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Classification of 7Z /27.-quadratic unitary fusion categories

Cain Edie-Michell, Masaki Izumi, and Dave Penneys

Abstract. A unitary fusion category is called Z/27Z-quadratic if it has a Z/27Z group of
invertible objects and one other orbit of simple objects under the action of this group. We give
a complete classification of Z/2Z-quadratic unitary fusion categories. The main tools for
this classification are skein theory, a generalization of Ostrik’s results on formal codegrees
to analyze the induction of the group elements to the center, and a computation similar to
Larson’s rank-finiteness bound for Z/3Z-near group pseudounitary fusion categories. This
last computation is contained in an appendix coauthored with attendees from the 2014 AMS
MRC on Mathematics of Quantum Phases of Matter and Quantum Information.

1. Introduction

In the past several decades, unitary fusion categories (UFCs) have seen broad
applications to many areas of mathematics and physics, including representation
theory, operator algebras, topological quantum field theory (TQFT), theoretical
condensed matter, and quantum information. Given the complete list of 6j-symbols
for a UFC, one can build unitary TQFTs which compute quantum invariants of
links and 3-manifolds [4, 15], together with physical lattice models which realize
these TQFTs [31,32]. These computations are increasingly difficult in the presence
of multiplicity, i.e., where there is a fusion channel with a dimension greater than
1, a.k.a. a fusion coeflicient which is larger than 1.

While many classification techniques work well for multiplicity free fusion
categories, more techniques are required to achieve classification in the multipli-
city setting. We note that at the time of writing UFCs have only been classified up
to rank 3 [48,49]. For rank 4 fusion categories with a dual pair of simple objects,
there is a classification of possible fusion rings in the pseudounitary setting [30];
our Theorem A (and Corollary B) below completes the classification of rank 4
UFCs with a dual pair of simples. The case of rank 4 with 4 self-dual objects still
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seems out of reach at this time. Multiplicity free fusion rings up to rank 6 admitting
unitary categorifications have been classified [36].

Surprisingly, all currently known fusion categories fit into four families: (1)
those related to! groups, (2) those related to quantum groups at roots of unity
[1,2,18,52,54-56], (3) the Haagerup-Izumi quadratic categories [3, 12, 13, 20,
24-26,53], and (4) the Extended Haagerup fusion categories [6, 19]. Given a finite
group G, a G-quadratic fusion category is a fusion category C with a finite group G
of simple objects and one other G-orbit {gp} ¢ of simple objects. (The collection
of all G-quadratic fusion categories over all finite groups G is exactly the family
(3) above.) The term ‘quadratic’ comes from the existence of a quadratic relation
for the self-fusion of an object p which generates the other G-orbit. For a family
of fusion rings with a fixed rank, we say the family has rank-finiteness if only
finitely many of these rings admit a categorification. Surprisingly, for a fixed group
G beyond the trivial group, rank-finiteness is not known for G-quadratic fusion
categories (for the trivial group, see [49]). The case G = Z/27Z is classified in
the pivotal setting in [48], and rank-finiteness for G = Z/3Z is achieved in the
pseudounitary setting in [30].

In this article, we give a complete classification of Z/2Z-quadratic unitary
fusion categories. While we do not find any new fusion categories in this article,
we provide important techniques for finding 6j-symbols for fusion categories with
multiplicity. Our main theorem is as follows.

Theorem A. The complete list of Z/27Z quadratic UFCs is as follows.
3 object categories:

* the Ising/Tambara-Yamagami categories of the form TY(Z/2Z, x, =) [53]
with Az fusion rules, of which there are exactly 2. The case + is Temperley-
Lieb-Jones at q = exp(2ni/8), and the case — is SU(2),.

* the three UFCs with Rep(S3) fusion rules [11, Remark 6.6] and [25, Theorem
5.1].

* the two complex conjugate UFCs with Ad(Eg) fusion rules [8,24]. These are
exactly the adjoint subcategories of the exceptional quantum subgroups of
Temperley-Lieb-Jones at q = exp(2ni/24) and SU(2)19 [29,45].

4 object categories:

'Here related to means obtained by interating known constructions such as equivari-
antisation, Morita equivalence, ect.
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e thepointed categories Hilb(Z/4Z,w) where w € H3(Z/4Z,U (1)) and Hilb(Z/27Z x

Z[2Z, w) where
weH(Z/2ZXxZ)2Z,U(1))/Aut(Z/2Z X Z/2Z) = (Z/2Z)> | Aut(Z/2Z x Z/2Z)

[10, Remark 4.10.4].

e the Deligne products Fib R Hilb(Z /27, w) for w € H*(Z/2Z,U (1)), which have
Ay fusion rules. These two categories are also Temperley-Lieb-Jones at q =
exp(27i/10) and SU(2)3.

*  Ad(SU(2)¢), which is also equivalent to the adjoint subcategory of the Ay
Temperley-Lieb-Jones category with g = exp(2nri/16).

* the even parts of the two complex conjugate subfactor planar algebras with

S = e

from [26,34]. These categories are also de-equivariantizations of 2%/**1 near
group fusion categories [25, Ex. 9.5] [35, Ex. 2.2].

principal graphs

* the even part of the 2D2 subfactor planar algebra with principal graph

L__%

from [39] [26, Cor. 9.3]. This category is also a de-equivariantization of the
even part of the 3%/*Z subfactor from [26,51].

All these UFCs are related to quantum groups at roots of unity or near group fusion
categories [13,25].

Remark 1.1. The results of Theorem A make no assumptions on the existence of
a braiding on the category. The categories appearing in our classification which do
not admit braidings are: the two UFC’s with Rep(S3) fusion rules which are not
equivalent to Rep(S3) [46, Section 4.4], the two UFC’s with Ad(E¢) fusion rules
[46, Main Theorem], the even parts of the two complex conjugate subfactor planar
algebras with principal graphs S’ [34], and the even part of the 2D2 subfactor
(which can be seen to not admit a braiding from the centre analysis in Subsec-
tion 3.2). It is interesting to note that the even parts of the subfactors with S’
principal graphs admit o-braidings as defined in [34, Definition 3.2].

The result [30, Thm. 1.1] gave a finite list of possible fusion rings for rank 4
pseudounitary fusion categories with a dual pair of simple objects, but included
one fusion ring not previously known to be categorifiable (the case ¢ = 2 from
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[30, Thm. 1.1(6)]), and left open the classification of those fusion rings from [30,
Thm. 1.1] which were previously known to be categorifiable.

Corollary B. We have a complete classification of rank 4 unitary fusion categories
with a dual pair of simple objects. In particular, there is no UFC with ¢ = 2 from
[30, Thm. 1.1(6)].

One tool to prove our classification is an adaptation of Larson’s rank-finiteness
bound for Z/3Z-near group pseudounitary fusion categories [30, §4]. This adapta-
tion appears in Appendix A below, coauthored with attendees from the 2014 AMS
MRC program on the Mathematics of Quantum Phases of Matter and Quantum
Information.

Our main new technical tool to achieve Theorem A is a generalization of
Ostrik’s results on formal codegrees of a spherical fusion category [47, 48]. We
use results of [41, §5], but we use the conventions of [23]. Suppose C is a spher-
ical fusion category, and denote by ¥ : Z(C) — C the forgetful functor and let
I :C — Z(C) be its adjoint. Let A be the tube algebra of C, and let Ax. x be the
corner of A corresponding to X € Irr(C). We pick a non-degenerate trace Trx on
Axx given by

= Ow=1dim(X) trc (f).

Given an irreducible representation (V, y) of Axcx, its formal codegree [38,47]
with respect to Trx is given by

fv = ) Try(x(b)x(bY)
b

where {b} is a basis of Ax. x and {b"} is the dual basis with respect to the non-
degenerate pairing (a, b) := Trx(ab) on Ax_x. Observe that fy is independent
of the choice of basis {b}, but depends on the choice of Tryx. We refer the reader
to §2.2 for more details.

Theorem C. There is a bijective correspondence between irreducible represent-
ations (V,ny) of Ax—x and simple subobjects T'y C I(X) € Z(C). The formal

codegree fy of (V, r) with respect to Trx is a scalar, and the categorical dimen-
sion of T'y is given by ﬁ(jldr?—r%. Moreover, if Y € Irr(C) and xny is the action of

Axc x on Axcy, then

dim Hom¢ (F (T'y) — Y)4: dimHom(ny — x7my).



In the case X =1 € Irr(C), this theorem recovers [48, Thm. 2.13], which
allowed the computation of the simple decomposition of 7 (1) in terms of repres-
entations of the fusion algebra of C. Our theorem generalises this result in several
ways. The main improvement is that this result allows us to determine the simple
decomposition of 7 (X) by studying the representations of the corner of the tube
algebra Ax. x. When X = 1, this algebra is isomorphic to the fusion algebra of
C. However, when X is non-trivial, this corner depends on certain 6j-symbols of
the category involving X. One immediate application of this theorem comes from
the fact that the dimensions of simple objects in Z(C) are highly restricted, which
implies the representations of Ax_,x (which depend on the 6j-symbols) are also
restricted. Hence we obtain obstructions based on 6j-symbols. We make use of this
application in this article to determine several non-trivial 6j-symbols involving the
invertible object of a Z/2Z-quadratic UFC.

The other improvement Theorem C offers is that for each simple I' C 7 (X),
we can determine ¥ (I") € C. This information is encoded in the action of Ax. x
acting on the entire tube algebra A. As these algebras are semi-simple, it is easy to
decompose this action into irreducibles, and hence apply Theorem C. A surprising
application of this theorem comes from the fact that if we know the action of Ax. x
acting on the entire tube algebra A up to isomorphism, we can often determine the
action on the nose. As this action is determined by the 6j-symbols of C, this allows
us to find many linear equations involving the 6j-symbols. We use this application
later in this article to get our hands on many 6j-symbols. In the general setting,
this result allows the combinatorial data of the forgetful functor Z(C) — C to be
leveraged into the categorical data of the 6j-symbols of C. As the forgetful functor
can often be easily determined from the fusion ring of C [40], we expect this
application to have many exciting future uses.

2. Preliminaries

We refer the reader to [ 10] for the basics of fusion categories. We refer the reader to
[22,50] for the basics of unitary fusion categories. In particular, we always assume
a unitary fusion category is equipped with its unique unitary spherical structure
where the daggers of cups are caps and the quantum dimensions are equal to the
Frobenius-Perron dimensions [37].



2.1. The tube algebra

One of the key tools in this paper is Ocneanu’s tube algebra (or equivalently the
annular category) of a fusion category. This algebra was first introduced by [44]
and [14] in the context of subfactors, and by [23, 24] and [41] in the context of
fusion categories.

Definition 2.1. Let C be a spherical fusion category whose spherical trace is
denoted tr¢. The tube algebra A of C is the finite dimensional semisimple algebra

Ayex where Ayex= P cwex—rew).
X,Yelr(C) Welrr(C)

We graphically represent a fixed basis element of A as

feECWRX -YQW).

The multiplication on A is defined by composition of the tubes and applying the
fusion relation obtained from semisimplicity to the strands around the outside. In
more detail, we pick a basis {e¢} c C(U®V — W) forall U,V, W € Irr(C), and
let {aV} c C(W — U ® V) be the dual basis with respect to the non-degenerate
pairing (-, -) :C(U®V — W) x C(W — U ® V) — C determined by the formula
(h, k) idw = h o k € End¢(W). We have the fusion relation




which gives the following formula for composition in the tube algebra, which is
independent of the choice of basis {a}:

Its restriction to Ay x is tracial for all X € Irr(C), and we denote it by Try.

Note that each of the spaces Ax.x is the corner 1xAlx of A, where we cut

1X ;:6)(’

and Ax. x acts on the spaces Ax.y by multiplication.

The tube algebra of C is intimately related to the Drinfeld centre Z(C) of C.
From the data of Z(C), we obtain a basis of matrix units for the spaces Ax.y
given by

down by the idempotent

dim(T")

dim(C)+/dim(X) dim(Y) w;rrc

e(D)(x.i).(v.j) = dim(W)

where (T, Br) € Irr(Z(C)), {i} is a basis for C(X — F(I')), and {j} is a basis
for C(Y — ¥(I')), where F : Z(C) — C is the forgetful functor. Here, {j’} C
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C(F(I') > Y) denotes the dual basis of {j} with respect to the pairing k" o j =
0 j=x idy. With respect to our functional ¢ on A, we have that

dim(X) dim(T")

PleMoxn.or.) = Ox.y0ij =g e

and so the dual basis with respect to the ¢-pairing is given by

dim(C)
Y, . = —¢(I" . -
¢Mxi. o) = gm0 dim(m) < 00

The construction above shows us that Z(C) entirely determines the structure
of the tube algebra of C. The converse is also true. The tube algebra of C entirely
determines the Drinfeld centre of C. The following theorem gives a bijective cor-
respondence between representations of the tube algebra and objects of Z(C).

Theorem 2.2 [23] and [41, §5]. There is a bijective correspondence between
equivalence classes of irreducible representations of the tube algebra of C and
isomorphism classes of simple objects in Z(C). This bijection sends

V.M Tyi= @ Viaw,®X.
Xelrr(C)

Further, we have that the minimal central projection 7y € A corresponding to
(V, ) is given by

2y = Z e(I'v)(x,i),(X,i)-
Xelrr(C),
(i} cC(X>F(Ty))

2.2. A new result on formal codegrees

If one knows the full tube algebra of C, then Theorem 2.2 essentially gives you
the full data of Z(C). However in many situations, such as in this article, we only
know information about some sub-algebra of the tube algebra, and we wish to
leverage this information into partial information about Z(C). Towards this goal,
we introduce the formal codegree of a representation.

