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ABSTRACT

Deflation is an efficient numerical technique for identifying new branches of steady state solutions to nonlinear partial differential equations.
Here, we demonstrate how to extend deflation to discover new periodic orbits in nonlinear dynamical lattices. We employ our extension
to identify discrete breathers, which are generic exponentially localized, time-periodic solutions of such lattices. We compare different
approaches to using deflation for periodic orbits, including ones based on Fourier decomposition of the solution, as well as ones based
on the solution’s energy density profile. We demonstrate the ability of the method to obtain a wide variety of multibreather solutions without

prior knowledge about their spatial profile.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0161889

The study of discrete breathers has been a distinctive feature
of the contributions and career of D. K. Campbell, given his
role in analyzing the prototypical intrinsic localized modes
(such as onsite and intersite ones) and the key role of the
energy difference between them (the so-called Peierls-Nabarro
barrier), as well as his highly recognized and still frequently
cited review on the subject.’ This is also for good reason
as the significance of such nonlinear lattice dynamical modes
has been recognized in an extremely broad and diverse set of
areas spanning nonlinear optics, atomic physics, materials sci-
ence, condensed matter physics, classical mechanical and elec-
trical lattices, and the DNA double strand and beyond. Our

aim here is to offer a novel perspective in identifying discrete
breathers and, more generally, time-periodic solutions of lattice
nonlinear dynamical systems through the use of the numeri-
cal deflation technique. The latter methodology, by weighing
against already identified waveforms (e.g., a first one obtained
by means of a Newton method or similar), has had exten-
sive success in finding steady states but, to the best of our
knowledge, has not systematically been used for time-periodic
solutions. Our scope is to show how to systematically per-
form such computation and to illustrate its success in a pro-
totypical dynamical lattice, such as the Morse-Klein-Gordon
system.
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. INTRODUCTION

The study of discrete breathers has received extensive attention
over the past four decades and has been summarized in numerous
reviews.””* Part of their appeal can be attributed to their broad rel-
evance: they generically appear in anharmonic crystals, as argued
since the early works of Refs. 5 and 6. Their mathematical existence
is rigorously established (under mild non-resonance conditions) in
nonlinear dynamical lattices.” These features were, in turn, mir-
rored in their demonstrated experimental emergence in a wide
range of applications, such as the nonlinear dynamics of optical
waveguides,’ the setting of mean-field atomic condensates in opti-
cal lattices,’ the evolution of granular crystals in materials science,"
electrical circuits,"' Josephson-junction ladders,'>"” micromechani-
cal arrays,'* and models of the DNA double strand,'” crystals,"” or
carbon materials.'

In this work, we will extend the idea of deflation'® to dis-
covering discrete breathers. Deflation is a numerical technique for
computing multiple solutions of nonlinear equations. Once a solu-
tion of the equations has been found (e.g., with Newton’s method),
the residual of the problem is modified so that the known solution
is removed: Newton’s method will not converge to it again under
mild regularity conditions. Newton’s method may then be applied
again, and if it converges, it will have discovered a second solu-
tion. The process may then be repeated to yield multiple solutions
from the same initial guess. The technique demonstrates exciting
potential for unlocking a wide range of unknown solutions, impor-
tantly without expert knowledge of the system statics or dynamics.
Recently, the technique has been shown to enable the identification
of a wide range of steady state solutions in dispersive nonlinear sys-
tems, both in two and three dimensions and for both single and
multiple components.'*~*

The use of deflation has, for the most part, been limited to the
identification of stationary states, while attempts to apply it to the
realm of periodic orbits have been very limited; see, e.g., Ref. 23
for a low-dimensional example. Indeed, our aim herein is to show
that such a technique can be brought to bear toward the iden-
tification of periodic orbits in the form of discrete breathers for
high-dimensional nonlinear lattice dynamical systems.

