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Abstract: Auctions are a prevalent way to exchange goods and are well-studied for the exchange of
rivalrous goods, but are less studied for non-rivalrous goods. I examine an auction framework where
the good sold can be used simultaneously by multiple bidders if their use does not conflict with
others; this simultaneous use directly affects the efficiency of the auction. A timely example includes
the auctioning off of a radio spectrum by a licensed primary user to unlicensed secondary users who
can use the spectrum simultaneously if they are located far enough apart to not cause interference. I
examine a uniform price auction over non-conflicting groups and examine how non-rivalry impacts
both efficiency and collusion. Conditions are given under which an auction over groups generates
higher social welfare than an individual auction. Additional conditions are given under which
collusion in a group auction results in higher prices.
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1. Introduction

Auctions are an important and popular way to sell goods in a variety of areas, such as
real estate, art, consumer goods, online advertising, and radio spectra, as auctions can be an
efficient way to sell goods; see Vickrey [1] and Dasgupta and Maskin [2]. Although auctions
of rivalrous goods are well studied, less attention has been paid to the auctions of goods
with non-rivalrous properties; see Klemperer [3], and Milgrom [4] for auction literature
overviews and Wang, Umehira, Han, Zhou, Li, and Wu [5] for work on non-rivalrous
auctions. In an auction with non-rivalrous properties, groups of agents can simultaneously
consume goods, which impacts the efficiency of the auction. I examine a non-rivalrous
good with interference, where groups of agents who do not conflict or interfere with each
other can simultaneously consume the good. A timely example of such a good is that of
secondary radio spectrum, as a spectrum is non-rivalrous for users located far enough
apart that they do not interfere with each other. Spectrum use has increased rapidly in
recent years due to the commercial demand of smart phone users and IoT devices, as
well as government demand for national security and air traffic control; thus, it is vital
to find efficient ways to share this finite resource. I analyze a uniform price auction over
non-conflicting groups to investigate how non-rivalry impacts both efficiency and collusion.

Specifically, consider an auction where multiple bidders can consume the same unit as
long as they do not interfere with each other. Bidders are first placed into non-conflicting
groups and then a uniform price auction is run over these groups, where agents bid
independently and each group is assigned a bid based on the minimum bid of its members;
see Wang, Umehira, Han, Zhou, Li, and Wu [5]. The results show that this group auction
can generate higher social welfare than an individual auction as long as its valuations are
not spread too far apart. The importance of the conflict network and group construction for
efficiency is illustrated when valuations are largely dispersed.

Additionally, I analyze how collusion affects bidding in group auctions. A subgroup of
bidders have a common agent or owner who bids on their behalf; see Decarolis, Goldmanis,
and Penta [6]. An example could be a cell phone company who owns several cell towers
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and bids for additional spectra on their behalf in a secondary spectrum auction run by
a television broadcaster. The results show that if all bidders in a non-conflicting group
belong to the same coalition, then the common owner has an incentive to increase this
group’s minimum bid. This result contrasts with the previous coalition analysis of rivalrous
good auctions, where only one agent in the coalition can consume the good, causing most
coalition members to depress their bids or refrain from bidding; see Agranov and Yariv [7]
and Marshall and Marx [8].

Note that primary spectrum awards are those licenses awarded to commercial and
non-commercial spectrum users directly by the FCC, while secondary spectrum awards are
spectrum usage rights sold by primary license holders to other providers or users. These
secondary awards may be limited to short periods of time and to specific geographical areas.

The most closely related papers are Wang, Umehira, Han, Zhou, Li, and Wu [5] and
Decarolis, Goldmanis, and Penta [6]. Wang, Umehira, Han, Zhou, Li, and Wu [5] analyze
non-conflicting group auctions for secondary spectrum sharing and focuses on preserving
privacy in mechanisms without collusion. Decarolis, Goldmanis, and Penta [6] examine
collusion in online ad auctions where bidders share a common agent who bids on their
behalf. The current paper differs in that I consider a non-rivalrous good for which the
auction takes place over non-conflicting groups.

Related research includes the diverse field of theoretical and empirical auctions; see
Khezr and Cumpston [9], Klemperer [3], and Hortagsu and McAdams [10] for recent
surveys. There is also a large body of literature within the realm of auctions that focuses
on collusion. Mechanisms for maintaining collusion in rivalrous auctions are examined
by Mailath and Zemsky [11], Graham and Marshall [12], McAfee and McMillan [13], and
Marshall and Marx [8]. Conley and Decarolis [14] find evidence of bidding rings which both
increase and decrease prices in procurement auctions. Asker [15] examines the behavior
of bidding rings made by stamp collectors in English auctions. There are many auction
papers examining the efficiency of different types of rivalrous auctions; see Pesendorfer
and Swinkels [16]; Dasgupta and Maskin [2]; Feldman, Fu, Gravin, and Lucier [17]; and
Baisa [18].