Definition 2.3 [38,47]. Let B be a finite dimensional semisimple algebra equipped
with a non-degenerate trace Trp, and let (V, 7) be a finite dimensional represent-
ation of B. We define the formal codegree of (V,n) as

fv = Z Try (z(b))n(b") € n(B) c End(V)
b
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where we sum over a basis {b} C B, and {b"} denotes the dual basis with respect to
the Trp-pairing. Observe that fy is independent of the choice of basis, but depends
on the choice of trace Trg.

The following theorem allows us to determine the simple summands of 7 (X) €
Z(C) by classifying the representations of the subalgebra Ax. x. Here, 7 : C —
Z(C) is the induction functor which is adjoint to the forgetful functor ¥ : Z(C) —
C. Moreover, we can compute categorical dimensions in terms of formal codegrees
of Ax. x with respect to Try.

Theorem C. Let C be a spherical fusion category, and let A be the tube algebra
of C. Fix X € Irr(C). There is a bijective correspondence between equivalence
classes of irreducible representations (V, ) of Ax—x and isomorphism classes
of simple subobjects I'y C I(X) € Z(C). The formal codegree fy of (V, ) with
respect to Try is a scalar, and the categorical dimension of I'y is given by

dim(C)

Moreover, if Y € Irr(C) and xny is the action of Ax—x on Ax—y, then
dim(C(Y —» F(I'y))) = dim(Hom(ny — xmy)).

Proof. Let (V, ) be anirreducible representation of Ax. x. Since Ax. x is semisimple,
(V, m) corresponds to a simple summand of Ax. x. As Ax. x is a corner of

A, each simple summand of Ax. x is of the form Ax. xzr for a simple object

(I, B) € Irr(Z(C)). Hence there is a simple (I'y, B, ) corresponding to (V, x),

and by Theorem 2.2, zy 1x = 3; e(I'v)(x,i),(x.i)- Moreover, for any other simple
object A € Irr(Z(C)), we have that (e(A)(x,i),(x,i)) = O unless A = I'y. In par-
ticular, Try (7 (e(A)(x,i),(x,j))) = O unless A =I'y and i = j. We now compute

fo= D0 Trv(a(eB) . x ) m(eMy . x. )
ACI(X)

dim(C
B Z dlm();r)nélm)(l—' )”(e(FV)<X,i),(x,i))

dim(C)

= mﬂ'(ZVIX).



Thus the formal codegree of (V, ) is given by fy = %, anddim(T'y) =
dim(C)

Fo dm(3) Finally, we observe
dim(Hom(V — xnmy)) = dim(Hom(V — 1xAly))
= dim(Hom(V — zy1xAly))
=dim(Hom(V — zylxAlyzy))

= Z dim(Hom(V — ZleAe(Fv)(y’j)’(y,j)))
J

=1
=dim(C(Y — F(T'v))). ]

Note that if we just consider the subalgebra A1 = Ko(C), the fusion algebra
of C, then the above theorem recovers [48, Theorem 2.13], which shows that
irreducible representations of Ky(C) are in bijective correspondence with simple
summands of 7 (1). Thus our theorem generalises Ostrik’s in two ways: (1) it gives
us the simple summands of 7 (X) where X is any simple object of C, and (2) it
tells us the image under the forgetful functor of each of these summands.

2.3. 7Z/2Z-quadratic fusion categories

A Z/2Z-quadratic fusion category is a fusion category C whose invertible objects
form the group Z/2Z, i.e., Inv(C) = {1, a} with a? = 1, with one other orbit of
simple objects under the Z/2Z-action. A simple associativity argument shows we
have three cases:
(Q1) simple objects: 1, @, p; fusion rules determined by: p? = 1 ® mp & a.
(Q2) simple objects: 1, @, p, @p, p not self-dual; fusion rules determined by:
,o2 = mp @ nap @ a.
(Q3) simple objects: 1, @, p, ap, p self-dual; fusion rules determined by: p? =
1 ®mp @ nap.

Note that in all three cases we have @®> = 1 and ap = pa.

2.3.1. Multiplicity bounds and categorifiability. The case (Q1) was classified
in the pivotal setting in [48, Thm. 4.1], where it was shown m < 2. The complete
classification of such unitary fusion categories was known prior to this article:
(m = 0) such a fusion category is a Tambara-Yamagami category of the form
TY(Z/2Z, yx,+) [53], of which there are exactly 2. Both such cat-
egories are unitarizable.
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(m =1) such a fusion category has the fusion rules of Rep(S3). There are
exactly three such unitary fusion categories [25, Theorem 5.1].

(m =2) such a fusion category has the fusion rules of Ad(Eg), and there are
exactly 4 such fusion categories [21], all within the same Galois orbit,
and each admits a spherical structure. Two of these are unitary and
complex conjugate to each other [24].

The case (Q2) was studied in the pseudounitary setting (dim(C) = FPdim(C))
in [30], where it was shown that m = n < 2. The classification of such fusion
categories prior to this article is as follows:

(m = 0) such a fusion category is necessarily pointed with Z/4Z fusion rules.
It is thus of the form Vect(Z/4Z, w) for w € H3(Z/4Z,U (1)) = Z/4Z,
of which there are 4 categories [10, Remark 4.10.4].

(m =1) this case was open. Two such unitary fusion categories which are
complex conjugate were known to exist from [26, 34].

(m =2) this case was open. No such examples were known to exist.

We finish this classification for unitary fusion categories in Theorem 4.1 below.
In Appendix A, we adapt the results of [30] in the pseudounitary setting to
case (Q3), where we prove the following theorem.

Theorem 2.4. Suppose C is a pseudounitary fusion category with the fusion rules
(Q3). Then (m, n) must be equal to one of (0,0), (0,1), (1,0), (1, 1), (2,2).

Proof. By Theorem A.29 in Appendix A, we must have m +n < 5. If either m or
n is zero, then there is a fusion subcategory with 3 simple objects, so (m, n) must
be one of (0,0), (0, 1), (1,0) by [49]. If0 £ m # n # 0, then m + n > 11 by Remark
A.4 in Appendix A. The result follows. ]

The proof that m + n < 5 that appears in Appendix A below was written by
Ryan Johnson, Siu-Hung Ng, David Penneys, Jolie Roat, Matthew Titsworth, and
Henry Tucker at the 2014 AMS MRC on The Mathematics of Quantum Phases of
Matter and Quantum Information.

By [27,33] (and applying Galois conjugation), any fusion category with fusion
rules (Q3) with (m,n) € {(0, 1), (1,0)} factorizes as a Deligne product of a fusion
category with Fibonacci fusion rules, of which there are two, namely Fib and YL,
and a Z/27Z-pointed fusion category which must be of the form Vect(Z/2Z, w) for
w € H3(Z/2Z,U(1)), of which there are two. Thus there are exactly 4 such fusion
categories, and 2 are unitarizable.
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When m =n < 2, the complete classification of such unitary fusion categories
as in Theorem 2.4 is given in Theorem 3.1 below.

3. The self-dual case

In this section we will focus on the unitary categorification of the fusion ring with
four simple objects 1, a, p, @p and fusion rules

a®a =1 pR®p=1®mp®map. (R(m))

Let us write R () for such a fusion ring. By Theorem 2.4 above, we know m < 2.
Our main result of this section is as follows.

Theorem 3.1. The complete classification of unitary fusion categories C,, with
Ko(Cp) = R(m) for m < 2 is as follows:

(m =0) Cois pointed and thus equivalent to one of the four monoidally distinct
categories Nect®” (Z /27 X Z|2Z) where

w € HNZ/2Z x Z/2Z,U(1)) ] Aut(Z/2Z x Z/2Z)

[10, Remark 4.10.4].

(m = 1) Cy is equivalent to C(sly, 7)%%, which is also equivalent to the even
part of the A7 Temperley-Lieb-Jones category with g = exp(2ni/16)
[26, Example 9.1].

(m =2) G, is equivalent to the even part of the 2D?2 subfactor from [26,39].

Proof. Tt suffices to restrict our attention to the cases of m = 1 and m = 2. The
first step in our proof is to provide a set of numerical data which fully classifies a
categorification of R(m); we do this in §3.1. By describing a sufficient list of local
relations in our category, we are able to come up with such a set of numerical data.
This data consists of 8m* complex scalars, and a collection of small roots of unity.
This data is precisely a subset of the 65 + 4k symbols of such a categorification.
Using techniques developed in the subfactor classification program, we prove that
this subset of the 67 + 4k symbols is sufficient to describe the entire category.

In §3.2, in order to get a foothold on the numerical data of a categorification
of R(m), we study the Drinfeld centre of such a category. By studying certain
small representations of the tube algebra of the category (using basic combinatorial
arguments), we are able to deduce a surprising amount of numerical data of the
category. This centre analysis tells us n?irly all of the small roots of unity in our



numerical data, and even gives us highly non-trivial linear equations involving the
8m* complex scalars.

To reduce the 8m* complex scalars down to a more manageable number, in
§3.4, we apply the tetrahedral symmetries of the 6 + 4k symbols. These symmet-
ries only apply in the unitary setting, and give S4 symmetries of these 8m* complex
scalars.? This essentially reduces the complexity of the problem by a factor of 24.
For example, in the m = 2 case, we reduce from 128 complex scalars to roughly 10
(some of the S4 symmetries are redundant). These symmetries turn an intractable
amount of data into a set that can easily be dealt with by hand.

To finish off this section we explicitly solve for the remaining numerical data
which describes a categorification of R(m) in §3.5. The results of the previous
subsections essentially determine everything except the remaining complex scal-
ars. By evaluating diagrams in our category in multiple ways, we are able to obtain
equations of these complex scalars. In the m = 2 case we find a single solution,
which necessarily has to correspond to the even part of the 2D2 subfactor. We
prove this in Theorem 3.48 below. |

3.1. Numerical data

Let C,, be a unitary fusion category with K(C,;) = R(m), m € {1,2}. The goal of
this subsection is to pick nice basis for our morphisms spaces in C,,, and to determ-
ine some local relations that these basis elements satisfy. These local relations will
depend on the following data:

» twochoices of signs 4, 4, € {—1, 1} which are the 2nd Frobenius Schur indic-
ators of @ and p respectively,

* achoice of sign u € {-1,1},

*  2m choices of y1; € {—1,1} and yqo.,; € {-V2a, VAo } for 0 <i < m,

* 2m choices of 3rd roots of unity wy,;, wa,; € {1, 627”%, ez’”%} for0 <i < m,
and

In the following subsection, we are able to pin down the data ¢ and y by analysising

the centre of C,,.

To simplify notation, we define d := dim(p), which is the largest solution to
d>=1+2md.If m =1thend = 1+\/§,andifm:2thend:2+\/§.Wechoose

2 While writing this article, the article [17] was posted to the arXiv, which describes
tetrahedral symmetries for general fusion categories. It would be interesting to use their
work to extend our results to the non—unitary1 §etting.



orthonormal basexs for our hom spaces
P @ P
in €Cu(p®p—p) i ECn(p®p —oap) 0<i<m.
PP p P

We also choose unitary isomorphisms3

a o a P

I €Cnla — @) i €Cn(p—p) and >< €ECn(p@a—a®p).
@ p p @
We can unambiguously write their inverses as

@ p p a

$ €Cu(a— a), $ €Cn(p—p), and >< eECn(@®p—opa).
@ o @ p

The duals of these first two isomorphisms are related to their inverses respectively
by the Frobenius-Schur indicators of @ and p, via the following equations:

p P
I :,16,1 i:z{ Aas Ap € {1}
P o

We can re-scale the crossing so that

a P a P a P

A
S
A
]
A
]

3Using the convention of switching the orientation of the a-strand through the crossing
works better for Z/2Z-equivariantization, which is related to the 3%/#Z-subfactor [26]. In the
non-self-dual case in §4 below, we will use a more natural convention from a diagrammatic
point of view which does not change the oriei%rtation of the a-strand.



due to the implicit inverses on both sides. Semisimplicity gives us the following
local relations.

a

P
Definition 3.3. Let u € C* such that *i =u . Clearly u*> = 1.
)

ap

In order to choose a natural basis for the spaces C,,,(p ® p — p) and C, (0 ®
o — ap), we introduce the following linear operators on these spaces. We often
suppress the orientation on the « strands, as it may be inferred from the other
orientations in the diagram.
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We also define the anti-linear Frobenius operators

it <)
i )

These operators are unitary with respect to the tracial inner product on hom spaces.

By a straightforward but tedious calculation, one proves that these operators satisfy
the following relations:

~

KloK'=2,1d K¥oK%=1d
L'ol'=2,1d=R'oR! L*oL®=2,uld =R o R”
KloL!=pu(L' o KY) K¥o LY = udo (LY o K)
K'o R' = u(R' o KY) K¥oRY = udo(RY 0 K9)
(R'o LY)3 = 1= (L' o R!)® (R® 0 L3 =1= (L 0 R¥)3.

We can diagonalise our basis of C,,,(p ® p — p) and C,(p ® p — ap) with
respect to these operators to obtain the following.

Lemma 3.4 (a Jellyfish). We can choose bases for C,,(p ® p — p) and Cp(p ®

p — ap) such that
7’\1&) = Xl,i;\i: and K¢ (>< = Xa,i><
= wu;& and R¥oL® (><) = wa,i><

Kl

RloLl(;X:

where/\/fl. =g, /\/f“. =1, andwii :wii =1.
In particular we have the local relations

P a P M
* ;ii =XLi and * >< = Xa.i i
ap p
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Proof. From the above relations, we have that K! and R! o L' commute. Fur-
thermore, we have (K1)* = 1 and (R! o L1)3 = 1. Hence we can simultaneously
diagonalise these operators to obtain the basis of C,,,(p ® p — p) claimed in the
statement of the lemma. As (K1)? = 1, we have that Xii =14, and as (R! o
LY3 = 1, we have that wii = 1. The same argument gives the claimed basis for
Cn(p®p — ap).

