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Classification of Z/2Z-quadratic unitary fusion categories

Cain Edie-Michell, Masaki Izumi, and Dave Penneys

Abstract. A unitary fusion category is called Z/2Z-quadratic if it has a Z/2Z group of
invertible objects and one other orbit of simple objects under the action of this group. We give
a complete classification of Z/2Z-quadratic unitary fusion categories. The main tools for
this classification are skein theory, a generalization of Ostrik’s results on formal codegrees
to analyze the induction of the group elements to the center, and a computation similar to
Larson’s rank-finiteness bound for Z/3Z-near group pseudounitary fusion categories. This
last computation is contained in an appendix coauthored with attendees from the 2014 AMS
MRC on Mathematics of Quantum Phases of Matter and Quantum Information.

1. Introduction

In the past several decades, unitary fusion categories (UFCs) have seen broad
applications to many areas of mathematics and physics, including representation
theory, operator algebras, topological quantum field theory (TQFT), theoretical
condensed matter, and quantum information. Given the complete list of 6j-symbols
for a UFC, one can build unitary TQFTs which compute quantum invariants of
links and 3-manifolds [4, 15], together with physical lattice models which realize
these TQFTs [31,32]. These computations are increasingly difficult in the presence
of multiplicity, i.e., where there is a fusion channel with a dimension greater than
1, a.k.a. a fusion coefficient which is larger than 1.

While many classification techniques work well for multiplicity free fusion
categories, more techniques are required to achieve classification in the multipli-
city setting. We note that at the time of writing UFCs have only been classified up
to rank 3 [48,49]. For rank 4 fusion categories with a dual pair of simple objects,
there is a classification of possible fusion rings in the pseudounitary setting [30];
our Theorem A (and Corollary B) below completes the classification of rank 4
UFCs with a dual pair of simples. The case of rank 4 with 4 self-dual objects still
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seems out of reach at this time. Multiplicity free fusion rings up to rank 6 admitting
unitary categorifications have been classified [36].

Surprisingly, all currently known fusion categories fit into four families: (1)
those related to1 groups, (2) those related to quantum groups at roots of unity
[1, 2, 18, 52, 54–56], (3) the Haagerup-Izumi quadratic categories [3, 12, 13, 20,
24–26,53], and (4) the Extended Haagerup fusion categories [6,19]. Given a finite
group𝐺, a𝐺-quadratic fusion category is a fusion categoryCwith a finite group𝐺
of simple objects and one other𝐺-orbit {𝑔𝜌}𝑔∈𝐺 of simple objects. (The collection
of all 𝐺-quadratic fusion categories over all finite groups 𝐺 is exactly the family
(3) above.) The term ‘quadratic’ comes from the existence of a quadratic relation
for the self-fusion of an object 𝜌 which generates the other 𝐺-orbit. For a family
of fusion rings with a fixed rank, we say the family has rank-finiteness if only
finitely many of these rings admit a categorification. Surprisingly, for a fixed group
𝐺 beyond the trivial group, rank-finiteness is not known for 𝐺-quadratic fusion
categories (for the trivial group, see [49]). The case 𝐺 = Z/2Z is classified in
the pivotal setting in [48], and rank-finiteness for 𝐺 = Z/3Z is achieved in the
pseudounitary setting in [30].

In this article, we give a complete classification of Z/2Z-quadratic unitary
fusion categories. While we do not find any new fusion categories in this article,
we provide important techniques for finding 6j-symbols for fusion categories with
multiplicity. Our main theorem is as follows.

Theorem A. The complete list of Z/2Z quadratic UFCs is as follows.
3 object categories:

• the Ising/Tambara-Yamagami categories of the form TY(Z/2Z, 𝜒, ±) [53]
with 𝐴3 fusion rules, of which there are exactly 2. The case + is Temperley-
Lieb-Jones at 𝑞 = exp(2𝜋𝑖/8), and the case − is 𝑆𝑈 (2)2.

• the three UFCs with Rep(𝑆3) fusion rules [11, Remark 6.6] and [25, Theorem
5.1].

• the two complex conjugate UFCs with Ad(𝐸6) fusion rules [8, 24]. These are
exactly the adjoint subcategories of the exceptional quantum subgroups of
Temperley-Lieb-Jones at 𝑞 = exp(2𝜋𝑖/24) and 𝑆𝑈 (2)10 [29, 45].

4 object categories:

1Here related to means obtained by interating known constructions such as equivari-
antisation, Morita equivalence, ect.
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• the pointed categories Hilb(Z/4Z,𝜔)where𝜔 ∈𝐻3(Z/4Z,𝑈 (1)) and Hilb(Z/2Z×
Z/2Z, 𝜔) where

𝜔 ∈𝐻3(Z/2Z×Z/2Z,𝑈 (1))/Aut(Z/2Z×Z/2Z) � (Z/2Z)3/Aut(Z/2Z×Z/2Z)

[10, Remark 4.10.4].

• the Deligne products Fib⊠Hilb(Z/2Z,𝜔) for𝜔 ∈ 𝐻3(Z/2Z,𝑈 (1)), which have
𝐴4 fusion rules. These two categories are also Temperley-Lieb-Jones at 𝑞 =

exp(2𝜋𝑖/10) and 𝑆𝑈 (2)3.

