Check for
Updates

Sketching Al Concepts with Capabilities and Examples:
Al Innovation in the Intensive Care Unit

Nur Yildirim Susanna Zlotnikov

Carnegie Mellon University =~ Carnegie Mellon University

Pittsburgh, PA, USA
yildirim@cmu.edu

Pittsburgh, PA, USA

Leigh A. Bukowski
University of Pittsburgh
Pittsburgh, PA, USA
lab108@pitt.edu

Sher Shah Amin
University of Pittsburgh
Pittsburgh, PA, USA
amin.shershah@gmail.com

John S. Minturn
University of Pittsburgh
Pittsburgh, PA, USA
jsm120@pitt.edu

Andrew J. King
University of Pittsburgh
Pittsburgh, PA, USA
andrew.king@pitt.edu

Venkatesh Sivaraman Adam Perer
Carnegie Mellon University ~Carnegie Mellon University
Pittsburgh, PA, USA Pittsburgh, PA, USA

vsivaram@andrew.cmu.edu adamperer@cmu.edu

susanna.zlotnikov@gmail.com

Deniz Sayar
Izmir University of
Economics
Izmir, Turkey
sayardeniz@gmail.com

Jeremy M. Kahn
University of Pittsburgh
Pittsburgh, PA, USA
jeremykahn@pitt.edu

Billie S. Davis
University of Pittsburgh
Pittsburgh, PA, USA
bid8@pitt.edu

Kathryn A. Riman
University of Pittsburgh
Pittsburgh, PA, USA
kathrynriman@pitt.edu

Dan Ricketts
University of Pittsburgh
Pittsburgh, PA, USA
d.r@pitt.edu

Lu Tang
University of Pittsburgh
Pittsburgh, PA, USA
lutang@pitt.edu

Sarah M. Preum
Dartmouth College
Hanover, NH, USA
sarah.masud.
preum@dartmouth.edu

James McCann
Carnegie Mellon University
Pittsburgh, PA, USA
jmccann@cs.cmu.edu

John Zimmerman
Carnegie Mellon University
Pittsburgh, PA, USA
johnz@cs.cmu.edu

ABSTRACT

Advances in artificial intelligence (AI) have enabled unprecedented
capabilities, yet innovation teams struggle when envisioning Al
concepts. Data science teams think of innovations users do not
want, while domain experts think of innovations that cannot be
built. A lack of effective ideation seems to be a breakdown point.
How might multidisciplinary teams identify buildable and desirable
use cases? This paper presents a first hand account of ideating
Al concepts to improve critical care medicine. As a team of data
scientists, clinicians, and HCI researchers, we conducted a series
of design workshops to explore more effective approaches to Al
concept ideation and problem formulation. We detail our process,
the challenges we encountered, and practices and artifacts that
proved effective. We discuss the research implications for improved
collaboration and stakeholder engagement, and discuss the role
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HCI might play in reducing the high failure rate experienced in Al
innovation.
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1 INTRODUCTION

Artificial intelligence (AI) is transforming the landscape of health-
care. From cancer diagnosis [19] to prognosis [136], automated
documentation [71], and treatment recommendations [109], Al ap-
plications in healthcare offer the promise of improved clinician
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experience and better healthcare outcomes for patients. While
AT’s technical advances showcase impressive performance in lab
settings, Al systems largely fail when moving to clinical practice
[42, 92, 120, 137, 145]. HCI researchers note that the clinical util-
ity and actionability —whether clinicians can take specific actions
based on a prediction— of healthcare Al applications often remain
unclear [44, 119, 142]. Clinicians do not use Al systems, often be-
cause systems do not deliver what they need.

The challenge of making Al advances useful in real world con-
texts is not unique to healthcare. Today, the majority of Al initiatives
fail, as they fail to generate enough value for users or for service
providers [38, 63, 126]. Product teams share experiencing repeated
Al failures due to selecting and working on the wrong problem —
high-risk projects that may or may not be valuable or that entail
unavoidable challenges around fairness and bias [13, 54, 95, 140].
Al development practices remain technology-driven with little at-
tention to human needs and wants [140]. Stakeholders that do not
have a background in data science or Al are rarely involved in
conversations around the objective of the underlying model or the
overall problem formulation, if involved at all [29, 39]. Challenges
in multidisciplinary collaboration across team members poses a
major barrier to Al design and development [74, 88, 95, 96]. As
Al capabilities become readily available, a critical question arises:
How can multidisciplinary innovation teams effectively identify
low-risk, high-value AT use cases?

In response to these challenges, HCI researchers called for
human-centered, participatory approaches to Al development —es-
pecially in early ideation and problem formulation phases- to re-
duce the risk of developing unwanted technology [29, 135, 140].
Studies on industry best practices revealed that effective innova-
tion teams brainstorm using Al capabilities and examples of Al
applications to close knowledge gaps between data science, HCI,
and domain expertise [134, 138, 140]. These emergent Al innova-
tion practices resembled a blend of user-centric and tech-centric
approaches, where teams rapidly generated many Al concepts to
match [10] Al capabilities with human needs within a specific prod-
uct domain [140]. An emerging body of research have started to
explore how team members and domain stakeholders might envi-
sion and co-design Al use cases (e.g., in law [27], public services
[112], accessibility [122]), and the types of design process processes,
tools, and methods that might prove effective [34, 75, 87].

Building on this line of research, we set out to explore clini-
cally relevant and feasible AI uses cases for intensive care within
a multidisciplinary team of Al researchers, HCI researchers, data
scientists, and healthcare professionals. Our prior work detailed
the development of the Al Brainstorming Kit [139] — a resource to
help HCI experts facilitate Al concept ideation within multidisci-
plinary teams, especially to identify low-risk, high-value concepts
where moderate Al performance can create value. In this paper, we
present a reflective account of our design process as a case study
of early phase Al innovation, with a specific focus on capturing
the iterative research activities. Our team had access to a rich ICU
dataset (similar to MIMIC [62]) that was collected across 39 inten-
sive care units (ICUs) from 18 hospitals. We engaged in an iterative
design process to broadly explore the problem-opportunity space
for getting the right design [17]. We conducted a three-phase study,
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where we moved from ideation to problem formulation, concept
design, and initial assessment with end users.

Phase 1 Brainstorming focused on envisioning many Al con-
cepts and use cases for the ICU, before selecting and building an
application. We conducted two brainstorming workshops within
our multidisciplinary team. The first workshop followed a tradi-
tional user-centered design approach with a focus on user needs.
The second workshop combined user-centered and matchmaking
[10] approaches to consider both user needs and Al capabilities
simultaneously. Building on the AI Brainstorming Kit [139], we used
a set of Al capabilities and examples to scaffold ideation, selecting
examples where moderate model performance was ‘good enough’
to produce value. An assessment of outputs from each workshop
demonstrated that the latter approach resulted in more effective
brainstorming with many concepts that were low-risk in terms of
feasibility and clinician acceptance, and medium to high-value for
clinicians.

Phase 2 Problem Formulation focused on detailing a subset
of Al concepts further (e.g., predicting medication availability and
anticipatory ordering). Our brainstorming sessions yielded many
concepts that leveraged Al capabilities in ways that provided utility
for clinicians; however, it was unclear whether and how these could
operationalize our unique ICU dataset. To tackle this challenge, we
conducted a follow-up workshop session, where we detailed the re-
quired model performance, point of interaction, data requirements,
and risks (e.g., consequences of potential errors) for 12 use cases
we previously identified. We created a worksheet detailing the data,
model reasoning, and interaction form to disentangle interaction
design and model building considerations. This proved an effec-
tive artifact for refining concepts, revealing unreliable data, and
considering if simpler versions of a concept might also be valuable.

Phase 3 Sketching and Co-Design explored further refining an
Al concept towards prototyping to elicit early phase user feedback.
We selected a concept that aimed to predict if a patient is eligible
to receive the protocol for assessing readiness for liberation from
mechanical ventilation. We created sketches detailing the concept.
We conducted four co-design workshops with 11 clinicians to probe
whether and how this concept might support them in considering
and executing this specific evidence-based protocol. Participants
perceived the concept as valuable, and they articulated detailed
design requirements for interaction design as well as model building
and data.

