospective prediction data. Target variables are pan-Arctic SIE (P), 
regional SIE (R), SIC (S), and the number of ensemble members (e), indicated in parentheses. The 
variables that are bias corrected are shown in parentheses in the bias-correction column.

Name
Forecast  
method Time period

Initialization  
dates

Target  
variables

Bias  
correction

AWI Statistical 2000–21 Jun–Aug P No

BDAL Statistical 2001–21 Jun–Sep P No

Cawley Statistical 2001–21 Jun PR No

CPOM Statistical 1984–2021 Jun–Jul P No

CPOM-UCL Statistical 1993–2020 Jun–Sep PR No

CSU Statistical 2011–21 Aug P No

GSFC_Petty Statistical 1990–2021 Jun–Sep PR No

Damped persistence Statistical 1990–2021 Jun–Sep PRS No

Horvath Statistical 2001–20 Jun–Sep PRS Yes (S)

KOPRI Statistical 2001–21 Jun–Sep PRS No

Lamont Statistical 2013–21 Jun–Sep PRS Yes (PR)

MetNo-sparse-st Statistical 2000–20 Jun–Sep P No

Nico Sun Statistical 2000–21 Jun–Sep PRSe(3) No

SYSU/SML-KNN Statistical 2000–20 Jun–Sep PRS No

SYSU/SML-MLM Statistical 1980–2020 Jun–Sep PRS No

Trend climatology Statistical 1990–2021 Jun–Sep PRS No

UCLA Statistical 2012–21 Jun–Sep PR No

UMBC-REU Statistical 2000–20 Sep PS No

UPenn Statistical 2000–21 Jun–Sep P No

BCCR Dynamical 2003–21 Aug PRSe(10) Yes (PR)

CNRM Dynamical 1993–2016 Jun–Sep PRSe(25) Yes (PR)

CPC CFSm5 Dynamical 2006–21 Jun–Sep PRSe(4) Yes (S)

CPC CFSv2 Dynamical 1991–2021 Jun–Sep PRSe(4) Yes (S)

ECCC-CanSIPSv2 Dynamical 1990–2021 Jun–Sep PRSe(20) Yes (PRS)

EC-Earth Dynamical 1981–2014 Jun PRSe(10) No

ECMWF SEAS5 Dynamical 1993–2021 Jun–Sep PRSe(25) Yes (PR)

FGOALS-f2 Dynamical 2000–21 Jun–Sep PRS No

FIO-ESM Dynamical 2000–21 Jun–Sep PRS Yes (PR)

GFDL-FLOR Dynamical 1981–2020 Jun–Sep PRSe(12) Yes (PR)

GFDL-SPEAR Dynamical 1993–2021 Jun–Sep PRSe(15) Yes (PR)

GFDL-SPEAR-IDA Dynamical 1992–2021 Jun–Sep PRSe(15) Yes (PR)

Met Office Dynamical 1993–2016 Jun–Aug Pe(21) Yes (P)

NASA GMAO Dynamical 1981–2021 Jun–Aug PRSe(10) No

PIOMAS-CFS Dynamical 2000–20 Jun–Sep PRSe(4) No

RASM Dynamical 2001–21 Jun–Sep PRSe(10) No

UCLouvain Dynamical 2006–19 Jun PRSe(10) No

NCAR-CU sea ice pool Heuristic 2008–21 Jun P No
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from another prediction system or using reanalysis atmospheric fields from previous years. 
The spatial ice–ocean resolution of the global dynamical models ranges from 0.25° to 2.8° 
nominal horizontal resolution, whereas the two submitted regional models have 0.08° and 
0.3° nominal resolutions, respectively. The horizontal atmospheric resolutions employed 
range from 0.4° to 2.8°. Most of the dynamical prediction systems incorporate observations 
of SIC (11 of 17 systems), sea surface temperature (SST; 14 systems), ocean temperature and 
salinity (T/S) profiles (13 systems), and reanalysis atmospheric data (15 systems) into their 
initialization procedure. A number of systems also initialize their models using observed sea 
level anomaly (SLA) data (four systems) and SIT data (two systems). A variety of different data 
assimilation techniques are employed including 3DVAR, 4DVAR, strongly and weakly coupled 

Table 2.  Summary of dynamical prediction models. Acronyms used are ECMWF Reanalysis (ERA), Integrated Forecasting 
System (IFS), Ocean Reanalysis System (ORAS), Operational Ocean Analysis System version 5 (OCEAN5), National Centers for 
Environmental Prediction (NCEP), Climate Forecast System Reanalysis (CFSR), Modern-Era Retrospective Analysis for Research 
and Applications (MERRA), Japanese Reanalysis (JRA), Climate Prediction Center (CPC), numerical weather prediction (NWP), 
Forecast Ocean Assimilation Model (FOAM), HadISST2 combined with Canadian Ice Service Charts (Had2CIS), CCCma Coupled 
Climate Model version 4 with ice initialization (CanCM4i), Global Environmental Multiscale model and Nucleus for European 
Modelling of the Ocean (GEM-NEMO), and NEMO three-dimensional variational ocean data assimilation (NEMOVAR).

Name Initialization data Brief method description and reference

BCCR SIC, SST, T/S profiles Fully coupled global with 1° ice–ocean, 2° atmosphere; initialized from strongly coupled ice–ocean 
EnKF (Kimmritz et al. 2019)

CNRM SST, T/S profiles, 
ERA-Int/ERA5

Fully coupled global with 0.25° ice–ocean, 0.5° atmosphere; initialized from forced ice–ocean with T/S 
nudging, atmos. from ERA5 (http://www.umr-cnrm.fr/IMG/pdf/system7-technical.pdf; Voldoire et al. 2019)

CPC CFSv2 SIC, SST, T/S profiles, CFSR Fully coupled global with 0.5° ice–ocean, 1° atmosphere; initialized from CFSR (Wang et al. 2013; Saha 
et al. 2014).

CPC CFSm5 SIC, SST, T/S profiles, CFSR Fully coupled global with 0.5° ice–ocean, 1° atmosphere; initialized from the CFSR and CPC sea ice 
initialization system (Liu et al. 2019; Collow et al. 2019)

ECCC-CanSIPSv2 SIC, SST, T/S profiles,  
Era-Int

Two fully coupled global models: CanCM4i with 2.8° ice–atmosphere, 1° ocean; initialized from  
Had2CIS SIC, nudged run, and offline ocean T assimilation from Ocean Reanalysis Pilot 5 (ORAP5); 
GEM-NEMO with 1° ice–ocean, 1.4° atmosphere; initialized from Had2CIS SIC and ORAP5  
(Lin et al. 2020).

