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Abstract

Capillary flow in microchannels is important for many technologies such as microfluidic
devices, heat exchangers, and fabrication of printed electronics. Due to a readily accessible
interior, open rectangular microchannels are particularly attractive for these applications.
Here, we develop modifications of the Lucas-Washburn model to explore how a spatially
varying contact angle influences capillary flow in open rectangular microchannels. Four
cases are considered: (i) di↵erent uniform contact angles on channel sidewalls and channel
bottom, (ii) contact angle varying along channel cross section, and (iii) contact angle varying
monotonically along channel length, and (iv) contact angle varying periodically along channel
length. For case (i), it is found that the maximum filling velocity is more sensitive to changes
in the wall contact angle. For case (ii), the contact angles can be averaged to transform the
problem to that of case (i). For case (iii), the time evolution of the meniscus position no
longer follows the simple square-root law at short times. Finally, for case (iv), the problem
is well described by using a uniform contact angle that is a suitable average. These results
provide insight into how to design contact-angle variations to control capillary filling, and
into the influence of naturally occurring contact-angle variations on capillary flow.

*E-mail: kumar030@umn.edu
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Introduction

Capillary flow is an ubiquitous phenomenon seen in our daily lives, such as transport of

water through plant stems and absorption of water through towels. Due to the attraction

between a solid surface and liquid molecules, capillary forces pull liquid molecules from the

liquid phase to the surface. The pressure jump across the curved interface that forms can

cause capillary flow. Microchannels are channels with width ranging from 1 mm to 1 µm.

In these channels, capillary forces are important. Capillary flow in closed microchannels can

be applied to microfluidic devices [1–3], heat exchangers [4–6], and microreactors [7–9]. In

microfluidic devices and microreactors, microchannels enable reactions to become safe and

controllable while providing rapid mixing [10–12]. Also, heat transfer systems can be made

lighter and with a higher heat transfer coe�cient by using microchannels [13–15].

Compared with capillary flow in closed microchannels, capillary flow in open microchan-

nels o↵ers distinct advantages. Since the channel is open to the atmosphere, nanoparticles

can be deposited in microchannels by evaporating a colloidal suspension. This strategy has

been applied to the fabrication of printed electronic devices, such as conductors, resistors and

low-pass filters [16–18], where open rectangular microchannels were used due to their ease

of fabrication. Printed electronic devices are of considerable technological importance since

they are low-cost, flexible, and light [19–21]. Additionally, open rectangular microchannels

appear in microfluidic devices for applications such as heat pipes [22, 23] and artificial lungs

[24]. Therefore, due to the importance of capillary filling in open rectangular microchannels

for printed electronic devices and microfluidic devices, it is desirable to have a fundamental

understanding of capillary filling in this geometry.

Yang et al. [25] developed a modified Lucas-Washburn equation to describe the time

evolution of the meniscus position in open rectangular microchannels. This model is based

on the Lucas-Washburn model, which is for capillary filling in closed microchannels [26–33].

In the Lucas-Washburn model, it is assumed that the liquid front is a circular-arc meniscus,

2



which causes a capillary-pressure gradient and makes liquid flow into the microchannel.

Viscous forces resist the flow. However, for capillary filling in open microchannels, there is

an upper liquid-air interface. To deal with this interface, Yang et al. [25] assumed a flat upper

liquid-air interface and used the free-energy change as the liquid advances along the open

microchannel to calculate the capillary force. By using this model, they found that a lower

equilibrium contact angle causes faster capillary filling, which is consistent with experimental

observations. Later, Kolliopoulos et al. [34] developed a more accurate but more complex

model based on lubrication theory, and also performed complementary experiments. They

found that the modified Lucas-Washburn model of Yang et al. [25] provides quantitatively

accurate predictions for larger channel aspect ratios (ratio of channel height to width) and

larger contact angles.

Since capillary flow has many applications, it is desirable to understand how natural

or engineered spatial variation of contact angle changes capillary flow in open microchan-

nels. There are many approaches to modify surface wettability such as chemical deposition

[35–38], laser ablation [39–41], lithographic patterning [42–44], and micromachining [41, 45,

46]. O’Loughlin et al. [47] used photocatalytic lithographic patterning to fabricate closed

microchannels with periodic hydrophilic and hydrophobic regions along the channel length,

and then performed capillary-rise experiments. They found that when the length of pattern-

ing is larger than the capillary length, liquid rises faster in hydrophilic segments. Also, Suk

and Cho [48] used hydrophobic patterns to control the velocity of capillary flow in closed

microchannels. From their experiment, they observed that increasing the fraction of the

channel covered with hydrophobic patterns makes capillary flow slower. Therefore, we know

that the dynamics of capillary flow is sensitive to this kind of surface heterogeneity.