There is a large body of literature in electrical engineering examining spectrum-sharing
auctions; see Benedetto, Mastroeni, and Quaresima [19] for a review. This literature focuses
on various aspects of spectrum sharing such as efficiency, fairness, dynamic access, and pri-
vacy; see Wang, Li, Xu, Xu, Gao, and Chen [20]; Wang, Umehira, Han, Zhou, Li, and Wu [5];
Huang, Berry, and Honig [21]; and Khaledi and Abouzeid [22]. Additionally, there is an
economics literature on spectrum auctions. Many papers have examined how to design
spectrum auctions for the primary spectra awarded by the FCC; see Milgrom and Vogt [23]
and Milgrom [24]. While Watts [25] analyzes secondary spectrum auctions with uncertainty,
Watts [26] examines secondary spectrum sharing with congestion.

2. Model

There is an owner or primary user (PU) of a reusable resource such as a radio spectrum;
the PU has the right to use the resource in a certain area. There are 1 secondary users (SUs),
denotedbyi € N = {1,2,...,n}, each of whom would like to access the resource. Each i has
a current location and a value for using the resource of v;, where v; is private information.
Each v; is a random variable distributed on [0,7], where 7 > 0. Let v = (vy,...,vy). The
PU also uses the resource and has both a value and a current location. Assume all locations
are common knowledge.

If the SUs are located too close together and access the resource at the same time,
then they will cause interference with each other. The SU locations can be used to create a
conflict graph, g, which consists of conflict links between the SUs. Formally, if /;; € g, then
there is a conflict link between i and j, where i, j € N. If i and j are located far enough apart
so that no such conflict exists, then there is no link between them and ¢;; ¢ g. The PU owns
« different channels or radio frequency bands of the resource. If two users who conflict
with each other are assigned different channels, then there will be no conflict. Although the
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SUs can also conflict with the PU, we can assume that any SU who conflicts with the PU is
removed and let N consist only of the remaining SUs.

If the PU allows i access to the spectrum at price p;, then i receives a payoff of
u; = v; — p; while, if access is denied, i receives a payoff of u; = 0. Let the subset of N
who receive spectrum access be N. The PU receives a payoff equal to uy = Yicx pi from
selling access. Define social welfare to be the sum of all payoffs to the PU and the SUs.
The assignment of the spectrum is efficient if social welfare is maximized. Formally, social
welfare is defined as SW = }_;cy u;j + uo. Note that although the PU also uses the resource,
this usage payoff is not included in social welfare; thus, social welfare only includes payoffs
from selling secondary access to the resource or spectrum.

I consider two different mechanisms for assigning prices and secondary access to the
spectrum.

2.1. Group Auctions

The first mechanism is based on one from Wang, Umehira, Han, Zhou, Li, and Wu [5]
and consists of two parts. First, the PU uses graph g to place the SUs into non-conflicting
groups. These groups are constructed based on the coloring algorithm of Welsh and Powell [27],
which guarantees an upper bound on the number of groups created equal to one plus the
largest degree or largest number of conflict links any node has. The algorithm proceeds
as follows: For each i € N, define the degree d; of i as the number of conflicting links i
has in g. Order the degrees and rename the SUs such thatdy > d, > --- > d,,. If two
or more agents have equal degrees, then order these specific agents randomly. Next, the
non-conflicting groups are formed. Place 1 in group G;. For agent i — 1, who has just been
placed into a group, consider agent i. Place i into the previous group G, with the smallest
group number < as long as i does not have a conflict link with any node in G,. If i has a
conflict link with at least one member of all existing groups, then assign i to a new group.
Let the non-conflicting groups formed be G = {Gy,...,G,}. Let |G| be the number of
members of group G, € G. Assume that G is known to everyone.

