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ABSTRACT

The instabilities of the nontrivial phase elliptic solutions in a repulsive Bose-Einstein condensate (BEC) with
a periodic potential are investigated. Based on the defocusing nonlinear Schrédinger (NLS) equation with an
elliptic function potential, the well-known modulational instability (MI), the more recently identified high-
frequency instability, and an unprecedented - to our knowledge - variant of the MI, the so-called isola
instability are identified numerically. Upon varying parameters of the solutions, instability transitions occur
through suitable bifurcations, such as the Hamiltonian-Hopf one. Specifically, (i) increasing the elliptic modulus
k of the solutions, we find that MI switches to the isola instability and the dominant disturbance has twice
the elliptic wave’s period, corresponding to a Floquet exponent y = #(k) The isola instability arises from the
collision of spectral elements at the origin of the spectral plane. (ii) Upon varying V,, the transition between
MI and the high-frequency instability occurs. Differently from the MI and isola instability where the collisions
of eigenvalues happen at the origin, the high-frequency instability arises from pairwise collisions of nonzero,
imaginary elements of the stability spectrum; (iii) In the limit of sinusoidal potential, we show that MI occurs
from a collision of eigenvalues with y = #(k) at the origin; (iv) we also examine the dynamic byproducts of
the instability in chaotic fields generated by its manifestation. An interesting observation is that, in addition

to MI, the isola instability could also lead to dark localized events in the scalar defocusing NLS equation.

1. Background and motivation

Bose-Einstein condensates (BECs) trapped in periodic potentials,
such as the one induced by standing light waves (optical lattices) have
attracted considerable attention already since the early studies on the
subject (summarized, e.g., in [1-3]) and even to this day; see, e.g., the
recent review of [4]. BECs trapped in standing light waves have been
applied to investigate such diverse phenomena as phase coherence [5,
6], matter-wave diffraction [7], quantum logic [8,9] and so on [10,11].
Upon an interplay between periodicity and nonlinearity (even when the
interatomic interaction is repulsive), some striking effects appear, such
as localized structures [12-14] and instabilities [15-18].

More specifically, the study of instabilities has been a topic of wide
interest, as illustrated, e.g., in focused reviews on the subject [19].
Indeed, the modulational instability (MI) has been used experimentally,
in conjunction with a magnetic tuning of condensate interactions (from
repulsive to attractive) as a method for producing bright solitonic
trains and observing their interactions since over 20 years [20]. The
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relevant technique has continued to be at the forefront of experimental
developments for a considerable while with experimental progress
revealing more clearly the nature of solitonic interactions more re-
cently [21]. Indeed, more recent studies have enabled a systematic
and even quantitative comparison of experimental outcomes against
predictions (e.g., of soliton numbers created by MI) of effective 1d
theoretical/computational models [22]. Another dimension of the ever
expanding influence and impact the MI more recently has been its
experimental use (in conjunction again with a quench from repulsive to
attractive interactions) in order to produce - this time in a quasi-two-
dimensional setting — of wavepackets leading to the famous Townes
soliton [23].

On the discrete (or quasi-discrete) realm of focal interest to this
work, the modulational instability has been central to theoretical and
experimental implementations not only in atomic BECs, but also in
other proximal areas of dispersive wave phenomena. In particular, in
BECs in the context of optical lattices the discrete modulational insta-
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bility was theoretically proposed [24] and subsequently experimentally
illustrated [25] to be responsible for a dynamical superfluid—insulator
transition for an array of weakly coupled condensates driven by an
external harmonic field. Shortly thereafter, such an instability was
reported for the first time in the context of nonlinear optics, using an
AlGaAs waveguide array with a self-focusing Kerr nonlinearity [26].
Finally, relevant features have been leveraged as a means of producing
robust nonlinear coherent structures via MI in other proximal fields
featuring discrete media, such as, for instance, in the case of a diatomic
granular crystal in the work of [27].