The local relations in the statement of the lemma follow by applying a local a
relation to the operators K! and K. |

In the case that m = 1, we have that the spaces C,, (0o ® p — p) and C,, (p @ p —
ap) are 1-dimensional. Hence the earlier operators are all scalars. In this special
case we determine the scalars A4, 4,, and p.

Corollary 3.5. Ifm =1, then o =, =pu=1.

Proof. As m =1 we have that £1 acts by a scalar /! € C. As L! is anti-linear, the
relation L' o L1 = Ap gives nn = Ap. Hence A, = 1. The same analysis on the
relation LY o LY = A, u gives that A, = 1, and so u = 1. Finally, from Lemma 3.4
the linear operator K¢ is a real scalar. The relation K“ o L% = ud, (L o K%) then
gives us that 4, = 1. [ ]

Note that when m = 1 and 1, = 1, we have the classification of categories
Cy from [26, Example 9.1]. Hence we have the following Corollary of the above
lemma.

Corollary 3.6. The statement of Theorem 3.1 is true when m = 1.

Hence, for the remainder of this section, we may assume that m = 2.
Note that at this point, we can not fully determine the action of the operators
L and R on our basis. However, we can make the following observation.

Lemma 3.7. We have two cases depending on the value of Aou € {1,—1}:

(1) If Aqu = 1 then the operators L' and R! preserve the eigenspaces of K,
and the operators L® and R preserve the eigenspaces of K.

(2) If Aqu = —1 then the operators L' and R' exchange the eigenspaces of
K, and the operators L® and R® exchange the eigenspaces of K. In

particular, x1,0 = —x1,1 and X a,0 = —Xa,1-

Proof. This follows from the commutation relations above, along with the fact that
our L and R operators are anti-linear. Let us illustrate a few examples.

17



Suppose A, u = 1, and let v be an eigenvector for K1 (with eigenvalue y). Then
the relation K! o L' = u(L! o K1) gives that

K'o L(v) = 1, ¥ L' (v).

If A, = 1, then y is real by Lemma 3.4, and we get that K! o L1(v) = yL(v).
If 1, = —1, then y is imaginary by Lemma 3.4 and we get that K! o L1(v) =
—YLY(v) = ¥ L' (v). The argument for the eigenspaces of K is similar (and easier).

Suppose A, u = —1, and let v be an eigenvector for K! (again with eigenvalue
x). Now the relation K o L = (L' o K1) gives that

K'o LY(v) = -A,¥L' (v).

The same argument as above shows that K! o L1(v) = —y L!(v). Thus L' exchanges
the eigenspaces of K1, which then must be 1-dimensional. In particular we must
have that x1,0 = —x1,1. The same argument holds for the eigenspaces of K.

The above arguments also work verbatim for the operators R! and R?. |

3.2. Centre analysis

In this subsection we will analyse the Drinfeld centre of the categories C; in order
to pin down the values of our data y, u, and the operators L and R.

Our main tool in this subsection is Theorem 2.2. We remind the reader that this
result states that for an object X € C, the irreducible representations V of Ax_x
are in bijective correspondence with simple summands I'y € 7 (X) € Z(C), the
dimension of I'y is given by % where fy is the formal codegree of the
representation V, and the multiplicity of Y € ¥ (I'y) is equal to the multiplicity of
V in the left-action of Ax_,x on Ax_,y.

With this tool in mind, we aim to study the tube algebra for C;:

A1 Al&a A1<—p Aleap

A — Aael Aa%a Aaep Aa%ap

Ap—1 Ap—a App Ap—ap

Aap<—1 A(I[N—(l A(lp<—p Aap<—ap

By determining the irreducible representations of the sub-algebras Ax. x, and
their multiplicities in the left action of Ax. x on Ax.y, we can determine the
simple objects of Z((,), and their images under the forgetful functor.

Performing this computation over all of the tube algebra is far too computa-
tionally taxing. Instead we restrict our attention to the sub-algebra

Al(-] @ AQ(—Q/ @ Alrgj @ Aa/<_p @ Al(—(lp-



We pick the following bases for these spaces:

Alc1 = span O @ @ ‘

w6 101 l0) )
N 0 i

==l % o) Ty

400

Aa’(_p ] Span @’ @’ @’ @

By direct computation we obtain that:

* The algebra Ay has four 1-dimensional representations, which are:

0o © ©
xol1 1 2+v5 2445
xil1 1 2-45 2-45
|1 -1 1 -1
»l1 -1 -1 1

The formal codegrees of these representations are then 20 + 8V/5, 20 — 85,
4, and 4 respectively. Hence by Theorem C the object 7 (1) is a direct sum of
4 simple objects X; with dimensions

dim(Xo) =1, dim(X;)=9+4V5, and dim(X»)=dim(X3) =5+2V5.

19



Direct computation on the basis elements of A, o gives the following multi-
plications:

1too0o0 [o 10 o] [o o 1 0 0 0 0 1
01 00 [0 00 0 0 0 0 Ao 0 0 1 0
0010 |0 00| [0 0 J& X 0 dap Adaka -
0001 0 01 0f |0 don daxa F=| [lan 0 Aofe ldaka

where x1 := VAo (x1.0 + x1.1) € {=2,0,2} and x4 := X@.0 + Xa.1 € {-2,0,2}.
Here we fix our choice of square roots so that YA, = 1if 1, = 1,and VA, =i

if 1, = —1. From this, we determine that A, , has the four 1-dimensional
representations:
1 1+Xa+\/4ﬂ/la+(/\’l+/\’a)2 l+/\/a+\/4/‘/la+(/\/l+/\’a)2
TO (l’ 2r 2
X1tXa—V4uda+(X1txa)?  X1tXe— V4udat(X1txa)?
T] 1 \//1(, 2L, 5
X1=XotV4udat(X1-Xa)? X1—Xa+tV4udat(X1—Xa)?
) 1 \/ﬂa NI )
X1=Xa=V4dat(X1-Xa)?  X1=Xa= V4uda+(X1—Xa)?
T3 1 \//la N )

Hence by Theorem C the object 7 () is a direct sum of 4 simple objects ¥;
with dimensions

i
dim (Yp) = im(C) .
2+ 3 1+ Yo + Va4uda + (X1 + Xa)?
i
dim(Y;) = im(C) .
2+ 31+ Yo — VApde + (X1 + Xa)?
.
dim(Y) = im(C) .
2+ 5 1 = Xa + VApda + (X1 — Xa)?
i
dim(Y3) = im(C) .
2+ % X1~ Xa — ‘/4/1/10 + (X1 — Xa)?

From [23, Lemma 5.4] we have thatt - p,, = 0y, p, Where p,, = ., T(b)b" €
A g o 1s the minimal central idempotent corresponding to 7;, and in our case,
20



the operator ¢ is simply right multiplication by the 2nd basis element. Hence
we have that

Oy, = Oy, = Ao\do and 6Oy, = Oy, = —1g\1a.
Let Z; be the remaining simple objects of Z(C,). Then
F(Zi) = pip & giap
for some p;, g; € N. Further

dim Hom(Z (p), I (p)) = 20 = dim Hom(Z (ap), I (ap))
dimHom(Z (ap), I (p)) = 16.

Let 17, be the action of Ay on Ay,. Then

0010

00 0 1 ! !
w(@)-[1 4 b o) w(©)-[3 4] mim (@) 11 2]

01 00

where ¢ and ¢’ are the operators on Hom(p ® p < p) defined by

which we can identify as operators on the two spaces:

%o 0) = [(e) (o)

by local insertion, i.e., the elements of A1,y which involve ¢, ¢” above act on
A1, by applying ¢, ¢’ locally on the trivalent vertices in our standard basis

of Ajp.
© 21



* Let 17, be the action of Aq.1 on A1 p. Then

0010

0001 - v v
'”"p(@): 1000 '”"”(@):[‘zpb | 1"""() v m

0100

where ¢ and ¢’ are the operators on Hom(p ® p — ap) defined by

()2 g

As before, we can naturally identify ¢,y as operators on the following two
spaces by local insertion:

» Denoting by , 7, the action of A,_,, on Ay, we have

0 0 10
o 0 01

atp . 0 0 ol
0 1, 0 0

a

We begin by analyising the corner of the tube algebra A1, and its actions on
A1p and Ay ). This gives us the following result.

Lemma 3.8. There exists b € {0, 1,2} such that

F(Xo) =1

F (X)) =182p ®2ap
22



F(X)=1dbp& (2-Db)ap
F(X3) =10 (2-b)p @ bap.

Furthermore, if b € {0, 2}, then the operators ¢ and  are both the same scalar

3 1+b-v5

b= =—>

and if b = 1, the the operators ¢ and  have the two eigenvalues I_T‘B and %5

Proof. First note that as Xy is the tensor unit of Z(C), we have that 17, and 174,
contain no copies of yo. From the above computations, we have that

ol [ @)

As 17, is 4-dimensional, and x( is not a sub-representation, we must have that
1T, 22x1 @ bx2 ® (2-D)x3 where b € {0, 1,2}.
Thus ¥ (X1) contains two copies of p, and a dimension count shows that
F(X1)=182p @ 2ap.

From this we can deduce three possibilities for the restrictions of X, and X3.

Case I: F(X2) =F(X3) =1@ p ® ap, in which case 17, = 1714y = 2x1 ©
X2 @ x3, and in particular

Tr(lﬂp (@)) =4-2V5,

Case 2: ¥(X2) =1®2p and ¥ (X3) = 1® 2ap, in which case 171, = 2y @
2x2 and 174, = 2x1 © 2x3, and in particular

Tr(lﬂp (@)) =6-2V5,

Case 3: 7(X2)=1&2apand ¥ (X3) =1 2p,in whichcase 17, =21 +2x3
and 174, = 2x1 + 22, and in particular

o) 225
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We now aim to deduce more information about the operator /. Note that

71 = dlm;(c) O+@+(2+\/§)@+(2+\/§)@

is the minimal central idempotent corresponding to the representation yy. i.e. 1 -
x = xo(x) - z1. As 17, contains no copies of o, we get 17, (z1) = 0, and so

1 0
0 1

To solve for ¢, we use the fusion rule p?> = 1@ 2p ® 2ap to get

1
+(2+\/§)(¢+¢’):0 = ¢’:—(¢+l2+0‘5 (1) ])
245

1

o+(2)e |55

2+V5

Together with knowing the trace of 17, (p) in each of the above cases, we can solve
to get the statement of the lemma.
To obtain the statement about ¢ we repeat the above analysis with y74,. =

This completes our analysis of 7 (1). We now analyse the object 7 (). Our
first goal is to show that the object @ never lifts to the centre. To begin we prove
the following lemma.

Lemma 3.9. Suppose that @ has a lift to the centre Z(C,). Then b = 1.

Proof. For a contradiction, suppose that b = 2.

By a relabeling we can assume that Y is a lift of @ to Z((C,), and that ¥; =
Yy ® X;. As ¥ is a ®-functor, this gives us F (Y;) in terms of the » from Lemma 3.8.
We then have

T(p) =2X, ®2X, ®2Y) @ 2Y5 @ piZi
T(ap) =2X, ®2X; ®2Y) @27, @ 9iZ;.
This gives us that

20 = dimHom(Z (p), I (p)) = 16+ »_ p}
20 = dim Hom(Z (ap), I (ap)) = 16+ > 47

i

16 = dimHom(Z (p), I (ap)) = 8 + Z Digi.
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Hence
Zpl?:4:Zq? and ZPiQi =8

which is impossible.
The contradiction when b = 0 is nearly identical. ]

With this lemma in hand, we can now show that « never lifts to the centre.
Lemma 3.10. The object a does not have a lift to the centre.

Proof. For a contradiction, suppose that « lifts to the centre. We have two cases
depending on the value of A,.

First suppose 1, = 1. From Lemma 3.9 we have that b = 1, the same style of
argument from the proof of this Lemma shows that

I(p)=2X1@XQEBX3€BZY1€BY2®Y3@@]),-Z,-
I(Clp)=2X1@X2®X3®2Y1®Y2®Y3®®qizi

D pi=8=) a7 and ) pigi=4.

Zpi(l?i +qi) = 12.

We now use the Ng-Schauenburg formula for the 2nd Frobenius-Schur indicator
of p to obtain

with

In particular

A, dim(Cy) = 2(1 +4d) (0%, +05,) + (1 +2d) (0%, + 05, + 0% +63,)
+ ZPi(Pi +q,)do3,
=8+24d+ ) pi(pi +q:)d0%,.

For either case of A,, we have that | 3} p;(p; + qi)H%i| > 445+ 8 > 12. Hence «
can not have a lift in this case.