Next, the PU holds a uniform price auction for x units where each non-conflicting
group is assigned a bid as follows: Let each bidder i submit bid b; and let b = (by, ..., by).
Define bmi" = minjeg, bi. Thus, b’"i" equals the minimum bid of all the SUs in G,,. For

each group G, € G, let bG |GA,| b"”” be the group’s bid. Assign spectrum use to the
groups with the x largest group bids and let these groups pay price b¢ .1, whichis thex +1
highest group bid. Assume the group price is spht equally among group members. Thus,
each member i of the winning group G, pays by Note that if bG |Gyl - bmm > bG =

Gy T°
[Gyl-bpin ¢

Il en ] Gw\ Thus, no member of group G, is ever asked to pay

|G,7\ -bzﬁn, then bly”i“ >
more than their bid.

2.2. Individual Auction

A uniform price auction is defined as follows, and no groups are formed: Let each
bidder i € N submit bid b;. Assign an item or spectrum use to the « highest bidders. Let
the price paid equal the x + 1 highest bid, b, 1. Thus, there is a single auction where the
top x bidders win an item and each pays the first rejected bid. If ¥ = 1, then this auction
equals the second price auction.

3. Results
Next I check both mechanisms for truthful bidding and compare social welfare.

Proposition 1. In both the group auction and individual auction, it is a weakly dominant strategy
for each j to choose bj = v;.

As truthfulness is an important property and simplifies later analyses, we present
a brief proof where the standard argument for uniform price auctions is presented and
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adjusted to the case of auction groups. Note that the group auction result is similar to the
truthfulness result presented in Wang, Umehira, Han, Zhou, Li, and Wu [5].

Proof. First, consider the group auction. We can show that j cannot gain from b; > v;. If v;
is not the minimum bid in j’s group, then increasing the bid beyond v; will have no affect
on winning the auction or on the price. If v; is the minimum bid in j’s group, then bidding
bj > v; will increase the minimum bid of j’s group. Either this will have no affect on j’s
group or j’s group could go from becoming a non-winning group to a winning group. Let
b be the bid of the current « highest price group divided by the number of bidders in j’s
group. Let b; > b> v;. Here j’s group does not win a channel in the auction if j bids v; but
does win a channel in the auction if he bids bj. However, when he bids b]' he will have to
pay price b, which is above vj. Thus, he is better off bidding v;. Similarly, j cannot gain
from bidding b; < v;. Again, either this bid will have no effect on j’s group winning an
item or it could decrease the chance of j’s group winning an item. Let v; be the lowest bid
in j's group. Let b be the bid of the current « + 1 highest price group divided by the number
of bidders in j’s group. Let b; < b< v;. Here, if j lowers his bid from v; to b, then j’s group
will go from winning an 1tem at price b to not winning an item. Since b < vj, j would prefer
to win the item. Thus, j is best off bidding v; and v; is a weakly dommant strategy for j in
the group auction. Next, consider the individual auction. A similar argument shows that j
cannot gain from bidding above or below v;, and so v; is a weakly dominant strategy in the
individual auction. [

Next we compare the social welfare generated by the group auction to that of the
individual auction.
Let d;,qx be the largest degree of any j in g. Order agents so that vy > vy, > ... > v,,.

Proposition 2. Let 2v,, > v1. Then, social welfare is larger with the group auction than with the
individual auction.

If valuations are not too far apart, then a group auction is beneficial as it allows
multiple agents with similar valuations to jointly consume the good. Even though these
agents may not have maximal valuations, there is not much of a gain from forcing a sale
to the highest valuation bidder, as would occur in an individual auction. However, if
valuations are spread apart, then it is best to have the highest-value bidder consume the
item, which is guaranteed with an individual auction, but not with a group auction.

Proof. First, consider the case of the individual auction. The winning bidders will be agents
{1,2,...,«x} and they will pay price v,1. The social welfare generated from this auction
is SW =ug+ YU = L 10 —K-Ugy1 + K01 = L 0. Next, consider the case
of the group auction. Here, agents are placed into non-conflicting groups and the upper
bound on the number of non-conflicting groups is dyax + 1; see Welsh and Powell [27]. If
dmax +1 = n, then it is possible that each agent is placed into a non-conflicting group
by themselves, which would happen if g equals the complete network. In this case, both
auctions would have the same social welfare. Next, assume d;;;;x + 1 < n. Then at least one
non-conflicting group has multiple bidders in it. If a winning group consists of two agents,
one of whom is agent 7, then this group’s bid will equal 2v;, and the sum of its valuations
will be greater than or equal to 2v,,. All other groups with multiple agents would either not
include n or would have more than two agents and thus would have both a minimum bid
and a valuation sum greater than or equal to 2v,. Hence, if the winning groups all contain
multiple agents, then each has a valuation sum greater than or equal to 2v,. Since there
are ¥ winning groups, SW > « - 2v,,. By this assumption, 2v, > vy and vy > v, > -+ - > vy;
thus, it follows that x - 2v,, > x -v; > Y ; v;. Therefore, SW > Y ¥ ; v;, and the group
auction will create higher social welfare than the individual auction.