EC-Earth SST, T/S profiles, Era-Int Fully coupled global with 1° ice–ocean, 1° atmosphere; initialized from ORAS4 in the ocean, atmos. 
from Era-Int (Hazeleger et al. 2012)

ECMWF SEAS5 SIC, SST, T/S profiles, SLA, 
ERA5/IFS

Fully coupled global with 0.25° ice–ocean, 0.4° atmosphere; initialized from ERA5/IFS 4DVAR and 
ORAS5/OCEAN5 (Johnson et al. 2019; Zuo et al. 2019)

FGOALS-f2 T profiles, JRA55 Fully coupled global with 1° ice–ocean, 1° atmosphere; initialized from nudged run (Li et al. 2021)

FIO-ESM SIC, SIT, SST, SLA Fully coupled global with 1° ice–ocean, 1° atmosphere; initialized from weakly coupled EnKF  
(Qiao et al. 2013; Chen et al. 2016; Shu et al. 2021)

GFDL-FLOR SST, T/S profiles, NCEP-2 Fully coupled global with 1° ice–ocean, 0.5° atmosphere; initialized from weakly coupled EnKF (Msadek 
et al. 2014; Bushuk et al. 2017a)

GFDL-SPEAR SIC, SST, T/S profiles, CFSR Fully coupled global with 1° ice–ocean, 0.5° atmosphere; initialized from weakly coupled EnKF and 
nudged run (Bushuk et al. 2022)

GFDL-SPEAR-IDA SIC, SST, T/S profiles, CFSR Fully coupled global with 1° ice–ocean, 1° atmosphere; initialized from weakly coupled EnKF, sea ice 
EnKF, and nudged run (Zhang et al. 2022)

Met Office SIC, SST, T/S profiles, SLA, 
Met Office NWP

Fully coupled global with 0.25° ice–ocean, 0.6° atmosphere; initialized from Met Office 4DVAR and 
FOAM/NEMOVAR (Blockley et al. 2014; MacLachlan et al. 2015)

NASA-GMAO SIC, SST, T/S profiles, 
SLA, MERRA-2

Fully coupled global with 0.5° ice–ocean, 0.5° atmosphere; initialized from weakly coupled EnKF 
(Molod et al. 2020)

PIOMAS-CFS SIC, SIT, SST, CFSR/CFS Regional ice–ocean with 0.3° ice–ocean forced with atmospheric fields from CFS forecasts; initialized 
via nudging and optimal interpolation (Zhang and Rothrock 2003; Zhang et al. 2008)

RASM CFSR Fully coupled regional with 0.08° ice–ocean and 0.5° atmosphere forced with CFS operational 
forecasts; initialized from RASM hindcast run nudged to CFSR (air temperature and winds) above 
540 hPa (Cassano et al. 2017)

UCLouvain JRA55 Global sea ice–ocean NEMO3.6/LIM3 with 1° resolution forced with JRA55 atmospheric forcing from the 
10 previous years; initialized from forced ice–ocean run (Rousset et al. 2015; Barthélemy et al. 2018)
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ensemble Kalman filters (EnKFs), nudging, optimal interpolation, and reanalysis-forced 
ice–ocean runs. Most of the dynamical models are ensemble prediction systems, and their 
deterministic SIO prediction is taken as the ensemble mean. Note that for SIE predictions, SIE 
is first computed for each ensemble member and then averaged to form the ensemble mean.

The methodologies of each statistical prediction system are summarized in Table 3. 
A variety of different methods are employed, including standard statistical techniques such 
as linear regression, multiple regression, autoregressive models, and more complex methods 
including convolutional neural networks, Gaussian process regression, multivariate linear 
Markov models, long short-term memory networks, and harmonic decomposition. Most mod-
els include a sea ice predictor variable—typically SIE or SIC—and some models also include 
thermodynamic ocean variables and dynamic and thermodynamic atmospheric variables as 
predictors (see Table 3, column 2). The reader is reminded that the predictand variables are 
provided in Table 1, column 5. All submitted statistical models are trained using past data 
only. Some prediction systems choose to specify a designated training period (e.g., 1979– 
2000) and use a fixed statistical model to predict all future years (e.g., 2001–21). Other systems 
retrain their model each successive year using all available past data (e.g., predict 2001 based 
on 1979–2000 data and predict 2002 based on 1979–2001 data). As such, we are unable to 
disentangle the relative skill from the sophistication of the statistical approach versus other 
aspects of the statistical forecast (e.g., the use of training data).

Table 3.  Summary of statistical prediction models. Acronyms used for training/initialization data are sea ice velocity (SIU), melt 
pond area (MPA), ocean heat content (OHC), ocean temperature (OT), 2-m air temperature (SAT), downwelling longwave radia-
tion (LWDN), downwelling shortwave radiation (SWDN), net surface heat flux (NSHF), sea level pressure (SLP), surface pressure 
(PS), geopotential height (Z ), surface wind (USURF/VSURF), winds at geopotential height level (UZ/VZ), specific humidity (q), 
rain rate (RR), snowfall rate (SR), precipitable water content (PWC), Icelandic low (IL), and Arctic Oscillation (AO).

Name Training/initialization data Brief method description and reference

AWI SIE, SAT, LWDN, USURF, VSURF, PWC, SLP, SST,  
700-m OHC, 100-m OT

Stability maps and multiple regression (Ionita et al. 2019)

BDAL SIE, SST, PS, USURF, VSURF, qSURF, SAT, SWDN, 
LWDN, RR, SR

LSTM model (Ali et al. 2021)

Cawley SIE Gaussian process regression (Williams and Rasmussen 2006)

CPOM MPA Spatially weighted linear regression model (Schröder et al. 2014)

CPOM-UCL SIC, SST Complex networks and Gaussian process regression (Gregory et al. 2020)

CSU SAT, SIC, SIT, SST, IL, AO Multiple regression

Damped persistence SIE/SIC Damped anomaly persistence

GSFC_Petty SIC/SIE Spatially weighted linear regression model (Petty et al. 2017).

Horvath SIC, SIT, SAT, LWDN, SWDN, SIU Linear mixed effects regression (Horvath et al. 2021)

KOPRI SIC Convolutional LSTM model with perceptual loss function (Chi and  
Kim 2017; Chi et al. 2021)

Lamont SIC, SST, SAT, Z300, UZ300, VZ300 Multivariate linear Markov model (Yuan et al. 2016)

MetNo-sparse-st SIE Autoregressive model with adaptive order

Nico Sun SIC SIC persistence and past-year analogs

SYSU/SML-KNN SIC, NSHF k-nearest neighbor algorithm (Lin et al. 2023)

SYSU/SML-MLM SIC, SST, SAT, NSHF Multivariate linear Markov model (Zeng et al. 2023)

Trend climatology SIE/SIC Linear trend

UCLA SIE Data-adaptive harmonic decomposition (Chekroun and Kondrashov 
2017; Kondrashov et al. 2018)

UMBC-REU SIC, SST, SP, USURF, VSURF, qSURF, SAT,  
SWDN, LWDN, RR, SR

Convolutional neural network model (Kim et al. 2021)

UPenn SIE Feature-engineered linear regression (Diebold and Göbel 2022;  
Diebold et al. 2023)
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Many of the systems perform a postprocessing of their predictions in order to correct sys-
tematic biases present in their retrospective predictions (see Table 1). The bias-correction 
methods employed are relatively simple, such as correction of the mean bias, correction of 
the trend, or a linear regression adjustment. Some systems bias correct their SIE time series 
directly, whereas others correct the SIC spatial fields. We note that some bias-correction 
methods require computing anomalies relative to a climatology, which may implicitly incor-
porate future data. This is a standard approach for retrospective prediction assessment but 
may artificially increase prediction skill (Risbey et al. 2021).

c. Observational verification. Consistent with the SIO evaluation, we verify pan-Arctic SIE 
predictions against the NSIDC sea ice index, version 3 (Fetterer et al. 2017), which is based 
on the NASA team retrieval algorithm. We also verify pan-Arctic SIE predictions against the 
OSI SAF sea ice index, version 2.1 (OSI-420), which uses the Bristol/Bootstrap retrieval al-
gorithm (Lavergne et al. 2019). SIC predictions are verified against the NOAA/NSIDC climate 
data record (CDR) of SIC, version 4 (G02202; Meier et al. 2021) and the OSI SAF SIC CDR, 
release 3 (OSI-450a; EUMETSAT Ocean and Sea Ice Satellite Application Facility 2022). Both 
of these products use a spatial interpolation to gap fill the polar observational hole. We also 
use the NSIDC and OSI SAF CDR SIC data to compute regional SIE using the recently updated 
NSIDC Arctic region mask (Meier and Stewart 2023). We perform all SIC analyses on the 
25-km NSIDC polar stereographic north grid and regrid each model’s SIC data to the NSIDC 
grid using bilinear interpolation and NSIDC’s CDR land–sea mask. In cases where the model 
land–sea boundary lies within the NSIDC ocean domain, nearest neighbor extrapolation to 
the NSIDC grid is used.

