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Abstract

Hydrologic signatures are quantitative metrics that describe streamflow statistics and
dynamics. Signatures have many applications, including assessing habitat suitability
and hydrologic alteration, calibrating and evaluating hydrologic models, defining simi-
larity between watersheds and investigating watershed processes. Increasingly, sig-
natures are being used in large sample studies to guide flow management and
modelling at continental scales. Using signatures in studies involving 1000s of water-
sheds brings new challenges as it becomes impractical to examine signature parame-
ters and behaviour in each watershed. For example, we might wish to check that
signatures describing flood event characteristics have correctly identified event
periods, that signature values have not been biassed by data errors, or that human
and natural influences on signature values have been correctly interpreted. In this
commentary, we draw from our collective experience to present case studies where
naive application of signatures fails to correctly identify streamflow dynamics. These
include unusual precipitation or flow regimes, data quality issues, and signature use
in human-influenced watersheds. We conclude by providing guidance and recom-

mendations on applying signatures in large sample studies.
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From earlier uses in small numbers of watersheds, signatures are

now frequently calculated in large samples of watersheds spanning

Hydrologic signatures are quantitative metrics that describe streamflow
statistics and dynamics. Examples include runoff ratio, baseflow index
or slope of the flow duration curve. Signatures have many applications
such as assessing habitat suitability and hydrologic alteration, evaluating
hydrologic models, defining similarity between watersheds and investi-
gating watershed processes (McMillan, 2021). Signature concepts have
been extended to characterize soil moisture (Araki et al., 2022), water
quality (Ebeling et al., 2021) and other hydrologic quantities.

national to global scales. This expansion is part of a wider move
towards large sample studies that develop datasets and draw conclu-
sions across scales, hydro climates and ecosystems (Addor et al., 2020;
Kratzert et al., 2023). Studies that calculate signature values over 100s
of gauged watersheds include evaluating national models (Almagro
et al., 2021; Coxon et al., 2019; Donnelly et al., 2016; Massmann, 2020;
McMillan et al.,, 2016), selecting model structures (David et al., 2022),
interpreting machine learning models (Botterill & McMillan, 2022;
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Kratzert et al., 2019), predicting signatures from watershed attributes
(Addor et al., 2018; Beck et al., 2015; Grantham et al., 2022; Janssen &
Ameli, 2021) and classifying watersheds (Kuentz et al., 2017). However,
signature use is challenged by large datasets, as it becomes impractical
to check whether the signature quantifies the intended hydrograph
property in each watershed. Although difficulties in transferring knowl-
edge between individual samples and large populations are well estab-
lished (Jelinski & Wu, 1996), these issues have accelerated in hydrologic
analysis with more widespread use of large sample datasets. As authors
we have encountered these challenges, prompting us to write this com-
mentary to share our experiences and provide guidance on applying
hydrologic signatures in large sample studies.

1.1 |
samples

Challenges in using signatures over large

Some signatures such as statistics of flow magnitude or timing are
simple to calculate and robust to many errors, uncertainties or unusual
flow patterns. Other signatures, such as those requiring identification
of storm events or recession periods require more time-series proces-
sing and may be less robust. All signatures are impacted by missing
data in the time-series, and large sample studies often tolerate some
missing data to maximize the number of sites. Signature toolboxes
such as TOSSH (Gnann, Coxon, et al, 2021), eflows (Patterson
et al., 2020) or Pastas (Collenteur et al., 2019) may reject the time-
series if missing data exceed a certain percentage of the record, or
interpolate the data for smaller missing portions. Signature values can
be biassed where missing data are systematic, such as missing data
under freezing conditions or under extreme high or low flows.

Large sample studies require users to specify signature parameter
values. Parameters change how signatures retrieve information from
flow series and affect the resulting signature value. For example,
recession analysis signatures are influenced by parameters for reces-
sion extraction and fitting (Dralle et al., 2017). Large sample studies
often use constant parameter values (Addor et al., 2018; McMillan
et al., 2022), but these may be unsuitable for some watersheds. Strat-
egies to select parameter values include using sensitivity analysis to
explore how parameter choices affect study conclusions (Tashie
et al.,, 2020), conducting in-depth checks for representative water-
sheds such as one watershed per climate region where signature
parameters are sensitive to climate, or deriving parameters from the
flow regime (Stoelzle et al., 2020).