Next, consider the case where at least one winning group consists of a single agent.
First, let all single agent winners be in the set QO C {1,2,...,«x}. Let there be f winning
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groups with multiple bidders; we already showed that some winners must be in groups
with multiple bidders, so B < «. Social welfare for the group auction will be SW >
B 20y + Yicqvi > Y0, and the group auction has higher social welfare than the
individual auction. Second, assume that at least one single agent winner, say j > «, is not in
the set {1,2,...,«x}. If v; < vy, then it must be that all non-conflicting groups with multiple
members also win an item, as these group minimum bids are greater than or equal to
20, > vy > v;. Thus, if j wins an item, then it must be that all i < j are in groups that have
already won an item; if 7 is in a single-agent group, then his minimum bid would be v; > v;.

Therefore, the social welfare generated from the group auction is SW > 2{:1 v > Y50,
and social welfare is higher with the group auction than with the individual auction. [

Note that social welfare is simply the sum of the valuations of the bidders who receive
an item and does not depend on price. Thus, differences in social welfare between the
group and individual auctions come from two different sources. The first is the fact that
the group auction allows multiple non-conflicting agents to consume the same unit of the
good by placing agents into non-conflicting groups and then letting these groups bid. The
second is each auction’s assignment of who receives an item. The individual auction always
assigns the highest-value agents an item and thus dominates in the second regard, while
the group auction dominates in the first regard. Example 1 illustrates that social welfare is
higher with the group auction when valuations are not too spread apart and the conditions
of Proposition 2 are met. Example 1 also alters these conditions so that valuations are
spread apart in such a way that the individual auction generates higher social welfare even
though fewer agents are consuming the good.

Example 1. Let n = 5 and x = 1 and let the conflict graph be given by g in Figure 1. Such a
conflict graph would occur if agents {3,4,5} are located in a more densely populated area and 2 is
on the outskirts, closer to {4,5}, while 1 is on the outskirts closer to 3.

! O—O
Figure 1. Conflict graph g.

Let v = (v1,v2,03,04,05) = (16,13,12,11,11). First, we construct the non-conflicting
groups used in the group auction. In g, SUs 3, 4, and 5 all have three conflicting links or a degree
dj = 3, while dy = 2 and dy = 1. Thus, the algorithm will first place either 3, 4, or 5 into group
Gy, say 3 is randomly chosen. Next, either 4 or 5 will be randomly selected, say 4. As 4 and 3
have a conflict link, 4 cannot be placed into 3's group. It places 4 instead into group Gp. Next
we place agent 5 into group Gs, as he conflicts with both 3 and 4. Since 2 has the second highest
degree, we place it into group Gy. Lastly, we place 1 into group Gy as it conflicts with 3 in Gy.
Thus, Gy = {2,3}, Gp = {1,4}, and G3 = {5}. From Proposition 1, each agent has incentive to
bid their own value. Thus, the minimum bids of each group will be 12, 11, and 11, respectively,
and group bids will equal bY = 2-12 = 24, b§ =211 = 22, and b§ = 11. Group Gy will be

awarded the spectrum and each group member will pay price p = % = 22/2 =11, and no other
spectrum will be awarded. The social welfare equals SW = vy + v3 = 13 + 12 = 25.

Note that as {3,4,5} all have equal degrees, the algorithm randomly selects one of them to
be placed into the first group and another into the second. If a different order had been selected,
then the final group composition would be dissimilar. One can check that this random selection
actually results in only one other group composition, which is G; = {2,3}, Gp = {1,5}, and
Gs = {4}. Here, agents 4 and 5 are swapped from the first group composition. As 4 and 5 have the
same valuations, the group bids and social welfare will not change.
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Now consider the case of an individual auction. Here, each agent has incentive to bid their true
values and bidder 1 wins the auction with a bid of 16 and pays the second highest price of 13. Social
welfare equals SW = vy = 16 < 25, which is less than the social welfare from the group auction as
predicted by Proposition 2.