• Ad(𝑆𝑈 (2)6), which is also equivalent to the adjoint subcategory of the 𝐴7
Temperley-Lieb-Jones category with 𝑞 = exp(2𝜋𝑖/16).

• the even parts of the two complex conjugate subfactor planar algebras with
principal graphs

S′ =

from [26,34]. These categories are also de-equivariantizations of 2Z/4Z1 near
group fusion categories [25, Ex. 9.5] [35, Ex. 2.2].

• the even part of the 2D2 subfactor planar algebra with principal graph

from [39] [26, Cor. 9.3]. This category is also a de-equivariantization of the
even part of the 3Z/4Z subfactor from [26, 51].

All these UFCs are related to quantum groups at roots of unity or near group fusion
categories [13, 25].

Remark 1.1. The results of Theorem A make no assumptions on the existence of
a braiding on the category. The categories appearing in our classification which do
not admit braidings are: the two UFC’s with Rep(𝑆3) fusion rules which are not
equivalent to Rep(𝑆3) [46, Section 4.4], the two UFC’s with Ad(𝐸6) fusion rules
[46, Main Theorem], the even parts of the two complex conjugate subfactor planar
algebras with principal graphs S′ [34], and the even part of the 2𝐷2 subfactor
(which can be seen to not admit a braiding from the centre analysis in Subsec-
tion 3.2). It is interesting to note that the even parts of the subfactors with S′
principal graphs admit 𝜎-braidings as defined in [34, Definition 3.2].

The result [30, Thm. 1.1] gave a finite list of possible fusion rings for rank 4
pseudounitary fusion categories with a dual pair of simple objects, but included
one fusion ring not previously known to be categorifiable (the case 𝑐 = 2 from
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[30, Thm. 1.1(6)]), and left open the classification of those fusion rings from [30,
Thm. 1.1] which were previously known to be categorifiable.

Corollary B. We have a complete classification of rank 4 unitary fusion categories
with a dual pair of simple objects. In particular, there is no UFC with 𝑐 = 2 from
[30, Thm. 1.1(6)].

One tool to prove our classification is an adaptation of Larson’s rank-finiteness
bound for Z/3Z-near group pseudounitary fusion categories [30, §4]. This adapta-
tion appears in Appendix A below, coauthored with attendees from the 2014 AMS
MRC program on the Mathematics of Quantum Phases of Matter and Quantum
Information.

Our main new technical tool to achieve Theorem A is a generalization of
Ostrik’s results on formal codegrees of a spherical fusion category [47, 48]. We
use results of [41, §5], but we use the conventions of [23]. Suppose C is a spher-
ical fusion category, and denote by F : 𝑍 (C) → C the forgetful functor and let
I : C → 𝑍 (C) be its adjoint. Let 𝐴 be the tube algebra of C, and let 𝐴𝑋←𝑋 be the
corner of 𝐴 corresponding to 𝑋 ∈ Irr(C). We pick a non-degenerate trace Tr𝑋 on
𝐴𝑋←𝑋 given by

Tr𝑋
©­­­­«

𝑓

𝑋
𝑊

𝑊

𝑋 ª®®®®¬
:= 𝛿𝑊=1 dim(𝑋) trC ( 𝑓 ).

Given an irreducible representation (𝑉, 𝜋𝑉 ) of 𝐴𝑋←𝑋, its formal codegree [38,47]
with respect to Tr𝑋 is given by

𝑓𝑉 :=
∑︁
𝑏

Tr𝑉 (𝜋(𝑏))𝜋(𝑏∨)

where {𝑏} is a basis of 𝐴𝑋←𝑋 and {𝑏∨} is the dual basis with respect to the non-
degenerate pairing (𝑎, 𝑏) := Tr𝑋 (𝑎𝑏) on 𝐴𝑋←𝑋. Observe that 𝑓𝑉 is independent
of the choice of basis {𝑏}, but depends on the choice of Tr𝑋. We refer the reader
to §2.2 for more details.

Theorem C. There is a bĳective correspondence between irreducible represent-
ations (𝑉, 𝜋𝑉 ) of 𝐴𝑋←𝑋 and simple subobjects Γ𝑉 ⊂ I(𝑋) ∈ 𝑍 (C). The formal
codegree 𝑓𝑉 of (𝑉, 𝜋) with respect to Tr𝑋 is a scalar, and the categorical dimen-
sion of Γ𝑉 is given by dim(C)