In this paper, we revisit the quasi-discrete setting quasi-one-
dimensional repulsive BEC trapped in a periodic potential; see, e.g.,
[13-18,28,29] for only some among numerous examples. Our emphasis
is on the study of instabilities and localized structures numerically,
utilizing a numerical set of tools that have been developed more
recently than some of these important works and which, we believe,
reveal a number of unprecedented features and instabilities in the
relevant system, worthwhile of further — and potentially also experi-
mental, given the recent developments discussed above — consideration.
It is important to appreciate here that at the time of the original
works on the system considered herein, the methodological approach
leveraged here had not been implemented, to our knowledge, for
such problems, and hence the stability analysis of the early works
was solely based on dynamical simulations. The latter can easily be
inconclusive (e.g., consider an instability with a very small growth
rate that may not be manifest over the time horizon of a simulation),
and also do not necessarily provide information on the nature of the
instability, its predominant length and time scales/growth rates etc. In
that vein, the present work, in addition to mathematically establishing
a systematic framework for stability, also uncovers unprecedented
(to our knowledge, for such systems) instabilities therein which may
dominate/supersede the more standardly known modulational insta-
bility. Relevant examples are the so-called isola and high-frequency
instabilities discussed below. We now proceed to formulate the problem
mathematically and discuss some of the main findings.

2. Mathematical formulation and main results

The governing equation is given by the defocusing NLS model with
external potential [16,17,28,29]

) 1
Yy ==+ lwlw + Vv, 6]

where w(x, 1) is the macroscopic wave function of the condensate. Con-
finement in a standing light wave leads to V' (x) being periodic [15-18],

V(x) = —Vysn?(x, k), @)

where sn?(x, k) is the Jacobian elliptic sine function with elliptic mod-
ulus k € [0,1]. When k& = 0, sn(x, k) becomes sin(x) and the potential
V(x) is a standing light wave [3]. As discussed in [14,17], when k < 0.9,
the potential V' (x) resembles the behavior of sin(x) and the latter could
provide a good approximation to a standing light wave, while at the
same time retaining the advantage of analytically tractable solutions
that were leveraged toward a number of analytical results in the above
works.

Following [16,17], there have been many works based on the
NLS-type equations with periodic potentials in the context of BECs.
Stability of the trivial phase solutions of the defocusing NLS with
periodic potential in two dimensions was studied in [30]. The stability
properties of the trivial phase solutions in two-component BECs trapped
in an external elliptic function potential were investigated in [14].
A proof of the existence of dark solitons in a NLS equation with a
periodic potential was given in [31]. The authors in [32] produced
exact periodic and soliton solutions to the Gross-Pitaevskii equation
with the pseudopotential in the form of a nonlinear lattice, induced
by a spatially periodic modulation of the local nonlinearity. Stationary
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solutions for the NLS equation modeling repulsive BEC in a small
potential were obtained through a form of nonlinear perturbation [33].
Very recently, the authors in [34] investigated theoretically and exper-
imentally the quenching of the superfluid density of a dilute BEC due
to the breaking of translational invariance by an external 1D periodic
potential. In 2023, the authors in [35] studied the instabilities of a
BEC in periodic potentials and they used an out-of-phase linear lattice
to stabilize the lowest-energy Bloch states of BECs. Importantly, these
very recent works suggest a renewal of interest in theoretical, compu-
tational, but also notably experimental consideration of optical lattice
settings, accompanied by the much more substantial tunability and
controllability thereof presently available [34]. Besides, the authors
in [36] demonstrated that the interplay between a nonlinearity and PT
symmetry in a periodic potential results in peculiar features of nonlin-
ear periodic solutions. We also refer to [37-39] (recent publications)
for the dynamics of BECs in periodic potentials.

The stationary condensates are described by the solutions to (1) of
the form [16,17]:

w(x, 1) = r(x) exp(—iwt + i6(x)), 3

where 0(x) = ¢ [’ % and r2(x) = Asn®(x, k)+ B. Besides, the relations

among the parameters w, ¢, A, B, V,, and k are o = % (1 + k% +3B—

T ) =B (1 + ﬁ) (Vo + k2 + BK?) and A = V) + k2. To require
that r%(x) > 0 and ¢? > 0 implies the following conditions: ¥, > —k? and
B20,0r V) <—k?and — (V, +k?) < B< - (1+ % ). We note that r(x)
is periodic with period 2K (k). The stability and instability of the trivial
phase elliptic solutions (¢ = 0) have been studied in [16-18]. However,
the availability of instability results about the nontrivial phase elliptic
solutions is far more limited. This constitutes a fundamental and more
concrete motivation of the present work. Our main corresponding
findings are as follows:

@) It is well known that the modulational instability (MI), also
known — especially so in the context of fluids — as the Benjamin-Feir in-
stability, originated from the study of stability of Stokes waves in deep
water (in the late 1960s) [40]. Subsequently, MI has been predicted and
observed in BECs [20-22,24,25,41-45] and nonlinear optics [46-51],
as well as in other physical media [52-54]. In 2011, Deconinck and
Oliveras [55] first displayed the full stability spectra of Stokes waves
in finite and infinite depth. More importantly, they showed that in
addition to MI, other instabilities, taking place away from the origin
of the so-called spectral plane (the plane of the imaginary vs. the
real part of the corresponding eigenvalues) exist. The instabilities are
also referred to as high-frequency instabilities. These high-frequency
instabilities have been studied analytically [56,57]. Therefore, a natural
question arises: Do these high-frequency instabilities (originating in the
fluid setting) exist in BECs? In this paper, we show the existence of the
high-frequency instability in BECs and study the transition between the
high-frequency instability and MI in the context of the model of Eq. (1)
with the potential of Eq. (2).

Additionally, in 2022, the authors of [58] studied the instability of
near-extreme Stokes waves. One important feature identified in [58]
is the appearance of what we refer to as the isola instability branch.
For such an instability, the eigenvalues in the case of [58] correspond
to eigenfunctions that are localized near the wave crest as the extreme
wave is approached. Importantly, a telltale sign of such an instability
that we will use to distinguish it from MI is that it detaches from the
origin of the spectral plane and corresponds to a band of complex eigen-
values that thereafter remains detached from the origin (contrary to
the case of MI, where the band encompasses the origin). The transition
between isola instability and MI is investigated. We expect that such
an instability branch may be tractable in BECs, based on the above
significant and quantitative experimental progress therein [21-23].

(ii) The standard defocusing NLS equation (i.e., ¥, = 0 in (1)) does
not admit localized solutions on the unstable backgrounds (such as
rogue-wave solutions) since all periodic traveling solutions (including
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plane-wave solutions) of the defocusing NLS equation are stable. How-
ever, by considering the external potential in the defocusing regime,
i.e., ¥ # 01in (1), we show that different instabilities occur. Therefore, a
natural question arises: do some localization events exist in the defocus-
ing NLS equation with an elliptic function potential? It is well known
that MI could lead to the formation of localization events [59-63]. In
particular, it is especially interesting (given its recent identification) to
explore whether specifically the isola instability could lead to localized
events. Indeed, the present work illustrates the dynamical evolutions
that showcase how this phenomenon takes place.

3. Computational technique of choice: Hill’s method and its setup

The linear stability of (3) in the setting of the model of Eq. (1) is
explored by considering the following form:

w(x, 1) = (r(x) + ed(x, ) expli(0(x) — w1)], 4

where ¢ < 1 denotes a small parameter. With U = (UI,UZ)T =
Re[p], Im[@)T = Vx)exp(d) + ce. = (0,,0,) exp(at) + c.c., the
eigenvalue problem is expressed as [16,17],

R --9,-L L_ R
£U=< 0 *rtx) e ol >U= U, 6)
—L+ —@0):@

where

L=t (-2 +3°2(0) + V(x) - 6)
A et EEACRORD

L=-L(p_-2< 2 v %)
-="3 x_r4(x) +r () +V(x) - o,

and 4 is a complex number, i.e., the corresponding eigenvalue of the lin-
earization. The growth rate y is defined as the real part of A (if positive).
Here, +c.c. denotes that the complex conjugate of the previous term is
added. We note that when ¢ = 0, the stability problem (5) corresponds
to the trivial phase solutions. This case was examined in [16,17]. We
only focus on the stability problem of the nontrivial phase solutions (¢ #
0) using the so-called Hill’s method that was originally theoretically
developed and computationally implemented in [64].

Since the coefficient functions of the stability problem (5) are
periodic in x with period L = 2K(k), we write all coefficient func-
tions as the complex Fourier form, i.e., r*(x) = Yo Q,e27/L,
r—2(x) — Z:i—oo Rnei2nnx/L’ r—4(x) — ano:—oo SneiZnirx/L’ r—3(x)rl(x) —
¥ e and Vix)= ¥ V,e?/L Here Q,, R,, S,, T, and
V, denote the Fourier coefficients. The periodicity of coefficient func-
tions of (5) allows us to decompose the perturbations using Floquet’s
Theorem (see [64] for details)

o0
U, (x) = e H, (x) = e/** Z 0,,e2n=/PL, ®
n=—co
Uy(x) = e Hy(x) = e/** Z UZneIZmrx/PL’ ©
n=—co

where the Floquet exponent u € [0,27/L), and

A | rPLe 4
U, = — / H(x)e~2mmx/PL g, 10
PL J_prp2
A 1 PL/2 i2anx/PL
U,, = — H remnx [Pl d x. 11
T PL ,/_PL/z 2(e * an