d. Skill metrics. We quantify the prediction skill using the anomaly correlation coefficient 
(ACC) and root-mean-square error (RMSE) between predicted and observed time series, 
which are commonly used metrics in the sea ice prediction literature. The ACC is the tempo-
ral correlation between predicted and observed time series and is defined as
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where pi is the model prediction for year i, oi is the observed value, t is the forecast lead time, 
N is the number of years, and the overbar indicates a temporal mean. The RMSE is given by
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To isolate the trend-independent prediction skill, we compute detrended skill metrics, which 
remove a linear trend from both predicted and observed time series prior to computing the 
skill metrics. The detrended ACC is defined as
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where tpi
L ( ) and oi

L are the linear trend fits to the predicted and observed time series. Note 
that tpi

L ( ) is a function of lead time t, since each lead time will have its own linear trend 
prediction. Similarly, the detrended RMSE is defined as
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Note that, unlike RMSE, the detrended RMSE has no contribution from mean bias, since this 
bias is subtracted off during the detrending procedure, but it does have contributions from 
conditional biases (predicting the incorrect amplitude of anomalies). Another commonly used 
metric in the sea ice prediction literature is the mean-squared error skill score (MSESS), which 
is connected to the ACC and RMSE via the decomposition of Murphy (1988). In particular, the 
squared ACC skill provides an upper bound on the MSESS and can be interpreted as the vari-
ance explained by a regression-adjusted forecast that is free of conditional and mean biases.

To facilitate an apples-to-apples skill comparison, we focus most of our analysis on the 
2001–20 time period, which is the period with the most submitted predictions (see Table 1). 
Note that some models were only able to submit predictions for a portion of this time period, 
which may bias their skill results. Specifically, 24 models submitted predictions for the full 
2001–20 period and 31 models submitted at least 14 years of predictions. We also include 
figures in the supplemental material showing prediction skill metrics computed over the full 
time period submitted by each model (Figs. S5 and S6 in the online supplemental material). 
We emphasize that the overall conclusions of the study are unchanged if the full time period 
is used for computing skill.

e. Reference and multimodel predictions. We compare model prediction skill to two refer-
ence predictions: a linear trend climatology and a damped anomaly persistence forecast. 
The linear trend climatology prediction oi

L is computed for a given year i by computing a 
linear fit to September SIE using all available past data (i.e., from 1979 to year i − 1) and 
evaluating the linear function for year i. The damped anomaly persistence forecast uses the 
linear trend climatology prediction and adds a scaled observed anomaly at the initialization 
time. The damped anomaly persistence forecast is given by

τ
σ

σ
τ( )= + ′ ′

τ
τ

′o r o o oi i
L
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where t¢oi ( ) is the observed anomaly in year i at lead time t, ( )′ ′
t

r o o,Sep  is the correlation be-
tween September anomalies and anomalies at lead time t, and ssep and st are the standard 
deviations of these respective anomalies (Van den Dool 2007). “Anomalies” here are the 
detrended anomalies (i.e., they are computed relative to the linear trend climatology). The 
observed anomaly is computed using the daily observation immediately prior to the initializa-
tion date (e.g., the 1 June observed anomaly is taken as the 31 May anomaly). The linear trend 
climatology, lagged correlation, and standard deviation values are updated each year using 
all available past data. Henceforth, we refer to the damped anomaly persistence forecast as 
damped persistence.

We also compute a multimodel median prediction, which is the median predicted value 
across all models for each year and each lead time. The multimodel median prediction is only 
computed for years with at least 10 models available (years 1993–2021), in order to reduce 
the impact of the sampling bias.
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3. Pan-Arctic predictions
a. September pan-Arctic SIE prediction skill. We begin by assessing the ability of models to 
predict September pan-Arctic SIE, which is the flagship prediction target of the SIO. Figure 2 
shows the time series of NSIDC observed September SIE (black) and multimodel median 
predictions (red) from initialization dates of 1 June–1 September. The red shading indicates 
the interquartile range (middle 50%) of individual model ensemble mean predictions. We 
find that the multimodel median prediction has high skill across SIO lead times, captur-
ing both the observed SIE trend and interannual variations over the period 1993–2021.  

Fig. 2.  Multimodel predictions of pan-Arctic SIE initialized on (a) 1 Jun, (b) 1 Jul, (c) 1 Aug, and (d) 1 Sep. The multimodel predic-
tions are based on a multimodel median (red). Red shading indicates the interquartile range (middle 50%) of individual model 
predictions. Skill metrics computed over 1993–2021 are shown in red text, with detrended skill in parentheses. The number of 
models available for each year is indicated by the gray bars at the bottom of each plot and gray text on the right y axis. Multi-
model predictions are only plotted for years with at least 10 models available.
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The ACC values, which include a substantial trend contribution, are greater than 0.9 for all 
lead times, whereas the detrended ACC values range from 0.66 to 0.97. The RMSE values of 
the multimodel median prediction are substantially smaller than the observed detrended 
standard deviation (0.54 million km2), indicating prediction skill relative to the trend cli-
matology prediction. We find that the multimodel predictions become more confident (de-
creased intermodel spread) as the lead time decreases and also capture SIE anomalies with 
greater skill. For example, better predictions of the extreme 1996, 2007, and 2012 SIE 
anomalies are made from 1 July than from 1 June, and similar improvements are seen in the 
forecasts from 1 August and 1 September, respectively. We note that the retrospective skill 
of the multimodel median prediction is considerably higher than the skill of multimodel 
median real-time predictions submitted to the SIO (see Fig. S1). We return to this point in the 
discussion section (section 6b). Versions of Fig. 2 for each individual model submitted can 
be viewed on GitHub (https://github.com/MitchBushuk/SIO_review_paper).

Next, we take a more granular view and explore the prediction skill of individual models. 
Figures 3 and 4 show the prediction skill of the dynamical and statistical models, respec-
tively. We find that the majority of dynamical and statistical models are skillful at SIO lead 
times, outperforming the trend climatology prediction (dashed gray line). The models also  
generally outperform damped persistence (solid gray line) from 1 June and 1 July, whereas 
damped persistance provides a more challenging benchmark from 1 August and 1 September, 
with about half the models beating damped persistence from 1 August and most models  
losing to damped persistence from 1 September. While there is a large spread in skill across 
models, we find that the majority of models have detrended ACC values that exceed 0.4  
from 1 June and 0.5 from 1 July onward, the latter of which is a commonly used practical 
threshold for useful forecast skill. The fact that this broad set of models, which employ diverse 

Fig. 3.  Dynamical model prediction skill for September pan-Arctic SIE computed over the period 2001–20. 
Individual models are shown in colors, multimodel predictions are shown in black, and reference predic-
tions are shown in gray. Skill metrics are plotted for each available initialization time (1 Jun–1 Sep) and 
are computed for both (a),(c) full and (b),(d) detrended time series. The numbers in parentheses in the 
legend indicate the number of years available from each model over the 2001–20 time period. Note that 
the isolated markers in the plots correspond to models that submitted a single initialization month.
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prediction methodologies and input datasets, are generally skillful at SIO lead times shows 
that useful real-time multimonth predictions of September sea ice should be achievable.