Large sample studies often include watersheds with reservoir stor-
age and releases, abstractions or agricultural water use. In human-
impacted watersheds in California, signatures could not be calculated
because “the annual hydrograph was extremely different compared with
the predicted reference condition. These instances would often lack a sea-
sonal flow pattern that the flow calculator relies on to derive subsequent
metrics” (Peek et al., 2022). Hydropower operations cause sudden flow
changes that make computations of change rates problematic, invalidat-
ing recession signatures (Zmijewski & Wérman, 2016). Solutions include

designing signatures to measure human impacts (e.g., Indicators of

Hydrologic Alteration, IHA; Magilligan & Nislow, 2005), or using existing
signatures such as high flashiness signifying urban effects (Smith &
Smith, 2015).

A related challenge is signature interpretability. In small sample
studies, researchers often have prior expertise (or a perceptual model)
against which they interpret the signature values. In large sample
studies, it is more difficult to determine whether the same signature
values correspond with the same hydrologic characteristics. Our case
studies include human-influenced watersheds, where it is difficult to
distinguish the effects of reservoir operations from differences in nat-
ural flow regimes, and soil moisture seasonality, where bimodal distri-
butions have multiple possible causes. In small-sample studies,
signatures can be checked for correct interpretation, but in-depth

checks are usually not feasible for 1000s of watersheds.

1.2 | Aims of the paper

In this paper, we present eight case studies illustrating challenges that
arose in our work when calculating hydrologic signatures over large
samples of watersheds. These include unusual precipitation regimes,
data quality issues and human-influenced watersheds. For each study
we discuss the aim, which signatures were calculated, the issues that
occurred and the solution, if any. We use the lessons learnt to provide
guidance on applying signatures in large sample studies.

2 | CASESTUDIES: CHALLENGES
APPLYING SIGNATURES IN LARGE SAMPLES
OF WATERSHEDS

2.1 | Signature issues caused by precipitation and
flow regimes

Many signatures make assumptions about watershed precipitation
and flow regimes. If the assumptions are invalidated, as shown in
these examples, signature values can lead to incorrect interpretations.

2.1.1 | Eventidentification failed in Arizona
watersheds with convective monsoon rainfall

We used signatures to investigate overland flow generated by convec-
tive monsoonal rainfall in 21 subcatchments of the San Pedro River in
Southern Arizona. We calculated infiltration- and saturation-excess sig-
natures from the TOSSH toolbox (Gnann, Coxon, et al., 2021), including
the significance of thresholds in plots of event runoff versus rainfall
depth or intensity, and coefficients in regression equations to predict
event runoff. These signatures rely on event identification algorithms to
calculate event rainfall and flow totals. The algorithms identify rainfall
peaks and then find the corresponding runoff, or vice versa (McMillan
et al., 2011; Tarasova et al., 2018). The algorithms use parameters such

as thresholds for magnitude or separation time between events. Checks
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on our rainfall-based algorithm showed that afternoon rainfall on con-
secutive days was often merged into a single event because the algo-
rithm specified a dry period of 12 h to separate events (Figure 1a).
Afternoon rainfall could cause a flow peak overlapping with the follow-
ing day's rainfall, which would be mistakenly associated. In such water-
sheds, hourly data and careful parameter choice are needed to avoid
conflating separate events. We used hourly data, but large sample stud-
ies may use daily values (e.g., McMillan et al., 2022), which would be

insufficient to identify convective rainstorms.