More specifically, we illustrate that, upon taking the Fourier
series decomposition of the periodic solution, the problem acquires
an algebraic form (effectively in “space-time”), where deflation can
be directly applied. Indeed, we offer multiple variants of this, one
in which the vector of associated Fourier coefficients is deflated
against and another where the energy density profile is used instead.
The latter is commonly (although not necessarily) stationary dur-
ing the periodic (amplitude) variation of discrete breathers. We
show that the technique is successful in uncovering a wide range
of previously unknown (to the best of our knowledge) solutions in
a Klein—-Gordon lattice bearing an onsite nonlinear potential of the
Morse type. While many of these solutions could have been con-
structed by leveraging expert knowledge, e.g., from the uncoupled
so-called anti-continuum limit,” the present method allows us to
automatically obtain them without such prior knowledge. Hence,
deflation and the associated deflated continuation are argued to be
an efficient tool for unraveling the landscape of periodic orbits in
(many-degree-of-freedom) lattice nonlinear dynamical systems.
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Our presentation is structured as follows. In Sec. II, we pro-
vide details of the theory and computational method associated with
the use of deflation for periodic orbits. In Sec. I1I, we explore the
Klein-Gordon lattice associated with the onsite Morse potential. We
apply deflation in combination with continuation to systematically
obtain the periodic orbits of the system. Finally, in Sec. I'V, we sum-
marize our findings and propose a number of directions for future
study.

Il. THEORETICAL AND COMPUTATIONAL SETUP

Our system of choice will be a Klein-Gordon chain of oscilla-
tors of the form

i’.‘n + V(un) - C(unfl + Uy — zun) =0,
1
n=|-(N—-1/2]... ((N=1)/2],

with u, being the displacement from the equilibrium of the nth oscil-

lator, the double dot meaning the second derivative in time, V(u,)

the on-site (or substrate) potential, and C the coupling constant.™*

This equation is supplemented by periodic boundary conditions.
Equation (1) can be derived from the Hamiltonian

i C )
H({unO) = 3 2+ V) + S — ). ()

We will seek time-reversible periodic solutions of Eq. (1). To this
aim, we express u,(f) as a truncated Fourier series expansion,

K

Un() = Zon +2 ) _ 2k cos(ket), 3)
k=1

so that the set of N ODEs transforms into a set of (K + 1)N non-
linear algebraic equations F({zy,}) = 0 that can be solved by fixed
point methods, for a fixed frequency w < 1, as will be done herein.
This treatment of frequencies and space on an equal footing for the
resulting Fourier coefficients yields a conversion of the system into
an algebraic one, which enables the use of deflation. The resulting
equations take the form

Fk,n = _kzwzzk,n + Fk,n - C(zk,n+1 + Zkn-1 — 2Zk,n) =0. (4)

Here, F}, denotes the kth mode at the nth site of the discrete cosine
Fourier transform,

K
V' (u,(0)) + 2 Z V' (ua(ty)) cos(kwty) [, (5)

g=1

with u,(¢) taken from (3) and t; = 27 q/(2K + Dw).

One can acquire a discrete breather solution by making use of
continuation from the anti-continuum limit introduced by MacKay
and Aubry.” The relevant theorem establishes that a solution at the
C = 0 limit can be continued up to finite coupling as long as no
integer multiple of the breather frequency w resonates with the lin-
ear band modes. With this in mind, it is possible to compute the
solution for a single oscillator #(¢) and construct the breather (cen-
tered at n = 0) at the anti-continuum limit as u,(f) = %(t),,0. This
solution can then be continued, e.g., through the Newton-Raphson
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ALGORITHM 1. Outline of the approach to finding multiple solutions.

for case in Tables I & 11
known solutions < [z, 0];
perturb z" to get zyw;
solutions found < 0;
while true do
solve deflated problem from initial guess z,;
if solve was successful then
refine discovered solution by solving undeflated problem;
append refined solution to known solutions;
increment solutions found;
if solutions found = 5 then
return known solutions.
end if
else
return known solutions.
end if
end while
end for

method until a prescribed coupling constant;” for a single-site
excitation, such a continuation will generically exist. For the multi-
breather structures considered below, such a continuation is less
straightforward, as will be seen. For an infinite oscillator chain, the
continuation finishes when mw, with m € N, coincides with one of
the borders of the linear mode band.” If the chain is finite, there are
gaps in the linear mode spectrum allowing the existence of breathers
for which mw is inside the linear mode band.*