𝑓𝑉 dim(𝑋) . Moreover, if 𝑌 ∈ Irr(C) and 𝑋𝜋𝑌 is the action of
𝐴𝑋←𝑋 on 𝐴𝑋←𝑌 , then

dim HomC (F (Γ𝑉 ) → 𝑌 ) = dim Hom(𝜋𝑉 → 𝑋𝜋𝑌 ).4



In the case 𝑋 = 1 ∈ Irr(C), this theorem recovers [48, Thm. 2.13], which
allowed the computation of the simple decomposition of I(1) in terms of repres-
entations of the fusion algebra of C. Our theorem generalises this result in several
ways. The main improvement is that this result allows us to determine the simple
decomposition of I(𝑋) by studying the representations of the corner of the tube
algebra 𝐴𝑋←𝑋. When 𝑋 = 1, this algebra is isomorphic to the fusion algebra of
C. However, when 𝑋 is non-trivial, this corner depends on certain 6j-symbols of
the category involving 𝑋 . One immediate application of this theorem comes from
the fact that the dimensions of simple objects in 𝑍 (C) are highly restricted, which
implies the representations of 𝐴𝑋→𝑋 (which depend on the 6j-symbols) are also
restricted. Hence we obtain obstructions based on 6j-symbols. We make use of this
application in this article to determine several non-trivial 6j-symbols involving the
invertible object of a Z/2Z-quadratic UFC.

The other improvement Theorem C offers is that for each simple Γ ⊂ I(𝑋),
we can determine F (Γ) ∈ C. This information is encoded in the action of 𝐴𝑋←𝑋

acting on the entire tube algebra 𝐴. As these algebras are semi-simple, it is easy to
decompose this action into irreducibles, and hence apply Theorem C. A surprising
application of this theorem comes from the fact that if we know the action of 𝐴𝑋←𝑋

acting on the entire tube algebra 𝐴 up to isomorphism, we can often determine the
action on the nose. As this action is determined by the 6j-symbols of C, this allows
us to find many linear equations involving the 6j-symbols. We use this application
later in this article to get our hands on many 6j-symbols. In the general setting,
this result allows the combinatorial data of the forgetful functor 𝑍 (C) → C to be
leveraged into the categorical data of the 6j-symbols of C. As the forgetful functor
can often be easily determined from the fusion ring of C [40], we expect this
application to have many exciting future uses.

2. Preliminaries

We refer the reader to [10] for the basics of fusion categories. We refer the reader to
[22,50] for the basics of unitary fusion categories. In particular, we always assume
a unitary fusion category is equipped with its unique unitary spherical structure
where the daggers of cups are caps and the quantum dimensions are equal to the
Frobenius-Perron dimensions [37].
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2.1. The tube algebra

One of the key tools in this paper is Ocneanu’s tube algebra (or equivalently the
annular category) of a fusion category. This algebra was first introduced by [44]
and [14] in the context of subfactors, and by [23, 24] and [41] in the context of
fusion categories.

Definition 2.1. Let C be a spherical fusion category whose spherical trace is
denoted trC . The tube algebra 𝐴 of C is the finite dimensional semisimple algebra⊕
𝑋,𝑌 ∈Irr(C)

𝐴𝑌←𝑋 where 𝐴𝑌←𝑋 :=
⊕

𝑊∈Irr(C)
C(𝑊 ⊗ 𝑋→𝑌 ⊗𝑊).

We graphically represent a fixed basis element of 𝐴 as

𝑓

𝑋
𝑊

𝑊

𝑌

𝑓 ∈ C(𝑊 ⊗ 𝑋 → 𝑌 ⊗𝑊).

The multiplication on 𝐴 is defined by composition of the tubes and applying the
fusion relation obtained from semisimplicity to the strands around the outside. In
more detail, we pick a basis {𝛼} ⊂ C(𝑈 ⊗ 𝑉 → 𝑊) for all𝑈,𝑉,𝑊 ∈ Irr(C), and
let {𝛼∨} ⊂ C(𝑊 → 𝑈 ⊗ 𝑉) be the dual basis with respect to the non-degenerate
pairing ( · , · ) : C(𝑈 ⊗𝑉→𝑊) × C(𝑊→𝑈 ⊗𝑉) → C determined by the formula
(ℎ, 𝑘) id𝑊 = ℎ ◦ 𝑘 ∈ EndC (𝑊). We have the fusion relation

𝑈

𝑈

𝑉

𝑉

=
∑︁

𝑊∈Irr(C)
𝛼

𝑈 𝑉

𝑈 𝑉

𝑊

𝛼

𝛼∨
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which gives the following formula for composition in the tube algebra, which is
independent of the choice of basis {𝛼}:

𝑓

𝑌
𝑈

𝑈

𝑍

·
𝑔

𝑋
𝑉

𝑉

𝑌

:= 𝑔

𝑓

𝑋
𝑉

𝑉

𝑌
𝑈

𝑈

𝑍

=
∑︁

𝑊∈Irr(C)
𝛼

𝛼

𝛼∨

𝑔

𝑓

𝑋

𝑊

𝑊

𝑌

𝑈

𝑉

𝑉

𝑈

𝑍

.

There is a non-degenerate linear functional 𝜙 on 𝐴 given by

𝑓

𝑋
𝑊

𝑊

𝑌

↦−→ 𝛿𝑋=𝑌 𝛿𝑊=1 dim(𝑋) trC ( 𝑓 ).

Its restriction to 𝐴𝑋←𝑋 is tracial for all 𝑋 ∈ Irr(C), and we denote it by Tr𝑋.