Next, we alter the example so that the assumptions of Proposition 2 are no longer met. Let v
increase to v1 = 26. As 26 > 2(11) = 22, the assumptions are not met, as the highest valuation
is now much larger than the lowest valuation. First, consider the group auction. As g does not
change, the same non-conflicting groups will be formed as before, where G; = {2,3}, Gp = {1,4},
and Gs = {5}. Here, the lowest bid in each group remains the same and the group bids remain
the same. Social welfare does not change and is SW = 25. However, with an individual auction
the social welfare equals SW = vy = 26 > 25. Thus, the individual auction now generates
more social welfare. Note here that the composition of the conflict graph matters, as agent 1, the
highest-value bidder, has no conflict links with the low-value bidders and can be placed into a group
with a low-value bidder, ensuring that 1 does not win the auction. If the valuations are changed so
that v = (v1,v2,0v3,04,05) = (13,26,12,11,11), then agent 2 is the new highest-value bidder and
has conflict links with both of the lowest-value bidders. Our algorithm forms groups G; = {2,3},
Gy = {1,4}, and G3 = {5}, and now the highest-value bidder is placed with bidder 3, who also has
a fairly high value. In fact, group Gy = {2,3} will have the highest minimum bid and the highest
group bid. Social welfare here equals SW = vy + v3 = 26 + 12 = 38. This is higher than the social
welfare from an individual auction, which equals SW = vy = 26. Thus, when the conditions of
Proposition 2 are not met, the conflict graph plays a role in determining the social welfare of the
group auction and in whether or not it is higher than the welfare gained from an individual auction.

Notice that the group auction is not efficient in this example, as constructing groups
{1,2}, {3}, {4}, {5} would result in {1,2} winning the auction with a social welfare of 29,
which is larger than the social welfare of 25 found in the example. This inefficiency comes
about because the coloring algorithm seeks to minimize the number of groups formed and
is based on location or conflicting links and not on bids. Minimizing the number of groups
formed should also maximize the number of agents who receive a good, on average, and
thus, on average, may lead to more efficient outcomes, although, as was just illustrated, the
coloring algorithm often does not result in efficient outcomes for a particular example. In
order to increase efficiency, one would need to assign groups based on bids, which is more
difficult as one would need to ensure that agents do not have an incentive to misrepresent
their bids in order to influence the groups formed. It is possible that an efficient mechanism
could be created where groups are formed based on both bids and locations. However,
such a mechanism would most likely be quite complex and difficult to implement and is
beyond the scope of the current analysis.

Note that with an individual auction only a single bidder consumes the item or
spectrum. One could allow other bidders who do not conflict with the winner to also
consume spectrum. However, these bidders may have valuations below the « + 1 highest
bid and thus would not be willing to buy spectrum unless they were charged a lower price.
If different prices are paid, then bidders will no longer have an incentive to bid truthfully,
which is a desirable property for auctions and for spectrum management.

4. Collusion in Group Auctions

Next, we will investigate how collusion affects bidding in the group auction. Suppose
some SUs have a common agent or owner (such as these SUs being cell towers operated by
the same mobile company) who bids on their behalf. We will analyze whether or not this
group can gain from submitting bids that are different from their valuations. As these SUs
have a common owner, the group can be interpreted as a natural cartel who would need no
enforcement mechanism; see Decarolis, Goldmanis, and Penta [6], who analyze collusion in
online advertising through a common agency. A timely example of a collusive agent acting
on behalf of the spectrum seller comes from the FCC’s incentive auction where a spectrum
from TV broadcasters was resold to mobile broadband providers; see Doraszelski, Seim,
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Sinkinson, and Wang [28] and Milgrom and Segal [29]. Some TV stations owned multiple
licenses and behaved strategically by withholding certain licenses from the sale to drive
up the prices of the remaining licenses. Note that our context is different in that we are
examining collusive behavior on behalf of the spectrum buyers or secondary users.

Let A be an agent who bids on behalf of a subgroup of bidders N4 C N. As in
Decarolis, Goldmanis, and Penta [6], A is able to make proposals of binding agreements
to members of N subject to the following two stability conditions: The first is that no
member of N4 prefers to leave the group and bid on his own. The second is that A’s
proposal must be consistent with the non-members’ equilibrium behavior. Alli ¢ N4 bid
as independents. We refer to N as a coalition or cartel.

Agent A chooses both bids and payments for its members. Let b]A be the bid proposed
by A for j € N4 and let pf (x) be the payment proposed by A for j if N4 wins an item, and
let x be the total payment owed by N4 to the seller. Assume A knows the valuations for all
j € N and assume that A’s goal is to maximize the sum of its members’ payoffs.