This paper makes two contributions. First, we present a rare
case study of early phase Al innovation within a multidisciplinary
team of data scientists, domain experts, and HCI researchers. We
describe the challenges faced across brainstorming, concept design,
and initial assessment. These practices serve as a starting point
for multidisciplinary teams to structure design activities for nav-
igating early phase human-centered Al innovation. Second, we
discuss remaining challenges and outline opportunities for HCI
researchers to better support and facilitate effective collaboration
and stakeholder engagement in Al innovation projects, specifically
to identify low-risk, high-value use cases in high-stakes contexts
including healthcare and beyond.
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2 RELATED WORK

2.1 Challenges of Al Product Innovation

HCI research characterizes technology as a material [102, 128] that
designers can explore to envision novel interactions (e.g., bluetooth
[115], haptics [85], and software [93]). Embracing this material
lens, researchers have framed ‘Al as design material’ to explore
AT’s opportunities and challenges for HCI research and practice
[114, 135, 138]. From language translation to text summarization,
medical diagnosis and image generation, technical Al advances offer
unprecedented capabilities. While these advances open up a novel
space for interactive systems, they also pose unique challenges to
designing Al products and services [135]. A large body of research
investigated the challenges around explainability [1, 77], trust and
reliance [15], user control [108], feedback [113], error recovery [73],
and fairness-related harms [124], just to name a few.

While research efforts have largely focused on mitigating issues
that arise post-deployment, recent research points to a more con-
sequential problem: more than 85% of Al innovation projects fail
pre-deployment [38, 63, 126]. Failure includes taking on projects
that are too complex or infeasible; selecting problems that entail
unavoidable fairness issues, such as privacy concerns or algorith-
mic bias; and building systems that in the end fail to generate
enough value for customers or service providers [126]. Some re-
searchers critiqued this breakdown from a perspective of ‘validity’,
raising the importance of asking whether an Al system provides
any benefits in the first place [98]. Studies investigating indus-
try practices attribute Al failures to lack of human-centered ap-
proaches and ineffective collaboration between cross-disciplinary
team members in early problem formulation phases of a project
[31, 74, 81, 88, 96, 123, 125, 140].

In recent years, resources in the form of guidelines and toolkits
became available to address some of AI's design challenges (e.g.,
human-AI guidelines [2, 3, 94], fairness toolkits [30]). However,
investigations on how teams use these resources indicate that these
resources mainly help at later stages, after problem selection and
formulation. Practitioners ask for resources that support early phase
ideation and problem formulation to discover use cases where Al
might be a good solution [140]. A related strand of research inves-
tigating industry best practices revealed that effective innovation
teams work with Al capabilities and examples to scaffold cross-
disciplinary ideation [134, 138, 140, 151]. These resources detail
what Al can do instead of how AI works using non-technical terms
(e.g., detect customer patterns; predict seasonality trends), which
seem to help user experience designers and product managers gain
a practical understanding of Al [140].

Finally, researchers report limitations of user-centered design
(UCD) in Al innovation [41, 46, 91, 131, 140, 148], and highlight
emergent design processes that blend UCD and matchmaking [10]
- an innovation process that starts with a technical capability to
systematically search for customers that might benefit from it. Re-
searchers also point out that innovation teams often focus on com-
plex use cases where near-perfect Al performance is needed for a
concept to be useful [40, 135]. A recent analysis of 40 Al applications
note that the majority of real-world applications in fact leverage
moderate model performance, suggesting that teams should focus
on cases where imperfect Al can create value [139].
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HCI researchers have explored Al concept ideation through
design-led inquiry to provide first-person accounts of their design
process, challenges, and emerging solutions [7, 69, 70, 132, 152].
For example, Yang et al. detailed how a team of HCI and NLP
researchers envisioned and prototyped Al-powered features for
Microsoft Word [132]. Kayacik et al. described how UX designers
and Al research scientists envisioned Al-driven concepts using gen-
erative Al capabilities for music creation [69]. In the same spirit, we
set out to contribute a detailed case study of our ideation process
for envisioning and designing Al use cases for intensive care.

2.2 Broadening Participation in Al Design

A growing body of work has called for socio-technical, partici-
patory approaches to meaningfully engage domain stakeholders
throughout the AI development lifecycle [6, 24, 28, 29, 117, 149].
Prior research notes that stakeholders with little to no background
in data science or Al are rarely involved in problem selection and
formulation, if involved at all [29, 39, 55, 67]. There is a knowledge
gap between data science and domain expertise [74, 132, 140]: Do-
main experts and designers struggle to understand what Al can do,
they often envision Al services that cannot be built [35, 78, 135, 144].
Data scientists find it challenging to elicit needs from domain ex-
perts, and without this input, they tend to envision Al services that
users and impacted stakeholders do not want [74, 81, 88, 96]. Teams
do not seem to ideate; they focus on building a single application
without exploring the space of possibilities [140].

Recent HCI research has proposed new design methods, artifacts,
and resources, such as metaphors [34, 87], Al lifecycle comicboard-
ing [75], onboarding materials [20], and other artifacts [4, 76] to
facilitate effective stakeholder engagement. Notably, research em-
ploying this type of resources often focuses on later stage Al phases,
detailing how to refine existing Al systems or mitigate harmful out-
puts. Relatively little research has offered a detailed account of
early phase ideation and problem formulation with domain experts
and impacted stakeholders. Few examples worth noting present
case studies on envisioning and designing AI use cases in child
welfare [112], fact-checking [80], law [27], and content moderation
[50], and accessibility [84, 122]. We draw on this strand of research
to explore effective design processes and activities for engaging
clinical domain stakeholders in Al concept ideation. Specifically,
we utilize a design ideation resource, namely the AI Brainstorming
Kit [139], that we developed in our prior work to explore how to
navigate early phase Al innovation within a multidisciplinary team.

2.3 Designing Al for Healthcare

Healthcare is a complex product-service ecosystem consisting of
many stakeholders (e.g., clinicians, patients, healthcare managers,
insurance providers, regulators, etc) [72, 90, 121]. A large body of
research has explored the iterative design of healthcare products
and services with a focus on stakeholder engagement in the early
design stages [8, 26, 57, 99, 104, 141, 147]. In recent years, the ad-
vances in Al and the availability of high-density datasets, such as
patient electronic health records (EHR), have enabled a new wave
of innovations, spanning systems that support diagnosis, treatment
recommendations, and automated documentation. However, similar
to other domains, Al systems in healthcare have a poor track record;
they largely fail when moving from research labs to clinical practice
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[25, 32, 61, 107, 127, 137, 142]. The clinical utility of these systems
remain often unclear [42, 44, 120]; as a result, clinicians often do not
use them [119, 137]. Recent HCI research has developed healthcare
Al systems with special attention to challenges around workflow
integration [5, 16], calibrating clinician trust [59, 109, 133], trans-
parency and setting mental models [19, 53], and risks of biases and
harm [129]. Relatively little work engaged healthcare stakeholders
in the early stages of Al development to envision concepts that
leverage Al capabilities or explore data requirements with an eye
for downstream applications [90, 133]. Our work aims to address
this gap, specifically within the context of intensive care.

The intensive care unit (ICU) is a complex, team-based health-
care setting involving many clinicians (e.g., attending physicians,
fellows, residents, nurse practitioners, respiratory therapists) pro-
viding round-the-clock care for critically ill patients [100]. Prior HCI
work on ICUs focused on conducting field studies to understand
clinician needs and workflows [65, 100, 101, 143], and developing
technical systems and interventions (e.g., automating patient note
documentation [48, 130], reducing alert fatigue and interruptions
[18, 23, 111]). Al research advances in ICU demonstrate systems
that predict treatment medications [116], predict if a patient will
need a ventilator [116], predict patient discharge and readmission
[79], and predict the onset of conditions like sepsis [89]. While
these proof-of-concept models indicate an initial feasibility, it re-
mains unclear whether clinicians need help with these tasks. A
recent study interviewed ICU physicians and nurses to elicit what
predictions would be useful [37] and found that clinicians desire
predictions around patient trajectory and prioritization, mainly
to reduce the high cognitive load rather than help with decision
making. We build on this line of work to explore data and Al as
design materials for ICU to identify clinically relevant and feasible
Al use cases.

3 OVERVIEW OF DESIGN PROCESS

We wanted to develop more effective approaches to multidisci-
plinary brainstorming of Al concepts, especially in the early phases
of ideation and problem formulation. Building on prior literature
that noted successful Al innovation teams ideate before selecting
what to build, we set out to tackle the challenge of ideation within
a project that focused on Al innovation in the ICU.