The very high skill of damped persistence from 1 September (detrended ACC of 0.98) 
indicates that interannual fluctuations of September-mean SIE are essentially “locked in” 
by 1 September. This high skill demonstrates that the key source of predictability from 
1 September is the multiweek persistence of SIE anomalies, which have particularly high 
persistence values at the time of the summer minimum (Blanchard-Wrigglesworth et al. 
2011a). Since these SIE anomalies are observable in near-real time, dynamical prediction 
systems should, in principle, be able to initialize predictions using these data and capture 
this source of predictability. However, we find that the majority of dynamical models are 
less skillful than damped persistence from 1 September, which indicates that they are mak-
ing errors in their sea ice initial conditions and/or have substantial short-term forecast drift 
that is not adequately postprocessed in the forecasts. The most skillful dynamical models 
from 1 September are comparable to the damped persistence benchmark, suggesting that 
these systems are successfully assimilating sea ice concentration or other related observa-
tions. Similarly, the most skillful statistical models are similar to damped persistence from 
1 September and most statistical models have lower skill than this benchmark despite, in 
principle, having access to the same SIE observations as used by the damped persistence 
forecast. This lower skill likely results from a combination of factors, such as some models 
using monthly rather than daily data and some models including other predictor variables 
besides SIE which may negatively impact 1 September skill in favor of higher skill at longer 
lead times. We also note that training and verifying the damped persistence forecast on 
different datasets can provide a useful measure of observational uncertainty. We find the 
detrended ACC values of 0.96, 0.95, and 0.95 based on training/verification pairs of NSIDC/
OSI SAF, OSI SAF/NSIDC, and OSI SAF/OSI SAF, respectively, which are slightly lower than 
the value of 0.98 for NSIDC/NSIDC reported above.

Fig. 4.  Statistical model prediction skill for September pan-Arctic SIE computed over the period 2001–20. 
Individual models are shown in colors, multimodel predictions are shown in black, and reference pre-
dictions are shown in gray. Skill metrics are plotted for each available initialization time (1 Jun–1 Sep) 
and are computed for both (a),(c) full and (b),(d) detrended time series. The numbers in parentheses 
in the legend indicate the number of years available from each model over the 2001–20 time period.
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Moving to longer lead times, we find that slightly more than half the models outperform 
damped persistence from 1 August and nearly all the models outperform damped persis-
tence from 1 June and 1 July. This indicates that the models are successfully capturing other 
sources of predictability at these lead times, potentially including SIT anomaly persistence, 
surface albedo anomalies and ice–albedo feedback, surface air temperature anomalies, and 
atmospheric circulation patterns. Taken as a whole, the pan-Arctic skill of the dynamical and 
statistical models is broadly similar; however, the model spread precludes definitive state-
ments on which class of method is preferable for pan-Arctic predictions.

The multimodel median prediction has high skill, with detrended ACC values exceeding 
0.75 for all SIO lead times. The multimodel median skill is higher than nearly all individual 
models, suggesting that this prediction benefits from cancellation of random errors across 
prediction systems, which is a common finding across a variety of prediction applica-
tions including the SIO (e.g., Hagedorn et al. 2005; DelSole et al. 2014; Harnos et al. 2019; 
Blanchard-Wrigglesworth et al. 2023) as well as the Southern Ocean counterpart of the SIO, 
the Sea Ice Prediction Network (SIPN)-South ensemble (Massonnet et al. 2023). We also note 
that the skill of a multimodel median prediction based only on dynamical models is similar 
to the skill of the multimodel median based on all models, whereas the median prediction 
based only on statistical models has lower skill.

Of the dynamical models, ECMWF’s fifth generation seasonal forecast system (SEAS5) 
stands out as having particularly high pan-Arctic prediction skill, achieving comparable skill 
to the multimodel median. There are also two statistical models that are high-skill outliers:  
the Alfred Wegener Institute (AWI) model, which employs a multiple regression based on 
stability maps, and the Korea Polar Research Institute (KOPRI) model, which uses a convo-
lutional long short-term memory model. We note that the skill levels of the AWI and KOPRI 
models are roughly equal to the upper limit of pan-Arctic SIE predictability as estimated 
by perfect model GCM experiments [cf. with the 1 July initialized forecast skill in Fig. 1 of  
Tietsche et al. (2014)]. We return to the possible sources of prediction skill across the indi-
vidual systems in section 6a.

We also verify the predictions using the OSI SAF sea ice index (see Figs. S3 and S4). The 
OSI SAF sea ice index has a higher mean value than the NSIDC sea ice index (see Fig. 1a), but 
the indices otherwise have a close agreement, with the ACC of 1.00, detrended ACC of 0.98, 
and detrended RMSE of 0.10 million km2. Consistent with this close agreement, we find that 
the skill values are not sensitive to the choice of verification product and that the choice of 
verification product does not affect the qualitative conclusions regarding pan-Arctic skill. 
The main difference between the NSIDC and OSI SAF-verified skill metrics occurs for the 
RMSE skill, since this metric is affected by the mean offset between the products, whereas 
the other skill metrics are not.

The heuristic prediction submitted from the NCAR/CU sea ice pool provides a useful hu-
man expert assessment baseline for pan-Arctic SIE prediction skill. We find that this 1 June 
heuristic prediction has no skill (ACC = −0.18; detrended ACC = −0.39) over their submission 
period of 2008–21 [see Hamilton et al. (2014) and more recent figure in https://bit.ly/3MscjmL], 
emphasizing the inherent challenges in human-based assessments.

b. Is prediction skill changing over time? Earlier theoretical work has shown that Arctic 
sea ice predictability is dependent on the mean climate state (Holland and Stroeve 2011; 
Holland et al. 2011; Cheng et al. 2016; Holland et al. 2019). While some have argued that 
the recent observed trends toward a thinner and more mobile ice pack may reduce inher-
ent summer sea ice predictability, Holland et al. (2019) show that the changes in sea ice 
predictability characteristics are highly nonmonotonic under climate change and sea ice 
predictability actually reaches a local maximum in the CESM1 model in the 2010s decade. 
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We can use the retrospective pre-
diction dataset to investigate this 
question by analyzing the evolu-
tion of prediction errors over time 
across the multimodel dataset.

Figure 5a shows the multimodel 
mean of single-model detrended 
pan-Arctic SIE absolute errors plot-
ted as a function of time (horizontal 
axis) and initialization date (colors). 
We find that the error time series 
do not display clearly identifiable 
trends but are punctuated by large 
errors in the extreme sea ice years 
of 1996, 2007, and 2012, which, 
respectively, had high, low, and 
low sea ice extents (Kay et al. 2008; 
Serreze and Stroeve 2015; Zhang 
et al. 2013). The trends in predic-
tion errors are not significantly 
different from zero (at the 95% 
confidence level) for any initializa-
tion month. This finding suggests 
that there has not been a detectable 
change in sea ice predictability 
since 1990.

As expected, we find that the SIE 
errors increase with lead time, but 
the error reduction between lead 
times changes from year to year. 
For example, 2005 has similar er-
rors across lead times, 2007 shows 
a similar reduction for each suc-
cessive initialization month, and 
2012 shows large reductions from 
June to July and from August to 
September, but little change from 
July to August. These differences 
are likely related to the particular 
synoptic conditions of each sum-
mer, for example, the 1 August 
error is particularly large in 2012, 
likely because the great Arctic cy-
clone, which peaked on August 6  
(Simmonds and Rudeva 2012) and 
led to rapid sea ice loss in August, 
was not predicted (or its impact on 
sea ice) by seasonal prediction sys-
tems (Yamagami et al. 2018).

