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Abstract

Hydrologic signatures are quantitative metrics that describe streamflow statistics and

dynamics. Signatures have many applications, including assessing habitat suitability

and hydrologic alteration, calibrating and evaluating hydrologic models, defining simi-

larity between watersheds and investigating watershed processes. Increasingly, sig-

natures are being used in large sample studies to guide flow management and

modelling at continental scales. Using signatures in studies involving 1000s of water-

sheds brings new challenges as it becomes impractical to examine signature parame-

ters and behaviour in each watershed. For example, we might wish to check that

signatures describing flood event characteristics have correctly identified event

periods, that signature values have not been biassed by data errors, or that human

and natural influences on signature values have been correctly interpreted. In this

commentary, we draw from our collective experience to present case studies where

naïve application of signatures fails to correctly identify streamflow dynamics. These

include unusual precipitation or flow regimes, data quality issues, and signature use

in human-influenced watersheds. We conclude by providing guidance and recom-

mendations on applying signatures in large sample studies.

K E YWORD S

Signatures, Metrics, Indices, Large sample hydrology, Errors, Uncertainty

1 | INTRODUCTION

Hydrologic signatures are quantitative metrics that describe streamflow

statistics and dynamics. Examples include runoff ratio, baseflow index

or slope of the flow duration curve. Signatures have many applications

such as assessing habitat suitability and hydrologic alteration, evaluating

hydrologic models, defining similarity between watersheds and investi-

gating watershed processes (McMillan, 2021). Signature concepts have

been extended to characterize soil moisture (Araki et al., 2022), water

quality (Ebeling et al., 2021) and other hydrologic quantities.

From earlier uses in small numbers of watersheds, signatures are

now frequently calculated in large samples of watersheds spanning

national to global scales. This expansion is part of a wider move

towards large sample studies that develop datasets and draw conclu-

sions across scales, hydro climates and ecosystems (Addor et al., 2020;

Kratzert et al., 2023). Studies that calculate signature values over 100s

of gauged watersheds include evaluating national models (Almagro

et al., 2021; Coxon et al., 2019; Donnelly et al., 2016; Massmann, 2020;

McMillan et al., 2016), selecting model structures (David et al., 2022),

interpreting machine learning models (Botterill & McMillan, 2022;
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Kratzert et al., 2019), predicting signatures from watershed attributes

(Addor et al., 2018; Beck et al., 2015; Grantham et al., 2022; Janssen &

Ameli, 2021) and classifying watersheds (Kuentz et al., 2017). However,

signature use is challenged by large datasets, as it becomes impractical

to check whether the signature quantifies the intended hydrograph

property in each watershed. Although difficulties in transferring knowl-

edge between individual samples and large populations are well estab-

lished (Jelinski & Wu, 1996), these issues have accelerated in hydrologic

analysis with more widespread use of large sample datasets. As authors

we have encountered these challenges, prompting us to write this com-

mentary to share our experiences and provide guidance on applying

hydrologic signatures in large sample studies.

1.1 | Challenges in using signatures over large

samples

Some signatures such as statistics of flow magnitude or timing are

simple to calculate and robust to many errors, uncertainties or unusual

flow patterns. Other signatures, such as those requiring identification

of storm events or recession periods require more time-series proces-

sing and may be less robust. All signatures are impacted by missing

data in the time-series, and large sample studies often tolerate some

missing data to maximize the number of sites. Signature toolboxes

such as TOSSH (Gnann, Coxon, et al., 2021), eflows (Patterson

et al., 2020) or Pastas (Collenteur et al., 2019) may reject the time-

series if missing data exceed a certain percentage of the record, or

interpolate the data for smaller missing portions. Signature values can

be biassed where missing data are systematic, such as missing data

under freezing conditions or under extreme high or low flows.

Large sample studies require users to specify signature parameter

values. Parameters change how signatures retrieve information from

flow series and affect the resulting signature value. For example,

recession analysis signatures are influenced by parameters for reces-

sion extraction and fitting (Dralle et al., 2017). Large sample studies

often use constant parameter values (Addor et al., 2018; McMillan

et al., 2022), but these may be unsuitable for some watersheds. Strat-

egies to select parameter values include using sensitivity analysis to

explore how parameter choices affect study conclusions (Tashie

et al., 2020), conducting in-depth checks for representative water-

sheds such as one watershed per climate region where signature

parameters are sensitive to climate, or deriving parameters from the

flow regime (Stoelzle et al., 2020).

Large sample studies often include watersheds with reservoir stor-

age and releases, abstractions or agricultural water use. In human-

impacted watersheds in California, signatures could not be calculated

because “the annual hydrograph was extremely different compared with

the predicted reference condition. These instances would often lack a sea-

sonal flow pattern that the flow calculator relies on to derive subsequent

metrics” (Peek et al., 2022). Hydropower operations cause sudden flow

changes that make computations of change rates problematic, invalidat-

ing recession signatures (Zmijewski & Wörman, 2016). Solutions include

designing signatures to measure human impacts (e.g., Indicators of

Hydrologic Alteration, IHA; Magilligan & Nislow, 2005), or using existing

signatures such as high flashiness signifying urban effects (Smith &

Smith, 2015).

A related challenge is signature interpretability. In small sample

studies, researchers often have prior expertise (or a perceptual model)

against which they interpret the signature values. In large sample

studies, it is more difficult to determine whether the same signature

values correspond with the same hydrologic characteristics. Our case

studies include human-influenced watersheds, where it is difficult to

distinguish the effects of reservoir operations from differences in nat-

ural flow regimes, and soil moisture seasonality, where bimodal distri-

butions have multiple possible causes. In small-sample studies,

signatures can be checked for correct interpretation, but in-depth

checks are usually not feasible for 1000s of watersheds.