Additionally, Xing et al. [49] used experiments and the Lucas-Washburn equation to

explore capillary imbibition in an open semicircular copper channel with a wettability gradi-

ent. In their experiments, they used chemical treatment to create a spatially varying contact
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angle. Notably, the decrease in contact angle produced by chemical treatment was accompa-

nied by an apparent increase in surface roughness. From both their mathematical model and

experiments, they observed that a positive wettability gradient along the channel length can

enhance the velocity of capillary filling. Therefore, from previous research, we know that

fabrication of microchannels with spatially varying contact angle is feasible and spatially

varying contact angle can influence capillary flow.

Although previous studies show that a spatially varying contact angle can influence cap-

illary flow, the underlying mechanisms are still not clear. For example, the study of Xing

et al. created wettability gradients by changing surface roughness along the microchannel,

which also changes viscous forces [49]. Therefore, in their study, the e↵ects of spatially

varying contact angle on capillary flow are not isolated. Additionally, in their mathematical

model, they used the free-energy change of a droplet and the velocity profile in a closed

circular microchannel to estimate the capillary and viscous forces in an open microchannel

[49]. These assumptions are not expected to be accurate.

In the present work, we calculate these forces more accurately and isolate the influence

of wettability gradients. We do this in the context of the modified Lucas-Washburn model

because of its simplicity and versatility. We focus on the case of open rectangular mi-

crochannels because of their technological importance and ease of fabrication (as discussed

above). Although the modified Lucas-Washburn model makes a number of assumptions, its

predictions agree well with those from a more complex but more accurate model based on

lubrication theory in the regime of larger channel aspect ratios and contact angles [34]. Out-

side of this regime, the modified Lucas-Washburn model still provides qualitatively accurate

predictions of meniscus position, although it cannot capture the behavior of liquid fingers

that form in the channel corners [34]. Nevertheless, the modified Lucas-Washburn model is

still useful for building initial physical understanding of the problems we consider here, and

the results we obtain are expected to motivate future work involving more detailed modeling
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and complementary experiments.

In this work, we consider capillary filling in open rectangular microchannels with four

di↵erent kinds of contact-angle variations: (i) di↵erent uniform contact angles on chan-

nel sidewalls and channel bottom, (ii) contact angle varying along channel cross section, (iii)

contact angle varying monotonically along channel length, and (iv) contact angle varying pe-

riodically along channel length. The results from these four di↵erent cases suggest strategies

to manipulate capillary filling by designing contact-angle variations and yield a fundamental

understanding of the influence of naturally occurring contact-angle variations on capillary

flow.

Results and Discussion

Capillary Filling with Two Di↵erent Contact Angles

In this section, we derive a modified Lucas-Washburn equation that includes the e↵ects

of spatially varying contact angle, where there are two di↵erent static contact angles, ✓w

and ✓b on the walls and bottom, respectively (All angles in this work are given in degrees.)

A schematic is given in figure 1. The height and width of the microchannel are denoted

Figure 1: Schematic of capillary flow in an open rectangular microchannel with di↵erent
contact angles on the walls and bottom.
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by H and W , with the aspect ratio given by � = H/W . The length of the microchannel

is denoted by L. In figure 1, the meniscus position is denoted by zm, and liquid fills the

whole microchannel so the rate of change of zm represents the velocity of capillary filling. In

this paper, we consider the liquid to be incompressible and Newtonian with viscosity µ and

surface tension �. The liquid and solid are in contact with a gas (vapor) whose dynamics

can be neglected.

We use ⇢H2U2, µUL, �H, and ⇢gLH2 to estimate the magnitudes of inertial, viscous,

capillary, and gravity forces, respectively, where U is the magnitude of the velocity of cap-

illary filling. By assuming that filling is dominated by capillary and viscous forces, we get

U ⇠ (�H)/(µL). By using this expression and the force estimates given above, we see that

when (⇢UH2)/(µL) (Reynolds number) and ⇢gLH/� (Bond number) are much smaller than

1, we can neglect inertial and gravity forces. Under these conditions, we have

fv + fc = 0, (1)

where fv and fc are the viscous and capillary forces exerted on the liquid.

We also assume that the capillary number (ratio of viscous to surface-tension forces),

(µUL)/(�H) is small, which allows for the use of capillary statics to describe the interface

shape [34]. Additionally, any speed dependence of contact angle (i.e. the dynamic contact

angle phenomenon) is expected to be negligible at low capillary numbers so that the contact

angles are well described by their static values [50]. Indeed, for the case where the wall

and bottom contact angles are the same, model predictions based on this simple assumption

agree well with experimental observations in open rectangular microchannels [34].