Fig. 5.  Pan-Arctic SIE prediction errors vs time. (a) The multi-
model mean of single-model absolute detrended SIE errors 
for different years (horizontal axis) and initialization dates 
(colors). The absolute SIE error of the trend climatology 
reference prediction is shown in gray. The improvement 
in absolute error relative to the (b) trend climatology and  
(c) damped persistence predictions (positive values indicate 
improvement and negative values indicate degradation).
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Earlier work has shown that sea ice predictions typically struggle in “hard to predict years” 
with large SIE anomalies (Stroeve et al. 2014), sometimes related to atmospheric conditions 
such as late-summer cyclones (Lukovich et al. 2021; Finocchio et al. 2022). Theoretically, 
however, some extreme years exhibit seasonal predictability (Tietsche et al. 2013). These 
large errors in extreme SIE years have been characterized as a major shortcoming of sea ice 
prediction systems. However, Fig. 5a shows that the linear trend prediction makes much 
larger errors in these years compared with the prediction systems (cf. dashed gray line to 
colored lines). Figures 5b and 5c show the skill improvement of the model-based predictions 
relative to the trend climatology and damped persistence predictions, respectively, with 
positive values indicating error reductions. We find that the time-mean error reductions are 
generally positive, indicating that the prediction systems typically provide better skill than 
the reference forecasts, with the exception of the 1 September damped persistence forecast. 
Moreover, the extreme SIE years of 1996, 2007, and 2012 stand out as years in which the 
prediction systems provide the largest skill improvements over the linear trend prediction. 
This challenges the typical interpretation that prediction systems “failed” in these extreme 
SIE years. Rather, it is precisely these extreme years that the prediction systems provide the 
most value added relative to basic reference forecasts.

We next investigate the error characteristics of individual model predictions in Fig. 6.  
Figure 6a shows the prediction errors from individual models and target years plotted against 
the observed detrended SIE anomalies in those years. In low SIE years, the models generally 
overpredict the observed SIE (positive errors) and the models generally underpredict in high 
SIE years (negative errors). The distribution of errors (Fig. 6b) is relatively symmetric about 
zero for all initialization times, suggesting that high and low SIE anomalies are similarly dif-
ficult to predict. Q–Q plots reveal that the error distributions for all initialization times have 
symmetric heavy tails compared with a Gaussian distribution, suggestive of outlier models 
with large errors (not shown). The linear fits to the prediction errors in Fig. 6a (colored lines) 
have decreasing slopes as the initialization date approaches September and are bracketed by 
the 1:1 line (a no skill prediction) and the y = 0 line (a perfect prediction). If September SIE 
was entirely unpredictable, we would expect the errors to lie on the 1:1 line, whereas if it was 
perfectly predicable, we would expect the errors to lie on the y = 0 line. Thus, the decreasing 
slopes as the initialization date approaches September shows that inherent SIE predictability 

Fig. 6.  Relation between detrended prediction errors and observed detrended SIE anomalies. Each dot 
in (a) shows the error for a particular model and target year (errors are plotted over all available years 
1980–2021). The dots are colored according to lead time and the colored lines are linear fits. The black 
line indicates the error of the linear trend fit to the observations. (b) The distribution of errors for dif-
ferent lead times, with the black curve showing the distribution of observed detrended anomalies.
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increases as the lead time decreases. We also find that the prediction error distributions be-
come progressively more peaked around zero as the lead time decreases (Fig. 6b).

4. Regional predictions
a. September regional SIE prediction skill. The prediction systems skillfully predict pan- 
Arctic SIE, but how do they perform on the regional and local scales that users ultimately  
require? In Figs. 7 and 8, we plot the detrended regional SIE skill for the dynamical and sta-
tistical models, respectively, in the five regional domains shown in Fig. 1d. The skill metrics 
for full regional SIE time series are shown in Figs. S9 and S10.

We find that both dynamical and statistical models have detrended regional skill, but 
the level of skill is regionally variable. The highest skill is found in the Alaskan and Siberian 
sectors, in which the multimodel median detrended ACC exceeds 0.75 at SIO lead times. Unlike 
the pan-Arctic skill results, there is a notable difference between dynamical and statistical 
model performance in these regions (cf. panels a–d of Figs. 7 and 8). Taken as a whole, the 
dynamical models outperform the statistical models in the Alaskan and Siberian regions; 
however, the KOPRI statistical model has high skill in both regions at a level comparable to 
the most skillful dynamical models. The dynamical models also outperform the statistical 
models in the central Arctic domain (cf. panels i,j in Figs. 7 and 8), whereas the skill differ-
ences are more modest in the Canadian and Atlantic regions (panels e–h in Figs. 7 and 8). 
Interestingly, the superior regional SIE skill of dynamical models does not clearly translate 
into better pan-Arctic skill relative to statistical models.

The model skill is lowest in the Atlantic region for both dynamical and statistical mod-
els. This is likely because Atlantic September SIE variations result from SIE variability 
occurring in the northern portions of the Greenland, Barents, and Kara Seas, which are 
driven by anomalies in sea ice export that are challenging to predict (Kwok 2008). The 
Canadian Archipelago is also well known as a difficult to predict region due to its complex 
network of channels and straits. Encouragingly, the majority of statistical and dynamical 
models show detrended prediction skill in this region, albeit at a generally lower skill level  
than dynamical models in the Alaskan and Siberian sector. Of the dynamical models, the 
Regional Arctic System Model (RASM) has high skill in the Canadian region, potentially 
related to its relatively high horizontal resolution compared to other systems. This higher 
resolution provides both a more accurate representation of complex land geometry and a 
more realistic representation of sea ice dynamical and thermodynamical processes. The skill 
in the central Arctic domain is the second lowest next to the Atlantic. The central Arctic SIE 
time series is dominated by large anomalies in 2007, 2012, and 2020 (Fig. 1b), which suggests 
that the models generally struggled to capture the central Arctic anomalies in these years.

Relative to the damped persistence benchmark, the models perform quite skillfully for 
regional SIE. Analogous to pan-Arctic SIE, regional SIE damped persistence is highly skill-
ful for 1 September forecasts and provides a stringent benchmark that most dynamical and 
statistical models fail to beat. The models perform more favorably at longer lead times. In 
the Alaskan, Siberian, and Canadian regions, the majority of models outperform damped 
persistence from 1 June, 1 July, and 1 August initialization dates. In the central Arctic, most 
models beat damped persistence from 1 June to 1 July. In the Atlantic sector, the models are 
notably less skillful than damped persistence from 1 August, suggesting a deficiency in the 
models in representing summertime Atlantic SIE. These regional skill results are insensitive 
to the verification product—the same conclusions hold if OSI SAF observations are used for 
verification (see Figs. S11 and S12).

b. Relation between pan-Arctic and regional skill. Are models more skillful at predicting 
pan-Arctic or regional SIE? Do models with high pan-Arctic skill also have high regional 
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Fig. 7.  Dynamical model prediction skill for September regional SIE computed over the period 2001–20 
in the (a),(b) Alaskan, (c),(d) Siberian, (e),(f) Atlantic, (g),(h) Canadian, and (i),(j) central regions (shown 
in Fig. 1d). Individual models are shown in colors, multimodel predictions are shown in black, and 
reference predictions are shown in gray. Skill metrics are plotted for each available initialization time 
(1 Jun–1 Sep) and are computed for detrended time series. The numbers in parentheses in the legend 
indicate the number of years available from each model over the 2001–20 time period.

skill? We investigate these questions in Fig. 9, which plots regional versus pan-Arctic de-
trended ACC for each model, colored by lead time. In most regions, the majority of pre-
dictions lie below the 1:1 line, indicating that regional SIE skill is generally lower than 
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pan-Arctic skill. The Alaskan region is the most skillfully predicted region, with 46% of 
predictions lying above the 1:1 line. The damped persistence prediction also lies above 
the 1:1 line (square markers) indicating that the Alaskan region may have high inherent 
predictability. The Siberian and Canadian regions are also predicted fairly well, with 37% 
and 32% of predictions exceeding pan-Arctic skill, respectively. The performance is no-
tably worse in the Atlantic and Central sectors, as each of these regions only has 12% of  

Fig. 8.  As in Fig. 7, but for statistical models.
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predictions that exceed pan-Arctic skill. We also find that the regional skill differences 
across models are related to their Pan-Arctic skill differences. For example, the R2 values 
between regional and pan-Arctic detrended ACC are 0.59, 0.48, and 0.49 in the Alaskan, 
Siberian, and Central regions. Regional skill is more decoupled from pan-Arctic skill in the 
Canadian and Atlantic regions, with R2 values of 0.25 and 0.05, respectively.