1.2 | Aims of the paper

In this paper, we present eight case studies illustrating challenges that

arose in our work when calculating hydrologic signatures over large

samples of watersheds. These include unusual precipitation regimes,

data quality issues and human-influenced watersheds. For each study

we discuss the aim, which signatures were calculated, the issues that

occurred and the solution, if any. We use the lessons learnt to provide

guidance on applying signatures in large sample studies.

2 | CASE STUDIES: CHALLENGES

APPLYING SIGNATURES IN LARGE SAMPLES

OF WATERSHEDS

2.1 | Signature issues caused by precipitation and

flow regimes

Many signatures make assumptions about watershed precipitation

and flow regimes. If the assumptions are invalidated, as shown in

these examples, signature values can lead to incorrect interpretations.

2.1.1 | Event identification failed in Arizona

watersheds with convective monsoon rainfall

We used signatures to investigate overland flow generated by convec-

tive monsoonal rainfall in 21 subcatchments of the San Pedro River in

Southern Arizona. We calculated infiltration- and saturation-excess sig-

natures from the TOSSH toolbox (Gnann, Coxon, et al., 2021), including

the significance of thresholds in plots of event runoff versus rainfall

depth or intensity, and coefficients in regression equations to predict

event runoff. These signatures rely on event identification algorithms to

calculate event rainfall and flow totals. The algorithms identify rainfall

peaks and then find the corresponding runoff, or vice versa (McMillan

et al., 2011; Tarasova et al., 2018). The algorithms use parameters such

as thresholds for magnitude or separation time between events. Checks
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on our rainfall-based algorithm showed that afternoon rainfall on con-

secutive days was often merged into a single event because the algo-

rithm specified a dry period of 12 h to separate events (Figure 1a).

Afternoon rainfall could cause a flow peak overlapping with the follow-

ing day's rainfall, which would be mistakenly associated. In such water-

sheds, hourly data and careful parameter choice are needed to avoid

conflating separate events. We used hourly data, but large sample stud-

ies may use daily values (e.g., McMillan et al., 2022), which would be

insufficient to identify convective rainstorms.

2.1.2 | Event identification required manual checks

in drizzly United Kingdom

In the United Kingdom (U.K.), most watersheds experience at least

0.2 mm of rainfall every other day, rising to 78% of days for the wettest

watersheds. In a large sample U.K. study, we calculated the event runoff

coefficient signature (the ratio between the direct runoff volume and

event rainfall) to reveal the space–time controls on event characteristics

(Zheng et al., 2023a, 2023b). We used flow-based event identification

with hourly data (Giani et al., 2022), but short intervals between events

sometimes led to the misattribution of rainfall to runoff events

(Figure 1b). Given these issues, we used manual checks on 1144 events

from the Swale River at Crakehill (NRFA ID 27071) to create event

selection criteria. For events with rainfall after the runoff peak, the time

interval between events was calculated. If this interval was less than

the watershed response time, both events were excluded. These criteria

led us to exclude 23 393 out of 903 745 events from 431 watersheds.

High exclusion rates occur in large watersheds (> 1000 km2) and those

with long response times (> 1d). In this and the previous example, a

more complex algorithm is required to associate rainfall with runoff that

allows for the time of concentration.

2.1.3 | Soil moisture seasonality was misidentified

in sites with multiple wet seasons in a year

We used large sample studies to investigate controls on soil moisture

seasonality, particularly the persistent wet and dry seasons that often

appear in soil moisture data (Araki et al., 2022, 2023). We used two sig-

nature types: the number of peaks of the soil moisture frequency distri-

bution, and (for bimodal distributions only) dates and duration of

transitions between wet and dry states. These signatures were devel-

oped for a study of 82 New Zealand sites (Branger & McMillan, 2020).

The number of frequency peaks was designed to represent the strength

of soil moisture seasonality. A unimodal distribution represents weak

seasonality under persistently wet or dry climates, whereas a bimodal

distribution represents strong seasonality (Sehgal & Mohanty, 2023;

Figure 2a,b). However, applications to a wider range of climates

showed that bimodal distributions had multiple causes. Sites in Texas

showed multiple wet seasons (winter, summer monsoon) and large dry

downs during wet seasons due to well-drained soil. This resulted in

F IGURE 1 Incorrect event

identification examples (a) in Arizona,

multiple convective rainfall events were

incorrectly merged into single storm

periods (USGS streamgauge 09471550,

San Pedro River Near Tombstone) (b) in

U.K., rainfall occurring after the runoff

peak was misattributed to the wrong

runoff events (NRFA catchment ID

27071, Swale River at Crakehill).
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strongly bimodal signatures despite weak seasonality (Figure 2c), and

invalidated the algorithm for transition signatures that assumed only

one wet season per year. Pseudo-seasonality also occurred in Maqu

watershed, China, where soil freeze–thaw created a bimodal distribu-

tion unrelated to wet and dry seasons (Figure 2d). Manual checks of

rainfall and soil temperature seasonality were needed when interpret-

ing signature values in these different regimes.

2.2 | Signature issues caused by data quality

Signatures vary in their robustness to error types (Westerberg &

McMillan, 2015). In large sample studies, data errors will vary site-to-

site. In our examples, data quality motivated exclusion of data from

specific sites or regions, or development of new processing steps to

mitigate errors.