Now suppose that 1, = —1. By analyising the dimensions formulas for ¥; over
all the different cases of u, y1, and yo, we see that @ can only lift if 4 = —1, and
|x1] = x| = 2. In this case, we have that the other ¥; have dimensions 9 + 4v/5 and
5+2v5 occuring twice. Furthermore, we see that the dimension 1 object and the
dimension 9 + 45 object have same twist. Hence by relabeling, we may assume

dim(Yp) = 1 dim(¥) =9+4V5  dim(Ya) = dim(¥3) = 5+ 2V5
9Y0:9y1 ==+i 9y2:9y3=¢i Y, =Yy ® X;.
25



As 60y, = i we have that (Xp, Yy) is a modular subcategory of Z(C,). Hence
Z () factors as Z(Cp)o ® (Xo, Yo). Note that we have a simple W € Z(C,) iff
9W®Yo = Gweyo. This implies that { Xy, X1, Y>,Y3} € Z(Cy)o, and {X», X3,Yp, Y1} €
Z(Cr)o ® Yp. Let us write {Z;};cp, for the remaining simple objects of Z(C3)
which live in Z(C,)o. We then have

I(p)=2Xx1eX0X;02eheVsePpizieParez

i€y i€Ag
Tap)=2X,0X, X302V, 0V, 0V & @q,-Zi ® @piY()@Z[.
i€Ag i€y

From 20 = dim Hom(Z (p), Z (p)) and 16 = dim Hom(Z (ap), Z (p)) we obtain
Z p12 + qlz =8 and Z 2piqi =4.
iE/\() iEA()

Hence

Z(Pi+qi)2:12 and Z(p"_q")2:4'

i€Ng i€y
By Cauchy-Schwarz applied to the vectors (p; + ¢;); and (|p; — g:])i,
Dlpi—ail = ) (pi+anlpi —ail < V12-4=4V3.
i€y i€

Again we use the Ng-Schauenburg formula for the 2nd Frobenius-Schur indicator
of p to obtain

Ao dim(Cy) = 2(1 +4d) (0%, +63) + (1 +2d) (6%, + 63, + 0% +63.)
+ Z pi(pi +q;)do5, + Z qi(pi +4i)d63, o

i€y i€y

= > (v} —a})dey,.

i€y

From this we obtain

L _

Z |Pl 2 dlm(Cz) — 45,

i€Ng
Hence a can not have a lift in this case. n

We can now deduce that both y; and y are 0. Thatis y1,1 = —x1.2and yo.1 =
—Xa,2-
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Lemma 3.11. We have that x1,0 = —x1,1 and X a,0 = —Xa,1. In particular, we may
assume that 1,0 = VAa» X1,1 = —VAa, Xa.0 =1, and yq,1 = -1

Proof. 1f 1,u = -1, then we have the first statement of the lemma from Lemma 3.7.
Hence we can assume that 4,1 = 1.

First consider the case that | y1| = | x «| = 2. Then the earlier dimension formulas
for dim(Y;) show that one of these dimensions is 1, which implies that « lifts to
the centre. But this contradicts Lemma 3.10.

In the case that y; =0 and |yo| =2, or |x1| =2 and y, = 0, then one of the
5+2V5

\/’ ki
The only remammg case is that y; = 0 and y, = 0 which implies the first

Y;’s has dimension which is impossible.

statement of the lemma.
As Xii = A4y and )(fy’ ; = 1, we may reorder our basis to give the statement of
the lemma. |

As a result of the above Lemma, we know that the eigenspaces of K! and K¢
are 1-dimensional. We can pair this information with Lemma 3.7 to obtain the
action of the L and R operators on our eigenbasis.

Lemma 3.12. The basis of the spaces Co(p ® p — p) and C2(p ® p — ap) from
Lemma 3.4 can be chosen so that

i, e
e, (o

where i & i is an order two involution on the indexing set {0, 1}. If 1ou = 1 then
0=0and1=1.IfAqu=—1then0=1and 1 =0, and in this case we have that
w10 = W11 and W0 = Wa,1. Furthermore, if 1, = -1, then A u = -1, and if
udy, = =1, then Ao = —1.

We are free to exchange our distinguished basis elements, and to rescale them

by
%XHZUK AHEA 71, € U(1)
><i'—>za,i i ><i'—>m><i Za,i € U(1).
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Proof. Let us begin with the operator R!. In the case of A,u = 1 we have from
Lemma 3.7 that R! preserves the eigenspaces of K. As these eigenspaces are 1-
dimensional by Lemma 3.11 we have that R! is of the form (using linear operator
notation, even though R is anti-linear)

1
Ryoy O

1
0 Rp,

R' =

As (R1)* = 1, we have that these coefficients are elements of U(1), and as R is anti
linear, we can rescale out two basis vectors by \/@ eU(1) and \/ﬁ eU(1) to
arrange that both these coeflicients are 1. Note that this rescaling does not affect
the relations of Lemma 3.4 as the operators K1 and R! o L1 are linear.

In the case of A, = —1 we have from Lemma 3.7 that R! exchanges the eigen-
spaces of K'. We thus have that R! is of the form

1
0 Ry,

1
Rip O

R =

By choosing our second basis vector as the image under R! of the first, we arrange
that R(l)’1 = 1. Again, this doesn’t affect the relations of Lemma 3.4 as R is unitary.
We now use the relation (R!)? = A, to see that R]I,O = Ap.

Together these give the action of R! as in the statement of the lemma. The
action of L! follows from the action of R! o L! from Lemma 3.4, along with the
relation R1)? = Ap. In the case of A,u = —1, we can perform that same argument
onL'o R = (R o L)~ to see that w10 = W1,1-

Finally, from the relation (R1)? = Ap, we can see that if 4, = —1, then only the
case Ao = —1 is possible.

The same analysis on the operators R® and L< gives the remaining statement
of the lemma. ]

Now that we have pinned down 1 and y,, we can describe the objects ¥; C
7 (@) in more detail.

Lemma 3.13. We have that
F(Yo) =a @ cop ® (2 —co)ap
F(Y)=a® (2-co)p D coap
F(V2)=a®crp® (2-c2)ap
F(Y3)=a® (2-cr)p d crap.

where ¢y, cp € {0,1,2}.
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Proof. As 1,1 = —x12and yq,1 = —Xa,2, Wwe have that y1 = y, =0, and so each
of the objects Y; has dimension 5 + 2v/5. We thus have

F(Yo) = a® cop ® (2 - co)ap
FY)D)=adcip®(2-cr)ap
FM)=a®cp®(2-c)ap
F(Y3)=adc3p® (2-c3)ap.

For some integers ¢; € {0, 1,2}.
From the computations in Subsection 3.2 determining the matrix for the oper-
ator 7, we see that

Tr| o7y =0.

On the other hand from Theorem C we have that

aTlp = CoTo @ C171 ® 212 D €373.
From the earlier tube algebra computations, we know the value of the represent-
ations 7; on the element . In particular, we know the trace of this value.

As traces are preserved under direct sums, we obtain that ¢ + ¢y — ¢ — ¢3 = 0.
From the formula dim Hom(a, R (p)) = dim Hom(Z (@), Z (p)) = 4, we obtain
co + c1 + cp + c3 = 4. Together we get the statement of the lemma. [

With the restrictions of the objects X; and ¥; now understood, we can give a
fairly explicit formula for the even Frobenius-Schur indicators of p. This formula
will come in handy at several points later in this article.

Lemma 3.14. We have that
van(p) dim(C) = 28 + 12V5 + 2% (20 + 8V5) + (2 + V5) Z pi(pi +4i)6%.,

where p; and q; are integers satisfying Y, pi(p; + qi) = 16, and the 6z, are roots
of unity.

Proof. From Lemmas 3.8 and 3.13, we know the image under the forgetful functor
of each of the simple objects appearing in 7 (1) and J («), up to some small integers
b, cg, c2. Then we can write

I(p)=2X10bX2®(2-Db)X;3 EstYo D R2—co)V1®c2V2® (2—ca)V3



® @pizi

T(ap) =2X1®2-b)X2 ®bX3® (2—co)Yo® co¥1 ® (2—c2)Y2 ® V3

] @qlll

Using the fact that ¥ (7 (p)) = @Xdrr(c) XpX* we obtain

20 = dimHom(Z (p), I (p)) =4+ b>+ (2= b)* +c2+ (2 - co)* + 3+ (2 - c2)?

+pr

16 = dimHom(Z (ap), I (p)) =4+2b(2—b) +2co(2 — cp) +2¢2(2 — ¢2)

+ Z piqi,
80 36 = dim Hom(Z (p @ ap), I (p)) =20+ 3, p? + >, piqi, and thus Y, p;(p; +
qi) =16.

We have from the earlier computations that Hg(i =1and 0)2,1_ = Ao. We can use
the Ng-Shauenburg formula for the 2n-th Frobenius-Schur indicator [42, Theorem
4.1] to obtain

van(p)dim(C) = >’ dimHom(F (W) — p) dim(W)6%
WeZ(C)
=28+ 12V5+ A%,(20+8V5) + 2+ V5) 3" pi(p; + 4,05 =

We finish this subsection by showing that 4 = 1 in all cases.
Lemma 3.15. We have that u = 1.

Proof. First suppose that 1, = u, and for a contradiction suppose that y = —1,
so that 1, = —1. We thus have that one of A, or ud, is —1. We thus get from
Lemma 3.12 that A,u = —1 which is our contradiction.

Now suppose 4, = —u, and for a contradiction suppose that u = —1, so that
Ao = 1. As u = -1, we can exchange p and ap if necessary to arrange 4, = —1 (as
a direct computation shows v, (p) = u - v2(ap)).

We can now use Lemma 3.14, along with the fact that the 2nd Frobenius-Schur
indicator of p is 4, to get the equation

20 - 8V5 =48 +20V5+ (2 +V5) Y pi(pi +41)6,.
where Y, p;(p; + ¢g;) = 16. Thus
Zpi(Pi +qi)05, = —4 - 125,

However Theorem A.26 implies that it takes at least 12¢(10) = 48 roots of unity
to write —4 — 125, contradicting ¥, pi§6,~ +¢;) = 16. Hence u = 1. ]



3.3. Sufficient relations to evaluate closed diagrams

In this subsection, we will introduce several more 6-j style local relations in our
category C,, and furthermore show that the full collection of relations described
completely determine the category C,. We will do this via the standard technique
of showing that our relations suffice to evaluate every endomorphism of the tensor
unit to a scalar. These additional local relations will be determined by 8m* complex
scalars A;(JZ B;J[ C,l(][ D;(][ A\;cjf E’k’[ 6121{, 52’[ € Cfor0<i,j, k,<2. These
complex scalars are entries of the F-tensors F5 ", FiyP [ FIPP and Fgt*’.

3.3.1. Jellyfish relations.
Lemma 3.16 (p Jellyfish). There exist scalars

AbI gid cbd pbd abd phi G

=i ..
e Bie Clo Die Ace Bl Clp Dy €C 0<i,j,kt<2

such that the following local relations hold in Cy:




Proof. We provide the proof for the third relation, and the other two are left to the
reader. We compute

For the final four sums of diagrams after the }; , before the final equality above,

we express each of the sub-diagrams in the dotted blue boxes in terms of our chosen

basis for G (p? — p) and C>(p?> — ap). For instance, for the diagram directly after

the }; ;. the sub-diagram in the blue box lives in C(ap? = p) = Cr(p? — ap),

so the sub-diagram can be expressed as a linear combination of 4-valent vertices.

The coefficients A\;cfe E;cje CA,’CJK 5;{1{, then arise as arbitrary basis coefficients.
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For the second diagram in the last line above, we used the relation that for

f€Cp* = ap),

(3.17)

which can be verified by a straightforward diagrammatic calculation. We then use
the relation in Lemma 3.4 to obtain (L% o R%)( f). We leave the final simplification
of this second diagram using the « Jellyfish Relation of Lemma 3.4 to the reader.

]

Remark 3.18. Recall that the associator F-tensors of a unitary fusion category
are determined by the formula

w
- w
4 sk,
Velrr(C) ik
0<i<dim Hom(XQY—V)

XY Z 0<j<dimHom(V®Z—-W)

We have the following identification between the above 128 complex scalars and
certain F-tensors of the category Cs:

A = (57D A= (Fap™ N
B = (7)) Bt = (Fay ") i
Cie = (P ) (i) G = (B ) ikl
DG =P )Gk DRl = (I

In the name of readability, we will not use this F-tensor notation in this article.

Remark 3.19. With the above jellyfish relations, we can describe the operators ¢
and ¢ from Subsection 3.2 in terms of our free scalars. We have

(A)2 fh-sued
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and

3.3.2. Absorption relations. Using the nomenclature from [6], a closed diagram
in our generators is said to be in jellyfish form if all trivalent and tetravalent vertices
and their labels appear on the external region of the closed diagram. By a slight
abuse of nomenclature, we will say that a morphism in a hom space is in jellyfish
form (or a train in the nomenclature of [7]) if all labels of trivalent and tetravalent
vertices in the morphism meet the leftmost region of the morphism. In the examples
below, the left diagram is not in jellyfish form, and the right diagram is in jellyfish
form.

</

Lemma 3.20 (Absorption). Using the relations from §3.1 and §3.3.1, any two
trivalent/tetravalent vertices in jellyfish form connected by two of their p strands
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so that the composite is still in jellyfish form may be simplified into a diagram with
no trivalent/tetravalent vertices.

Proof. There are 16 words of length 2 on the symbols

)

and up to adjoints, 10 are distinct. Given any word of length 2, there is a unique
composite in jellyfish form with two p strands connected, up to labels and moving

tags through crossings. There are thus 10 cases to consider:

3.3.3. Evaluation algorithm. With these local relations in hand, we can show
that the numerical data we have described uniquely determines the category C.

Proposition 3.21. There is at most one unitary fusion category C, realising each
tuple of data
(/lLI/?/lpaw? A’ Ba C, DsA’ Ba C’ D)

Proof. The proof is an adaptation of Bigelow’s jellyfish algorithm [5, 6]. Given
any closed diagram in our generators, we show it can be evaluated to a scalar using
our relations. This immediately implies 3t]§e stated result by [9, Lem. 2.4] which is



the unshaded pivotal category version of [6, Prop. 3.5] for shaded planar algebras.
Indeed, let C’ be the quotient of the free category in our generators, modulo the
relations corresponding to the data (44, 4,, w, A, B,C, D, X, E, 6, 5). If we can
show that any closed diagram in our generators can be evaluated to a scaler using
the given relations, then we have every ideal of C’ is contained in the negligible
ideal. We then have an equivalence C’/Neg(C’) — C, which shows that C, is
uniquely determined by the above tuple of data.