Fig. 9.  Relationship between regional and pan-Arctic prediction skill in the (a) Alaskan, (b) Siberian,  
(c) Atlantic, (d) Canadian, and (e) central regions over the 2001–20 period. Each dot shows detrended 
ACC values for an individual model, colored by lead time. Square markers indicate the damped persis-
tence forecast skill, and the 1:1 line is shown in black.
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5. Sea ice concentration predictions
September SIC prediction skill. Finally, we consider the ability of models to predict Septem-
ber sea ice variations on the local scale. Figures 10 and 11 show the SIC skill metrics for the 
dynamical and statistical models that submitted SIC predictions, respectively. These metrics 
are first computed locally and then area-averaged over the zone of September SIC variabil-
ity, defined as all grid points where the September SIC standard deviation exceeds 10%  
(see Fig. 1c). The gap between full and detrended SIC skill is quite small, consistent with  
the fact that observed SIC variability is dominated by interannual rather than trend-based 
variance (84% and 16% of the total variance, respectively). Compared to the skill levels for 
pan-Arctic and regional SIE, the SIC skill scores are lower, consistent with a larger role for 
unpredictable local-scale dynamics and the fact that, unlike SIE, SIC predictions do not  
benefit from error compensation (i.e., the cancellation of over- and underestimations). This 
lower predictability is also reflected by the damped persistence forecast, which is skillful 
from 1 September but drops off quite rapidly for earlier initialization dates. Interestingly, 
a handful of models [ECMWF SEAS5, CPC CFSv2, Environmental and Climate Change 
Canada-Canadian Seasonal to Interannual Prediction System (ECCC-CanSIPSv2), First Institute 
of Oceanography-Earth System Model (FIO-ESM), GFDL Seamless System for Prediction and 
Earth System Research with ice data assimilation (GFDL-SPEAR-IDA), Pan-Arctic Ice Ocean 
Modeling and Assimilation System-CFS (PIOMAS-CFS), and Nico Sun] outperform damped 
persistence from 1 September, which was not the case for pan-Arctic or regional SIE. This 
suggests that some models are extracting additional skill from their ability to skillfully predict 
the atmospheric state over early September and the corresponding local SIC response.

The multimodel median SIC prediction has detrended ACC values above 0.5 for initializa-
tion dates of 1 July and later and falls off for predictions made on 1 June. Most individual 

Fig. 10.  Dynamical model prediction skill for September SIC computed over the period 2001–20. Skill 
values are averaged over the region in which observed SIC standard deviation is greater than 10%. 
Individual models are shown in colors, multimodel predictions are shown in black, and reference pre-
dictions are shown in gray. Skill metrics are plotted for each available initialization time (1 Jun–1 Sep). 
The numbers in parentheses in the legend indicate the number of years available from each model over 
the 2001–20 time period.
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models exceed the 0.5 detrended ACC threshold from 1 September, a handful exceed it from  
1 August, and all models lie below 0.5 from 1 July and 1 June. While the relatively small 
number of statistical models (7) precludes definitive statements, the dynamical models gen-
erally have higher SIC skill than the statistical models. The SIC skill scores are very similar 
when predictions are verified against OSI SAF SIC observations (see Figs. S13 and S14). Again, 
we find that the ECMWF SEAS5 model stands out among the dynamical models (see solid 
gold line in Fig. 10) and the KOPRI model stands out among the statistical models (see solid 
orange line in Fig. 11). The fact that these models also perform well at the local scale increases 
our confidence in their strong pan-Arctic and regional performance. It is notable that the  
ECMWF system also stood out as the best performing system for subseasonal (0–45 day) sea 
ice predictions in the multimodel comparison study of Zampieri et al. (2018). Interestingly, 
the ECMWF model has a notable bias from 1 June resulting in SIC RMSE values that are 
larger than the trend climatology and most other models (see Fig. 10c). Nevertheless, ECMWF 
maintains detrended prediction skill at this lead time for SIC, regional SIE, and pan-Arctic 
SIE, suggesting that this is mostly a linear bias that can be removed.

We also consider the integrated ice edge error (IIEE), which is the areal integral of local sea 
ice extent errors (Goessling et al. 2016). The IIEE has contributions from both absolute extent 
errors (pan-Arctic SIE errors) and ice edge misplacement errors. Note that we do not consider 
the probabilistic version of the IIEE, i.e., the spatial probability score of Goessling and Jung 
(2018), since this study focuses on deterministic (nonensemble) sea ice predictions. The IIEE 
for dynamical and statistical models is shown in Fig. 12. Note that no detrending or addi-
tional bias correction has been applied in computing the IIEE metrics. Relative to the trend 
climatology prediction, we find that most models are skillful when initialized on 1 August 
and 1 September. Approximately half of the models outperform the trend climatology from 
1 July, and most models lose to this benchmark from 1 June. The multimodel median ice 
edge prediction is skillful at SIO lead times relative to both damped persistence and the trend 
climatology prediction. The median prediction is more skillful than the individual model 
predictions, with the exception of the KOPRI model which maintains low IIEE at 1 June and 
1 July initialization dates.

Fig. 11.  As in Fig. 10, but for statistical models.
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6. Discussion
a. Elements of successful sea ice prediction systems. In addition to quantifying and com-
paring prediction skill across models, the retrospective prediction dataset can also be used 
to understand the key system design choices that underpin skillful sea ice predictions. This 
“meta-analysis” can allow members of the sea ice prediction community to learn from one 
another and incorporate these lessons into development of their own prediction systems. 
We consider the average pan-Arctic SIE prediction skill of models grouped according to vari-
ous system design choices. These results should be viewed with some caution, given the 
relatively small number of models available for each group and the possibility of other con-
founding factors contributing to skill differences. Nevertheless, this unique dataset can offer 
insights into the key factors that determine skill differences between models. We first discuss 
aspects of the dynamical prediction systems and follow with a discussion of the statistical 
systems.

Figure 13 shows the averaged pan-Arctic SIE prediction skill of dynamical models grouped 
according to their initialization data and their ice–ocean and atmospheric horizontal resolu-
tion. Consistent with earlier work assessing the impact of SIC data assimilation on seasonal 
prediction skill (e.g., Zhang et al. 2022), we find that the models that assimilate SIC have 
superior skill from 1 September and that SIC assimilation has less of an impact from 1 June, 

Fig. 12.  IIEE for September SIC predictions for dynamical and statistical models over the period 2001–20. 
Individual models are shown in colors, multimodel predictions are shown in black, and reference pre-
dictions are shown in gray. Skill metrics are plotted for each available initialization time (1 Jun–1 Sep). 
The numbers in parentheses in the legend indicate the number of years available from each model over 
the 2001–20 time period.
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1 July, and 1 August (Fig. 13a). Similarly, the models that assimilate SST have superior 
1 September skill, likely because SST assimilation provides a strong constraint on the sea 
ice edge position and also provides predictability for the ice growth that occurs during the 
latter half of September (Fig. 13b). The SST-assimilating models do not show a clear differ-
ence for July and August predictions and have insignificant differences from 1 June. Only 
two models assimilate SIT information, which precludes us from analyzing the impact of SIT 
data assimilation on seasonal prediction skill.