F IGURE 2 Peaks in the distribution of

soil moisture identified under (a) a weakly

seasonal climate in Germany, (b) a

strongly seasonal climate in Australia, (c) a

climate with two wet seasons per year in

Texas, (d) a site with soil freeze–thaw in

China.
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2.2.1 | Issues with catchment area affects flow

magnitude signatures

Catchment polygons describe the area upstream of a flow gauge, and

may contain errors due to incorrect outlet coordinates (e.g., Arheimer

et al., 2020), errors in catchment delineation method or elevation data

errors. Inaccurate basin areas can have large impacts. Streamflow is

often transformed from raw units [M3T�1] to specific discharge

[MT�1], by dividing by basin area. Area errors will lead to incorrect

specific discharge, and propagate into signatures. Further errors will

occur if meteorological data are snipped to incorrect basin polygons,

and used in signatures such as runoff ratio (Q/P) and streamflow elas-

ticity (ΔQ/ΔP). We investigated the impacts of basin polygon errors in

the CAMELS dataset of 671 U.S. basins (Addor et al., 2017; Newman

et al., 2015). CAMELS includes streamflow observations in [feet3 s�1]

and two different area estimates for each basin from GAGES II and

Geospatial fabric datasets. We used the two area values to calculate

three magnitude-based signatures (5th/95th percentile flows, daily

mean flow) in [mm d�1]. The differences are typically within ±5%, but

sometimes substantial (Figure 3a–c). The resulting differences in

annual streamflow exceed 100 mm for many basins (Figure 3d). Some

CAMELS studies exclude watersheds with uncertain area (Knoben

et al., 2020; Kratzert et al., 2019) but others use all or most water-

sheds, implicitly accepting this uncertainty (Addor et al., 2018; Tyralis

et al., 2021). Any large sample study using magnitude-based signa-

tures is susceptible to catchment area uncertainty, such as the event

runoff coefficient study described previously (Zheng et al., 2023a).

2.2.2 | High uncertainties in event rainfall and flow

totals in Arizona

In the previously described investigation of 21 subcatchments of the

San Pedro River (Southern Arizona), we used the TOSSH toolbox

(Gnann, Coxon, et al., 2021) to calculate event rainfall and flow totals.

TOSSH plots rainfall totals against flow totals for a manual error

check, and we found an unexpected lack of correspondence (example

in Figure 4). We performed extended checks for other errors (such as

errors in rainfall or flow series extraction, incorrect timestamps, or

coding errors) but found none. We suggest that rainfall totals from

the NLDAS-2 national gridded product do not accurately measure

areal average rainfall for these small watersheds, due to a large grid

size (0.125�), relatively sparse rain gauge network, and convective

monsoon rainfall characterized by highly variable local accumulations.

Further, the flow series contains significant periods of gap-filled data

that may affect signature values: all three of the flow peaks in

Figure 4 consist of gap-filled data. Our findings highlight the impor-

tance of considering local variations in data accuracy.

2.2.3 | Non-stationarity in soil moisture values

invalidated magnitudes and dynamic range

Soil moisture data often exhibit increasing or decreasing trends over

time. These trends may arise from non-stationarity in hydrologic pro-

cesses or data quality issues, such as changes in sensor voltage power

(Martini et al., 2015), oxidation of sensor rods, salinization, and soil

compaction (Dorigo et al., 2013). These causes are difficult to distin-

guish and so trends are rarely addressed during quality control. Trends

can impact various signatures, as estimated field capacity and wilting

point signatures may change from year to year, and the shape of fre-

quency distributions becomes unclear (Chandler et al., 2017; Araki

et al., 2022; Figure 5). The dynamic range of soil moisture (the range

between field capacity and wilting point, or between maximum and

minimum values), often used as a normalization factor, may be overes-

timated. For some signatures, trending time-series should be

excluded, such as for field capacity and wilting point estimates (Araki

et al., 2022). Alternatively, observations can be detrended by subtract-

ing a 2-year moving average signatures (Basak et al., 2017). An exam-

ple of this approach is shown in Figure 5b, with the shape of

F IGURE 3 Differences in magnitude-based signatures due to differences in catchment areas used to convert flows from [M3T�1] to [MT�1].

(d) Red arrow shows the location of the final data point outside the axis limits.
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frequency distributions and dynamic range calculated from the

detrended time-series.

2.3 | Signature issues caused by human impacts

Many signatures for ecohydrology and hydrological processes were

designed for natural flow regimes (McMillan, 2020; Yarnell

et al., 2020). In human-impacted watersheds, signatures can fail if

expected flow patterns no longer occur, and anthropogenic changes

can override natural differences.

2.3.1 | Flow duration curve slope was modified for

flow series impacted by water supply reservoirs

We used signatures to investigate how reservoirs impact flow regimes

in Great Britain (Salwey et al., 2023). To maximize storage, operators

frequently release only the minimum flow required to protect down-

stream ecosystems (Maynard & Lane, 2012). Although pre-existing

techniques (e.g., IHA) have been used to assess reservoir impact, we

lacked the data to upscale these techniques (flow records do not pre-

date reservoir construction, or insufficient locations with up-

and-downstream gauges). Instead, we investigated signatures that

require only a downstream flow series. We considered signatures

that quantify flow duration curve (FDC) shape, because reservoirs

may modify the full range of streamflow. While the most common

FDC signature is the slope of its central portion (Yilmaz et al., 2008),

this signature was unreliable in reservoir-impacted watersheds. Oper-

ations such as routine environmental flow releases cause flat seg-

ments and abrupt changes in the FDC, meaning that the central

portion cannot be approximated by a linear slope (Figure 6a–d). Our

solution was to develop a modified signature that quantifies devia-

tions from an expected naturalized, sigmoidal FDC. High deviations

reliably indicated large reservoirs. Despite this, we could not always

distinguish natural and reservoir-impacted flow regimes. Natural

F IGURE 4 Comparison of event

totals for 2001–2022 and hourly time-

series for August 2006 of areal-average

NLDAS-2 rainfall and observed flow,

USGS flow gauge 09470700 Banning

Creek near Bisbee, watershed area

22.6 km2.