By the jellyfish relations from Lemmas 3.4 and 3.16, it suffices to show we can
evaluate any closed diagram in jellyfish form, in which all trivalent and tetravalent
vertices and their labels appear on the external boundary of the closed diagram.
There are 3 cases for such a diagram:

Case 1: there are no vertices at all in the closed diagram. Then we may use
(3.2) to evaluate the closed diagram to a scalar.

Case 2: there is a trivalent/tetravalent vertex connected to itself. Then we may
use (3.2) to show that this closed diagram is equal to zero.

Case 3: there are two neighboring trivalent/tetravalent vertices that are con-
nected by at least 2 of their p strands. Then using the absoprtion
relations from Lemma 3.20, we can express our closed diagram in
jellyfish form as a linear combination of diagrams with strictly fewer
vertices, which are still in jellyfish form.

We are finished by a simple induction argument on the number of vertices in our
closed diagram in jellyfish form. ]

Remark 3.22. We wish to point out that we can also give an existence result for
the categories C,, by realising them as actions by endomorphisms on the Cuntz
algebras O»,;,+1 > Z;. To obtain existence one needs to verify a finite list of polyno-
mial equations that the above tuple needs to satisfy. As we can conclude existence
of the examples in this article from the existing literature, we will not include the
details of this existence result.

3.4. Symmetries

With the results of the last subsection in hand, the major task in front of us is to
determine the 128 complex scalars:

AL B, CL D AL B G

~ N
ke k.0 k. ke k.l k.l ke and Dy

In theory, we could begin evaluating diagrams in our category in multiple ways
in order to obtain equations of these v%ré'ables. However, in practice this task is



too complicated, given that we have 128 unknowns. To make our task of pinning
down these scalars easier, we aim to find symmetries between them, and to show
that many of them must in fact vanish. The symmetries of these scalars come from
the tetrahedral symmetries of the 6 symbols, which were rigorously studied in
[16], and have been used in previous works of the second author [25,26]. (See also
Footnote 2.)

The main result of this subsection is as follows.

Lemma 3.23. The scalars B>, C"*/, B/ C"/ D%/

re Clo B Clps Dy can be expressed in terms
of the Dk’[ as

i \/ ik
: = /l/l)+L+k/l(l /l(l(_l)[a)l,{Dl{[
nisJ 1+j+¢ ; 5 i
By =" AaNAe (1) w1, jwy iwa’ng”]_,
l+ +k /_ ¢ i,
C;CIK = ! (l a( 1) a)l [)D i
] = /ll+j+k ’/la(_])kwl,kwl jwa,iDi,kT,

=Vl (-D) 7wy, ,wl Wa, gw(”DJ o+

Q

The scalars A g ¢, and A e satzsfy S4 symmetries generated by the order three rota-
tion:

All _/11+l+k0.) AJ Jk —/ll+]+k 2 Ak lA

1+i+k Jk I+j+k 2 7k,
Kt i k(,—/l War A =A wa’[Aif

74

and the order two flips:

iLJo_ 2 Akl _ I AR A NS YAN
AL = wl,kwl,iA;j =4, A Al = Wa, KW A~ - =4, Az,f’

DY, = "D = Ao (1) wanel ;DE = A1 (-1 wa i, DY

Finally, we have

Ali = R

V=AY =Dy =0 if i+j+k+C20 (mod2).

This result reduces the number of complex scalars to solve for down to 11 in
the 1, = 1 case, and 7 in the 1, = —1 case. This simplification makes it feasible
to solve for these scalars in the next subsection.
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Lemma 3.24. We have
AZ,’FZZ’,’; =D§<’,’; =0 if i+j+k+(#0 (mod?2).

Proof. We will prove the statement of the lemma in the case of the A;.(’jg coeffi-
cients, as the remaining two cases are nearly identical. We have

— XLKX1c
XLiX1,j

XLKX1,E 41, i,J _ XLkX1e 40,
= = :> = ) .
X1iX1,j Ak t’+ %‘ Ak,f X1,iX1,j Ak,é’

Recall from Lemma 3.11 that y1,; = (—1)'yA4. Thusifi+ j + k+£ 0 (mod 2),

X1LkX1.¢ J
then i, 1, which implies A =0. ]

Now that we know that half of our coefficients vanish, we move on to describing
the symmetries between them. As mentioned before, these symmetries are the
standard tetrahedral symmetries of the 6j-symbols. This completes the proof of
the main result of this section.

Proof of Lemma 3.23. We include enough examples to illuminate the necessary
techniques, all of which involve using the Frobenius maps defined in §3.1. The
symmetries of the A «.¢ coeflicients are the easiest, as the diagrams only involve p
strands. We compute the following symmetries:




— /l},+i+£w1,gAl_’k~,

/lz+k
Tp Wik = itk ZLK Wi,k Al t’
Q k.j

d wy, P wy

Together this shows that
A _/11+kw A_] k —/ll+]+k 2 Akl

and

s P w1,k i.j w1k B

i,j _ qitjtk+t Wi k7 Wli k¢

Ay =4 —A — AT
as claimed. These three tricks work to determine all of the symmetries in the state-
ment of the lemma. In order to show how to deal with « strands, we include one

final example.
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We leave the verification of the remaining identities to the reader. ]

To finish off this section, we explicitly compute the 4th Frobenius-Schur indic-
ator of p in terms of our free variables. This formula will be useful in the next
section.

Lemma 3.25. We have that

1 . " —
va(p) = E + 4, Z a)l,iwl,jA;:j. +Apde Z(—l)lﬂwa,iwa,]‘A;:}
i,j i,j

Proof. We pick the following orthonormal basis of C,(p®* — 1):

GO £ AL A,

With this basis we compute

=3 7 1) Q‘ 300
i,J ) i,J i
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1 iy y .
_ 2 : 5J E : + gy
= E + /lp wl,iwl,in’j + /lp/la, (_1)1 ]w{l,iw(l,jA[’j‘ u
i,J i,

3.5. Classification

In this final subsection, we complete the classification result in the self-dual case
(Q3), i.e., we complete the proof of Theorem 3.1, and classify all categorifications
of the rings R(m). We have two cases to consider depending on 1, = %1.

3.5.1. The case A, = 1. In the case of 1, = 1 we have determined that
=1, u=1, i=i, and x1,;= Xa.i=(-1)"

Thus all that remains is to deduce the 3rd roots of unity w10, W11, Wa.0, Wa.1s
along with the free variables A;(’]{,, Azjf, D;C’Jg. We express these free variables in
the matrix form:

0,0 v0,0 0,0 10,0
Xoo Xou Xio Xii
Xoo Xou Xio X1y -

10 w10 w0 wlo X=AAD. (3.26)
X X7 X X

0,0 %01 1,0 11

L1 vl 1yl
Xoo Xo1 Xip Xii

By applying the symmetries of Lemma 3.23, we have that our free variables are

of the form
ap 0 0 wioa ap 0 0 waoa2 do 0 0 -gxds
Ao © a  wiga 0 il @ WAy 0 p-|0 d  dy 0
0 w%’oaz ar 0 0 wi_oﬁz Ez 0 g —%d;; d3 0
w1,0a2 0 0 aj Wa,002 0 0 a dy 0 0 di
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all of which are real apart from dj. If these free coeflicients are non-zero, then the
tetrahedral symmetries imply conditions on our twists w. We have

ap#0 = wi1p=1 a1#0 = w11 =1
EO¢O:>wQ,O:1 51¢0:>w(,’1:1
a0 = w1,0 = W1,1 azio = Wgq,0 = Wa,l-

In order to solve for these complex variables, we evaluate certain morphisms in
our categories in two ways to obtain equations of these variables. We compute

Ok k0e,0r

+ B B/

k,.Tk L

W1,ew7 4
_ ij gid
=0k, tOk 00— s E AL AL

w1 [a)l

- 4 ij Abd o pid pisd
= 5’@56’“!’ Z AgeAw e Y BB o

W1,0W7T 4
=0k, 01,00 ——=— o 1 ‘ Z AT ART (D) wy W] f,D’ k ik

42

KOk i
2
wl[)a)lfl
_ ’ Jk N3 o+l Jok ik
= |0k, e0k 00— + wi, fw”» g A A (DT oy fw”»D ¢ Di’p
2+5



Note that if £ # ¢’ then the left hand side vanishes, and we can cancel the wl,gw% P
terms. If £ = ¢’ then wl,gw% = L. Ineither case, we can remove the wl,gw%  terms
from the above equation. This leaves us with the equation

T ) T
Z Al AL, + (-1 Z DDy —+(2 - V5)8k.e01 0 = Sk 1 Se,00-

i,j i,j

In a similar fashion, we can evaluate the diagrams

in two ways* to obtain

Ak xik Jk oK _
> AR+ Y DIDIE ~ 2= V5)okbi = St
4 2

L]
DY DY+ (-1 wy pw? DY D =5 S
k7KL 1L,0Wy e koPie = Okk ot
i,J i.j

Do ALE+ (=1 Y DY~ (2= V5)6kr =0

L L
~i _y
Z ALY+ Z(—l)le}i —(2=V5)61.¢ =0.
i i
In terms of our free variables, this gives us the equations:
3 - V5 = al+ad+di+d? = AP vdd+d+d? = Gras+di+d? = @ras+d+d?
(3.27)

1 A
3= as+|ds|? = @+|da)? = di+|da|? = di+|ds|* = d3+|dy|* = d3+|da|?

(3.28)

4When we say we evaluate a diagram in two ways to obtain a relation, one way is trivial,
and the other uses the jellyfish relations from Lemmas 3.4 and 3.16. For the non-self dual
case in §4 below, we use the jellyfish relatiozi from (4.3), (4.5), and Lemma 4.7 instead.



2 - \/_ = (ao+a1)a2 - d0d2 - d] d3 = (50+51)52+d0d3+d1d2 (329)

2- \/g = a0+a2+d0+d3 =ai+a)—dy—dy = a0+52+d0 —dy = a1+52 - d1+d3

(3.30)
0= (wa,o+w3’0)a§+wa,owi,1dﬁ+wi’0wm1d_42

= (W02 VT, (W A4l (3.31)
0= (1 - e 0w}, 1) (drdy — d3)

= dy(di+do) - da(w}, a1 do+wa 0w (d). (3.32)

While we could begin solving these equations directly, instead we opt for a more
measured approach, and use our previous centre analysis to simplify our solution.

Lemma 3.33. There exists a T € {—1, 1} such that

. 2+31t-15
aozalzaO:aI:T

and
2-7-45
—

In particular, as ay, ay, ap, and a; are all non-zero, we have w10 = wW1,] = Wa.0 =

a2=52=d0=—d1=—d2=d3=

Wa,1 =1
Proof. We first observe from Equation (3.28) that

1
2_2_ 0 _ 0D _ 2_ 02 _ 2
a, =a; =dy=d; —dz—d3—§—|a’4| ,
and in particular we have that a,, a3, do, di, da, and ds are real numbers which
are equal up to sign. With this information in hand, we can now see from Equa-

tion (3.27) that
a%=a%=&52=ajz=3—\/§—3d§.

To make additional progress on solving these equations, we recall the operators
¢ and . In our case, via Equation (3.30), we have that

¢ = aop+ap 0 _ 2—\/§—d0—d3 0

1 o0 ar+ax| 0 2-V5+d,+d,
v ao+ar 0 | _[2-V5-dy+d> 0

B 0 21\1+Zl\2 B 0 2—\/§+d1—d3 ’
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From Lemma 3.8, we know that ¢ and ¢ have entries in {3_7\6, iﬁ}, SO

2
3-V5 1-45
2 2 [

do+d3,—dy — da,dy — do, d3 — d; 6{

In particular, as the values dy, d1, d», and d3 are real numbers which are the same
up to sign, we have that

2-V5-1
doz—d1=—d2=d3=T,

for some 7 € {-1, 1}.

From Equations (3.30) we can deduce that ag = a; and ap = a@;. We know that
aj and cq are the same up to sign. If we have a; = —c, then Equation (3.30) would
imply that

apg = 2 — \/g - do.

Plugging this value of a( into Equation (3.27) gives a contradiction. Thus a, = ¢y,
and so Equation (3.30) gives

2437 -5
a0:2—\/§—3d0:+TT\/_.

A similar argument shows that a; = ¢, and thus ag = ao. n

To pin down the value of 7, we return to our analysis of the centre of C,. By
computing the 4th Frobenius-Schur indicator of p in two ways, we can show that
T=1.

Lemma 3.34. We have that T = 1.

Proof. From Lemma 3.25, we have that v4(p) = 37. On the other hand, we can
use Lemma 3.14 to obtain

v4(0)(20 + 8V5) = 48 +20V5 + (2 + V5) Z pi(pi +q)0"
where Y, p;(p; + ¢q;) = 16 and the 6;’s are roots of unity. Thus
Z pi(pi + q,v)O;-L =4(-1-2V5+37V5).

If T = —1, then Theorem A.26 implies that it would take at least 24 roots of unity to
write 4(—=1 — 2V5 + 37V5), and hence Y, p; (p; + q:) > 24, giving a contradiction.
Thus we must have 7 = 1. =
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Now that we know all of our real free variables, we can solve for d4, the one
complex variable.