Here, we expand H,(x) and H,(x) as a Fourier series in x with period
PL, where P € N. Substituting all of the above Fourier expan-
sions into (5) and equating Fourier coefficients lead to the following
bi-infinite eigenvalue problem:

1/. i2n\?\ 5 - .
~(o-3 (e BE) ) Ot 3 052
m=—co
o) 2 o
A A C A
+ ) Vien Uy, + > Sunly, (12a)

m=—oco m=—o0

Physica D: Nonlinear Phenomena 458 (2024) 134009

Fig. 1. The maximal instability growth rate y as a function of k and ¥, with B =0.25.
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where Qu-n, Ru=m, Sn-m ,Tu-m,Va-n = 0 if n — m is not divisible by P.

The bi-infinite eigenvalu% prol’::lem (12) is equivalent to (5). We will
determine the spectrum of the linearized operator about the stationary
solutions using the bi-infinite eigenvalue problem (12). The whole
stability spectrum of the elliptic solutions is constructed as the union
of the spectra for all values of u in [O, %") Specifically, we consider
the whole stability spectrum in the 4 plane by choosing 9999 different
Floquet exponents in u € [O, zf” and 41 Fourier modes, so as to ensure
that we appropriately resolve the relevant spectral bands.

4. Instability results

In this section, by choosing a cut-off N on the number of Fourier
modes, we numerically find the spectrum to (5) using the bi-infinite
eigenvalue problem (12).

4.1. From MI to isola instability

Note that the solutions (3) have three free parameters V;, B and .
Fig. 1 shows the maximal instability growth rate y as a function of k and
V, with B = 0.25. We can see that y increases with k and V|, increasing.
To study the transition from MI to isola instability, by fixing ¥, = 1
and B = 0.25, we study the dynamics of instabilities with varying &,
i.e., effectively varying the periodicity of the potential. As shown in
Fig. 2, for 0 < k < k, = 0.63936, the only instability of the elliptic
wave is the MI and the maximal instability growth rate y corresponds
to the real eigenvalues with y = #k), which implies that the dominant
disturbance has twice the period of elliptic wave. A typical example of
MI is shown in Fig. 2(a) with k = 0.55 € (0,k,.) and it can be seen
that the closure of spectrum that is not on the imaginary axis forms
an infinity symbol centered at the spectral plane origin. At k = k., the
collisions of eigenvalues on the imaginary axis (at +0.06202i), lead to
the appearance of an ellipse-like curve. Then from k, to k, = 0.64921,
two types of instability appear, as shown in Fig. 2(d) with k = 0.64,



W.-R. Sun et al. Physica D: Nonlinear Phenomena 458 (2024) 134009
.47
0 (2 (d .
0.25 0.25 1|
0.46 1 £ o OO °‘°°(I‘ >
-0.25 * 025 BE
y 0.1 0.0 0.1
.45 -0. i ;
A5 0.8 R"e(‘}) 03 -0.5 0.0 0.5
(6] (& (h)
0.25 0.25 0.25
0.44
kc=0.63936 < }
k:=0.64921 0:00 0:00 QO 00 O O
@ kg =0.70863
0.43 T T T -0.25 -0.25 -0.25
0.6 0.7 0.8
k -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5

Fig. 2. Left panel shows the maximal instability growth rate y as a function of k with B =0.25 and ¥, = 1. When k < k,, the modulation instability appears [one example can be
seen in (a) (with k = 0.55) of the right panel]. At k = k,_, the ellipse-like curve appears. From k, to k,, the dominant instability switches to the ellipse-like instability [one example
can be seen in (d) (with k = 0.64) of the right panel]. At k = k,, MI disappears and only the ellipse-like eigenvalues exist. From k, to k,, the ellipse-like curve is compressed
vertically [as shown in (f) (with k = 0.69) of the right panel]. An infinity symbol forms at k, (as shown in (g) of the right panel). When & > k,, the infinity symbol splits into two
isolas drifting away along the real axis [as shown in (k) (with k = 0.8) of the right panel]. For the right panel, the red dots correspond to y =0 and the green dots correspond to
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Fig. 3. Real part of growth rates as a function of the Floquet parameter u. Here the
parameters of (a) (MI with k = 0.6) are the same as point (b) in the left panel of Fig. 2
and the parameters of (b) (isola instability with k = 0.8) are the same as point (4) in
the left panel of Fig. 2.
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Fig. 4. Eigenfunctions of the isola instability branch for u = -2 o and the parameters
are the same as point (k) in the left panel of Fig. 2. Here (a) and (b) correspond to the
cases of U, and U, respectively.