Note that each of the spaces 𝐴𝑋←𝑋 is the corner 1𝑋𝐴1𝑋 of 𝐴, where we cut
down by the idempotent

1𝑋 := 𝑋
,

and 𝐴𝑋←𝑋 acts on the spaces 𝐴𝑋←𝑌 by multiplication.
The tube algebra of C is intimately related to the Drinfeld centre 𝑍 (C) of C.

From the data of 𝑍 (C), we obtain a basis of matrix units for the spaces 𝐴𝑋←𝑌

given by

𝑒(Γ) (𝑋,𝑖) , (𝑌, 𝑗 ) :=
dim(Γ)

dim(C)
√︁

dim(𝑋) dim(𝑌 )

∑︁
𝑊∈Irr C

dim(𝑊)

𝑋

Γ
𝑊

𝑊

Γ

𝑌

𝑗′

𝑖

𝛽𝑊,Γ

where (Γ, 𝛽Γ) ∈ Irr(𝑍 (C)), {𝑖} is a basis for C(𝑋 → F (Γ)), and { 𝑗} is a basis
for C(𝑌 → F (Γ)), where F : 𝑍 (C) → C is the forgetful functor. Here, { 𝑗 ′} ⊂
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C(F (Γ) → 𝑌 ) denotes the dual basis of { 𝑗} with respect to the pairing 𝑘 ′ ◦ 𝑗 =
𝛿 𝑗=𝑘 id𝑌 . With respect to our functional 𝜙 on 𝐴, we have that

𝜙(𝑒(Γ) (𝑋,𝑖) , (𝑌, 𝑗 ) ) = 𝛿𝑋,𝑌 𝛿𝑖, 𝑗
dim(𝑋) dim(Γ)

dim(C) ,

and so the dual basis with respect to the 𝜙-pairing is given by

𝑒(Γ)∨(𝑋,𝑖) , (𝑌, 𝑗 ) =
dim(C)

dim(𝑋) dim(Γ) 𝑒(Γ) (𝑌, 𝑗 ) , (𝑋,𝑖) .

The construction above shows us that 𝑍 (C) entirely determines the structure
of the tube algebra of C. The converse is also true. The tube algebra of C entirely
determines the Drinfeld centre of C. The following theorem gives a bĳective cor-
respondence between representations of the tube algebra and objects of 𝑍 (C).

Theorem 2.2 [23] and [41, §5]. There is a bĳective correspondence between
equivalence classes of irreducible representations of the tube algebra of C and
isomorphism classes of simple objects in 𝑍 (C). This bĳection sends

(𝑉, 𝜋) ↦→ Γ𝑉 :=
⊕

𝑋∈Irr(C)
𝑉 |𝐴𝑋←𝑋

⊗ 𝑋.

Further, we have that the minimal central projection 𝑧𝑉 ∈ 𝐴 corresponding to
(𝑉, 𝜋) is given by

𝑧𝑉 =
∑︁

𝑋∈Irr(C) ,
{𝑖}⊂C(𝑋→F(Γ𝑉 ) )

𝑒(Γ𝑉 ) (𝑋,𝑖) , (𝑋,𝑖) .

2.2. A new result on formal codegrees

If one knows the full tube algebra of C, then Theorem 2.2 essentially gives you
the full data of 𝑍 (C). However in many situations, such as in this article, we only
know information about some sub-algebra of the tube algebra, and we wish to
leverage this information into partial information about 𝑍 (C). Towards this goal,
we introduce the formal codegree of a representation.

Definition 2.3 [38,47]. Let 𝐵 be a finite dimensional semisimple algebra equipped
with a non-degenerate trace Tr𝐵, and let (𝑉, 𝜋) be a finite dimensional represent-
ation of 𝐵. We define the formal codegree of (𝑉, 𝜋) as

𝑓𝑉 :=
∑︁
𝑏

Tr𝑉 (𝜋(𝑏))𝜋(𝑏∨) ∈ 𝜋(𝐵) ⊂ End(𝑉)
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where we sum over a basis {𝑏} ⊂ 𝐵, and {𝑏∨} denotes the dual basis with respect to
the Tr𝐵-pairing. Observe that 𝑓𝑉 is independent of the choice of basis, but depends
on the choice of trace Tr𝐵.

The following theorem allows us to determine the simple summands ofI(𝑋) ∈
𝑍 (C) by classifying the representations of the subalgebra 𝐴𝑋←𝑋. Here, I : C →
𝑍 (C) is the induction functor which is adjoint to the forgetful functor F : 𝑍 (C) →
C. Moreover, we can compute categorical dimensions in terms of formal codegrees
of 𝐴𝑋←𝑋 with respect to Tr𝑋.

Theorem C. Let C be a spherical fusion category, and let 𝐴 be the tube algebra
of C. Fix 𝑋 ∈ Irr(C). There is a bĳective correspondence between equivalence
classes of irreducible representations (𝑉, 𝜋) of 𝐴𝑋←𝑋 and isomorphism classes
of simple subobjects Γ𝑉 ⊂ I(𝑋) ∈ 𝑍 (C). The formal codegree 𝑓𝑉 of (𝑉, 𝜋) with
respect to Tr𝑋 is a scalar, and the categorical dimension of Γ𝑉 is given by

dim(Γ𝑉 ) =
dim(C)
𝑓𝑉 dim(𝑋) .