2.1.2 | Eventidentification required manual checks
in drizzly United Kingdom

In the United Kingdom (U.K), most watersheds experience at least
0.2 mm of rainfall every other day, rising to 78% of days for the wettest
watersheds. In a large sample U K. study, we calculated the event runoff
coefficient signature (the ratio between the direct runoff volume and
event rainfall) to reveal the space-time controls on event characteristics
(Zheng et al., 2023a, 2023b). We used flow-based event identification
with hourly data (Giani et al., 2022), but short intervals between events
sometimes led to the misattribution of rainfall to runoff events
(Figure 1b). Given these issues, we used manual checks on 1144 events
from the Swale River at Crakehill (NRFA ID 27071) to create event
selection criteria. For events with rainfall after the runoff peak, the time

interval between events was calculated. If this interval was less than

the watershed response time, both events were excluded. These criteria
led us to exclude 23 393 out of 903 745 events from 431 watersheds.
High exclusion rates occur in large watersheds (> 1000 km?) and those
with long response times (> 1d). In this and the previous example, a
more complex algorithm is required to associate rainfall with runoff that

allows for the time of concentration.

2.1.3 | Soil moisture seasonality was misidentified
in sites with multiple wet seasons in a year

We used large sample studies to investigate controls on soil moisture
seasonality, particularly the persistent wet and dry seasons that often
appear in soil moisture data (Araki et al., 2022, 2023). We used two sig-
nature types: the number of peaks of the soil moisture frequency distri-
bution, and (for bimodal distributions only) dates and duration of
transitions between wet and dry states. These signatures were devel-
oped for a study of 82 New Zealand sites (Branger & McMillan, 2020).
The number of frequency peaks was designed to represent the strength
of soil moisture seasonality. A unimodal distribution represents weak
seasonality under persistently wet or dry climates, whereas a bimodal
distribution represents strong seasonality (Sehgal & Mohanty, 2023;
Figure 2a,b). However, applications to a wider range of climates
showed that bimodal distributions had multiple causes. Sites in Texas
showed multiple wet seasons (winter, summer monsoon) and large dry

downs during wet seasons due to well-drained soil. This resulted in
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strongly bimodal signatures despite weak seasonality (Figure 2c), and
invalidated the algorithm for transition signatures that assumed only
one wet season per year. Pseudo-seasonality also occurred in Maqu
watershed, China, where soil freeze-thaw created a bimodal distribu-
tion unrelated to wet and dry seasons (Figure 2d). Manual checks of
rainfall and soil temperature seasonality were needed when interpret-

ing signature values in these different regimes.

04 06 08
VWC(%)

FIGURE 2 Peaks in the distribution of
soil moisture identified under (a) a weakly
seasonal climate in Germany, (b) a
strongly seasonal climate in Australia, (c) a
climate with two wet seasons per year in
Texas, (d) a site with soil freeze-thaw in
China.

2.2 | Signature issues caused by data quality

Signatures vary in their robustness to error types (Westerberg &

McMillan, 2015). In large sample studies, data errors will vary site-to-

site. In our examples, data quality motivated exclusion of data from

specific sites or regions, or development of new processing steps to

mitigate errors.
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2.2.1 | Issues with catchment area affects flow
magnitude signatures

Catchment polygons describe the area upstream of a flow gauge, and
may contain errors due to incorrect outlet coordinates (e.g., Arheimer
et al., 2020), errors in catchment delineation method or elevation data
errors. Inaccurate basin areas can have large impacts. Streamflow is
often transformed from raw units [M3T™1] to specific discharge
[MT™Y, by dividing by basin area. Area errors will lead to incorrect
specific discharge, and propagate into signatures. Further errors will
occur if meteorological data are snipped to incorrect basin polygons,
and used in signatures such as runoff ratio (Q/P) and streamflow elas-
ticity (AQ/AP). We investigated the impacts of basin polygon errors in
the CAMELS dataset of 671 U.S. basins (Addor et al., 2017; Newman
et al., 2015). CAMELS includes streamflow observations in [feet® s—%]
and two different area estimates for each basin from GAGES Il and
Geospatial fabric datasets. We used the two area values to calculate
three magnitude-based signatures (5th/95th percentile flows, daily
mean flow) in [mm d~1]. The differences are typically within 5%, but
sometimes substantial (Figure 3a-c). The resulting differences in
annual streamflow exceed 100 mm for many basins (Figure 3d). Some
CAMELS studies exclude watersheds with uncertain area (Knoben
et al., 2020; Kratzert et al., 2019) but others use all or most water-
sheds, implicitly accepting this uncertainty (Addor et al., 2018; Tyralis
et al., 2021). Any large sample study using magnitude-based signa-
tures is susceptible to catchment area uncertainty, such as the event

runoff coefficient study described previously (Zheng et al., 2023a).
2.2.2 | High uncertainties in event rainfall and flow
totals in Arizona