which shows that a Figure 8 pattern is present inside an ellipse-like
curve. Therefore from k, to k,, the dominant instability switches to
the ellipse-like instability, which is different from MI (recall that MI
involves an unstable band of eigenvalues encompassing the origin), and
the dominant disturbance has twice period of elliptic waves. At k = k,,
a collision of eigenvalues at the origin leads to the disappearance of MI
and only the ellipse-like eigenvalues exist. From k, to k, = 0.70863, the
ellipse-like curve is compressed vertically (see Fig. 2(f) with k = 0.69).
Finally, this leads to the formation of an infinity symbol at k, = 0.70863
(see Fig. 2(g)), again of the MI type.

Increasing k > k,, the collision of the eigenvalues with 4 = 0
(red dots in Fig. 2 (f,g,h)) at the origin (where a Hamiltonian-Hopf
bifurcation occurs) causes the infinity symbol to subsequently split into
two isolas drifting away along the real axis, as shown in Fig. 2(h) with
k = 0.8. Now, the dominant instability switches to the isola instability,
which is not MI (since the latter involves the spectral plane origin), and
the dominant disturbance retains twice the period of the elliptic wave.

Im(A)

0.0

0.5
Vo

1.0

Fig. 5. Imaginary part of 4 as a function of ¥, with B = 0.25 and k = 0.5. The non-
zero imaginary parts of the eigenvalues form the gray region, while the white region
indicates the (potential, for suitable values of V;) frequency gap.

For the isola instability, we can observe the following. (a) Similarly
to MI, the entire range of the Floquet parameter u covers the isola
instability branch (as shown in Fig. 3), in contrast to the high-frequency
instabilities corresponding to a narrow region of the Floquet parameter
u (as shown in Fig. 7 below); (b) differently from the MI, the spectrum
of the isola instability has no intersections with the origin and the
range of growth rate does not start from zero but from the nonzero
eigenvalues with y = 0, as shown in Fig. 3; (c) The maximal instability
growth rate corresponds to the real eigenvalues with u = %(k) (as
shown in the green dots of Fig. 2(h)); (d) such an isola instability branch
is called local instability branch in fluids [58], since the eigenfunctions
associated with such a branch change rapidly in the vicinity of the
wave-crest. However, here the eigenfunctions associated with such
a branch do not have such local property (which is a fundamental
difference in comparison to [58]), as shown in Fig. 4. Therefore, such
isola instability in BECs can be deemed to be nontrivially distinct from
the local instability branch in fluids. Besides, we show a band gap
structure by studying the relation between the imaginary part of A
and V|, as shown in Fig. 5. In fact, for every V},, we obtain a set of
eigenvalues. The non-zero imaginary parts of these eigenvalues form
the gray region. This illustrates how, at a finite positive value of V), a
frequency gap emerges, subsequently growing as a function of V.

4.2. From MI to high-frequency instability

To study the transition from MI to high-frequency instability, by
fixing k = 0.5 and B = 0.3, we study the dynamics of instabilities
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Fig. 6. (Left panel) The maximal instability growth rate y as a function of ¥,. When ¥, = V;,, the elliptic solutions are stable. When —0.19 < ¥, < ¥, = —0.18431, the first bubble
dominates the instability (see (a) (with ¥, = —0.19) of the right panel). From V; to V;,, the two bubbles approach and collide (see (b) of the right panel). When V; > V,,, the two
bubbles pass through each other (see (c) (with V; = —0.18) of the right panel) and then they fuse together (see (d) (with ¥, = —0.01456) of the right panel) and move toward the
origin (see (e) (with ¥, = —0.005) of the right panel). When 0 < ¥, < ¥,; = 0.06063, a transition between different stability spectra caused by the collision of eigenvalues with y =0
at the origin happens (see (g, h,i) (with ¥}, = 0.032,0.04009, 0.052) of the right panel). The red dots in (g, 4, i) of the right panel correspond to u = 0. When V;, > ¥, we show three
different stability spectra (see (k,/,m) (with ¥, =0.1,0.28,0.8) of the right panel).
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- !# Fig. 9. The maximal instability growth rate y as a function of B and ¥, with k = 0.
~< L=
= 0.0 .
: —
= o ris . . L
S F=i move toward the origin (see Fig. 6(e) with ¥, = —0.005). When 0 < ¥}, <
05 . = Vo; = 0.06063, the elliptic solutions are modulational stable. We can see
' 8 o == the transition between different stability spectra caused by the collision
—0.025 (,c)gé)((,)\()) 0.025 of eigenvalues with y = 0 at the origin (see Fig. 6(g,h,i)). When ¥}, >