There are many ways of constructing breathers at the
anti-continuum limit depending on the sites where the iso-
lated oscillators are located and the phase of those oscillators.
Breathers with more than one excited site are usually denoted
as multibreathers.””~* Among them, the only one that can be

TABLE . Deflation method for each solution obtained by perturbing the breather core.

Perturbation  Perturbed

ARTICLE pubs.aip.org/aip/cha

continued until the resonance with linear modes is the so-called
inter-site mode, while the on-site mode, mentioned in the para-
graph above, concerns a single excited site. The former is given
by u,(t) = u()(8n0 + 8u,1); Le., it consists of two adjacent excited
sites oscillating in phase. It is well-known from works such as those
of Refs. 27-29, that these solutions are dynamically unstable in
Klein-Gordon lattices with soft nonlinearities, such as the ones con-
sidered herein. The other multibreathers experience a bifurcation
when one performs continuation on C before the resonance with
linear modes.

As our prototypical example illustrating the method, we will
consider breathers in the Klein-Gordon chain with the Morse
potential,” V(u) = D(e™* — 1)°, with D=1/2 and b=1, and
a fixed frequency w = 0.8. The coefficients of the Fourier series
for an isolated oscillator can be analytically calculated (see, e.g.,
Appendix A in Ref. 27) so that &t = zy + 2 ), Z cos(kwt) with

- log(l+w) . D /1-w kr2
h=—0p > &= i) - ©

Upon regular (parametric) continuation, we extend solutions from
C =0 to a given Cy,y by using the solution at C — §C as an initial
guess for the Newton method applied at C. In other words, we make
small steps in parameter space so that the desired solution is close
to the initial guess. This allows us to compute a branch of on-site
breathers for a relatively large value of Cyx.

We have fixed the number of nodes to N = 40 and the maxi-
mum Fourier coefficient in (3) to be K = 11. As the Morse potential
is C*°, Fourier coefficients decay fast with k [see Eq. (6) for a single
oscillator]. In fact, we have checked that the largest value for |zx,|
in a multibreather is < 107%, which gives reasonable accuracy to our
calculations. Nevertheless, we expect that, for ® — 0, an accurate
multibreather computation will require a large K.

Deflation will subsequently enable us to discover other
branches of solutions, potentially quite far away in configuration
space. The key idea is to solve a judiciously modified equation G = 0
that removes the known solutions from consideration. Given the
residual F for fixed parameters [as defined by (4)] and known solu-
tions zW, u = 1,. .., v, we consider two variants for defining G. The

Deflation Deflation parameter Fourier
Family method order (v) (x) coefficients TABLE II. Deflation method for each solution obtained by perturbing the whole
A Fourier 2 2 k=0, 1 breather
B Energy 1 3 k=0, 1 Perturbation  Perturbed
c Energy ! 2 k=0,....K Deflation Deflation parameter Fourier
D Fourier 1 2 k=0, 1 Famil thod der (v) () fficient

. amily metho order (v K coefficients
E Fourier 2 3 k=0,1
F Fourier 1 1 k=0, 1 N Fourier 2 1 k=0, 1
G Energy 1 2 k=0,1 (6] Fourier 5 2 k=0,1
H Energy 1 1 k=0,...,K P Energy 1 2 k=0, 1
I Fourier 4 3 k=0, 1 Q Fourier 1 3 k=0, 1
] Energy 2 1 k=0,1 R Energy 1 3 k=0,1
K Fourier 1 3 k=0, 1 S Fourier 5 1 k=0, 1
L Fourier 3 1 k=o0,1 T Energy 1 2 k=0,...,K
M Fourier 3 2 k=0, 1 U Energy 1 1 k=0,...,K
Chaos 33, 113126 (2023); doi: 10.1063/5.0161889 33, 113126-3
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FIG. 1. Bifurcation diagrams for breather families obtained from deflation perturbing the breather core. See the subsequent figures for elemental members of each of the
labeled solution families. In the bottom right panel, the dot indicates the pitchfork bifurcation point (see the text). The inset in that panel zooms into the region close to the

bifurcations.