In the previously described investigation of 21 subcatchments of the

San Pedro River (Southern Arizona), we used the TOSSH toolbox
(Gnann, Coxon, et al., 2021) to calculate event rainfall and flow totals.

(a) 5t percentile flow [mm/d]

(b) Mean flow (Qpmean) [Mmm/d]

TOSSH plots rainfall totals against flow totals for a manual error
check, and we found an unexpected lack of correspondence (example
in Figure 4). We performed extended checks for other errors (such as
errors in rainfall or flow series extraction, incorrect timestamps, or
coding errors) but found none. We suggest that rainfall totals from
the NLDAS-2 national gridded product do not accurately measure
areal average rainfall for these small watersheds, due to a large grid
size (0.125°), relatively sparse rain gauge network, and convective
monsoon rainfall characterized by highly variable local accumulations.
Further, the flow series contains significant periods of gap-filled data
that may affect signature values: all three of the flow peaks in
Figure 4 consist of gap-filled data. Our findings highlight the impor-
tance of considering local variations in data accuracy.

2.2.3 | Non-stationarity in soil moisture values
invalidated magnitudes and dynamic range

Soil moisture data often exhibit increasing or decreasing trends over
time. These trends may arise from non-stationarity in hydrologic pro-
cesses or data quality issues, such as changes in sensor voltage power
(Martini et al., 2015), oxidation of sensor rods, salinization, and soil
compaction (Dorigo et al., 2013). These causes are difficult to distin-
guish and so trends are rarely addressed during quality control. Trends
can impact various signatures, as estimated field capacity and wilting
point signatures may change from year to year, and the shape of fre-
quency distributions becomes unclear (Chandler et al., 2017; Araki
et al., 2022; Figure 5). The dynamic range of soil moisture (the range
between field capacity and wilting point, or between maximum and
minimum values), often used as a normalization factor, may be overes-
timated. For some signatures, trending time-series should be
excluded, such as for field capacity and wilting point estimates (Araki
et al.,, 2022). Alternatively, observations can be detrended by subtract-
ing a 2-year moving average signatures (Basak et al., 2017). An exam-

ple of this approach is shown in Figure 5b, with the shape of

(C) 95t percentile flow [mm/d]
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FIGURE 3 Differences in magnitude-based signatures due to differences in catchment areas used to convert flows from [M3T~] to [MT1].
(d) Red arrow shows the location of the final data point outside the axis limits.
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frequency distributions and dynamic range calculated from the
detrended time-series.

2.3 | Signature issues caused by human impacts
Many signatures for ecohydrology and hydrological processes were
(McMillan, 2020; Yarnell

et al, 2020). In human-impacted watersheds, signatures can fail if

designed for natural flow regimes
expected flow patterns no longer occur, and anthropogenic changes

can override natural differences.

2.3.1 | Flow duration curve slope was modified for
flow series impacted by water supply reservoirs

We used signatures to investigate how reservoirs impact flow regimes
in Great Britain (Salwey et al., 2023). To maximize storage, operators

frequently release only the minimum flow required to protect down-
stream ecosystems (Maynard & Lane, 2012). Although pre-existing
techniques (e.g., IHA) have been used to assess reservoir impact, we
lacked the data to upscale these techniques (flow records do not pre-
date
and-downstream gauges). Instead, we investigated signatures that