To get fv, we need to know the velocity field in the microchannel. By assuming a flat

upper liquid-gas interface (the blue region in figure 1) and parallel flow down the microchan-

nel, the velocity vector only has a z-component, u(x, y). By neglecting inertial and gravity
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forces, we simplify the z-component of the momentum conservation equation to get

@2u

@x2
+

@2u

@y2
=

1

µ

dp

dz
, (2)

where p is the pressure in the liquid. Boundary conditions are given by a no-stress condition

at the liquid-gas interface, which is

@u

@y
= 0, at y = H (3)

and a no-slip condition at the walls and bottom of the microchannel:

u = 0, at x =
�W

2
,
W

2
and y = 0. (4)

By using separation of variables, Ouali et al. [51] solved equations (2), (3), and (4) and

got u(x, y). By integrating the shear stress on surface of the microchannel, one obtains the

expression for the viscous force, which is

fv = �µzm

0

@
ˆ W

2

�W
2

@u

@y

����
y=0

dx+ 2

ˆ
H

0

@u

@x

����
x=W

2

dy

1

A . (5)

In this system, since we assume a constant-curvature front, the average velocity of the fluid,

uave, equals the rate of change of zm, which is

uave =

´ W
2

�W
2

´
H

0 u(x, y)dydx

HW
=

dzm
dt

. (6)

By inserting the exact expression of u(x, y) and equation (6) into equation (5), we get the

viscous force in open rectangular microchannels, which is

fv = � 3µzm
�⇠(�)

dzm
dt

, (7)
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where ⇠(�) is a function of the aspect ratio [51]. Note that equation (7) has the same form

as the viscous force without any contact-angle variation.

We now consider the capillary force. When liquid flows spontaneously into an open rect-

angular microchannel, the area of solid-gas (vapor) interface decreases and the interfacial free

energy decreases consequently. Therefore, the capillary force is calculated by the reduction

of interfacial free energy due to the liquid coverage on the surface of the microchannel [52],

fc = � dG

dzm
, (8)

where G is the free energy of the liquid in the microchannel. In this system, the interfacial

free energy is composed of liquid-gas, solid-liquid and solid-gas interfacial free energies,

G =

ˆ
ASL

�SLdA
0 +

ˆ
ASV

�SV dA
0 +

ˆ
ALV

�dA0, (9)

where �, �SL, and �SV are liquid-gas, solid-liquid and solid-gas surface tensions. ALV , ASL,

and ASV are the areas of liquid-gas, solid-liquid, and solid-gas interfaces. By assuming a

constant-curvature front and flat upper liquid-gas interface (the green and blue regions in

figure 1), we get G = 2Hzm(�SL��SV )+Wzm(�SL��SV )+Wzm�. Since the microchannel

has two di↵erent contact angles on the walls and bottom, by using Young’s equation,

�SV � �SL = � cos(✓0), (10)

where ✓0 is the static contact angle, we get G = ��Wzm cos(✓b)� 2�Hzm cos(✓w) + �Wzm.

By inserting this into equation (8), we get

fc = �W (cos(✓b) + 2� cos(✓w)� 1). (11)

Finally, by inserting equations (7) and (11) into equation (1), we get the modified Lucas-
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Washburn equation for capillary filling in open rectangular microchannels with two di↵erent

contact angles,
2H�⇠(�)(cos(✓b) + 2� cos(✓w)� 1)t

3µ
= (zm)

2. (12)

From equation (12), we see that decreasing µ and increasing � increase the velocity of

capillary filling. Larger viscosity makes it harder for the liquid to flow so capillary filling

becomes slower. On the other hand, by the Young-Laplace equation, larger surface tension

makes the pressure di↵erence between the liquid front and gas phase larger so capillary filling

becomes faster.

For convenience, we non-dimensionalize as follows,

et = 2H�t

µL2
, z̄m =

zm
L
, (13)

where L is length of the microchannel. By inserting equation (13) into equation (12), we get

a dimensionless mobility which is

k̂z =
z̄mp
et
=

r
⇠(�)(cos(✓b) + 2� cos(✓w)� 1)

3
. (14)

The dimensionless mobility, k̂z, is indicative of the e�ciency of capillary filling since when

k̂z is larger, we have faster capillary filling.

Figure 2 shows a plot of k̂z vs. � when ✓w = ✓b = 20°. From figure 2, we see that there

is an aspect ratio which maximizes the mobility, which means for a given ✓w and ✓b, there is

a �max that maximizes the velocity of capillary filling. The reason is that when the aspect

ratio increases, the viscous force from walls increases and hinders capillary filling. On the

other hand, when the aspect ratio decreases, the viscous force from the bottom increases

and also hinders capillary filling. Therefore, to achieve fast capillary filling, we should use

microchannels with an aspect ratio around the black point in figure 2.
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�max is important because it can tell us how to maximize the velocity of capillary filling.

However, ✓w and ✓b change �max. Figure 3(a) shows the relation between ✓w, ✓b, and �max.