Moreover, if 𝑌 ∈ Irr(C) and 𝑋𝜋𝑌 is the action of 𝐴𝑋←𝑋 on 𝐴𝑋←𝑌 , then

dim(C(𝑌 → F (Γ𝑉 ))) = dim(Hom(𝜋𝑉 → 𝑋𝜋𝑌 )).

Proof. Let (𝑉, 𝜋) be an irreducible representation of 𝐴𝑋←𝑋. Since 𝐴𝑋←𝑋 is semisimple,
(𝑉, 𝜋) corresponds to a simple summand of 𝐴𝑋←𝑋. As 𝐴𝑋←𝑋 is a corner of
𝐴, each simple summand of 𝐴𝑋←𝑋 is of the form 𝐴𝑋←𝑋𝑧Γ for a simple object
(Γ, 𝛽) ∈ Irr(𝑍 (C)). Hence there is a simple (Γ𝑉 , 𝛽Γ𝑉 ) corresponding to (𝑉, 𝜋),
and by Theorem 2.2, 𝑧𝑉1𝑋 =

∑
𝑖 𝑒(Γ𝑉 ) (𝑋,𝑖) , (𝑋,𝑖) . Moreover, for any other simple

object Λ ∈ Irr(𝑍 (C)), we have that 𝜋(𝑒(Λ) (𝑋,𝑖) , (𝑋,𝑖) ) = 0 unless Λ � Γ𝑉 . In par-
ticular, Tr𝑉 (𝜋(𝑒(Λ) (𝑋,𝑖) , (𝑋, 𝑗 ) )) = 0 unless Λ = Γ𝑉 and 𝑖 = 𝑗 . We now compute

𝑓𝑉 =
∑︁

Λ⊆I(𝑋)
𝑖, 𝑗

Tr𝑉 (𝜋(𝑒(Λ) (𝑋,𝑖) , (𝑋, 𝑗 ) ))𝜋(𝑒(Λ)∨(𝑋,𝑖) , (𝑋, 𝑗 ) )

=
∑︁
𝑖

dim(C)
dim(𝑋) dim(Γ𝑉 )

𝜋(𝑒(Γ𝑉 ) (𝑋,𝑖) , (𝑋,𝑖) )

=
dim(C)

dim(𝑋) dim(Γ𝑉 )
𝜋(𝑧𝑉1𝑋).
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Thus the formal codegree of (𝑉, 𝜋) is given by 𝑓𝑉 =
dim(C)

dim(𝑋) dim(Γ𝑉 ) , and dim(Γ𝑉 ) =
dim(C)

𝑓𝑉 dim(𝑋) . Finally, we observe

dim(Hom(𝑉 → 𝑋𝜋𝑌 )) = dim(Hom(𝑉 → 1𝑋𝐴1𝑌 ))
= dim(Hom(𝑉 → 𝑧𝑉1𝑋𝐴1𝑌 ))
= dim(Hom(𝑉 → 𝑧𝑉1𝑋𝐴1𝑌 𝑧𝑉 ))

=
∑︁
𝑗

dim(Hom(𝑉 → 𝑧𝑉1𝑋𝐴𝑒(Γ𝑉 ) (𝑌, 𝑗 ) , (𝑌, 𝑗 ) ))︸                                                 ︷︷                                                 ︸
=1

= dim(C(𝑌 → F (Γ𝑉 ))).

Note that if we just consider the subalgebra 𝐴1←1 � 𝐾0(C), the fusion algebra
of C, then the above theorem recovers [48, Theorem 2.13], which shows that
irreducible representations of 𝐾0(C) are in bĳective correspondence with simple
summands ofI(1). Thus our theorem generalises Ostrik’s in two ways: (1) it gives
us the simple summands of I(𝑋) where 𝑋 is any simple object of C, and (2) it
tells us the image under the forgetful functor of each of these summands.

2.3. Z/2Z-quadratic fusion categories

A Z/2Z-quadratic fusion category is a fusion category C whose invertible objects
form the group Z/2Z, i.e., Inv(C) = {1, 𝛼} with 𝛼2 � 1, with one other orbit of
simple objects under the Z/2Z-action. A simple associativity argument shows we
have three cases:

(Q1) simple objects: 1, 𝛼, 𝜌; fusion rules determined by: 𝜌2 � 1 ⊕ 𝑚𝜌 ⊕ 𝛼.

(Q2) simple objects: 1, 𝛼, 𝜌, 𝛼𝜌, 𝜌 not self-dual; fusion rules determined by:
𝜌2 � 𝑚𝜌 ⊕ 𝑛𝛼𝜌 ⊕ 𝛼.

(Q3) simple objects: 1, 𝛼, 𝜌, 𝛼𝜌, 𝜌 self-dual; fusion rules determined by: 𝜌2 �

1 ⊕ 𝑚𝜌 ⊕ 𝑛𝛼𝜌.