Our academic research team (n=22) included 6 HCI, 6 data sci-
ence, and 10 healthcare experts. The HCI researchers had back-
grounds in interaction design, service design, and data visualization;
they brought expertise in human-AI interaction and ideation. The
data science members had backgrounds in data analytics, healthcare
analytics, and Al research; they brought expertise in Al capabilities
and what could be built with the dataset. The healthcare members
all had experience in critical care medicine and included 4 attend-
ing physicians, 2 fellows, 2 nurses, and 2 non-clinical healthcare
experts. They brought expertise in clinician needs. Table 1 provides
a summary of our teams’ composition.

We engaged in an iterative, reflective design process [17, 103,
150] to explore Al opportunities for the ICU, particularly to search
for use cases that leveraged our ICU dataset. We conducted a three-
phase study. The first phase focused on brainstorming; we con-
ducted two ideation workshops within our team to identify clini-
cally relevant and buildable use cases. The second phase focused
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Table 1: Our team consists of data science and Al researchers
(DS), clinicians and healthcare experts (H), and human-
computer interaction researchers (HCD).

ID W1 W2 W3 Role Exp. Gn.
DS1 v v/ Data Scientist 10+yrs F
DS2 v vV Data Scientist 3-5yrs M
DS3 v v v/ Data Analyst 5-7yrs M
DS4 v o/ Healthcare Analyst  10+yrs M
DS5 v v/ AlResearcher 5-7yrs M
DS6 v Al Researcher 5-7yrs F
H1 v v ICU Physician 10+ yrs M
H2 v/ ICU Physician 10+yrs F
H3 v v/ ICU Physician 10+yrs F
H4 v v v/ ICU Physician 10+yrs M
H5 v Critical Care Fellow 5-7yrs F
Hé v Critical Care Fellow 5-7yrs M
H7 v. vV NursePractitioner  5-7yrs F
H38 v' v/ Nurse Practitioner ~ 5-7yrs F
H9 v vV Healthcare expert 10+yrs F
H10 v Healthcare expert 10+ yrs M
HCD1 Vv v’ HCI/AI Researcher  10+yrs M
HCD2 v V/ HCI/AI Researcher 3-5yrs M
HCD3 v v v HCIResearcher 10+yrs M
HCD4 V v v HCI Researcher 5-7yrs F
HCD5 v v v Service designer 5-7yrs F
HCD6 v v v Service designer 5-7yrs F

on problem formulation; we conducted a design workshop to detail
a subset of 12 concepts. The third phase focused on sketching and
co-design; we created low fidelity sketches for an Al concept we
had generated. We conducted four co-design sessions with 11 clin-
icians who had not been involved in our study to elicit feedback
on the design concept. Below, we provide a brief overview of the
ICU dataset our team had access to. We then present each phase in
subsequent sections, unpacking the research goals, design activities,
and insights gained.

3.1 The ICU Dataset

The objective of our project was to broadly explore how our ICU
dataset might be used to improve critical care medicine. Data avail-
ability is crucial for enabling Al capabilities [135]. However, prior
studies on envisioning future Al solutions often do not draw from
a particular dataset, and instead focus on what would be possible
with pretrained models or data that could be collected [78, 84, 132].
While there is research exploring real-world datasets with domain
experts, these studies often do not focus on Al innovation or tech-
nical feasibility of the envisioned systems [11, 36]. Our focus was
on bounding ideation with a real world data set to address this gap.

Our dataset consisted of two parts: electronic healthcare records
(EHR) and staffing metadata. Similar to the publicly available MIMIC
dataset [62], the EHR data included patient level variables, such
as hospitalization (e.g., age, gender, race, discharge disposition, ad-
mission and discharge dates, etc.); diagnosis and procedure codes,
comorbidities; medications; clinical events, mechanical ventilation;
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Figure 1: An Al capability abstraction and example (left), poster printouts to prompt ideation across each capability (right).

and others with a total of 15 variables. The staffing metadata in-
cluded the transformation of patient level variables to anonymously
identify the unique care providers across different roles (i.e., physi-
cians, nurses, respiratory therapists) who provided primary care for
each patient at a shift-level. The creation of this additional dataset
was motivated by prior literature that indicated whether and how
long individual care providers had worked together in the same
team impacts the quality of care in the ICU [33]. The dataset was
collected across 39 ICUs from 18 hospitals on the East Coast of the
United States between 2018 and 2020 (see supplementary materials
for a high-level overview of the data schema).

4 PHASE 1: BRAINSTORMING AI CONCEPTS

We wanted to explore how we can effectively brainstorm Al con-
cepts as a multidisciplinary team. The healthcare members would
bring expertise on what is relevant and what might transform criti-
cal care practice. The data science members would bring expertise
in what might be possible to build. The HCI members would bring
expertise in ideation. Our goal was to rapidly and broadly explore
the problem-solution space to identify clinically relevant and build-
able Al concepts to improve intensive care medicine. Our prior
research presented an overview of this initial phase in the context
of the development and assessment of the Al Brainstorming Kit — a
resource that captured Al capabilities and real-world examples to
scaffold cross-disciplinary ideation [139]. In this work, we provide
a detailed account of the methodology and elaborate on workshop
facilitation, selection of Al examples, and concept assessment and
prioritization.

4.1 Method

We chose to conduct design workshops, a commonly used method in
design-driven innovation [36, 103]. We conducted two workshops
within our team. Each workshop had 15-17 participants involv-
ing at least one participant from each role (i.e., physician, nurse,
healthcare expert, data scientist, HCI researcher). Table 1 details the
involvement of participants in each workshop session. Workshops
were sequential such that the outcome of a workshop informed the
goals and activities of the following workshop.

A part of the challenge was the preparation and structuring of
the brainstorming activities. Below, we present our thinking behind
each workshop, along with details on the set of activities.

4.1.1  Workshop 1: User-centered Approach. Our first workshop fol-
lowed a traditional user-centered approach. In preparation for the
workshop, we had informal discussions to elicit the domain exper-
tise of our healthcare team members. We discussed pain points and
potential themes for brainstorming, both based on lived experiences
and our expertise working in healthcare innovation. These prepa-
rations resulted in “how might we” prompts that we used to drive
ideation (e.g., How might we help clinicians in orchestrating a se-
quence of tasks? How might we support the adoption of evidence-based
practice? How might we reduce clinicians’ burden with documenta-
tion tasks?). Inspired by design thinking methods [58], we set our
objectives as ‘thinking outside the box’ and ‘deferring judgment’
to let go of thinking about the limits of technology.

We conducted a 2-hour in-person workshop. The workshop
agenda included the introduction of goals (10 min), two consecutive
ideation sessions with a short break in between (30 min), impact-
effort assessment of concepts (30 min), and a short debriefing and
reflection (10 min). During the ideation sessions, each team member
reviewed the how-might-we prompts to first ideate individually.
They next shared concepts within the group to brainstorm collec-
tively. We used large papers, sticky notes, and markers to note
down concepts. At the end of the session, we selected a subset of
concepts based on the team’s interest, and placed these on a large
impact-effort matrix [49] by getting group consensus on whether
the concept was relevant and useful to critical care (impact) and
if it would be easy or difficult to implement (effort). Following the
workshop, the lead HCI researcher further analyzed concepts to
assess the coverage of design space (see section 4.1.3).

4.1.2  Workshop 2: User-centered and Tech-centered Approach. Fol-
lowing the first workshop, we had concerns that our concepts
mostly focused on places where near-perfect Al performance was
needed for the use cases to be valuable — a well-documented pitfall
in Al design literature [35, 40, 114, 135]. Building on recent research
[140], we decided to bring elements from the matchmaking method
[10] to blend user-centered thinking and tech capability-driven
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approaches. Prior to the workshop, we selected a subset of Al capa-
bilities and examples from the AI Brainstorming Kit [139]. Hoping
to move away from envisioning use cases that required high Al
accuracy or performance, we mostly selected examples where mod-
erate performance and imperfect Al capabilities produced value.

The capabilities and examples included observe and surface infor-
mation (contextual web search); classify things (spam filter); listen
and type (real-time meeting transcription); read text (text message
entity recognition); predict text (email sentence completion); cluster
similarities (online shopping recommender system); discover pat-
terns (smartwatch activity trends) [see Figure 1 and supplementary
materials]. Selection and curation of capabilities were not meant to
be exhaustive; similar to prior work [84, 132, 138], our goal was to
have a good enough subset to inspire ideation.