It is commonly suggested that high-resolution dynamical models should be more skill-
ful than their low-resolution counterparts (e.g., Vecchi et al. 2014; Prodhomme et al. 2016; 
Kirtman et al. 2017), but this has not been carefully demonstrated for sea ice prediction 
applications before. We find that the models with higher ice–ocean resolution (defined here 
as ice–ocean grid spacing less than 0.4°) have higher skill than the low-resolution models at 
all SIO lead times (Fig. 13c), suggesting that there is indeed value to using higher-resolution 
prediction systems. It is important to note that this finding is based on a small set of models 
and there could be other confounding factors at play; for example, modeling groups capable 
of running high-resolution predictions tend to be better resourced and may have also placed 
additional focus on other aspects of their prediction systems. The impact of higher horizontal 
atmospheric resolution (defined here as atmospheric grid spacing less than 0.6°) is smaller 
than that of ice–ocean resolution (Fig. 13d). The higher atmospheric resolution models have 
higher skill from 1 July to 1 August, but the differences are not significant, and they show 
similar skill to the lower resolution models at other initialization times.

In terms of sea ice physics, the majority of models use an (elastic) viscous plastic rheology 
(Hibler 1979; Hunke and Dukowicz 1997) and include a prognostic ice-thickness distribution 
(Bitz et al. 2001). Interestingly, the most skillful dynamical model—ECMWF SEAS5—uses a 
relatively simple sea ice physics formulation based on the Louvain-la-Neuve sea ice model 

Fig. 13.  Average detrended pan-Arctic ACC for dynamical models grouped according to various system 
design choices: models that include (a) SIC data assimilation, (b) SST data assimilation, (c) high vs low 
ice–ocean horizontal resolution, and (d) high vs low atmospheric horizontal resolution. The numbers in 
parentheses indicate the number of models in each group. Shading indicates 68% confidence intervals 
based on bootstrapped distributions of 1000 realizations.
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version 2 (LIM2; Fichefet and Maqueda 1997), which uses a single thickness category and 
does not include prognostic melt ponds. The strong performance of ECMWF SEAS5 suggests 
that sea ice physics complexity may not be of leading-order importance for seasonal sea ice 
predictions.

Figure 14 shows the prediction skill of statistical models grouped according to their 
predictor/input data and their prediction methodology. All statistical models include a sea 
ice predictor variable (see Table 3), and a number of models also include predictors from 
the ocean and atmosphere. Figures 14a and 14b examine the impact of these oceanic and 
atmospheric predictors. Unexpectedly, we find that the models that withhold ocean and 
atmosphere predictors tend to outperform the models that include these predictors. The 
statistical models without ocean predictors show higher skill at all SIO lead times, and the 
models without atmospheric predictors have higher skill from 1 July and 1 September. We 
note that a handful of the statistical models that include ocean and atmosphere predictors 
have quite low skill generally. This affects the average skill shown in Fig. 14, and thus, this 
result should be viewed with some caution.

While these findings are somewhat contrary to our understanding of seasonal sea ice 
predictability, the inclusion of additional physically relevant predictor variables within a 
given statistical model may actually degrade predictions due to the “curse of dimensionality” 
problem (e.g., Bellman and Kalaba 1959), which can lead to overfitting. Indeed, although it 
is possible to mitigate these effects with regularization techniques and/or sufficient train-
ing data samples, the former option may not be available to many of the statistical models 
submitted to this intercomparison, and overcoming the limitations of typically fewer than 
43 years (samples) of training data is potentially only achievable with more sophisticated data 
augmentation approaches, such as transfer learning (e.g., Andersson et al. 2021).

There has been a recent proliferation of machine learning (ML) methods applied to seasonal 
prediction problems, including for Arctic sea ice. How does the skill of these ML methods 
compare to other statistical techniques? Figure 14c shows this comparison, and we find 

Fig. 14.  Average detrended pan-Arctic ACC for statistical models grouped according to various sys-
tem design choices: models that include (a) ocean predictors, (b) atmosphere predictors, and (c) ML vs 
non-ML methods. The numbers in parentheses indicate the number of models in each group. Shading 
indicates 68% confidence intervals based on bootstrapped distributions of 1000 realizations.
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that there is no clear skill advantage for ML-based prediction techniques. The skill of ML 
and non-ML methods is similar for August and September initialization dates, whereas the 
non-ML methods have slightly higher skill for June and July initializations, but the differences 
are not significant. We note that the classification of “ML methods” is somewhat equivocal. 
Here, our classification of ML methods is based on self-identification by seven models and 
includes methods based on convolutional neural networks, Gaussian process regression, long 
short-term memory networks, the k-nearest neighbors algorithm, and data adaptive harmonic 
decomposition. Of the top five performing statistical models at each SIO lead time, there is a 
roughly equal split between ML and non-ML models, suggesting that one class of methods is 
not clearly superior to the other.

b. Differences between real-time and retrospective prediction skill. Consistent with the 
tension in the sea ice prediction literature discussed in the introduction, the retrospective 
predictions analyzed in this paper have higher skill than the real-time predictions submit-
ted to the SIO. Why is this? This skill difference could potentially result from a number of 
interacting factors, which we describe in more detail below: (i) different evaluation peri-
ods, (ii) nonstationarity of prediction systems, (iii) model selection bias, (iv) bias correction, 
(v)  systematic differences between real-time and retrospective prediction methodologies, 
(vi) implicit or erroneous use of future data, and (vii) changes in inherent predictability.

Regarding the different evaluation periods (factor i), we confirm that the multimodel 
median skill difference is still present when skill is evaluated over the period of 2008–21, 
which is common to both the retrospective and real-time SIO predictions (see Figs. S1, S7, 
and S8). A natural question is as follows: Can one directly compare retrospective and real- 
time SIO forecasts submitted from the same system? Such a comparison is difficult to make 
due to the nonstationarity of prediction systems (factor ii). In particular, many groups have 
updated and improved their systems during the SIO period. These groups have submitted their 
best-performing system to the SIO retrospective skill comparison, which in some cases differ 
from the SIO predictions that were submitted in real time. Also, while many of the groups 
have submitted predictions to the real-time SIO at some point, few groups have submitted 
predictions using a “frozen” system over a sustained period of more than 5 years. These  
factors complicate the comparison between real-time and retrospective predictions.

Selection bias (factor iii) may also play a role in the skill difference. Given that submis-
sion to the retrospective comparison is voluntary, the skill scores in this paper may be 
biased toward better performing models. Also, models with retrospective prediction suites 
have likely used this retrospective skill information to assess and improve their prediction 
systems. Knowing the skill of one’s method is not a requirement to submit to the real-time 
SIO, which may contribute to poorer performance of real-time SIO predictions. Access to a 
retrospective prediction suite also allows for a quantification of a model’s lead-dependent 
prediction bias, which allows for more effective bias correction. This may contribute to the 
higher skill found in models that submitted retrospective forecasts (factor iv). Figure S1 shows 
that the main differences in multimodel median prediction errors occur over the early por-
tion of the SIO period (from 2008 to 2014). The SIO received fewer annual submissions over 
this period, including a notable fraction from heuristic methods (see Fig. S2), which may 
have degraded the skill of the real-time SIO median prediction relative to the more recent 
SIO period (2015–21).