Lemma 3.35. We have that

gl ] -1+v5
4—7712 7722 3

where ni,m € {—1, 1}.

Proof. From Lemmas 3.33 and 3.34, we have a, = I_T‘B. By Equations (3.28) and
(3.31), we have

1+v5
8

> V5-3

|da|? = and  di+dy = 7

The 4 intersection points of this hyperbola and circle yield the statement of the
lemma. |

Now that we have pinned down all of our variables, we can prove part of our
main theorem which states that there is no fusion category when 4, = 1.

Theorem 3.36. There is no unitary fusion category that categorifies R(2) with
Ao =1L

Proof. By evaluating the diagram

in two ways (see Footnote 4), we obtain the equation
(DN DD L+ plk i —
ij ek ij Yke =Y
i,j i,J
Taking k = ¢ = 0and £ = k’ = 1 we see that 3, ; D’} Dy} = d3 — d} € R. Since

d, € R by Lemma 3.33, this means dﬁ € R, which contradicts Lemma 3.35. n
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3.5.2. The case A, = —1. In the case of 1, = —1 we have determined that

u=1 i=1-i w10 = W1,1

1
Wa,0 = Wa,l X1 = (=D Xa,i = (-1)".

Thus all that remains is to deduce A, the 3rd roots of unity wy ¢ and w0, along
with the free variables A}, A}’,., and D}’,. By studying the 4th Frobenius-Schur
indicator of p, we are able to show that 4, = 1 and we0 = w% 0’ along with the

values of several of our free variables.

Lemma 3.37. We have that A, = 1, and w0 = w% o Further, we have that

qo0_ _3-Y5
0,0~ 2(1 + 0)1’0)

~o0_ 3-V5

and = .
00 2(1+a? )

Proof. Recall the operators ¢ and . By applying the symmetries of Lemma 3.23
we have that

_ A8:8+A}:8 010 e A8:8(1+/lpw1,0) » 0
0 Agi T A 0 Ago(1+pw1,0)
20,0 , 71,0 0.0
g = Ago+ATg "010"11 _ A0 (1 + owap) o 0 '
0 Ag AT 0 Ay o1+ pwa0)

Thus the operators ¢ and i are scalars, and Lemma 3.8 tells us that

2-V5+71 200 2-V5+7

A% = and =
0,0 2(1 + ﬂpwa,o)

0,0~ 2(1 +/1pa)1,0)

for some 7 € {1, 1}.
From Lemma 3.25, we can write the 4th Frobenius-Schur indicator of p as

0,0 0,1 1,0 1,1
va(p) = V5 =2+ 2,07 o(AG + Agy + Ayg+ AL}

2 (700 _ 701 _ 710, 711
—Apw, o(Agy—A Arg+ Ay

0,1
= V5 = 2+ 2,07 gAY ) (2 + 24,01,0) = Apw?, 4 AY0(2 = 24pwa0)
1 -Aw
= \/g -2+ /lpa)io(Z - \/g + T) - pri’O(Z - \/g + T)ﬁpa)a,o
oWa,0
_ 2 2 1= 2pwap
=|-2+ /lpwl,o(Z + T) — /lpwa,O(Z + T)m

1-A,waqo0
2 2 L
+\/§(1 —/lpw1,0+/lpw“”om).
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As v4(p) € Z[i], A, is a second root of unity, and w19 and w4 o are third roots of

unity, we have
1-A,w 0
1= L,w? )+ Apw? g— 2 =
PW1,0 T 4pWa07 + Aywa
This implies that A, = 1, and that w0 = wl‘%). By simplifying the formula for
v4(p) further, we find that v4(p) = 7.
To determine T we use Lemma 3.14 to write

7(20+8V5) = va(p) =48+ 20V5+ (2 +V5) > pi(pi + )6}
where Y pi(pi + q;) = 16, and the 6;’s are roots of unity. If T = —1, then we have
> pipi+ a0} = -4 —1275.

However, Theorem A.26 implies that it takes at least 48 roots of unity to write
—4 - 125, giving a contradiction. Thus 7 = 1, which gives

3-45 q00_ _3-V5

A%0 = and = .
0,0 2
2(1+ wl’o)

0,0 ™ 2(1 + a)l’())

Now that we know A, = 1, the symmetries of Lemma 3.23 become much sim-
pler. Using the same matrix notation as in the 1, = 1 case from (3.26), we can use
these symmetries to express our free variables as

wior 0 0 ar wigr 0 0 a dy 0 0 do
Aol O el ’ 01 = |0 wor r 0 ,_|0 & a o
0 roowper 0 0 rowrer 0 0 d -dy 0
ai 0 0  wior a 0 0 wior d 0 0 —doy
where r = ” iwz 3%@ € R, and if either of a; or a; are non-zero, then we have
1,0 1,0
that wy o = 1.

Now that we have reduced our free variables down to 5 complex variables, all
that remains is to solve for these variables, and to determine the 3rd root of unity
w1,0- As in the 4, = 1 case, we get equations of these variables by evaluating the
diagrams:




in two ways (see Footnote 4). This gives us the equations:

Sk, Oe,0r = Z A; IEA; (=D Z D" kD; b = (2= V5)or. 00k
i

Sk srSe. = ZA;’;A;’;,+(—1>“‘ ZD} DI = (2= V3)dk ke

- i i e+t DivJ
Ok Ot _ZDk Diie+ (=D ZDl wa-ePiliize
1-k 74, .
0= Z( ' A ,lcf lj+( 1 ZD{ lfA;(jf wi o(V5 = 2)idk 1-¢6k 10
l,J

0= ZA”‘+( DI Zsz’;—(z—\/E)ak,f
ZZA;:§+IZ( 1)”10} e - (2-V5)61
i

In terms of our free variables, this gives us the equations:

2
1- Wiy -1
Im(dy) = 4\/52 1,0 42-\/5
1+ a)l 0

(3.38)

3—-v5
r 4+ |do)? = 2\/_, (3.39)
r+la)? +|di)? + |do* = r + @ + |di* + |da)* = 1, (3.40)

1

|d1|* = |do|* = 5= |do!?, (3.41)
(@10 + w2 = (d2+dy) =2 -5, (3.42)
ra; =d\d> (3.43)
ra, = —d,d» (3.44)
doai +ayd = diar +aydy =0 (3.45)

w?
1

Remark 3.46. From Equation (3.38) we see that ;’ = 1/2, which implies that
w3 0

w1 = 1.
It is now straightforward to solve the above system of equations.

Lemma 3.47. A general solution to Equations (3.38) — (3.45) is given by:
. 3-+5

apg=ap = 4

a=0G : Va)didy @ =-(3+V5)dida



-1+V5 1 .1-+5

d0=——+i

2 _ 2 _
ldi|= = |d>|" = A 3 2

With this lemma in hand, we can show the existence and uniqueness of the
unitary fusion category with fusion ring R(2).

Theorem 3.48. There exists a unique fusion category categorifying the ring R(2)
with 1o = —1. This unitary fusion category can be realised as the even part of the
2D?2 subfactor.

Proof. Note that from Lemma 3.12, we are free to re-scale our basis elements of

C(p®p — p)and C2(p ® p — ap) by

S

where z1,zo € U(1). This re-scaling changes the phase of our free variables d;
and dp by z; 272 and zq 2752 respectively. Thus we can arrange so that

dy = dy =i%w/% (—1 +\/§).

Hence, up to choice of our basis elements, we have a unique solution of all free
parameters determining our category. Thus Proposition 3.21 gives that we have at
most one unitary fusion category with fusion ring R(2), and 1, = —1.

We know that the even part of the 2D?2 subfactor is a unitary fusion category
with fusion ring R(2); hence this must be the unique example. ]

Let us write C; for the categorification of R(2) we have classified in this sec-
tion.

Remark 3.49. We wish to point out the above solutions to our free variables can
be used to construct a system of dualizable endomorphisms of the Cuntz algebra
Os < Z/27Z. This gives an independent construction of the category C,.

3Z/4Z

To finish up, we connect C, to the even part of the category.

Corollary 3.50. There is a monoidal Z./2Z action on Cy, such that equivariantisa-
tion by this action gives the 3%/*% category of [26,51].
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Proof. Using the same gauge choice as in the previous Theorem, we can define an
order two monoidal equivalence on C, by

o ]

By equivariantising by this order two monoidal auto-equivalence we obtain a unit-
ary fusion category generated by the four morphisms

e M R

and the isomorphism
ﬂﬂ ca® 51,

3Z/4Z

This is the presentation of the category from [26]. ]

4. The non-self-dual case

In this section we focus on the unitary categorification of the fusion rings with four
simple objects 1, @, p, ap and fusion rules

a®a =1 POp=a®mp®map. (S(m))

Let us write S(m) for such a fusion ring. By [30] we know that S(m) has a cat-
egorification only if m =0, 1, 2.
Our main result of this section is as follows.

Theorem 4.1. Let D, be a unitary fusion category with Ko(C) = S(m). Then
either

* m =0, in which case Dy is equivalent to one of the four monoidally distinct
categories Hilb(Z/4Z, w) where w € H>(Z/4Z,C*), or

* m =1, in which case D is equivalent to the monoidally distinct even parts of
the two complex conjugate subfactors with principal graphs S’ from [26,34].

In particular the case m = 2 from [30, Thm. 1.1(6)] is not categorifiable.

Proof. The m = 0 case is easily seen to be pointed, and hence the claim of the
above theorem follows from [10, Remark 4.10.4]. Thus it suffices to restrict our

attention to the cases of m = 1 and m = 2.
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The general outline of this section follows for the most part as in the self-dual

case. In §4.1, We begin by writing down a list of numerical data (essentially the

6j symbols of the category) which fully describe a unitary fusion category with

fusion ring S(m). In §4.2, by studying the Drinfeld centre via the tube algebra of

the category, we are able to deduce the precise values of some of this numerical

data. To reduce the complexity of our numerical data, in §4.3, we use tetrahedral

symmetries to essentially cut down the number of free variables in our numerical
data by a factor of 24. Finally, in §4.4, we solve for this numerical data by evaluating
various morphisms in our categories in multiple ways to obtain equations.

In the case m = 1, we reduce our numerical data to two possible solutions,

which shows there are at most two distinct unitary fusion categories categorifying

S(1). From the subfactor classification literature [26, 34] we know that two such

categories exist. We then show there are no solutions to the numerical data in the

case m = 2, and hence there are no such unitary fusion categories. ]

4.1. Numerical data

We now produce a set of numerical data which completely describes a categori-

fication of the ring S(m). Let us write D, for such a unitary fusion category. We

will show that the category D,, can be described by the following data:

. Sl
an 8th root of unity v = e*' 71,
m choices of signs y; € {-1, 1},
. . il il
m choices of 3rd roots of unity w; € {1, ¢*73, %75}, and
4 L] piJ b pi 36 phl AL) iy
8m™ complex scalars Ak,f’ Bk,[, Ck’[, Dk’f, Ak,t” Bk’g, Ck,f’ Dk,é’ eCfor0 <
i, j,k,¢ < m. These complex scalars are the entries of the F-tensors F5**

P00
and F,

While the 128 complex scalars in the m = 2 case seems infeasible to deal with as is,
we will use tetrahedral symmetries later on to reduce this 128 to a more workable
number.

To simplify notation, we define d := dim(), which is the largest solution to

d>=1+2md. Ifm=1 thend:1+\/§,andifm:2thend:2+\/§.Wepick
orthonormal bases for the hom spaces

a P a P

fiﬁ EDn(p®p — ), }& EDm(p®p —p), :Xi €Dp(p®p — ap)

p P p P p P
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where 0 < i < m so we have the local relations

e P

We also choose unitary isomorphisms

[e4 P

@
Ie@m(aeﬁ) and >< €EDu(pRa — a®p).

P a

We normalise this last morphism so that

@ p @ P
P @ P @

We are still free to rescale the crossing up to sign.
Note that as pointed out in the proof of [30, Theorem 5.8], we may assume
that @ has second Frobenius-Schur indicator —1, so

2 >+ 2l
I
|

R >~ 1l

Let u be the scalar defined by

[ 1 45
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Note that from our normalisation we have that > = —1.

Lemma 4.4. Without loss of generality, we have the relation
v
= —% where v = exp(xmi/4) .

Proof. First, by our normalizations for orthonormal bases of hom spaces, we observe
that

59

we find that v> = u. By re-scaling the crossing by a sign, we may assume that

E/4)

v=e 4. ]

1l
ISHIRS
*}7

In order to define natural orthornormal bases for the spaces D,,(p ® p — p)
and D,,(p ® p — ap) we define the operators




L(A -l La(><)=va |

on these spaces. Direct computation shows that these operators satisfy the follow-
ing relations:

Klok!'=1 Ko K¥=-1
R¥oR!' =y RloRY =y}
LYo L' =y k! L'oL? =y K@
K% o R = (R o KV) K¥o L' = u(L' o K1)
(R”o L) = -1 (R'o L) = ukK©.

As a consequence of these relations, we can diagonalise the action of the operator

K1, and set

)
to obtain that there exist scalars y; € {—1, 1} and w; € {1, €273, €73} such that
()4

In particular, this gives us the local relations

P a P
AR = o
p P P P

Remark 4.6. Note we are free to change our basis of D,,,(p ® p — p) by a unitary
which commutes with the operator K. In particular, if m = 2 and yo = x1, then we
are free to pick any other orthonormal basis of D,,,(p ® p — p), and if o # x1
then we can only re-scale each basis Ve%tgr by an element of U(1).

Kl

Rl

Ll

><



With this special choice of bases, we can determine the following local rela-
tions in D,,,.