Note that in all three cases we have 𝛼2 � 1 and 𝛼𝜌 � 𝜌𝛼.

2.3.1. Multiplicity bounds and categorifiability. The case (Q1) was classified
in the pivotal setting in [48, Thm. 4.1], where it was shown 𝑚 ≤ 2. The complete
classification of such unitary fusion categories was known prior to this article:

(𝑚 = 0) such a fusion category is a Tambara-Yamagami category of the form
TY(Z/2Z, 𝜒, ±) [53], of which there are exactly 2. Both such cat-
egories are unitarizable.
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(𝑚 = 1) such a fusion category has the fusion rules of Rep(𝑆3). There are
exactly three such unitary fusion categories [25, Theorem 5.1].

(𝑚 = 2) such a fusion category has the fusion rules of Ad(𝐸6), and there are
exactly 4 such fusion categories [21], all within the same Galois orbit,
and each admits a spherical structure. Two of these are unitary and
complex conjugate to each other [24].

The case (Q2) was studied in the pseudounitary setting (dim(C) = FPdim(C))
in [30], where it was shown that 𝑚 = 𝑛 ≤ 2. The classification of such fusion
categories prior to this article is as follows:

(𝑚 = 0) such a fusion category is necessarily pointed with Z/4Z fusion rules.
It is thus of the form Vect(Z/4Z, 𝜔) for𝜔 ∈ 𝐻3(Z/4Z,𝑈 (1)) = Z/4Z,
of which there are 4 categories [10, Remark 4.10.4].

(𝑚 = 1) this case was open. Two such unitary fusion categories which are
complex conjugate were known to exist from [26,34].

(𝑚 = 2) this case was open. No such examples were known to exist.

We finish this classification for unitary fusion categories in Theorem 4.1 below.
In Appendix A, we adapt the results of [30] in the pseudounitary setting to

case (Q3), where we prove the following theorem.

Theorem 2.4. Suppose C is a pseudounitary fusion category with the fusion rules
(Q3). Then (𝑚, 𝑛) must be equal to one of (0, 0), (0, 1), (1, 0), (1, 1), (2, 2).

Proof. By Theorem A.29 in Appendix A, we must have 𝑚 + 𝑛 ≤ 5. If either 𝑚 or
𝑛 is zero, then there is a fusion subcategory with 3 simple objects, so (𝑚, 𝑛) must
be one of (0,0), (0,1), (1,0) by [49]. If 0 ≠ 𝑚 ≠ 𝑛 ≠ 0, then𝑚 + 𝑛 ≥ 11 by Remark
A.4 in Appendix A. The result follows.

The proof that 𝑚 + 𝑛 ≤ 5 that appears in Appendix A below was written by
Ryan Johnson, Siu-Hung Ng, David Penneys, Jolie Roat, Matthew Titsworth, and
Henry Tucker at the 2014 AMS MRC on The Mathematics of Quantum Phases of
Matter and Quantum Information.

By [27,33] (and applying Galois conjugation), any fusion category with fusion
rules (Q3) with (𝑚, 𝑛) ∈ {(0, 1), (1, 0)} factorizes as a Deligne product of a fusion
category with Fibonacci fusion rules, of which there are two, namely Fib and YL,
and a Z/2Z-pointed fusion category which must be of the form Vect(Z/2Z, 𝜔) for
𝜔 ∈ 𝐻3(Z/2Z,𝑈 (1)), of which there are two. Thus there are exactly 4 such fusion
categories, and 2 are unitarizable.

11



When 𝑚 = 𝑛 ≤ 2, the complete classification of such unitary fusion categories
as in Theorem 2.4 is given in Theorem 3.1 below.

3. The self-dual case

In this section we will focus on the unitary categorification of the fusion ring with
four simple objects 1, 𝛼, 𝜌, 𝛼𝜌 and fusion rules

𝛼 ⊗ 𝛼 � 1 𝜌 ⊗ 𝜌 � 1 ⊕ 𝑚𝜌 ⊕ 𝑚𝛼𝜌. (𝑅(𝑚))

Let us write 𝑅(𝑚) for such a fusion ring. By Theorem 2.4 above, we know 𝑚 ≤ 2.
Our main result of this section is as follows.

Theorem 3.1. The complete classification of unitary fusion categories C𝑚 with
𝐾0(C𝑚) � 𝑅(𝑚) for 𝑚 ≤ 2 is as follows:

(𝑚 = 0) C0 is pointed and thus equivalent to one of the four monoidally distinct
categories Vect𝜔 (Z/2Z × Z/2Z) where

𝜔 ∈ 𝐻3(Z/2Z × Z/2Z,𝑈 (1))/Aut(Z/2Z × Z/2Z)

[10, Remark 4.10.4].

(𝑚 = 1) C1 is equivalent to C(𝔰𝔩2, 7)ad, which is also equivalent to the even
part of the 𝐴7 Temperley-Lieb-Jones category with 𝑞 = exp(2𝜋𝑖/16)
[26, Example 9.1].

(𝑚 = 2) C2 is equivalent to the even part of the 2𝐷2 subfactor from [26, 39].