From this figure, we see that when we increase both ✓w and ✓b, �max becomes larger. This

is because when both ✓w and ✓b increase, the capillary force decreases. Therefore, we need

a larger aspect ratio to increase the capillary force (see equation (11)) and maximize the

velocity of capillary filling.

k̂z,max is the value of k̂z corresponding to �max. It is important since it is indicative

of the maximum velocity of capillary filling for a given ✓w and ✓b. Figure 3(b) shows the

relation between ✓w, ✓b, and k̂z,max. From this figure, we see that smaller ✓w and ✓b cause

faster capillary filling because smaller ✓w and ✓b make the constant-curvature front more

curved and increase the pressure di↵erence between the constant-curvature front and gas

phase. Also, from figure 3(b), we see that the upper left corner is darker than the lower

right corner, which means k̂z,max is more dependent on ✓w. From figure 3(a), �max is always

larger than 0.5, which means the area of the walls is larger than the area of the bottom,

so compared with decreasing ✓b, decreasing ✓w reduces the interfacial free energy more.

Therefore, to enhance the velocity of capillary filling, decreasing ✓w is better than decreasing

Figure 2: k̂z as a function of � when ✓w = ✓b = 20°.
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✓b. For larger ✓w and ✓b, we need to use microchannels with a higher aspect ratio to maximize

the velocity of capillary filling.

Contact-Angle Variation along Cross Section

Previously, we determined how wall and bottom contact angles influence the velocity

of capillary filling. However, in experiments, it is hard to have microchannels with two

completely di↵erent contact angles on the walls and bottom so we want to consider the more

general case where the equilibrium contact angle, ✓0, is a function of position along the cross

section. The viscous force is again given by equation (7). For the capillary force, we need

to calculate the interfacial free energy, G. By using equation (9) and assuming a constant-

curvature front and flat upper liquid-gas interface, we get G = zm(2
´

H

0 (�SL � �SV )dH 0 +
´ W

2

�W
2

(�SL��SV )dW 0�W�). Since there is a contact-angle variation along the cross section,

by using equation (10), we get G = �zm(2
´

H

0 � cos ✓0dH 0 +
´ W

2

�W
2

� cos ✓0dW 0 � W�). By

inserting this into equation (8), we get

fc = �(2

ˆ
H

0

cos ✓0dH
0 +

ˆ W
2

�W
2

cos ✓0dW
0 �W ). (15)

From equation (15), we see that the capillary force is composed of three parts which

Figure 3: (a) The aspect ratio that maximizes the velocity, �max, and (b) maximum dimen-
sionless mobility, k̂z,max, for di↵erent ✓w and ✓b.
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are the interfacial free-energy change on the walls, the interfacial free-energy change on the

bottom and the liquid-gas interfacial free energy. To understand how contact-angle variation

changes the capillary force, we use average contact angles ✓w,ave and ✓b,ave, where ✓w,ave, ✓b,ave

are defined as

H cos
�
✓w,ave

�
=

ˆ
H

0

cos ✓0dH
0 and W cos

�
✓b,ave

�
=

ˆ W
2

�W
2

cos ✓0dW
0. (16)

By inserting equation (16) into equation (15), we simplify the expression of fc,

fc = �W (cos
�
✓b,ave

�
+ 2� cos

�
✓w,ave

�
� 1). (17)

Also, we rearrange equation (16) and get explicit forms of ✓w,ave and ✓b,ave, which are

✓b,ave = cos�1

0

B@

´ W
2

�W
2

cos ✓0dW 0

W

1

CA , ✓w,ave = cos�1

 ´
H

0 cos ✓0dH 0

H

!
. (18)

These relationships are analogs of the Cassie equation, which is used to predict e↵ective

contact angles on chemically heterogeneous surfaces [53].

Finally, by inserting equations (7) and (17) into equation (1), we get the modified Lucas-

Washburn equation for capillary filling in microchannels with contact-angle variation along

the cross section,

2H�⇠(�)(cos
�
✓b,ave

�
+ 2� cos

�
✓w,ave

�
� 1)t

3µ
= (zm)

2. (19)

We see that equation (19) is similar to equation (12), which means that the e↵ect of

contact-angle variation along the cross section can be described in terms of spatially averaged

contact angles. Therefore, the conclusions of the previous section can be applied to this kind

of contact-angle variation, using equation (18) to obtain the averaged contact angles.
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Contact-Angle Variation along Channel Length

We now consider the case where the contact angle varies along the channel length. The

viscous force is again given by equation (7). Compared with the cases considered previously,

the shape of the liquid front changes with meniscus position since contact angle varies along

the channel length. To simplify the model, we assume that the length of capillary filling is

much larger than the length of the liquid front. Therefore, when the liquid flows through

the microchannel, the free-energy change from capillary filling is much larger than that from

the small liquid front.