Vy,» the modulation instability appears and we show three different
stability spectra (see Fig. 6(k,1,m)). Differently from MI and the isola
instability, we can see that the high-frequency instability branch occurs
in a narrow region of the Floquet parameter y (as shown in Fig. 7),
which implies that we may get some useful stability results with respect
to subharmonic perturbations. For example, we show that the elliptic
solutions (3) (with k = 0.5, B = 0.3 and V;, = —0.04) are stable with
respect to 1-, 2-, 3-, 4-, 5-, 7- and 8- subharmonic perturbations but
unstable with respect to the 6- subharmonic perturbation, as shown
Fig. 8.

Fig. 8. The stability spectrum for the elliptic solutions
P-subharmonic perturbations (k = 0.5, B =0.3 and V;, = —0.04).

(3) with respect to

with varying V. We note that when V;, = ¥, = 0, (1), the problem
reduces to the standard defocusing NLS equation. It is well known that
all elliptic solutions with ¥, = 0 are stable [65]. Here we consider the
case where V¥, # 0. As shown in Fig. 6, when ¥}, < 0, only the high-
frequency instability occurs (see Fig. 6(a,b,c,e)). The high-frequency
instability (the corresponding perturbations oscillate in time) develops
from a Hamiltonian-Hopf bifurcation: collisions of nonzero, imaginary
elements of the stability spectrum (¥, = 0) lead to eigenvalues symmet-

4.3. Instability trapped in a standing light wave (k = 0)

rically bifurcating from the imaginary axis as ¥, decreasing, resulting
in instability. Specifically, from —0.19 < ¥, < ¥, = —0.18431, the first
bubble (arising farther away from the origin) dominates the instability
(see Fig. 6(a) with ¥, = -0.19). By increasing V,, to V,,, the two
bubbles approach and collide (see Fig. 6(b)). When V, > V;,, the two
bubbles pass through each other (see Fig. 6(c) with ¥, = —0.18) and
subsequently they fuse together (see Fig. 6(d) with V;, = —0.01456) and

When k = 0, the elliptic potential V' (x) reduces to the trigonometric
functions and thus V(x) is a standing light wave. Fig. 9 shows the
maximal instability growth rate y as a function of B and V;, with k = 0.
We can see that y increases with ¥} increasing and B decreasing. The
MI arises from the collision of the eigenvalues with u = #(k) at the
origin, as shown in Fig. 10. Here, we also note that in Fig. 10 a panel
with four petals morphs into a panel with two petals. This is because
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Fig. 10. The stability spectrum for the elliptic solutions (3) with k =0, B =0.29, (from left to right) ¥, = 0.3, ¥, = 0.36166, V;, = 0.4, V;, =048 and V, = 1.

Fig. 11. Numerical evolution of the MI resulting in pattern distortion and collisional
events (highlighted by boxes on the left panel and zoomed-in at the middle and right
panels). The initial condition is solution (3) perturbed by 5% random noise with k = 0.6,
B =0.25 and ¥, = 1. The amplitude evolution (upper-left); the (solid-line) zoomed-in
evolution of the box on the upper-left is shown on the middle panel; the (dotted-line)
zoomed-in evolution of the box on the left is shown on the rightmost panel.
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Fig. 12. Numerical excitation of the isola instability. The initial condition is solu-
tion (3) perturbed by 5% random noise with k = 0.72, B = 0.25 and ¥, = 1. The
amplitude evolution (left); the zoomed-in evolution of the box on the left is shown on
the right panel.

increasing V; leads to more collisions of imaginary eigenvalues at the

origin and the spectral curve is vertically compressed. Besides we note

that solutions (3) with k = 0 and b = 0.29 are stable with respect to

co-periodic perturbations. When Vj, is large enough, it can be seen that

the maximal instability growth rate corresponds to the real eigenvalues
4

with = w3 shown in Fig. 10 with V, = 1.