Proof. It suffices to restrict our attention to the cases of 𝑚 = 1 and 𝑚 = 2. The
first step in our proof is to provide a set of numerical data which fully classifies a
categorification of 𝑅(𝑚); we do this in §3.1. By describing a sufficient list of local
relations in our category, we are able to come up with such a set of numerical data.
This data consists of 8𝑚4 complex scalars, and a collection of small roots of unity.
This data is precisely a subset of the 6 𝑗 + 4𝑘 symbols of such a categorification.
Using techniques developed in the subfactor classification program, we prove that
this subset of the 6 𝑗 + 4𝑘 symbols is sufficient to describe the entire category.

In §3.2, in order to get a foothold on the numerical data of a categorification
of 𝑅(𝑚), we study the Drinfeld centre of such a category. By studying certain
small representations of the tube algebra of the category (using basic combinatorial
arguments), we are able to deduce a surprising amount of numerical data of the
category. This centre analysis tells us nearly all of the small roots of unity in our

12



numerical data, and even gives us highly non-trivial linear equations involving the
8𝑚4 complex scalars.

To reduce the 8𝑚4 complex scalars down to a more manageable number, in
§3.4, we apply the tetrahedral symmetries of the 6 𝑗 + 4𝑘 symbols. These symmet-
ries only apply in the unitary setting, and give 𝑆4 symmetries of these 8𝑚4 complex
scalars.2 This essentially reduces the complexity of the problem by a factor of 24.
For example, in the𝑚 = 2 case, we reduce from 128 complex scalars to roughly 10
(some of the 𝑆4 symmetries are redundant). These symmetries turn an intractable
amount of data into a set that can easily be dealt with by hand.

To finish off this section we explicitly solve for the remaining numerical data
which describes a categorification of 𝑅(𝑚) in §3.5. The results of the previous
subsections essentially determine everything except the remaining complex scal-
ars. By evaluating diagrams in our category in multiple ways, we are able to obtain
equations of these complex scalars. In the 𝑚 = 2 case we find a single solution,
which necessarily has to correspond to the even part of the 2𝐷2 subfactor. We
prove this in Theorem 3.48 below.

3.1. Numerical data

Let C𝑚 be a unitary fusion category with 𝐾 (C𝑚) � 𝑅(𝑚), 𝑚 ∈ {1, 2}. The goal of
this subsection is to pick nice basis for our morphisms spaces in C𝑚, and to determ-
ine some local relations that these basis elements satisfy. These local relations will
depend on the following data:

• two choices of signs 𝜆𝜌, 𝜆𝛼 ∈ {−1,1}which are the 2nd Frobenius Schur indic-
ators of 𝛼 and 𝜌 respectively,

• a choice of sign 𝜇 ∈ {−1, 1},
• 2𝑚 choices of 𝜒1,𝑖 ∈ {−1, 1} and 𝜒𝛼,𝑖 ∈ {−

√
𝜆𝛼,
√
𝜆𝛼} for 0 ≤ 𝑖 < 𝑚,

• 2𝑚 choices of 3rd roots of unity 𝜔1,𝑖 , 𝜔𝛼,𝑖 ∈ {1, 𝑒2𝜋𝑖 1
3 , 𝑒2𝜋𝑖 2

3 } for 0 ≤ 𝑖 < 𝑚,
and

In the following subsection, we are able to pin down the data 𝜇 and 𝜒 by analysising
the centre of C𝑚.

To simplify notation, we define 𝑑 := dim(𝜌), which is the largest solution to
𝑑2 = 1 + 2𝑚𝑑. If 𝑚 = 1 then 𝑑 = 1 +

√
2, and if 𝑚 = 2 then 𝑑 = 2 +

√
5. We choose

2 While writing this article, the article [17] was posted to the arXiv, which describes
tetrahedral symmetries for general fusion categories. It would be interesting to use their
work to extend our results to the non-unitary setting.
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orthonormal basexs for our hom spaces

𝜌 𝜌

𝜌

𝑖 ∈ C𝑚(𝜌 ⊗ 𝜌 → 𝜌)

𝛼

𝜌 𝜌

𝜌

𝑖 ∈ C𝑚(𝜌 ⊗ 𝜌 → 𝛼𝜌) 0 ≤ 𝑖 < 𝑚.

We also choose unitary isomorphisms3

𝛼

𝛼

∈ C𝑚(𝛼→ 𝛼)

𝜌

𝜌

∈ C𝑚(𝜌→ 𝜌) and

𝜌

𝜌

𝛼

𝛼

∈ C𝑚(𝜌 ⊗ 𝛼→ 𝛼 ⊗ 𝜌).

We can unambiguously write their inverses as

𝛼

𝛼

∈ C𝑚(𝛼→ 𝛼),

𝜌

𝜌

∈ C𝑚(𝜌→ 𝜌), and

𝜌

𝜌

𝛼

𝛼

∈ C𝑚(𝛼 ⊗ 𝜌→ 𝜌 ⊗ 𝛼).