Lemma 4.7. There are scalars
i,j i,j i,j iL,j Ai.J pi.j AL RiJ -
Ak,f,Bk,f,Ck’{,,Dk’f,Ak’{,,Bk’[,Ck,f,Dk’[ eC 0<i,j,k,{<m

such that the following local relations hold in D,y,:

PP P
P
4
PP P
a P
¢
PP P

Proof. The proof is omitted as it is nearly identical to the proof of Lemma 3.16. m

Remark 4.8. As in the self-dual case described in Remark 3.18, the above com-
plex scalars are precisely entries of certain F-tensors of D,,.

With these local relations, we can show that our described numerical data fully
determines the category D,.
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Proposition 4.9. There is at most one unitary fusion category Dy, realising each
tuple of data
(v,x,w,A,B,C,D,A,B,C,D).

Proof. We omit the proof which is nearly identical to the proof of Proposition 3.21
replacing (3.2) with (4.2), the jellyfish relations from Lemmas 3.4 and 3.16 with
those from (4.5), (4.3), and Lemma 4.7, and using absorption relations similar to
Lemma 3.20. |

4.2. Centre Analysis

As in the self-dual case, we study the centre of D, in order to determine informa-
tion about our free variables. We restrict our attention to the case of m = 2, as this is
the most difficult case, and we need as much information about our numerical data
as possible in order to make progress on the classification. While we could repeat
the analysis for m = 1, this is unnecessary as in this case the lack of multiplicity
makes it easy to solve for our numerical data.

Our main result of this section is as follows.

Lemma 4.10. If m =2 and yo = x1, then
io_(2+) -5 i 2-10)- il i.0
ZA"’O_T’ ZAM T, and ZA ZA =0.
~ Inthe case of x1 = xo, knowing the above information about the free variables
A;(’l will be the key starting point in showing non-existence of the category D,
later on in this paper.

To show this result we study the tube algebra of D;. As in the self-dual case,
we only study a small sub-algebra. We choose the following bases:

A1-1 = span O @ @ ‘

A1—>p=span @ @ ' '
Aa_)azspan é’ @7 é’ /@
5




By direct computation we obtain that:

(1) The irreducible representations of Aj_,; are:

°© © ©
xol1 1 2+v5 2445
xil1 1 2-45 2-+5
|1 -1 i i
X3 1 -1 —i i

Hence 7 (1) contains 4 simple objects X; with dimensions
dim(Xo)=1, dim(X;)=9+4V5, and dim(X>)=dim(X3)=5+2V5.

(2) The irreducible representations of A, are:

RO

a(1+ip)+\2a2 (1+ip) +4iu ia(1+i;4)+\/2a2(]+i,u)+4i,u

T | 1 i B -

. 1 3 a(lfiy)+\/2;2(17iy)74iu 3 a(lfiy)+\/2;2(lfiu) —dip

- 1 i a(1+i,u)—\/2§12(l+ip)+4i/1 ia(l+i,u)—\/22az(l+i/1)+4i/1
a(l-ip)—v2a?(1-ip)—4ip ca(l-ip)—v2a?(1-ip)—4ip

3| 1 > —-i 5

where a := yo + x1 € {0, £2}. Hence 7 (@) contains 4 simple objects ¥;
with dimensions

20 +8V5
12
241 (a(l +igg) + 2021+ ip) +4ig

and

20+ 85
1 . . —?
2+5 |a(1 —ip) £ y2a2(1 —ip) - 41,u|

(3) Let 17, be the action of A1, on A1_,,. Then

0010

00 01 / !
(@) 0 s @) 4w w2

0100
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where ¢ and ¢’ are the operators on Hom(p ® p — p) defined by

{45 -k

which we can naturally identify as operators on the two spaces:

o6l = |{e))

by local insertion. That is, the elements of Aj.; which involve ¢, ¢’ above
acton A, by applying ¢, ¢” locally on the trivalent vertices in our stand-
ard basis of Aj,.

With these computations in hand, we either pin down the scalars y( and y, or
determine the operator ¢.

Proof of Lemma 4.10. Recall we have three possibilities fora € {-2,0,2}.Ifa =0,
then we have y¢ = —y;. Thus we can restrict our attention to the case of a = +2.

We begin by determining the decomposition of 7, into irreducible repres-
entations of Aj_1. As Xj is the tensor unit of Z(9D,,), its restriction contains no
copies of p, and thus 17, contains no copies of xo. We also know that Tr(y7,) = 0,
and so from the character table of A;_,; above, we must have that

1T = 2x1 @ kx2 ® (2-k)x3

with k € {0, 1, 2}. In particular, we find that

Tr(lirp (@)) =4-2V5+2i(k-1) =  Tr(¢)=2-V5+i(k-1).

To determine k we study the restriction of the objects X; and Y;. By the above
decomposition of 177, and from counting dimensions we have

F(Xo) =1 59



F (X)) =182p @ 2ap
F(X)=10kpo (2-k)ap
F(X3) =10 R2-k)p @ kap.

By our assumption that a = +2, one of the objects ¥; must be invertible. Thus we
can label our Y; so that

FYy) =«

F (Y1) =a®2p®2ap
FM)=a® 2-k)p®kap
FY3)=adkpd (2-k)ap.

Hence we now know the restriction of all the objects in both 7 (1) and 7 (), up
to the integer k. Denote by Z; the remaining simple objects in Z (D), i.e. those
simple objects such that

F(Z:) = pip ® qiap
where p;, g; are positive integers. This allows us to write
T(p) =2X1 +kXo+ (2= k) X3 +2Y1 + (2 = k)Ys + kY3 + Z piZi
I(ap) =2X1+ (2= k) X2+ kX3 +2V) +kV2+ 2= k)3 + > qiZ:.
Therefore
20 = dimHom(Z (p), T (p)) = 4k* — 8k + 16 + Z p?
20 = dim Hom(Z (ap), I (ap)) = 4k> = 8k + 16+ »_ g
16 = dimHom(Z (p), I (ap)) = —4k> + 8k + 8 + Z Pigi.

If k € {0,2} then we get

ZP?:ZC]’Z:“ andZPi%‘:&

which is impossible. Thus we must have k£ = 1, and so Tr(¢) = 2 — V5. From

17Tp(dim;(z))(0+@+(2+\/§)@+(2+\/§))):0

w[©) - [©) > ((0) 2 m{0))
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we find that ¢ has the two distinct eigenvalues
(2+i) -5 2-i)-5
—— and ——X.
2 2
Finally, by Remark 4.6, we are free to unitarily change our basis of D, (p ® p —

p) by any element of U(2). In particular we can choose this basis so that ¢ acts
diagonally. This gives the statement of the lemma. |

4.3. Symmetries

We now use the tetrahedral symmetries to determine relations between the 128
complex scalers:
i,J i,J i, i,J o) nisJ A~ nisJ
Ale Bl Sl Do Ade By Clp and Dy
Using the same techniques as in the self-dual case we are able to show the follow-
ing.
iJ i i A R .
Lemma 4.11. Tﬁe scalars Bk’t,, Dk’{,, Ak,t” Ck’[,, Dk’{, can be expressed in terms
L.
of the scalars Ak’([, as:

Li _ _ 2 pk.i Lj _ _ -1 J.k
By = —vxewpAL, Dy =-v weA],
Abd _ 3, 2400 AL _ i,k N _ pkd
Ak,z =-v a)gAk,é, Ck,€ = nggA].’[ Dk,z = Al.’[ .

The scalars B}, can be expressed in terms of the scalars C,, as:

The scalars AZ’Q satisfy Z[4Z symmetries generated by the relations

ijo_ o2 2kl ) 2 2 i
Ak,[ = V)(la)]wkw{,Aj’i —)(l)(kw,wgwja)kA{,’k.

The scalars C;{J[ satisfy S3 symmetries generated by the order three rotation

Ci -J

- Jik _ 2k,
ke = weCip = wiC;

i
Jt
and the order two flip

ijo_ 2 k.l
Ck,f = XjiXkW; U)kCl-,j .

Finally we have that if xyo = —x1, then

Aljf :C]’:’f(; ifi+jgk+¢=0 (mod?2).



Proof. The proof of this lemma uses the exact same techniques as in the proof of
Lemma 3.23. The only real difference is we have different Frobenius operators in
this case. ]

4.4. Classification

We now complete the proof of Theorem 4.1 to complete the classification in the
non self-dual case. To prove this theorem, we break into three cases: (1) m =1, (2)
m=2and yo = —x1,and 3) m =2 and yg = xi.

The case m = 1. If m = 1 then from our previous analysis we only have to determ-
ine the sign yo, the 3rd root of unity wy, the 8th root of unity v, and the two complex
8:8 and ¢ := Cg:g . Further, we have that if wg # 1, then ¢ = 0.
By evaluating the diagrams

scalars a := A

’ , and

k k'

in two ways (see Footnote 4) we obtain the equations:
1 %
1+v2 1+v2

With the first two of these equations we can solve to find

la> +|c|> =1 20al*=1-

= a(yowo —v).

1 1
la?=1-— and |c]® = —,

V2 V2

and thus we have wg = 1. The general solution to these equations is then given by
v

= m(—l + \/E) and c¢ = ei92%

Xxo=1, a
where 6 is any phase.

Lemma 4.12. There are exactly two unitary fusion categories, up to monoidal
equivalence, which categorify S(1).

Proof. By unitarily renormalising the basis element

;&I—)Z‘;X: zeU(1),
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we change ¢ to z2c. We can thus renormalise so that ¢ = 27 . Hence we have
two solutions for our free variables, depending on the choice of v = ety By
Proposition 4.9, there are at most 2 unitary fusion categories with these fusion
rules. These two unitary fusion categories are realised by the even parts of the two
subfactors S’ constructed in [34], which are monoidally non-equivalent and com-
plex conjugate to each other. Indeed, they each admit a Z/2Z-equivariantization,
which produces monoidally non-equivalent 22421 near-group fusion categories
which are complex conjugate [35, Ex. 2.2], [25, Ex. 9.5]. [

Thecasem =2and yo=—x1 =1. If m =2 and y¢p = —x; = 1, then we have to
determine the 3rd roots of unity w;, the 8th root of unity v, and the free complex
variables A;{’l and Cll{; We can represent these free complex variables in the same
matrix notation as in (3.26) in the self-dual section. After applying the symmetries
of Lemma 4.11, we obtain:

ap 0 0 0 co 0 0 O
—vinlaT

A= 0 a21_ vwga; 0 C= 0O 0 0 O

0 vwia aj 0 0O 0 0 O

0 0 0 a 0 0 0 ¢

Due to the large number of variables which are zero, it is fairly easy to derive a
contradiction in this case.

Lemma 4.13. There is no unitary fusion category that categorifies S(2) with yo =
—X1= L.

Proof. By evaluating

in two ways (see Footnote 4), we obtain the equation

Xg)({/w%a)[r Z Af’}Af’gl, + wga)%, Z Al{[ Al{[, - (2 - \/g)éf,kégf,k/ = 5[,@5](,](/.
i,j i,J

Taking k =k’ =0and £ = ¢’ = 1 gives |a;|*> = %, andtaking k =k’ =€ =1" =0 gives

2lag|? +2|a;|* =3 — V5. These two equations imply 2|ag|? < 0, a contradiction. m
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The case m =2 and Y = 1. Finally we deal with the last case where m =2 and
X0 = x1. Let us again represent our free variables A ’J and C; ’] in matrix form as
in (3.26). After applying the symmetries of Lemma 4.1 1, we obtaln:

ag ap wow%al a
A= _VXOMEE as - —V/\,/owga_3 2614
—VXowpdl  —VXowids as Wy a4
—VXowow1az —V)(oa)%a_4 —V)(ow%a_4 as
co C1 woC1 c2
C= cl w%cz wéw%cz w%q
B wgcl w1c) w%cz c3
CL)()CL)%CZ wi1C3 C3 Cy4

Recall from Lemma 4.10 that in this case we have

ZALO (2+l;—\/_’ ZA” (2—1)— . and ZA” ZA
which implies

2+i) -5 2-i)-+5

ap+az= 5 , asz+as= 5 , and a1=—a4=—wgw1a4.

With these linear equations in hand, it is straightforward to show non-existence
in this case.

Theorem 4.14. There is no unitary fusion category that categorifies S(2) with
X0 = X1-

Proof. Evaluating the diagram

in two ways (see Footnote 4) gives

Z Ai’lg + V3X[a)[ Z Ai; - 6f,k(2 - \/g) =0.
i i

4

In terms of our free variables this gives

2-V5= ap+as + 2v3)(0w0%%+ 2a3



=i- 2v3X0w0 (2VX06L)(2)61_3+ 2a3+ (-2 —1i) + \/5)
2— \/5 =as+az+ 2v3)(0w1a5 +2a3

= —i— 2" yow (ZVXOM%E+ 2a3+ (-2 +10) + \/5) .

This system of equations of the complex variable a3 does not hold for any values
2in 4in
4z dx

of our free variables yo € {-1,1},v € {e%,e#},andwo,wl e{l,e3,e3} =

A. A multiplicity bound for Z/27Z-quadratic categories

Ryan Johnson, Siu-Hung Ng, David Penneys, Jolie Roat, Matthew Titsworth, and Henry Tucker

In this appendix, we prove Theorem 2.4. That is, given a pseudounitary Z/27Z
quadratic fusion category with simple objects 1, @, p, p with p self-dual and
fusion rules determined by

a® =1 and p2 = 1®mp ®nap, (Q3)

IR

(m, n) must be one of (0,0), (0, 1), (1,0), (1, 1),(2,2).