4.4. Dynamical manifestation of the instabilities

Having explored the different scenarios of instability, we now turn
to direct numerical simulations in order to explore the dynamical
byproducts of these instabilities. Starting from the nontrivial phase
elliptic solutions (3), we impose random perturbations and visualize
the patterns produced by (1) numerically.

The case of dynamical evolution of a modulationally unstable sce-
nario is shown in Fig. 11. One can observe that after an initial stage,
the periodic pattern is distorted leading to the emergence of some
skewed density dips reminiscent of moving dark (gray) solitary waves;
for details of such coherent structures, see the review of [66]. As
these structures move through the distorted pattern they appear to
interact in collision-type events which are somewhat reminiscent of the
interactions of dark solitary waves observed, e.g., in the experiments
of [67-69]. These types of events causing a (deeper) spatio-temporal
dip, prior to the colliding patterns re-emerging are highlighted in two

1.8

1.6

1.4

1.2

Fig. 13. Here, the initial condition is solution (3) perturbed by 5% random noise with
k=05, B=0.3 and V, =-0.1.

boxes in Fig. 11 whose evolution is presented in more detail in the
additional panels of the figure.

Interestingly, and as perhaps may be expected by the similar nature
of the relevant instability (although the isola instability is detached
from the spectral plane origin), the dynamics of the isola instability
is similar to that of MI. Indeed, the relevant dynamical manifestations
can be seen in Fig. 12. Here, too, it is evident that the distortion of
the pattern leads to a number of waves that propagate along skewed
lines in the space-time (left) panel of the figure. The zoom-in to the
box of the left panel is once again shown in the right panel, illustrating
a space—time collisional type event before the participating waves once
again separate. It is relevant to note here that similar results to those of
Figs. 11-12 arise in the case of k = 0, i.e., for a trigonometric standing
wave of light (results not shown here).

Finally, it is interesting to point out the fundamental difference
of the high-frequency instability, in comparison, e.g., with those of
Figs. 11-12 above. A prototypical example of the high-frequency insta-
bility is shown in Fig. 13. We can see that the instability is manifested
through the propagation of high-wavenumber unstable modes which,
in turn, are weakly perturbing the (deeper) density dips of the orig-
inal configuration. Nevertheless, the latter persist, avoiding the more
intense collisional events described above.

5. Conclusions & future challenges

The instabilities of the nontrivial phase elliptic solutions in a re-
pulsive Bose-Einstein condensate (BEC) with a periodic potential have
been studied. Based on the defocusing nonlinear Schrodinger (NLS)
equation with an elliptic function potential and on a sequence of
fundamental earlier works [15-18], the MI, the similar to it isola
instability (on the real line) and the rather different high-frequency
instability have been observed numerically and have been elucidated
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quantitatively. With varying parameters in solutions and equation,
instability transitions occur, e.g., through a Hamiltonian-Hopf bifur-
cation. Specifically, (i) increasing k, we have observed that the MI
switches to the isola instability and the dominant disturbances have
twice the elliptic wave’s period, corresponding to a Floquet exponent
u = ﬁ The isola instability arises from the collision of spectral
elements at the origin with y = 0; (ii) with varying V},, the transition
between the MI and high-frequency instability occurs. Different from
the MI and isola instability where the collisions of spectral elements
happen at the origin, the high-frequency instability arises from pairwise
collisions of nonzero, imaginary elements of the stability spectrum;
(iii) in the limit of sinusoidal potential, with varying V;,, we have
shown the MI occurs from a collision of eigenvalues with y = #(k)
at the origin; (iv) the dynamical evolution of the relevant instabilities
has been elucidated, notably leading in the case of the MI and isola
instabilities to the distortion of the patterns and events resembling the
collision of dark (gray) solitary waves.

Admittedly, since the emergence of these fundamental works [15—
18], numerous developments have arisen in higher-dimensional BECs
[70], in multi-component condensates [71,72], as well as in the context
of long-range interactions [73]. Extending the present considerations
to these progressively more and more accessible settings would be a
natural next step for future studies.
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