By neglecting the free-energy change at the small liquid front and assuming a flat upper

liquid-gas interface, from equation (9), we get G =
´

zm

0 (�SL��SV )(2H+W )+�Wdz0. After

that, by using equation (10), we get G =
´

zm

0 �(W � (2H +W ) cos(✓0))dz0, where ✓0 is the

equilibrium contact angle, which varies along the microchannel. By inserting this expression

into equation (8), we get the capillary force, which is

fc = �W ((2�+ 1) cos(✓0)� 1), (20)

where � is aspect ratio. By inserting equations (7) and (20) into equation (1), we obtain the

modified Lucas-Washburn equation for capillary filling in microchannels with contact-angle

variation along the z-direction,

H�⇠(�)t

3µ
=

ˆ
zm

0

z

(1 + 2�) cos
�
✓0(z)

�
� 1

dz. (21)

To gain additional insight, we non-dimensionalize as follows,

t̄ =
H�⇠(�)t

3µl2
, z̄ =

z

l
, z̄m =

zm
l
, (22)

where l is the length scale of the contact-angle variation. By inserting equation (22) into
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equation (21), we get a dimensionless modified Lucas-Washburn equation with contact-angle

variation along the channel length,

t̄ =

ˆ
z̄m

0

z̄

(1 + 2�) cos
�
✓0(z̄)

�
� 1

dz̄. (23)

From equation (23), we see that if ✓0 does not vary along the channel length, by using

equations (22) and (14), we can reduce equation (23) back to the modified Lucas-Washburn

equation without any contact-angle variation [25].

To see how contact-angle variation along the channel length influences the velocity of

capillary filling, we consider six di↵erent cases, which are shown in figures 4(a) and 4(c). In

cases 1, 2, and 3, we increase, fix and decrease the contact angle from the start of the channel,

respectively, so that all contact angles eventually approach the same value. In cases 4, 5, and

Figure 4: ✓0 vs. z̄ and z̄m vs. t̄ when � = 2 with (a, b) contact-angle variations for cases 1-3
and when � = 0.7 with (c, d) contact-angle variations for cases 4-6.
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6, we keep the contact angle the same at the start of the channel and then decrease, fix, and

increase contact angle, respectively. The analytical relation between the contact angle and

position in figures 4(a) and 4(c) are equations (A.1) and (A.3) in the appendix. By using

equation (21), we get figures 4(b) and 4(d), and the analytical relations between z̄m and t̄

are equations (A.2) and (A.4) in the appendix.

From figures 4(a) and 4(b), we see that capillary filling without a wettability gradient

(case 2) is faster than capillary filling with a positive wettability gradient (case 3). This

is in contrast to the experiments of Xing et al. discussed in the introduction. In their

experiments, they compared capillary filling in open microchannels having (i) a contact-

angle variation from 45° to 3° and (ii) a constant contact angle of 3°. They observed that

capillary filling in the channel with the wettability gradient was faster. In their experiments,

they decreased contact angle by chemical treatment, and attributed the decrease in contact

angle to an increase in surface roughness. Our results suggest that the surface roughness in

their experiments slows down capillary filling and outweighs the influence of having a low

wettability throughout the channel. Since surface roughness is not incorporated into our

model, we are able to isolate the influence of wettability gradients.

From figure 4(b), we see that at long times, the di↵erence between the meniscus positions

is approximately the same. The reason is that if the contact angle variation primarily occurs

at the beginning of the microchannel (figure 4(a)), then the velocity of capillary filling will

be similar much further down the channel. Also, from figures 4(c) and 4(d), we see that

if the contact angle gradually changes to di↵erent value, the meniscus positions tend to

diverge at long times. This divergence is due to di↵erent capillary forces far away from the

microchannel entrance. Note that at long times, t̄ is still proportional to z̄2
m
in all cases (see

Appendix), although this proportionality does not hold at short times.

Finally, we briefly comment on the potential importance of inertial e↵ects. An order-

of-magnitude analysis of the modified Lucas-Washburn equation that accounts for inertial
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e↵ects (see Appendix) indicates that inertial e↵ects are important over a length scale L⇤ ⇠
p

⇢�H3/µ. Thus, inertial e↵ects are expected to be negligible when the length scale of the

wettability variation is much larger than L⇤. Using the data from the experiments reported

in Ref. [34], values of L⇤ can range from ⇠0.1 µm to ⇠1 mm. For the cases considered

previously where the contact angle varies along the channel cross section, inertial e↵ects are

not expected to be important since the flow is in the axial direction.

Periodic Contact-Angle Variation along Channel Length

We next consider a periodic contact-angle variation composed of two di↵erent contact

angles, ✓1 and ✓2. A schematic is given in figure 5, where ✏ is the period length. Since ✓0 is

a periodic function, we expect from equation (23) that t̄ will have oscillations with period ✏.

Of practical interest is a mean time for capillary filling, which we denote as t̄a and develop

an expression for below.