first one is based on the Fourier coefficients of the equations

! 1
Gi, = ——— 4+ 0 | Fip. 7
b n(nz—zwnlz )"‘ @

=0

Here, 0 > 0 is a constant (typically, o = 1). The prefactor multi-
plying the vector F is always strictly positive; therefore, the only
solutions to the vector equations G = 0 are those for which F = 0.
The prefactor blows up as z approaches a known solution, which
forces Newton-type methods not to converge there. Given v >
0 solutions, we can solve G = 0 from any available initial guess
(so long as it is not a known solution), and if this solve is suc-
cessful, we have discovered the (v + 1)™ solution. We fix z©@ =0

to also deflate the trivial zero solution. In our work, we solve
G = 0 by means of a Levenberg-Marquardt algorithm and refined
by the trust-region-dogleg algorithm (as implemented in MAT-
LAB’s fsolve).

Notice that this procedure may yield solutions that are related
to known ones by group actions, e.g., by time or spatial reversal or
even a translational shift. In principle, this can be avoided by build-
ing into deflation the symmetries of the original dynamical system,
as was done, e.g., in Ref. 20 in the continuum context. This aspect is
worth pursuing systematically in the discrete realm in the future.

The above approach constitutes the “standard” deflation per-
spective for systems of algebraic equations, relying on the use of the
Fourier decomposition to turn the computation of the periodic orbit
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FIG. 2. Breather profiles for the solutions with C = 0.03 in the upper left panel of Fig. 1.

into an algebraic problem in the two-dimensional space of frequen-
cies and spatial lattice nodes. The second alternative for defining G
is based on the breather energy density. In that case, we define

with E(z) being given as the expression inside the summation within
Eq. (2);ie.,

C
E.(2) = V(u,(0)) + E(un(o) — t11(0))%,

©)
v 1 K
Gin = (— + 0) Fis (8) Un(0) = 2Zyo + 2 Zuk.
,E) [IE(z) — E(z#)||p k=1
Chaos 33, 113126 (2023); doi: 10.1063/5.0161889 33, 113126-5

Published under an exclusive license by AIP Publishing

27:95:80 ¥20zZ 1snbny |


https://pubs.aip.org/aip/cha

Chaos

1
- 0.5
S
0¢
-0.5¢ s .
-20 -10 0 10
n
1} F bottom 18 '
3 0.5}

ARTICLE

pubs.aip.org/aip/cha

220 -10

FIG. 3. Breather profiles for the solutions with C = 0.03 in the upper right panel of Fig. 1.

Part of the motivation for considering this alternative stems from
the fact that often (but not always) the energy density of a breather,
while exponentially localized in space around the breather location,
may be independent of time. Hence, it may also be a suitable vec-
tor entity to “deflate against.” Our scope here is to obtain, using
a deflation methodology, a wide range of possible solutions of the
nonlinear dynamical lattice of interest. Hence, the ability to do so
leveraging different deflation techniques is a path worth exploring

to that effect. Sometimes, the same perturbations to a given solution
(with these two distinct methodologies) may yield the same output,
but often, they will yield different ones, hence their parallel usage
below.