reservoir construction, or insufficient locations with up-
require only a downstream flow series. We considered signatures
that quantify flow duration curve (FDC) shape, because reservoirs
may modify the full range of streamflow. While the most common
FDC signature is the slope of its central portion (Yilmaz et al., 2008),
this signature was unreliable in reservoir-impacted watersheds. Oper-
ations such as routine environmental flow releases cause flat seg-
ments and abrupt changes in the FDC, meaning that the central
portion cannot be approximated by a linear slope (Figure 6a-d). Our
solution was to develop a modified signature that quantifies devia-
tions from an expected naturalized, sigmoidal FDC. High deviations
reliably indicated large reservoirs. Despite this, we could not always

distinguish natural and reservoir-impacted flow regimes. Natural
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FIGURE 6 Observed flow duration curves (red) and associated
naturalized flow duration curves (black dashed) at example reservoir
catchments in the U.K. (a) Ness at Ness-side - 6007; (b) Brenig at Llyn
Brenig - 67 003; (c) Vyrnwy at Vyrnwy Reservoir - 54 003;

(d) Hodder at Stocks Reservoir - 71 002).

groundwater gains can mimic pumped reservoir storage, and FDCs
from ephemeral streams can mimic those where an upstream reser-
voir only releases water when full. Therefore, ignoring reservoirs in
large sample studies risks mistaking reservoir-induced behaviours for

unrelated natural processes.

2.3.2 | Stream temperature signatures are
dominated by dam impacts

Human activity affects water quality signatures such as stream tem-
perature indices that evaluate ecosystem health and nutrient cycling
(Ficklin et al., 2023). Dams influence stream temperature regimes due
to thermal stratification in reservoirs, with this water moved down-
stream via top release (warmer) or bottom release (colder) (Bonnema
et al., 2020). For 57 eastern U.S. sites, we quantified thermal sensitiv-
ity, a signature that measures the strength of the relationship between
air and water temperatures (Kelleher et al., 2012). In general, thermal
sensitivity is lower in headwaters, where stream temperatures are
buffered by groundwater and riparian shading, and higher in large
watersheds where heat accumulates along the river. However, cool
water releases below dams reduce thermal sensitivity values. Wade
et al. (2023) trained random forest models on monthly thermal sensi-
tivity values for 400 U.S. sites. They found that dam storage over-
whelmed 23 other influences on river thermal regimes. Teasing out
other influences required training models on sites with minimal dam
impact. Dams also impact basic statistical metrics of water tempera-

ture: among 138 U.S. sites, dam-regulated sites had the warmest and

coolest 20-year trends in maximum monthly water temperatures
(Kelleher et al., 2021). Overall, dam operations influence short-term

behaviour and long-term trends in water temperature signatures.

3 | SUMMARY AND GUIDANCE FOR
APPLYING SIGNATURES IN LARGE SAMPLE
STUDIES

3.1 | Summary of case studies

In this commentary, we described multiple challenges that we encoun-
tered when calculating hydrologic signature values over large samples
of watersheds (Table 1). Signatures designed for some hydroclimates
may lead to incorrect interpretations in others, data quality may vary
with location, and uncertainties may occur from unexpected sources.
When signatures are used in human-impacted watersheds, careful
analysis is required to separate human impacts from natural pro-
cesses. When signatures are applied over continental or global data-
sets, all these factors should be considered when interpreting

signature values and patterns.

3.2 | Guidance for signature users

We recommend that signature users be mindful of the range of pre-
cipitation or flow regimes for which signatures were designed. This
design might have been intentional, for example, functional flow met-
rics that quantify ecologically-important flow features are designed
for region-specific natural flow regimes (Yarnell et al., 2020) or inad-
vertent, for example, soil moisture signatures that were designed for
NZ watersheds, all of which have similarities in climate (Branger &
McMillan, 2020). Where a large sample analysis includes watersheds
with different regimes, signatures might not perform correctly. This is
particularly the case for human-impacted watersheds where reser-
voirs or other infrastructure may cause unusual flow patterns. Such
patterns might cause signature codes to fail, or might mimic unrelated
natural processes, for example, watersheds with groundwater gains
can mimic those with pumped reservoir storage. Signatures may fur-
ther be designed for a specific temporal resolution, for example signa-
tures of flow alteration under hydropower require hourly data
(Bevelhimer et al., 2015). We recommend that, especially where signa-
ture parameters must be selected, users should visually assess
signature behaviour. For example, overlay event or recession periods
on the hydrograph to check correct identification. For large samples,
we encourage plotting for a subset of representative watersheds.
Users should also monitor the structure of missing data, to avoid sys-
tematic biases. Biases should also be considered if sites or events are
excluded from signature analyses as a solution to data quality or other
issues (Table 1). Signature values can be compared with distributions
of values from large sample studies (see signature distributions for the
U.S., Great Britain, Australia and Brazil in McMillan et al. (2022)).
Values outside or at the extremes of those distributions may indicate
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TABLE 1