We conducted a 2-hour in-person workshop following the same
structure as in the first workshop. However, this time we started
by reviewing the Al capabilities and examples we had prepared
in the form of slides during the introduction session (10 min). We
used the slides as poster printouts to prompt ideation across each
specific capability. For instance, talking about “email spam filter” as
an example of binary classification (spam or not spam), we probed
if we could envision use cases where classifying things as important
or not important, or as urgent or not urgent could be useful. Ideation
sessions were followed by impact-effort assessment and debriefing,
as in the initial workshop.

4.1.3 Data Collection and Analysis. Workshops were audio and
video recorded, and transcribed. The analysis included reviewing (1)
the transcripts using interpretation sessions, and (2) workshop out-
comes using affinity diagramming [66, 82], and the task expertise-
model performance matrix [139] — a new assessment tool our team
had created to assess the breadth of AI problem-solution space
(see Figure 2b). This matrix broke down concepts into a two-by-
two matrix based on two dimensions: task expertise (how much
human expertise or intelligence does this task require?) and model
performance (what is the minimum quality needed for users to
experience Al as useful?). The analysis focused on identifying key
themes for the concepts, challenges in collaboration, and the im-
pact of design activities on workshop outputs. Two authors led the
analysis, before sharing the results and insights with the entire
study team for further review and discussion. We then iteratively
discussed and restructured the emerging themes to seek agreement
on interpretations across members.

4.2 Findings

In this section we present workshop results by describing (1) out-
comes detailing the quality of concepts, and (2) our reflections on
what worked, what did not work, and what was unexpected.

4.2.1  Workshop 1 Outcome. The first workshop was effective at
getting all members of the team to ideate. However, the outcomes
seemed to cover a narrow space. Our impact-effort assessment
showed that the majority of our concepts were difficult to build,
while only about half seemed relevant and useful for critical care
medicine (Figure 2a). Our analysis of high-level brainstorming
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themes also indicated a lack of breadth: more than a third of con-
cepts focused on clinical decision making, and another third de-
scribed systems that automated documentation. A few of the con-
cepts described new Al-enabled interactions. One concept described
a system that forecasts expert disagreement. For example, it might
predict that a nurse would not perform a specific assessment be-
cause they viewed the patient as not qualifying while the physician
would want the assessment to have been performed. Another de-
scribed an Al assistant that listens and transcribes conversations
between clinicians.

Overall, our team collectively felt that the concepts were not
very novel. Most of the concepts addressed existing interactions in-
stead of proposing new ways of working. Concepts often described
latent desires around trust, feedback, and explainability (e.g. Al
can take feedback on why it is wrong); human-Al interaction forms
(e.g. checklist, chatbot, recommendation system, conversational
assistant); desired system behaviors (e.g. recommendation is not
intrusive, recommendation comes when ICU team is together); and
pain points (e.g. placing orders is a burden; I want to eliminate and
delegate tasks).

Similar to the impact-effort assessment results, our task expertise-
Al performance analysis showed that most of the concepts mapped
to the upper right region (high expertise-excellent performance),
missing the larger design space (Figure 2b). Concepts often required
near-perfect Al performance or accuracy to be useful. For instance,
anticipating clinician disagreement or predicting if a nurse will
not perform an assessment can be useful only if the Al system can
correctly capture 9 cases out of 10. The system would not be useful
if it incorrectly flags situations or can only catch cases correctly
once in a while. Our concepts also seemed too focused on situations
with high uncertainty where the task is difficult even for highly
trained experts (e.g., clinical decision making, anticipating potential
disagreements).

Post-workshop reflection. Our brainstorming workshop was
successful in that our multidisciplinary team generated many con-
cepts for potential Al use cases. Data science and healthcare team
members found the brainstorming exercise novel, as they had not
previously engaged in formal, structured brainstorming or human-
centered design perspectives. However, assessment of the work-
shop outcomes showed that the concepts were not of the quality
we wanted. Our process was not generating any concepts that were
easy to develop; low hanging fruit where moderate Al performance
could generate value in the ICU. Some concepts did not require Al,
and several called for data that does not exist. Reflecting on the
outcomes, we set a new goal to move ideation towards situations
where moderate Al performance could still generate value.

4.2.2  Workshop 2 Outcome. The second workshop led to concepts
that mapped to a broader set of themes. This was one type of con-
cept quality we were particularly focused on. Examples included AI
systems that would improve coordination between clinicians (e.g.
generate a schedule for nurses and respiratory therapists for extuba-
tion); systems that improved logistics and resource allocation (e.g.
predict which medications would be needed based on current patients
and pre-order from pharmacy); systems that inferred workload and
effort, possibly in support of dynamic staffing (e.g. classify patients
as sick or busy); systems that better support attention management
(e.g. classify alerts as urgent or not urgent); systems that improve
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Phase Theme Idea
W1 Decision support Show outcomes from recent past patients
Documentation Al assistant that listens to clinician conversations
Information retrieval Summary of patient current state
Patient-centric care Insights on family care to enable ICU at home
Personal informatics Fitbit for clinicians: how am I doing?
Team dynamics Al recommendation system foresees areas of tension
Workload management Recommend how to better adjust workload
w2 Automation Al suggests best billing code based on the patient note
Coordination Generate a schedule for nurses and respiratory therapists for extubation
Decision support Classify potential discharges based on vitals and most recent progress note
Documentation Recognize discrepancy in notes, i.e. doc A says X, doc B says not X
Eligibility for EBP Predict if patient is eligible for extubation

Information retrieval
Patient-centric care
Personal informatics
Reducing errors
Resource planning
Task acceleration
Workload management

Learn what clinicians look at based on condition, prefetch to dashboard
Predict when family would come, allow to prepare for family meeting
Listen to rounds, offer feedback on quality of leadership to team leader
Find orders in notes that are actually not ordered

Predict what meds would be needed, pre-order from pharmacy

Predict and recommend orders typical for diagnosis

Classify patient as a busy patient or a sick patient

Table 2: High level themes and example concepts from first and second ideation workshops.
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Figure 2: Our first workshop resulted in ideas that were technically difficult, some of which were clinically relevant.

efficiency, particularly around data entry and documentation (e.g.
predict and recommend orders typical for diagnosis); systems that
anticipate needed information (e.g. learn relevant information based
on patient conditions).

In addition to these new themes, we generated concepts that
built on the themes from the previous workshop, including deci-
sion support (e.g. predict if the patient is eligible for extubation);
documentation (e.g. generate a draft patient note based on available
information), and automation of menial tasks (e.g. recommend best
billing code based on the patient note). Table 2 lists the high level
themes and example concepts from each round of workshops.

Using Al capabilities and examples served as a springboard for
our team to recognize situations where a capability could be useful

to then effectively transfer that capability to a use case. For exam-
ple, a nurse practitioner envisioned classifying patients into two
groups, sick patients and busy patients. This mirrored the classify
things capability. Sick patients typically require more attention.
Busy patients included patients who needed many time-consuming
procedures: ‘Is this a busy patient? Or is this a sick patient? It would
be useful for managing nursing tasks to tell the difference between
a patient who’s incredibly sick, but doesn’t have a lot of tasks. ...
[versus] if they have a lot of weeping wounds or something like that,
that can make for a very busy patient.” (Nurse 2, H8) This concept
hinted at the potential for more dynamic staffing or could be used to
balance work difficulty and staff expertise across an ICU. Another
capability, observing and surfacing information, spurred the concept
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Figure 3: In the second workshop, concepts moved towards (a) low-effort and high-impact; (b) from high expertise-excellent

performance to medium expertise-moderate performance.

of learning what EHR screens and information clinicians looked at
based on patient condition in order to prefetch or highlight relevant
patient history information on a dashboard.

In impact-effort assessment, our concepts moved towards the
upper left quadrant: we were able to identify concepts that required
low implementation effort with potentially high-impact (Figure 3a).
The task expertise-model performance assessment also revealed
that the concepts moved from high expertise-excellent performance
to medium expertise-moderate performance (Figure 3b). For exam-
ple, generating an ordered list of patients for rounds based on the
uncertainty of what to do seemed relatively low-risk. A moderate
quality, draft triage list is still better than no prioritization; the clin-
ical team will still attend to all the patients in the ICU. Interestingly,
in expanding the solution space towards situations where moderate
Al performance could be useful, we moved beyond high-stakes sit-
uations with great uncertainty (e.g., clinical decision making) and
produced concepts for relatively underexplored places (e.g., coordi-
nation, managing workload, anticipatory information retrieval).