We now turn to the specifics of our numerical results to explore
the different types of multibreather solutions that one can obtain
starting from a fundamental solution of the nonlinear problem (such
as a single-site breather).
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FIG. 4. Breather profiles for the solutions with C = 0.03 in the bottom left panel of Fig. 1.

lll. NUMERICAL RESULTS

Hereafter, we will apply deflation at a particular value of the
coupling, namely, C = 0.05. This choice is motivated for the great
number of multibreathers existing for such relatively low coupling.
This leads to a more complex energy landscape: as the coupling
is increased (as we will see also below), many of these solutions
terminate in different types of bifurcations, reducing the complex-
ity of available waveforms. In what follows, we will practically
set the parameter v of the deflation algorithm above typically to
v = 5. This, however, does not pose a constraint on the usage of
the relevant methodology, which can, a priori, be used for more
general v.

The approach used to find multiple solutions is outlined in
Algorithm 1. For each case listed in Tables I and II, we re-initialize
the list of known solutions to be the solution obtained from regular
continuation, i.e., zV, and the trivial zero solution. We then per-
turb zV in different ways depending on the case considered. In some
cases, we perturb only the core of the breather (in particular, the 13

central sites), while in others, we perturb the full breather; in the
former, one mainly discovers multibreathers located at the central
sites as depicted in Figs. 1-5, whereas in the latter, one mainly gets
multibreathers with a great number of excited sites (see Figs. 6-8).

Perturbations are made by adding a sinusoidal function to each
of the relevant Fourier coefficients, i.e.,

Zkw = 107 sin(kn) + z,(:,)l, (10)

with k=0, 1 or k =0,...,K. With the perturbed initial guess at
hand, we now proceed to the main deflation loop. We deflate
the solutions in the list of known solutions, using the deflation
operator specified in Tables I and II, and attempt to solve the
deflated problem from the perturbed initial guess using the Leven-
berg-Marquardt algorithm. If this process does not converge, we
terminate the deflation loop and move on to the next case. If this
process does converge, since the Levenberg-Marquardt algorithm
iterates to a minimum of the norm, refinement with another
algorithm is required in order to get a zero in the norm. To this
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FIG. 5. Breather profiles for the solutions with C = 0.03 in the bottom right panel of Fig. 1.
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FIG. 6. Bifurcation diagrams for breather families obtained from deflation perturbing the whole breather. Here, and as is shown in subsequent figures, entirely different
solution families are being probed due to the different nature of the perturbation.
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FIG. 7. Breather profiles for the solutions with C = 0.03 in the left panel of Fig. 6. Notice the more extended nature of the resulting solutions here and in the following figures

due to the deflation perturbation involving the entire breather (rather than just its core).

aim, we refine the new solution found by solving the original (unde-
flated) problem using the trust-region dogleg method. We append
the refined solution to the list of known solutions and repeat up to a
maximum of five times.

With this approach, we have found a plethora of solu-
tions at C = 0.05, among which we have discarded those that
correspond to the same breather solution (modulo space shift or

time-reversal/space-reversal symmetry). As indicated, aspects, such
as incorporation of system symmetries within deflation”’ or pos-
sibly the usage of the energy-based approach (e.g., for space- or
time-reversal), are relevant toward addressing this aspect, a topic
that we believe will benefit further from future work. Subsequently,
we perform regular continuations by increasing and decreasing C
in order to get the full branch of the associated solutions, which
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FIG. 8. Breather profiles for the solutions with C = 0.03 in the right panel of Fig. 6.

starts at the anti-continuum limit and folds, typically, at a turning
point at C = C;. In order to get the complementary branch around
the turning point, we have performed continuation in the energy H
of Eq. (2). To this aim, we augment the system (4) with an extra
equation Fy, given by

Fy = H(z) — H, (11)

where H is the energy of the solution we want to obtain, z is the seed,
and H(z) is the energy of the seed found by applying (2); in addition,
the set of variables must be augmented by including C, which plays
the role of a Lagrange multiplier. Once a solution of the complemen-
tary branch is found, regular continuation on C can be performed
for this branch as well.