F IGURE 5 Example of the need to

detrend a soil moisture time-series to

enable correct calculation of distribution

type and dynamic range signatures.
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groundwater gains can mimic pumped reservoir storage, and FDCs

from ephemeral streams can mimic those where an upstream reser-

voir only releases water when full. Therefore, ignoring reservoirs in

large sample studies risks mistaking reservoir-induced behaviours for

unrelated natural processes.

2.3.2 | Stream temperature signatures are

dominated by dam impacts

Human activity affects water quality signatures such as stream tem-

perature indices that evaluate ecosystem health and nutrient cycling

(Ficklin et al., 2023). Dams influence stream temperature regimes due

to thermal stratification in reservoirs, with this water moved down-

stream via top release (warmer) or bottom release (colder) (Bonnema

et al., 2020). For 57 eastern U.S. sites, we quantified thermal sensitiv-

ity, a signature that measures the strength of the relationship between

air and water temperatures (Kelleher et al., 2012). In general, thermal

sensitivity is lower in headwaters, where stream temperatures are

buffered by groundwater and riparian shading, and higher in large

watersheds where heat accumulates along the river. However, cool

water releases below dams reduce thermal sensitivity values. Wade

et al. (2023) trained random forest models on monthly thermal sensi-

tivity values for 400 U.S. sites. They found that dam storage over-

whelmed 23 other influences on river thermal regimes. Teasing out

other influences required training models on sites with minimal dam

impact. Dams also impact basic statistical metrics of water tempera-

ture: among 138 U.S. sites, dam-regulated sites had the warmest and

coolest 20-year trends in maximum monthly water temperatures

(Kelleher et al., 2021). Overall, dam operations influence short-term

behaviour and long-term trends in water temperature signatures.

3 | SUMMARY AND GUIDANCE FOR

APPLYING SIGNATURES IN LARGE SAMPLE

STUDIES

3.1 | Summary of case studies

In this commentary, we described multiple challenges that we encoun-

tered when calculating hydrologic signature values over large samples

of watersheds (Table 1). Signatures designed for some hydroclimates

may lead to incorrect interpretations in others, data quality may vary

with location, and uncertainties may occur from unexpected sources.

When signatures are used in human-impacted watersheds, careful

analysis is required to separate human impacts from natural pro-

cesses. When signatures are applied over continental or global data-

sets, all these factors should be considered when interpreting

signature values and patterns.

3.2 | Guidance for signature users

We recommend that signature users be mindful of the range of pre-

cipitation or flow regimes for which signatures were designed. This

design might have been intentional, for example, functional flow met-

rics that quantify ecologically-important flow features are designed

for region-specific natural flow regimes (Yarnell et al., 2020) or inad-

vertent, for example, soil moisture signatures that were designed for

NZ watersheds, all of which have similarities in climate (Branger &

McMillan, 2020). Where a large sample analysis includes watersheds

with different regimes, signatures might not perform correctly. This is

particularly the case for human-impacted watersheds where reser-

voirs or other infrastructure may cause unusual flow patterns. Such

patterns might cause signature codes to fail, or might mimic unrelated

natural processes, for example, watersheds with groundwater gains

can mimic those with pumped reservoir storage. Signatures may fur-

ther be designed for a specific temporal resolution, for example signa-

tures of flow alteration under hydropower require hourly data

(Bevelhimer et al., 2015). We recommend that, especially where signa-

ture parameters must be selected, users should visually assess

signature behaviour. For example, overlay event or recession periods

on the hydrograph to check correct identification. For large samples,

we encourage plotting for a subset of representative watersheds.

Users should also monitor the structure of missing data, to avoid sys-

tematic biases. Biases should also be considered if sites or events are

excluded from signature analyses as a solution to data quality or other

issues (Table 1). Signature values can be compared with distributions

of values from large sample studies (see signature distributions for the

U.S., Great Britain, Australia and Brazil in McMillan et al. (2022)).

Values outside or at the extremes of those distributions may indicate

F IGURE 6 Observed flow duration curves (red) and associated

naturalized flow duration curves (black dashed) at example reservoir

catchments in the U.K. (a) Ness at Ness-side – 6007; (b) Brenig at Llyn

Brenig – 67 003; (c) Vyrnwy at Vyrnwy Reservoir – 54 003;

(d) Hodder at Stocks Reservoir – 71 002).
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errors, including those due to data quality. When interpreting high or

low signature values, users should consider their perceptual model of

watershed processes and how these affect the signature. We showed

an example where bimodal soil moisture regimes have multiple inter-

pretations; similarly, high BFI (base flow index) values could be caused

by snow, permeable geology, or wetlands (Gnann, McMillan,

et al., 2021). To facilitate such analyses, large sample perceptual

model resources are becoming available (McMillan et al., 2023),

although regional gaps still remain.

3.3 | Guidance for signature creators and coders

Many open-source toolboxes have been created to allow easier cal-

culation of signatures. These include TOSSH (Gnann, Coxon,

et al., 2021), eflows (Patterson et al., 2020), HydRun (Tang &

Carey, 2017), HydroRecession (Arciniega-Esparza et al., 2017), HIA

(Henriksen et al., 2006), Pastas (Collenteur et al., 2019) and others.