Note that the first stability condition assumes that an agent who exits the coalition acts
as an independent and bids on his own, while the remaining coalition members stay in the
coalition and bid accordingly. This stability condition is in line with Decarolis, Goldmanis,
and Penta [6], but is different from coalition stability conditions, which assume that a
single coalition member has veto power over the coalition. Our definition makes sense
within the context of the coalition being a group or agency where one person’s exit does
not eliminate the plan or group for others. For example, consider a company or agent that
runs multiple wireless networks, where a single network can defect and purchase spectra
directly from the secondary spectrum marketplace, and this defection will not affect the
networks remaining with the original service provider.

The solution concept which applies to this model is similar to the recursively-stable
agency equilibrium of Decarolis, Goldmanis, and Penta [6]. The agent has complete
information regarding its members but does not know the valuations of non-members;
the agent maximizes the sum of the coalition member’s payoffs subject to two stability
conditions. Coalition members know that the agent has complete information regarding
the members and choose to participate in the coalition or to become an independent
bidder. All bidders know the makeup of the non-conflicting groups and know their own
valuations. The independent bidders will choose to bid truthfully, as in Proposition 1. These
assumptions are captured in the two stability conditions. Proposition 3 shows that if all
coalition members belong to the same non-conflicting group, then it is a weakly dominant
strategy for the coalition to set the bid of its lowest valued bidders equal to the average
value of its members. Thus, Proposition 3 shows that the coalition will deviate from truthful
bidding by increasing at least its minimum bid.

Let bf?min = min]-6 NANG, b]A. Thus, bfmm is the minimum bid A submits for coalition

members in the non-conflicting group G,.

Proposition 3. Let N4 = G, for some non-conflicting group G- and let {1',2',...,j'} = NA.

Order agents so that vy1 > vy > -+ > v and assume vy > 0. Then, it is a weakly dominant
i

strategy for b:;‘min = (2;:1’ vj)/j".

Notice that b‘;‘min = (2;'/:1/ v;)/j > vy as vy > v

If all coalition members are assigned to the same non-conflicting group, then the
coalition has incentive to increase their group bid in order to increase their chance of
winning an item. This bid increase is possible because the high-value group bidders can
pay more if the group wins an item at a price higher than some members’ valuation, which
allows low-value bidders to pay below their valuation.

Proof. We show that A can make all members of N4 better off by bidding b:;‘ =

min

(Z;/:l/ vj)/j', with carefully chosen payments p]A(x), je{1,2,...,j'}, than they would
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be by bidding independently. Note that any j € G, could choose to become an inde-
pendent bidder and bid v;. Thus, all coalition members must be made better off than

the case of b4, = = vjr, or when G,’s minimum bid is v. First, compare the case of

1’1’\11'\

b;‘mm = (2]‘/ " v]) /j to that of b4 Smin = Uf . If G, is one of the x largest bidders when
b‘;min = vy, then it will remain so when bAmm = ():;.:1/ v;)/j" and the price paid by G,,

G(x41)'s bid of bK .1 will remain the same. Suppose instead that G, is not one of the « largest

bidders when b‘;mm 1, but is one of the «x largest bidders when bvmm = (Z;:/:l/ vj) /]

We show that all agents in G, can be made better off. Specifically, we show that there
exists p(x) foralli € {1/,2/,...,j'} so that all members of the coalition are better off with

D = (Zf 1/ 0j)/j than with b4

bldders The largest possible price that G,, could be assigned is |G| - bA min = =7 % " mins

= vjr. By this assumption, G, is one of the k largest

1’1’\1[1

we know that j' - b, is an upper bound on G,’s group bid and thus the next hlghest

group’s bid cannot exceed this. We show that all members of G, can be made better
off with a group price of x < j/ - b/ £ min- Here, let A assign payments of p/(x) = v; —¢;

foralli € {1,2/,...,j'} where ¢; = ,7’(25:21, vk — x). Then, i receives a payoff of

]

k=1/ "k
v; — (v; — €;) = €; > 0, which is greater than or equal to the payoff of 0 they would receive
if bA = vy and G, was not one of the x largest bidders. If x < i - bA £ mins then €; > 0 and

iis strlctly better off than if b4, = = vjr. By construction, the sum of payments equals the

mm
amount owed or Zi:l’ p = x. Note that ¢; = ],72”{ (Zk:v vk — x) assigns each coalition
k=1!
)
member 7 a portion of the coalition surplus Zizl, U — x in proportion to i’s valuation.