A summary of the bifurcation diagrams is depicted in Figs. 1
and 6, with the former corresponding to solutions found by
perturbing the breather core, and the latter to perturbations of the
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FIG. 9. Time evolution of the energy density for some select multibreather branches. The energy density is represented in space (n) and time (t), showcasing the apparent
stability of the bottom A branch (top left panel) vs the dynamical instability of top D, bottom Q, and top N branches shown in the top right, bottom left, and bottom right panels,

respectively.

whole breather. Notice that here, we provide bifurcation diagrams
illustrating the energy of the obtained solutions H as a function of
the coupling strength C; yet, it is equally possible to perform contin-
uation on the frequency of the solution w. The latter is of particular
interest, as well, since the slope of the respective curves has a bearing
on the breather stability (and corresponding changes of monotonic-
ity amount to changes of stability™). The profile of the breather
of each branch at C = 0.03 is shown in Figs. 2-5 and 7-8. Notice
that, in spite of the fact that the deflations are performed from the
solutions at C = 0.05, we have chosen to depict them at C = 0.03
because for the former value, in some of the branches, it is hard to
discern the main and complementary branches of solutions. This is
because the former value of C may be quite close to the branch’s
turning point value C,.

It is interesting to observe the branches that appear to collide
and disappear hand-in-hand in a turning point in these diagrams.
For instance, the top and bottom branches of family A can be seen
to involve a pair of anti-phase site excitations to the central-most
one, with the only difference being that these excitations occur only
at the nearest neighbors to the center or also at the next-nearest
neighbors. In a similar vein, for branch B, bottom and top both
feature a core of four central-most sites; yet, as the coupling C is
increased, these move from the former toward the latter (in partic-
ular, the second and the fourth site of the bottom branch increase
in amplitude to assume the amplitudes of the top one, resulting in
the collision and pairwise disappearance of these branches). Similar
patterns can be detected for all the branches that we have consid-
ered (e.g., in branch C, again, an additional site to the left of n = 0
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is excited on the bottom to make it resemble more to the top, etc.).
It is worth noticing that families L and M comprise three branches,
as the branch, including the deflated solution, bifurcates with the
complementary branch through a pitchfork (marked as a dot in the
corresponding diagrams in the bottom right panel of Fig. 1) and
the emerging branch terminates with the complementary branch
at a turning point. This behavior, which is typical of multipeaked
breathers, was thoroughly described in Ref. 31. Let us also remark
that, in every solution family, the branch encompassing the deflated
solutions is the one at the bottom, except for the L and M families,
where this is the one at the middle. In fact, from Fig. 9 in Ref. 31,
some results on the stability of the members of these families can be
inferred. For instance, these multibreathers are unstable since there
are adjacent peaks, which are in phase. On the other hand, there
is a symmetry breaking bifurcation between top and middle fami-
lies; in particular, the top family, to which belong the most unstable
breathers, bifurcates with the (asymmetric) middle family through
a supercritical pitchfork. Notice that the top and bottom L families
interchange their energy close to the bifurcation.

As discussed above, the method followed for obtaining each
deflated solution is summarized in Tables I and II. Finally, it is rele-
vant to note that the multibreathers in Figs. 7-8 are rather extended
in nature, and in some cases, they can be considered a superposi-
tion of multiple single-site or two-site breather solutions. This is
due to the feature that, as mentioned above, in this setting, the
entire breather (rather than the core) is perturbed when perform-
ing deflation, enabling in this way the identification of extended
multibreather solutions. Indeed, we obtain these without the expert
knowledge needed to craft specialized initial guesses that would be
suitably tailored to such waveforms. This is one of the major advan-
tages of the ability of this deflation method, due to its elimination
property (of a previous solution), to probe more widely, than other
methods we are familiar with, the solution landscape.