A.1. Basic number theoretic constraints

Given a Z/2Z-quadratic category C with fusion rules (Q3), the fusion matrices

are given in the ordering 1, p, ap, a by

,and L, =

Setting d := dim(p), we have dim(a) = 1 and d*> = 1 + (m + n)d, so that

d:%(m+n+\/4+(m+n)2). (A1)

Then

. (m+n)?+2(m+n)Vad+ (m+n)?+4+ (m+n)?

dim(C) =2 +2d> =2 5

=4+2(m+n)d.
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Since K((C) is abelian of dimension 4, its irreducible representations are all 1-
dimensional. Hence by [48, Rem. 2.11], the element

4 2m 2n 0
2m 2n*+2m?+4 4mn 2n
Ri=I+L+L7, +L, =
ap @ 2n dmn 2n*+2m?+4 2m
0 2n 2m 4

is central in Ko(C), and the roots of its characteristic polynomial are called the
formal codegrees [47] of C:

fi=4+(m+n)?*+m+n)V4+ (m+n)?
fr=4+m+n)?—(m+n)V4+(m+n)?
fi=4+(m—n)+(m—n)V4+ (m —n)?

fa=4+(m—n)?>—(m-n)V4+ (m—-n)2.

A.2. Computing the induction and forgetful functor

We now assume C is pseudounitary and we analyze the center Z(C), the forgetful
functor ¥ : Z(C) — C, and the induction functor 7 : C — Z(C). Recall that

F(I(c)) = @ X®c®x” YceC (A.2)
xelrr(C)

and that # is biadjoint to 7. We use the notation (a, b) := dim(C(a — b)) and
(A, B) :=dim(Z(C)(A — B)).

Lemma A.3[48, Theorem 2.13]. There are distinct simple objects 1 7(¢), X2, X3, X4 €
Irr(Z(QC)) such that

(1) =120 8 X ® X3 X4 and dim(Xk)z%_
k

|4+ (m+n)?
=TT

it is straightforward to calculate that

Setting

dim(Xz)—?—fflf =1+ (m+ )d—dimz(c)

h_Nhifs o
dim(X3) = f3 f3f4 = 16-2 2(m+n)d (m n)d

-1



dim(xy) =1L = By %(m+n)d+ %(m —n)d.

i fifa
Remark A.4. Since dim(X>),dim(X3),dim(Xy) € Z(d), it must be the case that
either m =norr € Q(d). If m =0 or n = 0, then r = 1. One may check that if
0#m#n+0andr € Q(d), then m +n > 11. We will show below in Theorem
A29 thatm+n < 5.

Proposition A.5. The center Z(C) has 8 distinct simple objects 17(c), X2, X3, X4,Y1,Y2,Y3,Y4
such that

[(lc)=1z(c)®X2®X3®X4 and [(CZ)=Y1®Y2®Y3@Y4.

Denote the rest of the simple objects of Z(C) by {Zs}ses where S is some finite
set. The matrix F of the forgetful functor ¥ : Z(C) — C can then be represented
as follows, where zero entries are omitted:

lzey X2 X5 Xa |1 Y2 Y3 Yi|Z
el 1 1 1 1

F= «a 1 1 1 1
P X2 X3 X4 | Y1 Y2 Y3 Y4 | s
ap X X3 %Y Yy Y3 N5

and the induction matrix is given by FT. Moreover,

4 4
ij =2m and Zx; = 2n, (A.6)
= =

Xp+ Xy =m+n, (A7)

1
X3 +x§:§(m+n)—%(m—n), and (A.8)
1
x4+x:t=§(m+n)+g(m—n). (A.9)
4 4
Zyj =2n and Zy3 =2m. (A.10)
Jj=1 Jj=1

Proof. First, 17(¢) decomposes as desired by Lemma A.3. Next, observe that by
(A.2),
I (),I(a) =4 and (FI(lg),a)=0.

Since the first Frobenius-Schur indicator v; satisfies Trz(¢) (67 (a)) =0[43,Rem. 4.6]
(see also [48, Thm. 2.4]), 7 (@) decomposes as 4 distinct simples which are dis-
tinct from 17(¢), X3, X3, X4. Equations é7A.6) and (A.10) follow from calculating



FI(1c)and FI (a). Equations (A.7), (A.8), and (A.9) now follow from the for-
mulas for dim(Xy) for k = 2,3, 4. [

We now compute the dimensions of all the hom spaces amongst 7 (p) and
I (ap) in two ways. The first way is by taking adjoints, and using (A.2). The second
way is by using the induction matrix F7 computed in Proposition A.5. This gives

to see
4 4
(I(p),f(p)):4+2m2+2n2 Zx +Zy§+2zf (A.11)
Jj=2 Jj=1 s
4 4
(I(p),]'(a'p)):4mn:ijx +Z:y]yj+Z:ZgZ3 (A.12)
J=2 J=

4

(I(ap),I(ap)) =4+2m*+2n* = Z(x )2+ Z(y])2 + Z(z )2 (A.13)

Lemma A.14. The non-negative integers x, x}, Vi, y;., Zs» 2y Satisfy

5 2 r? 2 _ 3 "2 "2
8+§(m+n) —;(m—n) —]Zl(yj+yj) +Z(ZS+ZS) (A.15)

4 4
8+4(m—n)? = Z(xj -xi)+ Z(yj - )" Z(zs - Z)%
Jj=2 j=1 N
(A.16)

Proof. To get the first equation, sum Equations (A.11) and (A.13) and twice Equa-
tion (A.12). Then use Equations (A.7), (A.8), and (A.9) and simplify. The second
is similar. ]

Proposition A.17. We have the following upper bound:

3
D+ < 8+ (m+n)’. (A.18)
s
Proof. By Equation (A.15), the desired inequality is implied by
4 1[& 2 2
N2 ’ 2 2 2
]Z:;(yj+yj) > 1 ]Zz;yj +y; | =(m+n)” = (m+n) —E(m—n) ,

which is true. The second equality above holds by Equation (A.10), and the first
inequality above follows from the fact that for any real numbers w, x, y, z, we have

4w +y?+2) —(wx+y+2)? = 68



(w—x)>+(w=y)*+(w=2)*+(x—y)+(x—2)*+(y—2)* > 0.
The proof is complete. |

Proposition A.19. Denote the twists of Y1,...,Ys by 04, ..., 04. We have 9% =
9% = 9% = Oi = 1. Setting 0 = 01, without loss of generality, we have 0 € {1,i}.

Proof. We calculate the following Frobenius-Schur indicators [43] of a:

4
0 =Trz(c)(0r(m) = ), 0;dim(¥)) (A.20)
j=1
4
+dim(C) = Trz(c) (05(,) = Y, 63 dim(¥;). (A21)
j=1

Since dim(J (a)) = dim(C) = j’:l dim(Y%), Equation (A.21) implies that 9% =
9% = 9% = 9‘2‘ = +1. By Equation (A.20), the 6;’s split up into two nonempty groups
of opposite sign, so without loss of generality, 6; € {1, i}. ]

Definition A.22. For j =2,...,4, welete; € {—1,+1} such that €;6 = 6; where
0 = 0, is the twist of Y. We also set y := %(m +n)+5andy = %(m +n) - 5.
Notice that y +¥ = m + n and that y2 + y* = %(m +n) + %(m - n)2.

Proposition A.23. We have the following equalities:

3 2
- Z O (z5+2.)%d = E(m+n)2d+%(m - n)2d+2(m+n)
A

4
+0

€ (yj+y;) (1+(y+y})d) (A.24)
J=1

3 2
N ACTAE A+§(m+n)2d+%(m — n)2d+2(m+n)

4
+07 > (34 (1+(y+y))d) (A.25)

j=1

where A := £(Trz(c) (Q%r(p)) + Trz(c)(é?i.(ap))) € {0,£2dim(C) = (8 +4(m +
n)d)}.

Proof. To get Equation (A.24), we add the following two equations for the first

Frobenius-Schur indicators [43] of 7 (p) and 7 (@p), and we use Equations (A.7),
(A.8), (A.9) in conjunction with Definition A.22.
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4
= x2(1+ (m+n)d) +x3(1+yd) +xa(1+7d) +6 ) €53, (1+ (y; +Y))d)

j=1
+ Z 052 (Zs + Z;)d
0 ="Trz(c)(01(gp))
4
= x5(1+ (m+n)d) +x5(1+yd) + x,(1+7d) +6 > €59, (1+ (y; +Y))d)
j=1

+ Z 0575 (zs + 25)d.
N

Obtaining equation (A.25) is similar using the second Frobenius-Schur indicators
[43] of p and ap:

+dim(C) = Trz(¢) (93—@))
4
= xa(1+(m+n)d)+x3 (1+yd)+xs (147d)+67 Y 3 (1+(y+y})d)

Jj=1

+ Z 02z,(z5+25)d
S
+dim(C) = Trz(¢) (93-(0;»)
4
= ) (1+(m+n)d)+x5 (1+yd)+x, (147 d)+6* Z Vi (1+(y+y7;)d)
j=1

+ ) 022 (2+2))d.
Ay

Adding the above equations, applying (A.7), (A.8), (A.9) and Definition A.22, and
rearranging gives the result. |

Theorem A.26 [30, Prop. 5.6 and Thm. 5.7]. Suppose u,v € Z andt € N is square
free.

(1) It requires at least |u| + 2|v| roots of unity to write u + v\N2 as a sum of
roots of unity.

(2) It requires at least |v|@(2t) roots of unity to write u + v\t as a sum of roots
of unity.
Corollary A.27. Suppose u € Q, v € Z, and t € N is square free.

(1) It requires at least |u| + 2|v| roots of unity to write u + v\N?2 as a sum of

roots of unity. 70



(2) It requires at least |v|@(2t) roots of unity to write u + v\t as a sum of roots

of unity.

Proof. Suppose Zl’.\:’ 1Ci=u+ vV2. Write u = p/q in lowest terms with ¢ > 0 so that
qZévzl Ly = p + quV2. By Theorem A.26(1), gN > |p| +2q|v], so N > |u| +2|v].

Now suppose Zf\il ;i = u + vVt. Again write u = p/q in lowest terms with
g > 0 so that ¢ ZSNZI ls = p + quVt. By Theorem A.26(2), gN > g|v|¢(2t), so
N = |v|p(2t). [

Lemma A.28. Forallt e Nwitht #1,2,3,6, ¢(2) > ,/%.

Proof. By [28], forallt € N, ¢(2¢) > 2 (%)2/ ? Tt is straightforward to show that
fort > 42,2 (%)2/3 > /16t /5. One verifies directly that fort =4,5and 7 < t < 42,
¢(2t) = +/16¢/5. The result follows. u

Theorem A.29. I[fthere is a pseudounitary fusion category C with the fusion rules
(Q3), then (m +n) < 5.

Proof. We consider the two cases for 6 € {1, i} afforded by Proposition A.19.

(1) Suppose 8 = i. We add Equation (A.24) to its complex conjugate, divide
by d, and simplify to obtain

- Z(GS +0,)(zs + Z;)2 =(m+n)’+r2(m—=n)+2(m+n)V4+ (m+n)2.
) (A.30)

+ Case 1: Suppose (m +n)> +4 = 20% for some integer vy > 0. Then by
Corollary A.27(1) with v = 2(m + n)uvy, it requires at least

(m+n)>+r>(m—n)>+4(m +n) Mz(l+i)(m+n)2
N "2 V2
———

=09

=2v

roots of unity to write the right hand side of Equation (A.30). Together
with Inequality (A.18), we see

16 +3(m +n)* > 2ZS:(zs +20)2 > (1 + %) (m +n)?,

which implies m +n < 4.
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o Case2: If 4 + (m + n)*> # 20°, then we can write 4 + (m + n)? = v*t
where v, ¢ are integers with v > 0 and ¢ > 2 is square free. Then by
Corollary A.27(2), it requires at least 2(m + n)vp(2t) roots of unity
to write the right hand side of Equation (A.30). Since 4 + (m +n)* =
+1 mod 3, we know 4 + (m +n)? ¢ {1,2,3,6}. By Lemma A .28,

16v%t 4 2
P20 > 5” — vp(20) > 4,/#.

Now by inequality (A.18), we see

16 +3(m +n)> > 2 Z(ZS +20)% > 2(m + n)ve(21)
S

> 8(m +n)4| w,

which implies m +n < 4.

(2) Suppose 8 = 1. Then dividing Equation (A.25) by d and simplifying, we
get

. A+4(m+n) 3 2 4 )
_Zeg(zs+zs)2:T+§(m+n)2+E(m—n)2+Z(yj+yj)2
s j=1

(A3D)

There are now 2 cases depending on the value of A.

* Case 1: Suppose A = 0. Then Equation (A.31) becomes

—Z@%(zs +20)% =2(a+b)V4+ (m+n)? - %(m +n)?

2 4
r 2 2
+ 5 (m=n) +;(yj+yj) . (A.32)

e Case 2: Suppose A = +2dim(C) = +(8 + 4(m + n)d). Then equation
(A.31) becomes

—Zaf(zs +2)2=2m+n+2)V4+(m+n)?—2(m+n+2)(a+b)

3 r? 2 ,
i4(m+l’l)+E(m+n)2+3(m—n)2+2(yj +¥7)?.

J=1

7 (A.33)



In either of the above cases, arguing as in (1) where 6 = i, we see that it
takes at least

min{8<m +n- 2)@,4@1 +n- 2)\/4+<";j}

> %(m+n)(m+n—2)

roots of unity to write the right hand sides of Equations (A.32) and (A.33).
Now by inequality (A.18), we see

8+ = (m+n)2 > Z(Z° +zs)2 —(m+n)(m+n—2)

\/_

which implies m +n < 5. ]
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