We encourage toolbox authors to help reduce signature errors in

large sample studies. One approach is to include warning flags to

identify non-behavioural data series as part of signature code, such

as a warning that few recession segments could be identified which

may invalidate recession signatures. In addition, toolboxes can

include plotting functions to allow rapid visual inspection of signa-

ture behaviour (as recommended above). Signature creators are in a

good position to design relevant visual checks due to their expert

knowledge of the signatures. Known issues, limitations and robust-

ness of signatures can be shared in readme documents, such as is

implemented for eflows documentation (https://eflows.gitbook.io/

project/known_issues). Documents should specify requirements for

the treatment of missing and gap-filled data. Through the combined

efforts of signature creators and signature users, hydrologists can

benefit from accurate signature calculations and interpretations in

large sample studies.

ACKNOWLEDGEMENTS

Support to H. McMillan, G. Coxon, R. Araki and L. Bolotin was pro-

vided by the NSF Hydrologic Sciences Program, Division of Earth Sci-

ences, Grant/Award Number 2124923.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were cre-

ated or analyzed in this study.

ORCID

Hilary McMillan https://orcid.org/0000-0002-9330-9730

Gemma Coxon https://orcid.org/0000-0002-8837-460X

Ryoko Araki https://orcid.org/0000-0002-3647-9768

Saskia Salwey https://orcid.org/0000-0002-2100-3142

Christa Kelleher https://orcid.org/0000-0003-3557-201X

Yanchen Zheng https://orcid.org/0000-0002-2212-9134

Wouter Knoben https://orcid.org/0000-0001-8301-3787

Sebastian Gnann https://orcid.org/0000-0002-9797-5204

Jan Seibert https://orcid.org/0000-0002-6314-2124

Lauren Bolotin https://orcid.org/0000-0002-0295-9544

REFERENCES

Addor, N., Do, H. X., Alvarez-Garreton, C., Coxon, G., Fowler, K., &

Mendoza, P. A. (2020). Large sample hydrology: Recent progress,

guidelines for new datasets and grand challenges. Hydrological Sciences

Journal, 65(5), 712–725.

TABLE 1 Summary of case studies described in this commentary.

Signatures affected Issue found Solution

Precipitation regimes

Overland flow

signatures in

watersheds with

daily convective

rainfall

Automatic event

detection failed:

merged or

incorrectly

associated events

Watershed-specific

parameters,

proposed

improved

signature

algorithm allowing

for time of

concentration

Event runoff ratio

in watersheds

with rain on

most days

Automatic event

detection failed:

incorrectly

associated events

Manual checks and

additional criteria

for event rejection

Soil moisture

seasonality

characterized by

number of peaks

in frequency

distribution

Wider range of

climates showed

that bimodality has

multiple causes

beyond wet/dry

periods

Site-specific data

inspection,

proposed

theoretical studies

Data Quality

Flow magnitude

signatures that

normalize flow

by watershed

area

Watershed area is

uncertain, two

different estimates

available

Reject watersheds

with uncertain

area, or include in

uncertainty

analysis

Signatures based

on event totals

for rainfall and

runoff

Low correspondence

of rainfall and

runoff totals due to

rainfall and flow

uncertainty

Exclude sites from

analysis

Soil moisture

signatures for

field capacity,

wilting point and

dynamic range

Many sites have soil

moisture trends

caused by changes

in processes or

data quality issues

Exclude sites from

analysis or detrend

before use

Human Impacts

Mid-section slope

of Flow Duration

Curve

Reservoir operations

cause flat sections

and abrupt slope

changes

Assess reservoir

impacts on FDC

before applying

standard

signatures

Thermal sensitivity

and basic water

temperature

signatures

Effect of dam-

controlled

reservoirs override

natural signals

Train models on sites

without dam

impacts

8 of 10 COMMENTARY

 1
0
9
9
1
0
8
5
, 2

0
2
3
, 9

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/h

y
p
.1

4
9
8
7
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

2
/0

8
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., & Clark, M. P.

(2018). A ranking of hydrological signatures based on their predictabil-

ity in space. Water Resources Research, 54(11), 8792–8812.

Addor, N., Newman, A. J., Mizukami, N., & Clark, M. P. (2017). The

CAMELS data set: Catchment attributes and meteorology for large

sample studies. Hydrology and Earth System Sciences, 21, 5293–5313.

https://doi.org/10.5194/hess-21-5293-2017

Almagro, A., Oliveira, P. T. S., & Brocca, L. (2021). Assessment of bottom-

up satellite rainfall products on estimating river discharge and hydro-

logic signatures in Brazilian catchments. Journal of Hydrology, 603,

126897.

Araki, R., Branger, F., Wiekenkamp, I., & McMillan, H. (2022). A signature-

based approach to quantify soil moisture dynamics under contrasting

land-uses. Hydrological Processes, 36(4), e14553. https://doi.org/10.

1002/hyp.14553

Araki, R., Mu, Y., & McMillan, H. (2023). Evaluation of GLDAS soil moisture

seasonality in arid climates. Hydrological Sciences Journal, 68, 1109–

1126. https://doi.org/10.1080/02626667.2023.2206032

Arciniega-Esparza, S., Breña-Naranjo, J. A., Pedrozo-Acuña, A., &

Appendini, C. M. (2017). Hydrorecession: A Matlab toolbox for

streamflow recession analysis. Computers & Geosciences, 98, 87–92.