Last, let us offer a brief comment on the stability of the
multibreathers we have found via deflation. Full Floquet analysis*
is outside the scope of the present paper, but, as the coupling
is low, some properties can be deduced from the studies per-
formed earlier, such as Refs. 27-29 and 31. In particular, multi-
breathers without holes can only be linearly stable if the excited
sites oscillate in anti-phase;”* analogously, multibreathers com-
posed of smaller breather units separated by holes can only be
stable if each unit is stable and the units oscillate in anti-phase.
With this in mind, only the bottom A, C, and H families can be
stable. However, as shown in Ref. 32, these solutions may also
suffer from nonlinear instabilities once suitably excited and for
sufficiently long times (given the power law nature of the mani-
festation of such instabilities). Figure 9 shows the time evolution
of the energy density of some select multibreathers, with instabil-
ities driven solely by numerical roundoff errors. These time evo-
lutions are performed by means of the fourth-order explicit and
symplectic Runge-Kutta-Nystrom method developed in Ref. 33,
which results in the conservation of the energy with a relative error
~ 1077. One can observe the (expected) stability of the member of
the bottom A branch, whereas the unstable multibreathers switch
to other breather structures and their energy densities at differ-
ent sites may manifest oscillations or remain constant (in terms of
their energy density). Nevertheless, in all other cases, past a certain

ARTICLE pubs.aip.org/aip/cha

time (dictated in each case by the growth rate of the instability of
each waveform), the instability is manifested via the distortion of
the original profile. Notice that we have checked that despite this
distortion, as expected by the Hamiltonian nature of the original
problem, the total energy of the configuration (stemming from the
summation of the presented energy density over the lattice sites)
remains conserved for all times.

IV. CONCLUSION AND FUTURE CHALLENGES

In the present work, we have revisited the method of defla-
tion, which has gained considerable traction as a tool for identifying
stationary states of PDEs and for constructing their correspond-
ing bifurcation diagrams. Here, we proposed a way to adapt this
method toward the identification of periodic orbits in nonlinear
lattice dynamical systems with a large number of degrees of free-
dom. Exploiting Fourier decomposition renders the problem an
algebraic (nonlinear) one in the space of Fourier modes and their
spatial (lattice node) and frequency (temporal) dependence. This, in
turn, enabled us to formulate different possible variants of deflation.
We proposed two deflation operators, deflating either the vector of
Fourier coefficients or the spatial profile of the energy density. We
argued that the latter holds some promise toward the direction of
eliminating some of the less meaningful additional solutions (such
as the ones emerging due to spatial parity or time reversal). We also
investigated different variants of the perturbation, upon the identi-
fication of a periodic state, either by modifying the core region or
by modifying the entire breather. These ideas were combined suc-
cessfully to discover a wide range of outputs and a diverse array of
discrete breather families. While expert knowledge (e.g., of the anti-
continuum limit) may, in principle, be used to produce several of
these families for the Klein—-Gordon lattices of interest herein, the
advantage of deflation is that one does not need such knowledge;
instead, the method can be generically applied in problems where
such knowledge is not available.

Naturally, these findings merely pave the way for a consid-
erable array of possible further explorations in the future. On the
one hand, there are technical amendments to be considered for
the method, such as the development of deflation operators that
automatically eliminate the possibility of converging to symmetry-
equivalent solutions to an existing one (lattice shifts, parity reversals,
time-reversals, etc.””). On the other hand, it would be very inter-
esting to assess how well this technology works in other types of
nonlinear lattices (soft- vs hard-nonlinearities, for example, Refs. 3
and 4) possibly in settings involving unstable periodic orbits within
a chaotic attractor and also in higher dimensions, as well as contin-
uous systems. Importantly, and although we focused on a Hamil-
tonian system herein, it should be highlighted that the essence of
our technique can be brought to bear independently of the conser-
vative or non-conservative nature of the system. Of course in the
latter case, e.g., the energy density perspective of deflation would
neither be suitable, nor would the energy-based continuation. Nev-
ertheless, working alternatives of both elements exist (in the Fourier
coefficient-based deflation and the pseudo-arclength continuation,
respectively); hence, the extension seems direct, although of course,
it needs to be suitably tested and benchmarked. Some of these
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directions are currently in progress and will be reported in future
publications.
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