4.2.3  Post-study Reflection. Discussing specific Al capabilities and
examples prior to the workshop seemed to have a significant impact
on the outcomes of ideation, yielding a broader design space where
a mediocre, imperfect Al model would still provide enough value
for clinicians. We also noticed that explicitly talking about Al capa-
bilities provided our team with a shared language. Unlike the first
round, most sticky notes described interaction concepts starting
with capability verbs (e.g. detect, recognize, classify, notice, predict,
generate...). Using this language, clinicians probed data scientists
about technical possibilities. “Can AI notice the sequence of orders?
... Can AI cluster tasks?” Ideation became a collective conversation
to discuss what would be doable, how that would produce value
for users, and whether any relevant data was captured.

Although the quality of the concepts improved, we still encoun-
tered challenges. First, our assessment showed that while our con-
cepts were grounded in what’s technically possible, only a few of

them were implementable using our specific ICU dataset. Most
concepts required additional data collection or instrumentation (e.g.
tracking clinician clicks in UI to learn and pre-fetch information
to dashboards). In some cases, the data existed but it was not in
our dataset (e.g. unstructured text from clinical notes), rendering
our concepts infeasible unless we sought out more and different
data. Overall, the ideation exercise was valuable for informing data
collection for future implementations, but we were ignoring the
value of our ICU dataset in our ideation. We needed concepts we
could build using our data to create immediate value for clinicians.

We also noticed that similar to other healthcare innovation re-
search [133], we had a tendency to attribute familiar interaction
forms, such as alerts, to specific capabilities and concepts based
on past experiences. For instance, while we liked the concept of
classifying patients, we always seemed to imagine this as an alert
or a reminder. Given the well-known research on alert fatigue and
clinician burnout [21], this seemed problematic. Our fixation on
existing forms bound to a capability posed a threat to ideation, as
the team would dismiss concepts based on known problems with
the familiar forms. As prior research reported [132], we found our-
selves trying to separate the inference (e.g., predicting that a patient
would need a scan) from the interaction (e.g., recommending the
action to a clinician or proactively ordering a scan).

Relatedly, rapid ideation resulted in surface level concepts that
require further exploration. For instance, clinicians liked the con-
cept of having a ranked list of patients to visit during rounding.
However, the criteria needed to prioritize patients was not clearly
defined: should it be based on sickness level (see sickest patients
first) or patient uncertainty (patients where it was least obvious
what to do)? In order to more effectively assess the concepts and se-
lect candidates for development, we needed more detail on what the
concept was and how it might work in terms of data requirements
and the form of the Al output clinicians would encounter.
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Finally, following the second workshop, discussions on how
to move forward surfaced confusions and a need for increased
communication within the team. While the HCI team perceived the
second workshop as a success —especially from a methodological
point of view— the shift in the quality of ideation was not obvious
to the rest of the team. Conversely, the data science and healthcare
team members found the exercise to be repetitive. The clinical team
lead expressed confusion over the activities in the second workshop,
probing the reasoning behind generating concepts from scratch
instead of building on the existing ideas from the first workshop.
To resolve concerns, the lead HCI researcher presented the post-
workshop assessment of concepts, clarifying how the quality and
breadth of ideation has shifted. The team then reached a consensus
that the next best step would be to select a subset of ideas that
could be grounded within our ICU dataset for further detailing and
assessment.

5 PHASE 2: PROBLEM FORMULATION

As we moved from ideation to problem formulation, we set three
goals. First, we wanted to leverage the unique properties of our
dataset, and ground our concepts in what we could realistically
build. Second, we wanted to separate interaction form and Al infer-
ence when discussing concepts. Third, we wanted to deeply explore
some of the concepts to have more mature conversations on their
feasibility, desirability, and potential implications.

5.1 Method

We chose to conduct an additional design workshop that focused
on problem formulation. Similar to the phase 1 study, we conducted
a 2-hour in-person workshop for detailing a subset of 12 concepts.
Below, we first describe how we prioritized and selected the subset
of concepts prior to the workshop. We then detail the artifacts
prepared for the workshop and the set of activities.

5.1.1  Concept Prioritization. We had three criteria when selecting
concepts for further development. First, we prioritized concepts
based on data availability, choosing concepts that could be built
using our ICU dataset. Second, we sought to cover a breadth of the
design space, selecting concepts where moderate-to-good perfor-
mance Al could produce medium-to-high value. Finally, we included
concepts that matched our team’s research interests and expertise,
excluding some concepts in subspecialty Al areas (e.g., natural lan-
guage processing or computer vision-based concepts). The selected
concepts included: anticipatory pre-ordering of medications; pre-
dicting medication time-to-delivery; generating a prioritized list of
nurse assignments; identifying sick or busy patients; forecasting
unit acuity; generating an ordered list of patients to see for rounds;
predicting the eligibility of patients for extubation from mechani-
cal ventilators; generating a coordinated schedule for extubation;
identifying clinician workload patterns; identifying bias in clinical
orders; predicting typical orders for diagnoses; and discovering the
sequence of tasks.

5.1.2  Workshop Preparation. Prior to the workshop, the lead HCI
researcher worked on numerous representations to untangle the
inference produced by an Al model, the data needed to build the
model, and the form of the Al output clinicians would encounter.
Over several discussions, the team critiqued and iterated on the
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alternative artifacts. After rounds of iterations, we arrived at a new
abstract representation: the Do-Reason-Know worksheet (Figure 4).
Each section respectively captures the interaction (do), model rea-
soning and inference (reason), and data requirements (know).

The worksheet builds on the classical input-model-output rep-
resentation commonly used in machine learning [47], yet it fur-
thers the existing artifacts in two aspects. First, it captures both
the inference and the delivery of the inference for separating the
model behavior (e.g. rank patients) from the interaction behav-
ior (e.g. present a list where critical patients are displayed at the
top). Second, it balances the model-centric view with a user-centric
view by flipping the starting point (end user interaction instead of
Al input or output), and embedding the desired system behavior
into problem formulation from the beginning. In preparation for
the workshop, we pre-populated the worksheets with the concept
names and any other relevant information that was discussed in
prior workshops (e.g. a potential data source our team had referred
to related to a particular concept).

5.1.3  Workshop Activities. We conducted a 2-hour in person work-
shop. The workshop kicked off with a short review of the worksheet
and the 12 concepts we pre-selected (15 min). Then, we divided into
two groups, where each group collectively discussed and detailed 6
concepts (90 min). We used worksheet printouts as a starting point
and detailed each section by adding sticky notes. For instance, when
deliberating on predicting whether a patient might need a certain
procedure (e.g. surgery, intubation), we discussed if the time of a
procedure is documented and whether there were relevant actions
or events we could use as proxies (e.g. bleeding prior to surgery).
We concluded with a brief reflection and discussion on the next
steps (10 min).

5.1.4 Data Collection and Analysis. We audio and video recorded
and transcribed the workshop. We documented the worksheet print-
outs, and analyzed the transcripts and artifacts using the same
methods as in Phase 1 (see section 4.1.3).

Prioritized patient list or task list

What should the system ...

1 DO | ACTION 3  KNOW | DATA

Present a ranked list
of patients

Present a ranked list
nurse assignments

NOTES

Figure 4: Do-Reason-Know worksheet enabled us to detail
each idea in terms of action, model reasoning, and data.

A list of my patients

Compare and rank
patients based on
defined criteria

Condition of patients

Severity
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5.2 Findings

We first present insights from the workshop capturing our process
of problem formulation. We then reflect on the use of the Do-Reason-
Know worksheet in concept detailing.

5.2.1  Workshop Outcome. One of our goals was to focus on low-
risk, medium-value concepts. Throughout the workshop, we re-
worked our concepts in a way that reduced the required model
performance to help us identify relatively simple, low-risk Al con-
cepts. We repeatedly asked “Is there a simpler, dumber version of this
concept that is still ‘good enough’ to produce value?” Below, we share
three concepts to illustrate how this approach helped us effectively
formulate concepts.