Although inertial e↵ects may be important near the regions where the contact angle

changes from one value to the other, we expect that such e↵ects should not significantly a↵ect

the long-time meniscus behavior if the period length is much larger than the length scale over

which inertial e↵ects are important, L⇤ (see previous section). Moreover, neglecting inertial

e↵ects allows us to isolate the influence of wettability gradients from those of inertia, leading

Figure 5: Schematic of capillary flow in an open rectangular microchannel with periodic
contact-angle variation.
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to the development of simple analytical expressions that provide physical insight. The results

from the model we develop here serve as motivation for future work involving the development

of more complex models that account for inertial e↵ects and test the assumptions made here.

We first derive an expression for dt̄a/dz̄. Assuming t̄a ' t̄, by using the fundamental

theorem of calculus and equation (23), we get

ˆ
z̄m

0

dt̄a
dz̄

dz̄ '
ˆ

z̄m

0

z̄

(1 + 2�) cos
�
✓0(z̄)

�
� 1

dz̄. (24)

In this system, there are two di↵erent length scales, which are L, the length scale of the

microchannel, and ✏, the length scale of the period. Since L is much larger than ✏, it is

useful to define a length scale between L and ✏, which we denote as �z. We define �z = n✏

such that ✏/L ⌧ �z/L = �z̄ ⌧ 1, where n is a integer. Since dt̄a
dz̄

and z̄ do not change

significantly over �z̄ and that only ✓0 changes significantly in this region, for the integral

in equation (24) on each small segment with length �z̄, we can pull dt̄a
dz̄

and z̄ out of the

integral and retain the cos(✓0) term in the integral, which leads to

dt̄a
dz̄

|z̄=z̄m�z̄ ' z̄m

ˆ
z̄m

z̄m��z̄

1

(1 + 2�) cos
�
✓0(z̄)

�
� 1

dz̄. (25)

Since �z = n✏ and ✓0 is a periodic function, we can transform equation (25) into a

periodic integral, which is

dt̄a
dz̄

|z̄=z̄m

�z

L
' nz̄m

L

ˆ
✏

0

1

(1 + 2�) cos
�
✓0(z)

�
� 1

dz =
�zz̄m
✏L

ˆ
✏

0

1

(1 + 2�) cos
�
✓0(z)

�
� 1

dz.

(26)

By dividing equation (26) with�z/L, we get an expression for dt̄a/dz̄. To get t̄a, we integrate
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that expression with z̄ running from 0 to z̄m to obtain

t̄ ' t̄a =
z̄2
m

2((2�+ 1) cos(✓ave)� 1)
, ✓ave = cos�1

0

@ 1

2�+ 1

 
✏´

✏

0
1

(2�+1) cos(✓0)�1dz
+ 1

!1

A ,

(27)

where ✓ave is a spatially averaged contact angle.

To gain further insight, we consider the simplest case where we have two di↵erent contact

angles, ✓1 and ✓2, whose fractions in one period are L1 and L2, respectively. By using equation

(27), we get

L1

(2�+ 1) cos(✓1)� 1
+

L2

(2�+ 1) cos(✓2)� 1
=

1

(2�+ 1) cos(✓ave)� 1
. (28)

To evaluate this approximation, we compare the results from equation (28) with those from

equation (23). Figures 6(a) and 6(b) show the exact and approximate relations between z̄m

and t̄. The approximate relation provides accurate predictions of the meniscus position in

an average sense. Since the approximate solution uses an average contact angle, it does not

contain the oscillations seen for some cases. We now use the simplified model (equations

(27) and (28)) to explore how L1, ✓1, ✓2, and � a↵ect capillary filling. For simplicity, we

Figure 6: (a) Exact and approximate relations between z̄m and t̄ with di↵erent ✓2 when
� = 2, ✓1 = 10°, and L1 = 0.5. (b) Enlargement of figure 6(a) when ✓2 = 70°.
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consider the case where ✓1 < ✓2.

Before we explain how L1, ✓1, ✓2, and � a↵ect capillary filling, we need to introduce

✓critical, the critical contact angle for which capillary flow stops. From equation (20), we see

that when ✓0 = cos�1(1/(2�+1)) = ✓critical, there is no capillary force, which means capillary

filling stops. When � = 0.5, ✓critical = 60°. When ✓0 approaches ✓critical, the capillary force

is almost zero and capillary filling becomes slow.

Figure 7 shows z̄m versus t̄ with di↵erent L1 and ✓2 when � = 0.5. In figure 7(a) we set

✓1 = 10° and ✓2 = 55°. We see that because ✓2 is much larger than ✓1, increasing L1 enhances

the velocity of capillary filling, as might be expected since the fraction of the surface having

the lower contact angle increases. In figure 7(b) we set that ✓1 = 10° and ✓2 = 30°. Here,

we see that when ✓1 is close to ✓2, increasing L1 does not enhance the velocity of capillary

filling very much compared to the case considered in figure 7(a). Thus, we conclude that

the sensitivity of the velocity of capillary filling to L1 is determined by the di↵erence of ✓1

and ✓2 due to the capillary-force di↵erence associated with the regions having these contact

angles.