Signatures affected
Precipitation regimes

Overland flow
signatures in
watersheds with
daily convective
rainfall

Event runoff ratio
in watersheds
with rain on
most days

Soil moisture
seasonality
characterized by
number of peaks
in frequency
distribution

Data Quality

Flow magnitude
signatures that
normalize flow
by watershed
area

Signatures based
on event totals
for rainfall and
runoff

Soil moisture
signatures for
field capacity,
wilting point and
dynamic range

Human Impacts

Mid-section slope
of Flow Duration
Curve

Thermal sensitivity
and basic water
temperature
signatures

errors, including those due to data quality. When interpreting high or
low signature values, users should consider their perceptual model of
watershed processes and how these affect the signature. We showed
an example where bimodal soil moisture regimes have multiple inter-
pretations; similarly, high BFI (base flow index) values could be caused
McMillan,

et al., 2021). To facilitate such analyses, large sample perceptual

by snow, permeable geology,

model resources are becoming available (McMillan et al., 2023),

COMMENTARY

Issue found

Automatic event
detection failed:
merged or
incorrectly
associated events

Automatic event
detection failed:
incorrectly
associated events

Wider range of
climates showed
that bimodality has
multiple causes
beyond wet/dry
periods

Watershed area is
uncertain, two
different estimates
available

Low correspondence
of rainfall and
runoff totals due to
rainfall and flow
uncertainty

Many sites have soil
moisture trends
caused by changes
in processes or
data quality issues

Reservoir operations
cause flat sections
and abrupt slope
changes

Effect of dam-
controlled
reservoirs override
natural signals

although regional gaps still remain.

or wetlands (Gnann,

Summary of case studies described in this commentary.

Solution

Watershed-specific
parameters,
proposed
improved
signature
algorithm allowing
for time of
concentration

Manual checks and
additional criteria
for event rejection

Site-specific data
inspection,
proposed
theoretical studies

Reject watersheds
with uncertain
area, or include in
uncertainty
analysis

Exclude sites from
analysis

Exclude sites from
analysis or detrend
before use

Assess reservoir
impacts on FDC
before applying
standard
signatures

Train models on sites
without dam
impacts

3.3 | Guidance for signature creators and coders

Many open-source toolboxes have been created to allow easier cal-
culation of signatures. These include TOSSH (Gnann, Coxon,
et al, 2021), eflows (Patterson et al., 2020), HydRun (Tang &
Carey, 2017), HydroRecession (Arciniega-Esparza et al., 2017), HIA
(Henriksen et al., 2006), Pastas (Collenteur et al., 2019) and others.
We encourage toolbox authors to help reduce signature errors in
large sample studies. One approach is to include warning flags to
identify non-behavioural data series as part of signature code, such
as a warning that few recession segments could be identified which
may invalidate recession signatures. In addition, toolboxes can
include plotting functions to allow rapid visual inspection of signa-
ture behaviour (as recommended above). Signature creators are in a
good position to design relevant visual checks due to their expert
knowledge of the signatures. Known issues, limitations and robust-
ness of signatures can be shared in readme documents, such as is
implemented for eflows documentation (https://eflows.gitbook.io/
project/known_issues). Documents should specify requirements for
the treatment of missing and gap-filled data. Through the combined
efforts of signature creators and signature users, hydrologists can
benefit from accurate signature calculations and interpretations in

large sample studies.
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