Thus, by bidding b,ymm = (Z;:/ v/ > vy, A can guarantee each coalition member

a payoff of €; > 0 whenever the (x + 1) highest bid is vy < b1 < (Z] 1 0j)/J'; coalition

members would prefer to receive ¢;, as bidding 1ndependently gives them a payoff of 0.
And when by1 < vy, then A can leave payments and surpluses the same as when bidders

bid independently. Thus, by bidding b, = (£

prefer to be in the coalition and no one will bid independently
Next, we show that A will never set b4 . > (Z; 1 0j)/j or b,ymm (Z; v v]-)/j’.

,)/mm

1 0j)/ ], A can guarantee that all j € G,

First, assume, to the contrary, that b4 > (¥ ]/ 10 )/ j'. If the k 4 1 highest bid is bA

,)/mm

bryq > (Z; 1 0j)/J, then Gy may win an item and be asked to pay x = j'- bk+1 As

by > (Z;

divide the payment x among N* except by requiring at least one coalition member to pay

more than their valuation. If the (k + 1) highest bid is b% fymin (Z;/:

the winning groups and payments are identical to the b%, i = (Zj /

=
o
there is no gain to A from setting b% min > (Y

1 0j)/j, we know that x = j' - b > (Z;'=1/ vj) and so there is no way to

1 9))/j = bryq, then
v vj)/]" case. Thus,
=1 0j)/]- Next let bAmm (Z;:,:l/ v;)/]'.
1+ 9j)/j'. Then, as b%,

Il’\ll’\

First, assume b% Smin < by < (Z;

1 0j)/j', the members of N 4 would prefer to win the item and

< biy1, Gy does not win an

/
item. But as by, < (Z]

divide the payment, as in the b4 Smin = (Z;:/

settlng b min = (Z/ 1 U])/] If bk-‘,—l < b Apmin (Z;,

o

payments are the same as the b% min, = (Z‘/ 1 0j) /] case. If b4 - min (Z;
A

then G, does not win an item and it also does not win an item if bAmm = (Z;.:l, v]') /7.

v U]')/ j' case. Thus, A would be better off
1+ 0j)/j', then the winning groups and

v o)/ < by,
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Thus, A cannot gain from setting bf;lmin < (Z;;l, v;)/j'. Therefore, bfmm = (Z;,:l, v;)/j isa
weakly dominant strategy. [J

Note that we assumed that A knows all the valuations of its members. An interpreta-
tion is that the coalition members share a plan owned by A and A has access to information
about its members. For instance, consider again an agent that bids on a spectrum for
multiple wireless networks; such an agent should have information about the value of the
spectrum to its customers. This assumption is similar to that made by Decarolis, Goldma-
nis, and Penta [6] for the context of an agent bidding for online ads. Additionally, note
that we assume that the non-conflicting group assignment is common information. This
assumption is made for simplicity, as allowing this information to be private information
would complicate the analysis.

Next, we will compare Proposition 3 to the first price auction result, where bidders
shade their bids to below their valuations. In the first price auction, bidders control both
the probability of winning an item and the price, as the price equals the winning bid. Thus,
bidders wish to increase their bids to increase their chance of winning and wish to decrease
their bids to increase their surplus or decrease the price paid. In the group auction of
Proposition 3, the coalition controls the probability of winning an item with their bid, but
does not control the price paid, as it is the highest losing bid or the x 4 1 highest bid. Thus,
increasing the coalition’s bid can increase the probability of winning the item, but cannot
increase the price. The coalition is able to increase the price above the value of its lowest
bidder, because it can make internal transfers from high- to low-value coalition members
so that all coalition members including the low-value bidder receive a positive surplus.

Next, we illustrate the results of Proposition 3.

Example 2. Reconsider Example 1, where SUs again have the conflict graph of Figure 1 and
v = (v1,v2,v3,04,05) = (16,13,12,11,11). Let the non-conflicting groups be G; = {2,3},
Gy = {1,4}, and G3 = {5}. Let N4 = {1,4}. By Proposition 3, A can increase the payoffs of its
members by increasing the bid of its lowest-value member agent 4. The maximum value A can choose
is byl = % = 13.5and A will set b{* = vy = 16. All other agents bid independently and will
bid their valuations. Gy will have group bid b1G = 2-12 = 24, while G, has bg =2-.13.5 =27,
and b§ = 11. Thus, Gy wins the auction and must pay the price 24. As % =12>09,=11,A
cannot ask both group members to split the price. Thus, A should assign prices to divide the surplus
between the two members. If A chooses to split the surplus as described in the proof of Proposition 3,
then the surplus of vy + v4 — 24 = 27 — 24 = 3 is split between the two agents in proportion to

their valuations. Thus, agent 1 will pay p = 14.22 and will receive a surplus of vlitm -3=1.78,

while 4 will pay pjf = 9.78 and will receive surplus of 1.22.