It is well known that retrospective skill of seasonal-to-interannual climate predictions 
tends to be higher than real-time skill (e.g., Goddard et al. 2013; Risbey et al. 2021), and 
this is likely a contributor to the real-time/retrospective SIO skill differences (factor v). These 
skill differences can arise due to certain observations being available for retrospective fore-
casts but not in real time (e.g., subsurface T/S ocean profiles collected from ships) or due to 
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real-time predictions relying on real-time reanalyses and satellite data that have not been 
rigorously quality controlled. Skill differences can also arise due to the implicit use of future 
data in retrospective predictions, which may unrealistically inflate their skill scores (factor vi).  
For example, dynamical models are often tuned to match the climatology and trends of the 
observational record. Statistical models need to take care to not include future data in their 
training procedure (e.g., computing EOFs using only past data), which is often called the “data 
leakage” problem in machine learning methods (Kapoor and Narayanan 2023). Also, both 
dynamical and statistical prediction systems are constructed based on their performance 
predicting past anomalies, which may result in an “overfitting” to the observational record. 
Additionally, standard bias-correction approaches (e.g., Manzanas et al. 2019) require comput-
ing anomalies relative to a climatology which is typically computed using the full record. This 
approach implicitly uses future data and may artificially increase skill (Risbey et al. 2021).

Finally, skill differences between real-time and retrospective predictions could arise due 
to the changes in inherent sea ice predictability if the real-time SIO period had inherently 
lower predictability (factor vii). The earlier analysis shown in Fig. 5a suggests that prediction 
errors have not changed substantially over the SIO period, and thus, factor vii is unlikely a 
dominant contributor to the skill differences. In summation, our analysis suggests that the 
most likely contributors to the real-time versus retrospective skill differences are a combina-
tion of model selection bias, bias-correction differences, and systematic differences between 
real-time and retrospective predictions. The skill gaps associated with model selection and 
bias correction could be addressed fairly straightforwardly, by using only the subset of pre-
diction systems with proven skill and by ensuring that these systems utilize retrospective 
predictions to bias correct their forecasts. The skill gaps associated with systematic differ-
ences between real-time and retrospective predictions are more challenging to address, as 
these require modifications to the observing network and may also be influenced by inherent 
biases present in the prediction system development process.

7. Conclusions and future outlook
This work has produced and analyzed a novel multimodel retrospective seasonal sea ice 
prediction dataset, consisting of community contributions from 17 statistical models, 
17 dynamical models, and 1 heuristic prediction. The majority of contributing models pro-
vided retrospective predictions of September Arctic sea ice initialized on the Sea Ice Outlook 
(SIO) initialization dates of 1 June, 1 July, 1 August, and 1 September, spanning a minimum 
period of 2001–20 (see Table 1). The statistical and dynamical model submissions employ a 
wide range of prediction methodologies ranging from linear regression to Markov models, to 
deep learning techniques, and to coupled regional and global models with data assimilation 
(see Tables 2 and 3).

Our overarching key finding is that this diverse set of seasonal prediction models can 
skillfully predict September Arctic sea ice at SIO lead times on pan-Arctic, regional, and local 
scales. These results demonstrate that useful real-time multimonth predictions of Septem-
ber sea ice are likely within reach in the coming years. We have shown that the majority of 
models have detrended ACC values for pan-Arctic sea ice extent (SIE) which exceed 0.5 at 
SIO lead times and that the multimodel median prediction exceeds 0.75 at SIO lead times. 
Regional SIE skill is similar to pan-Arctic SIE skill in the Alaskan and Siberian regions, 
whereas skill is lower in the Atlantic, Canadian, and central Arctic regions. The multimodel 
median detrended ACC exceeds 0.75 at all SIO lead times in the Alaskan and Siberian re-
gions, exceeds 0.6 in the Canadian sector, and falls below 0.5 for certain lead times in the 
Atlantic and central Arctic. We have found that the regional skill differences across models 
are related to their pan-Arctic skill differences, especially in the Alaskan, Siberian, and 
central Arctic regions. The models also have skill in predicting local sea ice concentration 
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(SIC); however, this local quantity is much more challenging to predict than pan-Arctic or 
regional SIE. The multimodel median SIC prediction has detrended ACC values above 0.5 
from 1 July to 1 September and below 0.4 from 1 June. The high skill of the pan-Arctic and 
regional multimodel median predictions is slightly lower than lead 0–3 month predictions 
of the winter El Niño–Southern Oscillation index, which have the ACC skill above 0.9 for a 
number of individual models (see Fig. 7 of Barnston et al. 2012).

We have investigated whether sea ice prediction errors have changed over time and 
determined that there are no statistically significant trends in prediction errors over the 
period since 1990. This suggests, but does not prove, that there has been minimal change 
in inherent sea ice predictability over this period. We have found that models generally 
exhibit their largest errors in extreme sea ice years (i.e., 1996, 2007, and 2012); however, 
they also provide the most “added value” over baseline trend climatology and damped 
anomaly persistence forecasts in these years. This finding challenges the interpretation of 
earlier studies which stated that prediction systems perform particularly poorly in extreme 
SIE years (e.g., Stroeve et al. 2014).

We have found that the skill of dynamical and statistical models is generally comparable for 
pan-Arctic SIE, whereas dynamical models tend to outperform their statistical counterparts 
when evaluated on the regional and local scale. It is important to note that there are individual 
statistical models that have high levels of skill for both regional SIE and local SIC, which are 
competitive with the most skillful dynamical models. Analysis of the design aspects of the 
dynamical prediction systems revealed higher skill in models that (i) assimilate SIC, (ii) as-
similate sea surface temperature, (iii) use higher ice–ocean horizontal resolution (finer than 
0.4°), and (iv) use higher atmospheric horizontal resolution. A similar analysis of the statisti-
cal prediction systems revealed skill degradation in models that (i) include ocean predictors 
and (ii) include atmospheric predictors, potentially associated with overfitting. We also found 
that statistical models based on machine learning methods had no clear skill advantage over 
other statistical techniques. The retrospective predictions evaluated in this study have higher 
prediction skill than real-time predictions submitted to the SIO. We speculate that these skill 
differences result from a number of interacting factors, with the most likely contributors be-
ing model selection bias, bias-correction techniques, and systematic differences between 
real-time and retrospective prediction methodologies.

This study demonstrates that there are bright prospects for skillful seasonal predictions 
of Arctic sea ice made using both dynamical and statistical prediction models. We anticipate 
that the multimodel retrospective prediction dataset produced by this study will motivate 
additional future research by the sea ice prediction community. Natural future directions 
include the assessment of probabilistic forecast skill using the submitted ensemble pre-
dictions, comparison of initial conditions across prediction systems and their relation to 
prediction skill, analysis of the mechanisms of predictability being captured by different 
systems, exploration of the role of subseasonal-to-seasonal atmospheric prediction skill in 
determining sea ice skill, analysis of forecast errors, understanding the importance of predic-
tion system design choices, and the construction of a “consensus” real-time SIO prediction 
based on a skill-weighted multimodel mean. We also hope that the findings of this study 
motivate new targeted experiments and development efforts within individual sea ice pre-
diction systems. This study has focused on September sea ice predictions, but similar skill 
intercomparisons are required for other months of the year, particularly winter freeze-up 
months which are characterized by very different predictability mechanisms. Another route 
for future investigation is a comparison of Arctic and Antarctic sea ice prediction skill, mak-
ing use of the multimodel SIPN-South seasonal prediction dataset (Massonnet et al. 2023). 
The past 15 years have featured many breakthroughs in the field of sea ice prediction and 
predictability. Community intercomparison of sea ice prediction systems, combined with new 
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observations, improved coupled models, new statistical techniques, deepened stakeholder 
input, improved dissemination of forecast products, and theoretical predictability research, 
provide key pathways for continuing to advance this field over the coming decade.
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