Figures 8 shows z̄m versus t̄ for di↵erent ✓1 and L1 when ✓2 = 55° and � = 0.5. When

� = 0.5, ✓critical = 60°, which means ✓2 here is close to ✓critical. From figure 8(a), we see

Figure 7: z̄m as a function of t̄ with di↵erent L1 when � = 0.5, ✓1 = 10°, and (a) ✓2 = 55°
and (b) ✓2 = 30°, where the values of L1 are 0, 0.1, 0.5, 0.9, and 1.
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that when L1 = 0.1, decreasing ✓1 hardly enhances the velocity since when L1 is small, the

area with ✓1 is small. When L1 is 0.5 or 0.9, decreasing ✓1 enhances the velocity more due

to larger areas with ✓1, as seen in figures 8(b) and 8(c). Additionally, from figures 7(a) and

8(b), we see that when ✓2 is close to ✓critical, the velocity of capillary filling is more sensitive

to L1 than it is to ✓1. The reason is that when ✓2 is close to ✓critical, liquid spends a lot of

time flowing through the region with ✓2 and decreasing ✓1 cannot enhance the velocity in

this region. On the other hand, increasing L1 reduces the area where liquid flows slowly and

decreases the time for liquid to flow through regions with ✓2.

Figures 9 shows relations between z̄m and t̄ for di↵erent ✓2 and L1 when ✓1 = 10°. From

figure 9(a), we see that decreasing ✓2 enhances the velocity of capillary filling. When liquid

flows through regions with ✓2, decreasing ✓2 makes the liquid front more curved and enhances

Figure 8: z̄m as a function of t̄ with di↵erent ✓1 when � = 0.5, ✓2 = 55°, and (a) L1 = 0.1,
(b) L1 = 0.5 and (c) L1 = 0.9, where the values of ✓1 are 30°, 20°, and 10°.
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the pressure di↵erence between the liquid front and gas phase. Also, from figures 9(b) and

9(c), we see the same trend, and the only di↵erence is the sensitivity to ✓2 due to the portion

of surface with ✓2 in the open microchannel, as explained in previous paragraph. When ✓2

is larger than ✓1, from figures 8(b) and 9(b), we see that compared with ✓1, the velocity of

capillary filling is more sensitive to ✓2. From equation (20), we see that the capillary force

is smaller in the region with ✓2, which means compared to the region with ✓1, liquid flows

slowly in the region with ✓2. Therefore, by decreasing ✓2, we make the capillary force much

larger so liquid flows faster.

Since we use ⇠(�), the geometric factor due to the viscous force, to do the nondimen-

sionalization in previous sections (see equation (23)), to know how � changes capillary filling

with periodic contact-angle variation, we need to nondimensionalize equation (27) using

Figure 9: z̄m versus t̄ with di↵erent ✓2 when � = 0.5, ✓1 = 10° and (a) L1 = 0.1, (b) L1 = 0.5
and (c) L1 = 0.9, where the values of ✓2 are 55°, 40°, and 20°.
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equation (13) to include the e↵ect of the viscous force due to di↵erent aspect ratios. For a

microchannel without contact-angle variation, figure 2 shows that there is an aspect ratio

where the mobility is maxmized. This reflects a balance between capillary forces, which drive

flow, and viscous forces, which hinder flow. Thus changing � can either increase or decrease

the meniscus velocity, depending on the values of � that are chosen. Figure 10 shows z̄m

versus et for di↵erent � and L1. When L1 = 1, increasing � decreases the velocity, whereas

when L1 = 0, increasing � increases the velocity. When L1 = 0.5, increasing � increases

the velocity for the pair of contact angles chosen. Because ✓2 is much larger than ✓1, liquid

spends much more time in regions with ✓2. As a consequence, the behavior of the velocity

with respect to � is similar to the case where L1 = 0.

Conclusions

We have developed modifications of the Lucas-Washburn model to explore how a spatially

varying contact angle influences capillary flow in open rectangular microchannels. Four

cases are considered: (i) di↵erent uniform contact angles on channel sidewalls and channel

bottom, (ii) contact angle varying along channel cross section, and (iii) contact angle varying

monotonically along channel length, and (iv) contact angle varying periodically along channel

Figure 10: z̄m as a function of t̄ with di↵erent � when ✓1 = 10° and ✓2 = 55°.
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length. For case (i), it is found that the maximum filling velocity is more sensitive to changes

in the wall contact angle. For case (ii), the contact angles can be averaged to transform the

problem to that of case (i). For case (iii), the time evolution of the meniscus position no

longer follows the simple square-root law at short times. Finally, for case (iv), the problem

is well described by using a uniform contact angle that is a suitable average.