Next, we compare this result to that of Example 1 when all agents bid independently and there
are no coalitions. With no collusion, Gy wins the group auction and pays the group price 22. Social
welfare equals SW = vy + v3 = 25. While, with collusion, Gy wins the auction and pays group
price 24. Social welfare here equals SW = vy + vq = 27. Thus, both auction revenue and social
welfare have increased with the addition of collusion. Note that this comparison is carried out using
the weakly dominant strategy outcomes of Propositions 1 and 3.

Proposition 4. Let x = 1 and let the number of non-conflicting groups equal p > 2. Let
{v,2,,...,j'} = Gy, let {17,2",... K"} = Gg for the non-conflicting groups G, and Gg, and
let NA — {1,2,...,/yu{1",2",...,k"}. Order the agents so‘/that vy > 0”2, > >0 and
O > Uy > - > O, Assume vy > v]:: and vyn > v, Let 21:11 v; > Zi-‘:l,/ v;. Then, it is a
weakly dominant strategy for b;“mm = (E;.:l, v;)/j and b = 0 for i" € Gg.

Proposition 4 shows that if an agent controls two groups, then she has incentive

to increase the minimum bid of the highest-value group and decrease the bid of the
other group.
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Proof. As x = 1, only one non-conflicting group will be awarded an item and as y > 2,
there is at least one non-conflicting group that A does not control. A has incentive to

make sure that either G, or G4 wins the item. Since Z{:l, v; > Zi-{ll// v;, G, can make a

higher group bid than G4 can, as 2{:1’ v; is the maximum G,, can pay for an item. Let
]/

Aset b, = L By ® And let A set by = -+ = by = 0, as this bid will minimize the

amount that G, must pay. Next, we check that all members of N* are made better off by

belonging to N* than by bidding independently. If G,y does not win the item with this bid,

then they would also not win the item with a bid of % Smin = U . Consider the case where

T
G, does win the item with b:;‘mm = % but does not win the item with bf;‘mm = vj. Let
i e{1,2,...,j'}. If G, is asked to pay Z{:l, v;, then A can assign payments p to i’, as
in the proof of Proposition 3, so that each i’ receives a payoff of €; > 0, which is larger
than the payoff of 0 they would receive from b Smin = 0 Next, let i"e {17,2",... K"}

If i” leaves the coalition and bids mdependently SO that bj» > 0, and all others remain
in the coalition, then the minimum bid of Gg will remain at 0 as A has no incentive to
change the remaining bids, so i""’s defection will have no effect. Thus, i"’’s payoff is always
0 and is not made worse by remaining in the coalition. Thus, no coalition member has an
incentive to leave the group. As A’s goal is to maximize the sum of the members’ payoffs,
/
setting bf;‘m1 = (Y =1 Uj ;)/ ] is better than b4 Ponin (Z] 1 0j)/J', as doing so will decrease
the chance that G, wins an item; the detalls are smular to those found in the proof of
o
Proposition 3. Similarly, A will not set b‘;‘min > (2;':1/ vj)/j', as this would require at least
one member of G, to pay more than their valuation. Thus, A cannot gain from setting

b:;‘mm x ]/ 19 )/ j' or bw“““ X ], 1) )/ j' Thus, it is a weakly dominant strategy for
bf?mm = (Z], 1/0 )/] and b// = 0 for l// S G‘B O

5. Concluding Remarks

The auctions of non-rivalrous goods with interference are examined. The results
show that group auctions can achieve higher social welfare than individual auctions if
the valuations are not too far apart. Additionally, collusion in group auctions can result
in higher bids if the coalition increases their chance of winning the item by allowing
high-value bidders to subsidize the payments of low-value bidders.

A possible extension would be to allow for multiple competing collusive agents. If
competing agents completely controlled separate non-conflicting groups, then group prices
may be bid downward. However, if competing agents had coalition members in the same
non-conflicting group, it is possible that bids would be pushed higher. Such an analysis is
beyond the scope of the current investigation and I leave this inquiry for future research.
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