Arheimer, B., Pimentel, R., Isberg, K., Crochemore, L., Andersson, J. C.,

Hasan, A., & Pineda, L. (2020). Global catchment modelling using

world-wide HYPE (WWH), open data, and stepwise parameter estima-

tion. Hydrology and Earth System Sciences, 24(2), 535–559.

Basak, A., Mengshoel, O. J., Kulkarni, C., Schmidt, K., Shastry, P., &

Rapeta, R. (2017). Optimizing the decomposition of time series using

evolutionary algorithms: soil moisture analytics. Proceedings of the

Genetic and Evolutionary Computation Conference GECCO ‘17,

1073–1080. New York, NY, USA: Association for Computing Machin-

ery. https://doi.org/10.1145/3071178.3071191

Beck, H. E., De Roo, A., & van Dijk, A. I. (2015). Global maps of streamflow

characteristics based on observations from several thousand catch-

ments. Journal of Hydrometeorology, 16(4), 1478–1501.

Bevelhimer, M. S., McManamay, R. A., & O'connor, B. (2015). Characteriz-

ing sub-daily flow regimes: Implications of hydrologic resolution on

ecohydrology studies. River Research and Applications, 31(7), 867–879.

Bonnema, M., Hossain, F., Nijssen, B., & Holtgrieve, G. (2020). Hydro-

power's hidden transformation of rivers in the Mekong. Environmental

Research Letters, 15(4), 044017. https://doi.org/10.1088/1748-9326/

ab763d

Botterill, T. E., & McMillan, H. K. (2022). Using machine learning to identify

hydrologic signatures with an encoder-decoder framework. Water

Resources Research, 59, e2022WR033091.

Branger, F., & McMillan, H. K. (2020). Deriving hydrological signatures

from soil moisture data. Hydrological Processes, 34(6), 1410–1427.

https://doi.org/10.1002/hyp.13645

Chandler, D. G., Seyfried, M. S., McNamara, J. P., & Hwang, K. (2017).

Inference of soil hydrologic parameters from electronic soil moisture

records. Frontiers of Earth Science in China, 5, 1–17. https://doi.org/10.

3389/feart.2017.00025

Collenteur, R. A., Bakker, M., Caljé, R., Klop, S. A., & Schaars, F. (2019).

Pastas: Open source software for the analysis of groundwater time

series. Groundwater, 57(6), 877–885.

Coxon, G., Freer, J., Lane, R., Dunne, T., Knoben, W. J., Howden, N. J.,

Quinn, N., Wagener, T., & Woods, R. (2019). DECIPHeR v1: Dynamic

fluxEs and connectivity for predictions of HydRology. Geoscientific

Model Development, 12(6), 2285–2306.

David, P. C., Chaffe, P. L., Chagas, V. B., Dal Molin, M., Oliveira, D. Y.,

Klein, A. H., & Fenicia, F. (2022). Correspondence between model

structures and hydrological signatures: A large-sample case study

using 508 Brazilian catchments. Water Resources Research, 58(3),

e2021WR030619.

Donnelly, C., Andersson, J. C., & Arheimer, B. (2016). Using flow signatures

and catchment similarities to evaluate the E-HYPE multi-basin model

across Europe. Hydrological Sciences Journal, 61(2), 255–273.

Dorigo, W. A. A., Xaver, A., Vreugdenhil, M., Gruber, A., Hegyiová, A.,

Sanchis-Dufau, A. D. D., Zamojski, D., et al. (2013). Global automated

quality control of In situ soil moisture data from the international soil

moisture network. Vadose Zone Journal, 12(3), vzj2012.0097. https://

doi.org/10.2136/vzj2012.0097

Dralle, D. N., Karst, N. J., Charalampous, K., Veenstra, A., &

Thompson, S. E. (2017). Event-scale power law recession analysis:

Quantifying methodological uncertainty. Hydrology and Earth System

Sciences, 21(1), 65–81.

Ebeling, P., Kumar, R., Weber, M., Knoll, L., Fleckenstein, J. H., &

Musolff, A. (2021). Archetypes and controls of riverine nutrient export

across German catchments. Water Resources Research, 57(4),

e2020WR028134.

Ficklin, D. L., Hannah, D. M., Wanders, N., Dugdale, S. J., England, J.,

Klaus, J., Kelleher, C., Khamis, K., & Charlton, M. B. (2023). Rethinking

river water temperature in a changing, human-dominated world. Nature

Water, 1(2), 125–128. https://doi.org/10.1038/s44221-023-00027-2

Giani, G., Tarasova, L., Woods, R. A., & Rico-Ramirez, M. A. (2022). An

objective time-series-analysis method for rainfall-runoff event identifi-

cation. Water Resources Research, 58, e2021WR031283. https://doi.

org/10.1029/2021WR031283

Gnann, S. J., Coxon, G., Woods, R. A., Howden, N. J., & McMillan, H. K.

(2021). TOSSH: A toolbox for streamflow signatures in hydrology.

Environmental Modelling & Software, 138, 104983.

Gnann, S. J., McMillan, H. K., Woods, R. A., & Howden, N. J. (2021). Includ-

ing regional knowledge improves baseflow signature predictions in

large sample hydrology. Water Resources Research, 57(2),

p.e2020WR028354.

Grantham, T. E., Carlisle, D. M., Howard, J., Lane, B., Lusardi, R.,

Obester, A., Sandoval-Solis, S., Stanford, B., Stein, E. D., Taniguchi-

Quan, K. T., & Yarnell, S. M. (2022). Modeling functional flows in Cali-

fornia's Rivers. Frontiers in Environmental Science, 10, 787473.