Predicting if a mechanically ventilated patient is eligible
to receive a breathing trial, instead of predicting if the patient
should be extubated. Liberation from mechanical ventilation is a
complex process that requires coordinated actions of nurses, respi-
ratory therapists, and physicians. It involves two integrated actions.
Typically, the nurse assigned to a specific patient will perform a
Spontaneous Awakening Trial (SAT); they will cut off a patient’s
sedation and observe if they can tolerate being awake. Next, the
respiratory therapist, who is typically in charge of making changes
to the ventilator settings, will perform a Spontaneous Breathing Trial
(SBT). They will suspend breathing support and observe how well
patients take over their own breathing. These assessments allow
the team to decide if a patient can be extubated (liberated from a
ventilator).

Remaining on a ventilator is associated with several adverse
outcomes including delirium, pneumonia, and heart damage; how-
ever, extubating the patient and taking them off the ventilator too
soon leads to another host of problems [52, 64, 83]. When one of
the steps gets missed (SAT and SBT), then the clinical team lacks
the information to make a decision about extubation, meaning the
patient remains on the ventilator for another day.

Our initial concept around patient extubation focused on pre-
dicting if a patient will successfully extubate and discovering the
right amount of sedation for a patient on a ventilator. These are hard
problems that need excellent model performance and very high
quality healthcare data, which may not exist. During our discus-
sions, clinician team members shared that physicians can become
risk averse when extubations fail. They speculated that this might
result in patients remaining on a ventilator longer than needed.

With this in mind, we turned our attention to the execution of
SAT/SBT procedures instead of the clinical decision making for
patient extubation. This led the concept towards predicting a pa-
tient’s eligibility to receive SAT/SBT. This is a comparatively low-risk,
moderate-performance, and medium-value concept, as it focuses
on an intermediate, safe-to-perform action rather than a critical
decision.

Predicting medication availability and anticipatory order-
ing. One of the promising concepts that emerged from our ideation
was predicting what medications would be needed based on the
patient conditions in the unit. The concept was inspired by Ama-
zon’s anticipatory shipping [110] —an Al capability and example
that came up during capability-based ideation workshop— where
the AI system would keep track of the inventory and pre-order
medications to reduce time and uncertainty.
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During problem formulation, clinician team members shared that
this would be really useful for custom mixed antibiotics: “Sometimes
you say ‘Antibiotics. Now!” and two hours later it still hasn’t arrived.”
(Physician 1, H1) They noted that delays are more likely to happen
in busier wards, which can be deadly [45]. However, clinicians were
also cautious as the incorrect predictions might lead to unused
medications, and therefore waste.

We broke down this concept into several lower risk concepts.
First, instead of preordering, the predictions could be used only to
inform the pharmacists so that they have a sense of what to expect.
Second, we could instead predict time-to-medication to provide
feedforward to the clinical team when placing orders. Third, a
simpler approach could check for antibiotic dosing errors to prevent

delayS:Physician 2: ‘T want this antibiotic for my patient.
When the pharmacist finally gets to it, they say, you
ordered the wrong dose. Because this patient is this size,
this weight and has this renal function. Something smart
would be able to figure that out, like smart dosing.” (H2)
Data Scientist 1: “That’s a lot easier to do. We have that
history of conditions, and what was given to [patients],
so maybe these kinds of predictions.” (DS1)

5.2.2 Use of the Do-Reason-Know Worksheet. The worksheet
helped to scaffold conversations around data dependency, model
behavior, and interaction behavior. It allowed us to express concepts
in a more refined way as we moved from sticky note concepts to
more fleshed out problem formulations. It prompted us to further
probe each concept in terms of how it would generate value for
clinicians, and which features in our dataset could drive it, if at
all possible. For instance, when discussing what patient priority
means:

Physician 4: It’s a two by two table. There are sick
people that if you do the things you need to do, they’re
going to be just fine. And then there’s the sick people
who are uncertain. I need to pay attention to this patient
in the next four hours because if I don’t, six hours from
now, they might be dead. ... [It would be great if] it was
clear who those patients were, and you didn’t have to
take 15 minutes to figure that out. (H4)

HCI Researcher 1: What information helps you deter-
mine which category that patient falls into? (HCD5)
Physician 4: I look at what drips they’re on, what’s
their vent settings. You’d be looking at the amount of
drip titration, certain kinds of orders, certain kinds of
labs, maybe some radiology findings. I think you can
observe some of that in the data. (H4)

HCI Researcher 1: How accurate do you feel like your
rankings are after you spend fifteen minutes? (HCD1)
Physician 2: There can be surprises, but I'm relying on
my team to give me a better idea. (H4)

HCI Researcher 4: Do you think it would be useful?
At which point this would be most useful? (HCD4)
Physician 2: The idea is to reduce the cognitive load
on the physician. That’s probably most useful at the
beginning of the day, maybe at the end of the day when
we switch shifts, handing off to the other person. If there
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was a tool there, I might check it once or twice through-
out the day like, has anything changed? (H2)

Data Scientist 1: Presumably in the algorithm, we
could do it every four hours. (DS1)

Describing the concept with this level of detail made it clear this
would function as two separate two-class classifiers. Each patient
would be classified as not-sick or sick, and they would be classified
as certain of what to do or uncertain of what to do. Interestingly, as
the model capability and reasoning became clear, our discussions
moved towards:

(1) Model performance: How accurate or robust do the pre-
dictions need to be?

(2) Point of interaction: When, where, and how the inference
should be delivered to produce value? (e.g. are predictions
available 15 minutes before or the night before?)

(3) Risk: What are the consequences of errors? (i.e. false posi-
tives and false negatives)

(4) Data quality: Is the training data trustworthy? Is it likely
to introduce bias?

Specifically, the worksheet helped with the three challenges we
previously encountered. First, it allowed us to collectively define
and formulate AI experiences in a way that is grounded in our
dataset. Second, it allowed us to free up our concepts from existing
forms by separating the interaction, Al capability, and data. Third, it
informed our design deliberation and supported a deeper discussion
of the concepts before starting model building and prototyping. For
example, when discussing the concept predicting typical orders for
diagnoses, one physician likened this to a personalized contacts list
in email clients, where typing upon a contact name would present
the most frequent contact at the top. The personalization aspect
raised some concerns: would the medication orders be based on an
individual clinician’s previous orders or based on a group of clini-
cians’ orders? Physicians seemed to prefer a personalized system,
which seemed more complex and costly (both in terms of model
building and continuous learning). These deliberations helped us
weigh cost-value tradeoffs throughout problem formulation.

Our third workshop had an additional, unexpected benefit: our
discussions helped our team to reveal existing or potential problems
in our dataset. For instance, one of our ideas was around predicting
patient eligibility for extubation from a mechanical ventilator to
help clinicians plan for extubation. While exploring potential fea-
tures in our data, we discussed whether we could use Riker scores,
a numeric score for documenting the level of a patient’s sedation
level and consciousness. When discussing this concept, healthcare
members shared that Riker score data were not trustworthy. The
scores nurses entered into the EHR did not always reflect the actual
level of sedation. This problematic data did not impact the quality
of care as clinicians looked at the patient before making a decision.
They did not make sedation decisions based on what was captured
in the EHR. Thus, they never fixed this data entry problem. Inter-
estingly, this issue is neither reported nor speculated in medical
literature. Uncovering this insight early on in the process helped
our team avoid using data features that clinicians did not trust.

5.2.3  Post-study Reflection. The problem formulation workshop
with the focused worksheet activity helped us detail our concepts
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for further development. Following this workshop, we decided to
sketch out some concepts in detail to elicit initial user feedback.
Notably, the workshop debrief revealed many insights into the felt
experience of our team. For instance, the clinical team lead found the
workshop series valuable from a portfolio building and de-risking
point of view: In [healthcare ML research] there is a lot of inertia
towards low-risk, low-reward areas that doesn’t move the needle in a
meaningful way. This exercise is really valuable because people can
replicate these methods to identify lower-risk yet high-reward ideas
that are worth doing. Every research portfolio should have a mix of
those.” (H1) Reflecting on how the exercise can be improved, some
clinicians shared that involving a broader set of stakeholders would
be more helpful: Tt might be useful to have in the room like somebody
from hospital management, somebody from pharmacy ... to help fill
in some of the gaps, [as we have] been making some assumptions.’
(H2) Finally, all data science team members expressed that they
found the third workshop the most beneficial. It seemed to help
them to gain a deeper understanding of clinical domain knowledge
in relation with the data: “It’s great to hear how and where the data
is coming from.” (Data Scientist, DS2). After the workshop, several
data science team members shared additional concepts or ideas on
implementation details with the team based on the insights our
discussions sparked.