Our results provide insight into earlier experiments of Xing et al. [49] by isolating the

e↵ects of wettability gradients from those of surface roughness. Our results also provide

insight into how to design contact-angle variations to control capillary filling, which we hope

will inspire complementary experiments to test some of the predictions made here. For

example, in channels with a contact angle varying perioidcally along the channel length

such that there are alternating regions of two di↵erent contact angles, we show that filling

is more sensitive to certain variables than others. Since contact-angle variations can occur

naturally due to surface contamination or chemical reaction, our results should be useful for

understanding capillary filling in these contexts as well.

Although we have focused on open microchannels in this work because of the applications

mentioned in the introduction, the approach used here can readily be exended to closed

microchannels. In addition, instead of a pure liquid, one could consider a liquid solution

where a solvent evpaorates and leaves behind a solute deposition pattern [54–56]. Finally, it

should be noted that while Lucas-Washburn-type models make a number of simplications,

their predictions are in qualitative, and sometimes quantitative, agreement with those of

models that more accurately describe the shape of the liquid-gas interface [34].
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Appendix

Analytical expressions for contact-angle variation along channel

length

We used equation (23) to get the time evolution of the meniscus position with di↵erent

kinds of contact-angle variations along the channel length. For figure 4(a), we used

✓0 = cos�1

 
a

1 + 2�
+

✓
c

1 + 2�
� cz̄

(1 + z̄)(1 + 2�)

◆!
(A.1)

to describe the spatial variation of contact angle. In equation (A.1), we used parameter a

to control the contact angle at the end of the microchannel and used parameter c to control

the variation of contact angle. After substituting equation (A.1) into equation (23), we can

integrate it to get

t̄ =
(a� 1)z̄m((a� 1)z̄m � 2c) + 2c(a� 1 + c) ln

⇣
(a�1)z̄m+a�1+c

a�1+c

⌘

2(a� 1)3
. (A.2)

For case 1, case 2, and case 3 in figure 4(a), we used a = 3 and c = 1, 0,�1, in equation

(A.2) to generate figure 4(b).

Similarly, for figure 4(c), we used

✓0 = cos�1

0

B@
a
⇣

e
z̄�b�1
ez̄�b+1 � 1

⌘
+ c

1 + 2�

1

CA (A.3)

to describe the spatial variation of contact angle. In equation (A.3), we used parameters

a, b, and c to control the magnitude of the variation, the position where the contact angle

starts to change, and the contact angle at the end, respectively. After substituting equation
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(A.3) into equation (23), we can integrate it to get

t̄ =
z̄m((2a� c+ 1)z̄m + 4a ln

�
f(z̄m) + 1

�
)� 4a(Li2(�f(z̄m))� Li2(�f(0)))

2(2a� c+ 1)(c� 1)
, (A.4)

where

f(z) =
�2a+ c� 1

c� 1
eb�z, Li2(z) = ⌃k=1

k=1

zk

k2
. (A.5)

Note that Li2(z) is the dilogarithm function [57]. For case 4, case 5, and case 6 in figure

4(c), we used a = 0.25, 0,�0.25, b = 8, and c = 2.25, 1.75, 1.25, respectively, in equation

(A.4) to generate figure 4(d).

From equation (A.2), we see that there are three terms, which are z̄2
m
, z̄m and ln(z̄m).

When z̄m � 1, z̄2
m

� z̄m � ln(z̄m), so for the contact-angle variations shown in figure 4,

when z̄m � 1, only z̄2
m

is important to the time evolution of the meniscus position. Also,

from equation (A.5), we see that when z is much larger than b, f(z) and Li2(�f(z)) approach

to zero. From equation (A.4), we then conclude that when z̄m � b, z2
m
⇠ t at long times.

Modified Lucas-Washburn equation with inertial e↵ects

A modified Lucas-Washburn equation with inertial e↵ects has been derived in previous

studies [54, 58]. It can be written as

⇢zmHW
d2zm
dt2

+ [1� fo(�)]⇢HW

✓
dzm
dt

◆2

= fc + fv, (A.6)

where fo(�) is a function of aspect ratio [54] and ⇢ is the liquid density. Non-dimensionalizing

using equation (13) yields

4⇢�H3z̄m
µ2L2

d2z̄m
det2

+
4⇢�H3[1� fo(�)]

µ2L2

✓
dz̄m
det

◆2

= � 6z̄m
⇠(�)

dz̄m
det

+ ((1 + 2�) cos(✓0)� 1). (A.7)

From equation (A.7), we see that when
p
⇢�HH/µL = (H/L)Oh�1 ⌧ 1, inertial e↵ects

are negligible, where µ/
p
⇢�H is the Ohnesorge number [59], which can be interpreted as
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a capillary number where the characteristic velocity is the capillary wave speed. Letting

L⇤ = HOh�1, this implies that inertial e↵ects are negligible when L⇤/L ⌧ 1. So, if the

channel length or length scale of wettability variation is much larger than L⇤, inertial e↵ects

can be neglected [60].
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