Henriksen, J. A., Heasley, J., Kennen, J. G., & Nieswand, S. (2006). Users'

manual for the Hydroecological integrity assessment process

software(including the New Jersey assessment tools). U. S. Geological

Survey.

Janssen, J., & Ameli, A. A. (2021). A hydrologic functional approach for

improving large-sample hydrology performance in poorly gauged

regions. Water Resources Research, 57(9), p.e2021WR030263.

Jelinski, D. E., & Wu, J. (1996). The modifiable areal unit problem and

implications for landscape ecology. Landscape Ecology, 11, 129–140.

Kelleher, C., Wagener, T., Gooseff, M., McGlynn, B., McGuire, K., &

Marshall, L. (2012). Investigating controls on the thermal sensitivity of

Pennsylvania streams. Hydrological Processes, 26(5), 771–785.

Kelleher, C. A., Golden, H. E., & Archfield, S. A. (2021). Monthly river tem-

perature trends across the US confound annual changes. Environmen-

tal Research Letters, 16(10), 104006. https://doi.org/10.1088/1748-

9326/ac2289

Knoben, W. J. M., Freer, J. E., Peel, M. C., Fowler, K. J. A., & Woods, R. A.

(2020). A brief analysis of conceptual model structure uncertainty

using 36 models and 559 catchments. Water Resources Research, 56,

e2019WR025975. https://doi.org/10.1029/2019WR025975

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., &

Nearing, G. (2019). Towards learning universal, regional, and local

hydrological behaviors via machine learning applied to large sample

datasets. Hydrology and Earth System Sciences, 23(12), 5089–5110.

Kratzert, F., Nearing, G., Addor, N., Erickson, T., Gauch, M., Gilon, O.,

Gudmundsson, L., Hassidim, A., Klotz, D., Nevo, S., & Shalev, G. (2023).

Caravan-a global community dataset for large sample hydrology. Scien-

tific Data, 10(1), 61.

Kuentz, A., Arheimer, B., Hundecha, Y., & Wagener, T. (2017). Understand-

ing hydrologic variability across Europe through catchment classifica-

tion. Hydrology and Earth System Sciences, 21(6), 2863–2879.

Magilligan, F. J., & Nislow, K. H. (2005). Changes in hydrologic regime by

dams. 856. Geomorphology, 71(1–2), 61–78. https://doi.org/10.1016/

j.geomorph.2004.08.017

COMMENTARY 9 of 10

 1
0
9
9
1
0
8
5
, 2

0
2
3
, 9

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/h

y
p
.1

4
9
8
7
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

2
/0

8
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



Martini, E., Wollschläger, U., Kögler, S., Behrens, T., Dietrich, P.,

Reinstorf, F., Schmidt, K., Weiler, M., Werban, U., & Zacharias, S. (2015).

Spatial and temporal dynamics of hillslope-scale soil moisture patterns:

Characteristic states and transition mechanisms. Vadose Zone Journal,

14(4), vzj2014.10.0150. https://doi.org/10.2136/vzj2014.10.0150

Massmann, C. (2020). Identification of factors influencing hydrologic

model performance using a top-down approach in a large number of

US catchments. Hydrological Processes, 34(1), 4–20.

Maynard, C. M., & Lane, S. N. (2012). Reservoir compensation releases:

Impact on the 863 macroinvertebrate Community of the Derwent

River, Northumberland, U.K.-a 864 longitudinal study. River Research

and Applications, 28(6), 692–702. https://doi.org/10.1002/rra.2557

McMillan, H. (2020). Linking hydrologic signatures to hydrologic pro-

cesses: A review. Hydrological Processes, 34(6), 1393–1409.

McMillan, H., Araki, R., Gnann, S., Woods, R., & Wagener, T. (2023). How

do hydrologists perceive watersheds? A survey and analysis of percep-

tual model figures for experimental watersheds. Hydrological Processes,

37(3), e14845.

McMillan, H. K. (2021). A review of hydrologic signatures and their appli-

cations. Wiley Interdisciplinary Reviews: Water, 8(1), e1499.

McMillan, H. K., Booker, D. J., & Cattoën, C. (2016). Validation of a

national hydrological model. Journal of Hydrology, 541, 800–815.

McMillan, H. K., Clark, M. P., Bowden, W. B., Duncan, M., & Woods, R. A.

(2011). Hydrological field data from a modeller's perspective: Part

1. Diagnostic tests for model structure. Hydrological Processes, 25(4),

511–522.

McMillan, H. K., Gnann, S. J., & Araki, R. (2022). Large scale evaluation of

relationships between hydrologic signatures and processes. Water

Resources Research, 58(6), e2021WR031751.

Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A.,

Viger, R. J., Blodgett, D., Brekke, L., Arnold, J. R., Hopson, T., &

Duan, Q. (2015). Development of a large sample watershed-scale

hydrometeorological dataset for the contiguous USA: Dataset charac-

teristics and assessment of regional variability in hydrologic model per-

formance. Hydrology and Earth System Sciences, 19, 209–223. https://

doi.org/10.5194/hess-19-209-2015

Patterson, N. K., Lane, B. A., Sandoval-Solis, S., Pasternack, G. B.,

Yarnell, S. M., & Qiu, Y. (2020). A hydrologic feature detection algo-

rithm to quantify seasonal components of flow regimes. Journal of

Hydrology, 585, 124787.

Peek, R., Irving, K., Yarnell, S. M., Lusardi, R., Stein, E. D., & Mazor, R.

(2022). Identifying functional flow linkages between stream alteration

and biological stream condition indices across California. Frontiers in

Environmental Science, 9, 638.