From a methodological perspective, using a combination of
impact-effort matrix and task expertise-AI performance matrix,
along with the Do-Reason-Know worksheet allowed us to quickly
sort out ideas that our team was most interested in. However, in
hindsight, we noticed that dimensions, such as impact and effort,
can be even more granular for a more rigorous concept assessment.
For example, questions around effort included ‘is there any data
available?’, ‘how much work is needed for data cleaning or anonymiza-
tion?’, and ‘how easily can we measure and validate Al outputs?’
Moreover, the Al performance and effort (feasibility) seemed re-
lated; we repeatedly asked ‘what level of performance is needed?’
and based on that ‘how difficult is it to achieve that performance?”.
We also noted two other critical dimensions that we have not delved
into: financial viability (‘how expensive is this model to build and
run?’, ‘how much return on investment (ROI) is it likely to generate’)
and potential responsible Al issues (‘are there issues around privacy,
fairness, data bias?’). We reflected that capturing these dimensions
in a more nuanced manner can inform the future iterations of the
Do-Know-Reason worksheet (e.g., similar to datasheets [43, 105], a
comprehensive ‘Al concept template’ for concept proposals).

6 PHASE 3: SKETCHING AND CO-DESIGN

Following ideation and problem formulation, we chose to further
develop the concept of predicting if a mechanically ventilated patient
is eligible to receive the SAT/SBT protocol. We engaged in a concurrent
model development and interaction design process. The clinician
and data science team members carried out the data and model
work, and the HCI team members conducted co-design sessions
with end users. In this section, we provide a brief overview of our
sketching and co-design process to illustrate how we moved from
ideation towards sketching and concept refinement, envisioning
how clinicians might interact with an Al system.
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Concept 2
Predicting if patient will receive SAT/SBT
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Figure 5: Two low fidelity sketches detailing the concept of predicting if a mechanically ventilated patient is eligible to receive
the SAT/SBT protocol. We used the sketches to conduct co-design workshops to elicit feedback from nurses and respiratory

therapists.

6.1 Method

6.1.1 Concept Sketching. We created two low fidelity concept
sketches detailing a shared dashboard for nurses and respiratory
therapists (RTs) to support them in executing the SAT/SBT protocol
for mechanically ventilated patients. The first concept displayed
a dashboard with an Al-generated SAT/SBT patient schedule for
better coordination (Figure 5a). The second concept displayed a
dashboard that predicted if a patient will receive an SAT/SBT based
on past data, and ranked the patients based on uncertainty. In this
concept, high uncertainty patients were displayed on top, so that
the care team could resolve uncertainties at the beginning of the
morning shift (Figure 5b).

6.1.2  Co-Design Workshops. We conducted four co-design work-
shops with 6 RTs and 5 nurses. In each session, we had at least one
nurse and one RT participant. We recruited participants through
a mix of purposive and snowball sampling [51], first reaching out
to our contacts at collaborating hospitals, then expanding this set
by asking participants to share relevant contacts. Workshops were
conducted in-person, and facilitated by the lead HCI researcher. We
first probed participants about their current practices for executing
the SAT/SBT protocol. We then shared the concepts as print outs,
asking them to reflect whether and how these could be useful. We
provided markers and pens for participants to directly edit and com-
ment on the concepts. Each session lasted approximately 2 hours.
Participants were compensated $250 for their time. The study was
approved by our Institutional Review Board.

6.1.3 Data Collection and Analysis. All workshops were audio and
video recorded, and transcribed verbatim. We also documented the
printouts that recorded participants’ notes. We analyzed the data
using the same methods described in Phase 1.

6.2 Findings

6.2.1  Workshop Outcome. Overall, our participants perceived the
concepts as valuable. They reflected that having a shared dashboard
that pre-assessed a patient’s eligibility for the protocol and docu-
mented any contraindications would help them plan for patients.
Several participants desired the system to not only show the patient

eligibility, but also the longitudinal SAT/SBT history: ‘Specifically,
did they meet the criteria? How long were they on it? What was the
contraindication? Was this SBT done? What were the settings? Was it
successful? If not why?’ They also indicated that the system could
offer meaningful category labels to indicate why a patient was cate-
gorized as ineligible: ‘A good category [for ineligible patients] would
be seeing condition A, if they were called for an emergent reason [such
as] airway protection, drug overdose.” (RT1)

Both nurses and RTs reflected that patients who have high un-
certainty are often deprioritized as the uncertainties tend to go
unresolved, resulting in eligible patients not receiving the protocol.
An RT reflected that flagging these patients would be useful for the
care team to review: If the nurse charts that their neuro function is
not normal, it’s probably uncertain to me, the doctor needs to review.
So if those were put in the algorithms and sorted out, I can tell who
I'm going to see first” (RT5). However, some participants indicated
that they would not trust an algorithm-based patient prioritization.
They expressed a desire for the involvement of the physician, who
could review this draft list to adjust the patient priority based on
their goals. Finally, participants expressed that knowing high risk
patients —patients who are most likely to fail the breathing trial-
might be useful for planning and coordination: If you know every
one of your patients [who] is going to be absolutely terrible when you
SBT them, you might want to do all your other SBTs first, and then
get them last to make sure your nurse is with you in the room.” (RT3)

6.2.2  Post-study Reflection. Initial feedback we gained from nurses
and RTs informed both the interaction design and modeling work
for this concept. Moving forward, we aim to iterate on the concept
to convey both patient trajectory and priority —places where ICU
clinicians think Al can help [37]- to help clinicians consider and
perform evidence-based protocols.

7 DISCUSSION

Our work have explored facilitating early stage Al ideation and
problem formulation — an opportune moment for involving do-
main stakeholders in identifying the right thing, or a good enough
thing, to build [95]. We built on the prior observation that effective
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innovation teams brainstorm many Al concepts by using Al capa-
bilities and examples, before selecting a concept to further develop
[134, 138, 140]. We share a case study detailing how our multidisci-
plinary team effectively engaged in brainstorming Al concepts for
the ICU. Below, we reflect on how this approach can generalize to
high-stakes, critical domains to reduce the risk of developing un-
wanted technology. We detail what challenges remain for moving
from ideation to prototyping, and discuss open research questions
and the limitations of this work.

7.1 Towards Participatory Al in High-Stakes,
Critical Domains

Researchers have called for participatory approaches to Al for en-
gaging a broad set of stakeholders in early phase brainstorming
to explore AT’s potential value and risks in high-stakes, critical
domains [20, 27, 50, 68]. However, it remains unclear how, when
and to what extent this would be possible [9, 14, 28, 104]. We took a
step towards this direction in the context of healthcare. This is a rel-
atively challenging design space to navigate, as we did not bind our
ideation to specific Al mechanisms (e.g., clinical NLP) or interaction
forms (e.g., Al-assisted diagnosis). We approached this challenge
by holding design workshops, hoping that by bringing data sci-
ence, HCI, and domain experts together, we could elicit what is
clinically relevant and feasible. However, simply asking clinicians
what would be most valuable did not prove effective: concepts
were largely unbuildable or unwanted. We suspect that following a
user-centered process has unintentionally led our team to focus on
problems that do not need Al - points of great uncertainty or edge
cases where Al is not likely to work. Additionally, traditional rules
of brainstorming, such as letting go of technical limitations, seemed
to exacerbate the problem of generating unbuildable concepts.

In search of a more effective process, we took a step towards
matchmaking [10]. Starting with Al capabilities and examples, and
then asking clinicians if they recognize situations where capabilities
would be useful and where moderate performance could create
value, led to more effective ideation. It resulted in a broader coverage
of the problem-solution space, leading to technically achievable and
clinically relevant concepts. Capability abstractions and examples
scaffolded clinicians’ understanding of what Al can do, and gave
our team a shared language to discuss what would be possible. In
addition to discovering value, engaging domain experts in concept
generation and assessment helped us surface potential risks. We
were able to identify which data features we should not use, data
that could not be trusted.

This provides a glimpse into what effective ideation and prob-
lem formulation might look like, and how it might help situate
Al in high-stakes, critical work contexts. Future research should
investigate whether this approach might generalize within and
beyond healthcare. Does reviewing Al capabilities and examples
with moderate performance help domain experts systematically
yield high-impact, low-risk concepts? How does the selection of
examples and capabilities impact the quality of generated concepts?
Comparing the two brainstorming approaches — workshop 1 and
workshop 2 — poses additional challenges: it is difficult to assess
whether there is an interaction or order effect, since starting with Al
capabilities will immediately sensitize the team to what Al can do.
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We encourage HCI and design researchers to share first-person ac-
counts and case studies swapping and modifying these approaches
to ideation to guide our community in constructing a better design
process as well as new educational exercises. Recent work (e.g.,
[86, 87]) provides great starting places for this line of inquiry.