Salwey, S., Coxon, G., Pianosi, F., Singer, M. B., & Hutton, C. (2023).

National-Scale Detection of reservoir impacts through hydrological

signatures. Water Resources Research, 59, e2022WR033893.

Sehgal, V., & Mohanty, B. (2023). Preferential hydrologic states and tipping

characteristics of global surface soil moisture. ESS Open Archive, 1–39.

https://doi.org/10.22541/essoar.167840001.13313960/v1

Smith, B. K., & Smith, J. A. (2015). The flashiest watersheds in the contigu-

ous United States. Journal of Hydrometeorology, 16(6), 2365–2381.

Stoelzle, M., Schuetz, T., Weiler, M., Stahl, K., & Tallaksen, L. M. (2020).

Beyond binary baseflow separation: A delayed-flow index for multiple

streamflow contributions. Hydrology and Earth System Sciences, 24(2),

849–867.

Tang, W., & Carey, S. K. (2017). HydRun: A MATLAB toolbox for rainfall–

runoff analysis. Hydrological Processes, 31(15), 2670–2682.

Tarasova, L., Basso, S., Zink, M., & Merz, R. (2018). Exploring controls on

rainfall-runoff events: 1. Time series-based event separation and tem-

poral dynamics of event runoff response in Germany. Water Resources

Research, 54, 7711–7732. https://doi.org/10.1029/2018WR022587

Tashie, A., Pavelsky, T., & Band, L. E. (2020). An empirical reevaluation of

streamflow recession analysis at the continental scale. Water Resources

Research, 56(1), e2019WR025448.

Tyralis, H., Papacharalampous, G., Langousis, A., & Papalexiou, S. M.

(2021). Explanation and probabilistic prediction of hydrological signa-

tures with statistical boosting algorithms. Remote Sensing, 13(3), 333.

https://doi.org/10.3390/rs13030333

Wade, J., Kelleher, C., & Hannah, D. M. (2023). Machine learning unravels

controls on river water temperature regime dynamics. Journal of

Hydrology, 623, 129821. https://doi.org/10.1016/j.jhydrol.2023.

129821

Westerberg, I. K., & McMillan, H. K. (2015). Uncertainty in hydrological sig-

natures. Hydrology and Earth System Sciences, 19(9), 3951–3968.

Yarnell, S. M., Stein, E. D., Webb, J. A., Grantham, T., Lusardi, R. A.,

Zimmerman, J., Peek, R. A., Lane, B. A., Howard, J., & Sandoval-Solis, S.

(2020). A functional flows approach to selecting ecologically relevant

flow metrics for environmental flow applications. River Research and

Applications, 36(2), 318–324.

Yilmaz, K. K., Gupta, H. V., & Wagener, T. (2008). A process-based diag-

nostic approach to model evaluation: Application to the NWS distrib-

uted hydrologic model. Water Resources Research, 44(9), W09417.

https://doi.org/10.1029/2007WR006716

Zheng, Y., Coxon, G., Woods, R., Li, J., & Feng, P. (2023a). Controls on the

spatial and temporal patterns of rainfall-runoff event

characteristics – a large sample of catchments across Great Britain.

Water Resources Research, 59, e2022WR033226. https://doi.org/10.

1029/2022WR033226

Zheng, Y., Coxon, G., Woods, R., Li, J., & Feng, P. (2023b). A framework

for estimating the probability distribution of event runoff coefficient

in ungauged catchments. Water Resources Research, 59,

e2022WR033227. https://doi.org/10.1029/2022WR033227

Zmijewski, N., & Wörman, A. (2016). Hydrograph variances over different

timescales in hydropower production networks. Water Resources

Research, 52, 5829–5846. https://doi.org/10.1002/2015WR017775

How to cite this article: McMillan, H., Coxon, G., Araki, R.,

Salwey, S., Kelleher, C., Zheng, Y., Knoben, W., Gnann, S.,

Seibert, J., & Bolotin, L. (2023). When good signatures go bad:

Applying hydrologic signatures in large sample studies.

Hydrological Processes, 37(9), e14987. https://doi.org/10.

1002/hyp.14987

10 of 10 COMMENTARY

 1
0
9
9
1
0
8
5
, 2

0
2
3
, 9

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/h

y
p
.1

4
9
8
7
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

2
/0

8
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se


	When good signatures go bad: Applying hydrologic signatures in large sample studies
	1  INTRODUCTION
	1.1  Challenges in using signatures over large samples
	1.2  Aims of the paper

	2  CASE STUDIES: CHALLENGES APPLYING SIGNATURES IN LARGE SAMPLES OF WATERSHEDS
	2.1  Signature issues caused by precipitation and flow regimes
	2.1.1  Event identification failed in Arizona watersheds with convective monsoon rainfall
	2.1.2  Event identification required manual checks in drizzly United Kingdom
	2.1.3  Soil moisture seasonality was misidentified in sites with multiple wet seasons in a year

	2.2  Signature issues caused by data quality
	2.2.1  Issues with catchment area affects flow magnitude signatures
	2.2.2  High uncertainties in event rainfall and flow totals in Arizona
	2.2.3  Non-stationarity in soil moisture values invalidated magnitudes and dynamic range

	2.3  Signature issues caused by human impacts
	2.3.1  Flow duration curve slope was modified for flow series impacted by water supply reservoirs
	2.3.2  Stream temperature signatures are dominated by dam impacts


	3  SUMMARY AND GUIDANCE FOR APPLYING SIGNATURES IN LARGE SAMPLE STUDIES
	3.1  Summary of case studies
	3.2  Guidance for signature users
	3.3  Guidance for signature creators and coders

	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