Our work focused on clinicians as the domain stakeholders, yet
there are many critical stakeholders in healthcare including pa-
tients, caregivers, hospital managers, insurance companies, and
regulatory bodies. How could we blend matchmaking with partic-
ipatory design where all stakeholders can meaningfully engage?
What is the earliest point in the design and development process
to engage domain stakeholders? While we started our project post-
collection, we suspect that generating Al concepts prior to data
collection could inform the collection of high quality data in the
first place. Recent literature suggested proactive and intentional
data collection practices through pre-collection planning and docu-
mentation [56, 90, 97, 118, 146]. Future research can build on this
line of work by engaging diverse stakeholders in designing data to
inform what should and should not be collected.

7.2 Moving from Ideation to Prototyping

Sketching —generating many different ideas in order to discover
the right thing to make- and prototyping —making the thing at
increasing levels of fidelity to refine it into being— are cornerstones
of HCI practice [17]. Envisioning and prototyping Al experiences
pose many unique challenges for innovation teams, especially at
the early stages of ideation, problem formulation, and project se-
lection [140]. Throughout our ideation process, we utilized several
resources and artifacts that can serve as a launching pad for cross-
disciplinary, collective ideation. To summarize, we used:

o A set of Al capability abstractions and examples, detailing
what Al can do and how it has previously produced value,
especially with moderate performance. These capabilities of-
fered a starting point for discussing whether AI could solve
a problem that particularly seemed like a good match. The
capability abstractions provided a shared language and en-
couraged our team to bring up more examples throughout
the ideation.

o A combination of assessment matrices delineating task
expertise-model performance and impact-effort. Noticing the
interplay between these dimensions helped us map the de-
sign space, and guided our search and prioritization.

o A worksheet capturing the interaction, model reasoning, and
data. The Do-Reason-Know worksheet enabled us to effec-
tively enrich an concept and understand its potential impact
and limitations. It helped us to separate interaction form and
model behavior. It also supported a deeper discussion on
the data source, allowing us to flag data features that were
unavailable, unreliable, or potentially biased.

Starting our project, one of our goals was to identify low hanging
fruit — situations where simple Al interventions could improve
clinical work. Based on prior research highlighting the value ‘im-
perfect AT’ can bring [12, 73] as well as our own work, we focused
on Al model performance to sensitize our team to situations where
moderate model performance can still bring enough value. Addi-
tionally, we repeatedly probed team members to think of simpler
versions of concepts. This explicit consideration opened up a design
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space beyond the automation of mundane tasks or augmentation
of critical tasks. It surfaced things that humans would never do as
it would not be worth their time for the return value (e.g. predicting
patients with high uncertainty to receive a clinical protocol, predicting
what medications will be needed for patients to reduce pharmacy wait
times). These low-risk situations present a great entry point for
introducing Al in healthcare, which can inform our understanding
of how people can and should collaborate with Al before deploying
Al in high-stakes situations, such as decision making.

While these resources scaffolded and improved our ideation
process, challenges remain in selecting a concept for further de-
velopment. How do we analyze, compare, and select concepts in a
more systematic way? Can we engage a broad set of impacted stake-
holders, including patients and other clinical roles, to anticipate
risks, fairness issues, and potential harm? What are some critical
dimensions that are not captured by current assessment tools? Re-
cent research uncovered assessment matrices industry practitioners
created to assess and prioritize Al-enabled product features, which
captured risk, frequency of use, and accuracy [140]. Similarly, our
discussions surfaced risk of errors, data quality, acceptable model
performance, and timing and presentation of information as key
aspects to consider. Future research should investigate developing
new assessment tools that move beyond typical metrics (e.g. feasibil-
ity, desirability) to capture the complexity of Al concept proposals.
Moving from ideation to parallel prototyping —both experience pro-
totyping and prototyping with data— our community would benefit
greatly from having a robust assessment and selection process.

7.3 Open Research Questions

Our study revealed several open research questions. Below, we
detail two challenges that merit further study.

7.3.1  How much Al knowledge is needed for domain experts to en-
gage in ideation? Recent HCI research has explored the critical role
domain experts play in AI development processes, especially in
high-stakes domains [22, 106]. Researchers note that Al develop-
ers cannot readily elicit input from domain experts, and are often
compelled to hold Al education sessions to span communication
gaps [74, 88, 96]. What kind of AI literacy is needed for domain
experts to effectively participate in Al envisionment? What kind
of Al resources can help domain experts in engaging in ideation?
How can we extend the set of Al capabilities and examples for
use in other domains and contexts? Developing and assessing re-
sources for stakeholder engagement in ideation, problem selection
and formulation marks a clear direction for future research.

7.3.2  What makes an Al example “good”? Our research surfaced a
key question: what makes an example ‘good’? How do we select
a good enough subset of examples that illustrate a breadth of Al
capabilities and value propositions? We approached the capabilities
and examples only as a subset to sensitize our team to think of other
examples and capabilities. We also paid attention to the level of Al
performance in each concept, and made sure to include examples
where moderate performance created value. Interestingly, our team
responded well to this approach and started drawing from other
examples based on each member’s prior experience. This approach
of having “a good enough subset” was effective, as it would be
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incredibly challenging to try to represent and go through all Al
capabilities. In this work, we utilized the AI Brainstorming Kit
[139] to select capabilities and examples. Future research should
investigate the use of this resource and others (e.g., [60]) to explore
how selecting a subset of capabilities impact ideation, and how
teams can effectively curate and review capabilities and examples.

7.3.3 Can early phase ideation and assessment address the high Al
failure? User-centered design and participatory design grew out of
HCI research addressing high rates of software product failures in
the 1970s and 80s. Software engineers would select applications and
start writing code; the idea of investigating what users want, need,
and fear before making software was non-obvious. We see paral-
lels between early software development and current Al product
development. Recent research echoes this: industry product teams
report repeatedly experiencing Al project failures due to working
on the wrong problem [140]. We suspect that HCI experts can play
a key role in AI development by helping teams find the right Al
thing to build while reducing the risk of potential harm. This is espe-
cially true in high-stakes contexts, such as healthcare and public
sector [20, 22, 27, 68], where Al teams do not seem to ideate on their
own. HCI routinely facilitates the process of technology innovation
between multiple stakeholders to reduce the risk of developing
products and services nobody wants. What is uniquely difficult
about facilitating Al ideation? We strongly encourage researchers
to explore the role of HCI in facilitating collective Al ideation and
problem formulation.

8 LIMITATIONS

Our study had two limitations. First, we focused solely on sketching.
While we are in the process of prototyping and model building for
a few of the selected concepts, we do not claim that all concepts we
generated are feasible, valuable, or novel in practice. Instead, we
assess the perceived difficulty and perceived value of the concepts.
This trade-off between sketching and prototyping was intentional,
as our focus was on broadly exploring many concepts. Future re-
search should investigate ideation followed by parallel prototyping
of multiple concepts to assess the impact and technical effort re-
quired for implementation. Second, we do not know if there was an
order effect on our ideation process. Future work should conduct
controlled studies to compare the user-centered and tech-centered
approach we propose with traditional, user-centered brainstorming.

9 CONCLUSION

This paper presented a case study of early phase Al innovation
capturing multidisciplinary concept ideation and problem formula-
tion in the context of healthcare. Our work offers insights into how
teams might structure their design process to effectively explore
AT’s problem-solution space and engage domain experts in ideation.
We documented our case with high-fidelity, detailing the challenges
we encountered and our emergent solutions. Our case suggests that
starting ideation with Al capabilities leads to broader exploration
of the solution space, and sensitizing teams to the level of Al per-
formance needed surfaces lower risk concepts where moderate Al
performance can still be useful. It also suggests that detailing con-
cepts in terms of data, inference, and form helps to rapidly identify
problems and makes concepts more pliable to interrogate easier,
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simpler versions. While we conducted this work in the context of
intensive care, we suspect this ideation and problem formulation
process would generalize to many Al innovation projects that in-
volve domain experts. Through this work, we hope to deepen the
discussion on HCI’s role in engaging multidisciplinary teams and
stakeholders in Al ideation.
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