The duals of these first two isomorphisms are related to their inverses respectively
by the Frobenius-Schur indicators of 𝛼 and 𝜌, via the following equations:

𝛼

𝛼

= 𝜆𝛼

𝛼

𝛼

𝜌

𝜌

= 𝜆𝜌

𝜌

𝜌

𝜆𝛼, 𝜆𝜌 ∈ {±1}.

We can re-scale the crossing so that

𝜌

𝜌

𝛼

𝛼

:=

𝜌

𝜌𝛼

𝛼

=

𝜌

𝜌𝛼

𝛼

3Using the convention of switching the orientation of the 𝛼-strand through the crossing
works better for Z/2Z-equivariantization, which is related to the 3Z/4Z-subfactor [26]. In the
non-self-dual case in §4 below, we will use a more natural convention from a diagrammatic
point of view which does not change the orientation of the 𝛼-strand.
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due to the implicit inverses on both sides. Semisimplicity gives us the following
local relations.

𝛼 𝛼

=

𝛼 𝛼

𝛼 𝛼

𝜌 𝜌

=
1
𝑑

𝜌 𝜌

𝜌 𝜌

+
𝑚∑︁
𝑖=0

𝜌 𝜌

𝑖

𝑖

𝜌𝜌

+
𝑚∑︁
𝑖=0

𝜌 𝜌

𝑖

𝑖

𝜌𝜌

= = 1 = = 𝑑

𝜌

𝑖
=

𝜌

𝑖
= 0 𝑖

𝜌

= 0
𝜌

𝛼

𝑖 =

𝜌

𝛼

𝑖
= 0

𝜌𝛼

𝑖 = 0.


(3.2)

Definition 3.3. Let 𝜇 ∈ C× such that

𝛼 𝜌

𝜌

= 𝜇

𝛼

𝛼

𝜌

𝜌

. Clearly 𝜇2 = 1.

In order to choose a natural basis for the spaces C𝑚(𝜌 ⊗ 𝜌→ 𝜌) and C𝑚(𝜌 ⊗
𝜌 → 𝛼𝜌), we introduce the following linear operators on these spaces. We often
suppress the orientation on the 𝛼 strands, as it may be inferred from the other
orientations in the diagram.

𝐾1

(
𝑖

)
:= 𝑖 and 𝐾𝛼

(
𝑖

)
:= 𝑖 .
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We also define the anti-linear Frobenius operators

𝐿1

(
𝑖

)
:= 𝑖 𝐿𝛼

(
𝑖

)
:= 𝑖

𝑅1

(
𝑖

)
:= 𝑖 𝑅𝛼

(
𝑖

)
:= 𝑖

These operators are unitary with respect to the tracial inner product on hom spaces.
By a straightforward but tedious calculation, one proves that these operators satisfy
the following relations:

𝐾1 ◦ 𝐾1 = 𝜆𝛼 Id 𝐾𝛼 ◦ 𝐾𝛼 = Id
𝐿1 ◦ 𝐿1 = 𝜆𝜌 Id = 𝑅1 ◦ 𝑅1 𝐿𝛼 ◦ 𝐿𝛼 = 𝜆𝜌𝜇 Id = 𝑅𝛼 ◦ 𝑅𝛼

𝐾1 ◦ 𝐿1 = 𝜇(𝐿1 ◦ 𝐾1) 𝐾𝛼 ◦ 𝐿𝛼 = 𝜇𝜆𝛼 (𝐿𝛼 ◦ 𝐾𝛼)
𝐾1 ◦ 𝑅1 = 𝜇(𝑅1 ◦ 𝐾1) 𝐾𝛼 ◦ 𝑅𝛼 = 𝜇𝜆𝛼 (𝑅𝛼 ◦ 𝐾𝛼)

(𝑅1 ◦ 𝐿1)3 = 1 = (𝐿1 ◦ 𝑅1)3 (𝑅𝛼 ◦ 𝐿𝛼)3 = 1 = (𝐿𝛼 ◦ 𝑅𝛼)3.

We can diagonalise our basis of C𝑚(𝜌 ⊗ 𝜌 → 𝜌) and C𝑚(𝜌 ⊗ 𝜌 → 𝛼𝜌) with
respect to these operators to obtain the following.

Lemma 3.4 (𝛼 Jellyfish). We can choose bases for C𝑚(𝜌 ⊗ 𝜌→ 𝜌) and C𝑚(𝜌 ⊗
𝜌 → 𝛼𝜌) such that

𝐾1

(
𝑖

)
= 𝜒1,𝑖 𝑖 and 𝐾𝛼

(
𝑖

)
= 𝜒𝛼,𝑖 𝑖

𝑅1 ◦ 𝐿1

(
𝑖

)
= 𝜔1,𝑖 𝑖 and 𝑅𝛼 ◦ 𝐿𝛼

(
𝑖

)
= 𝜔𝛼,𝑖 𝑖

where 𝜒2
1,𝑖 = 𝜆𝑎, 𝜒2

𝛼,𝑖
= 1, and 𝜔3

1,𝑖 = 𝜔
3
𝛼,𝑖

= 1.
In particular we have the local relations

𝛼 𝜌 𝜌

𝜌

𝑖 = 𝜒1,𝑖
𝑖

and

𝛼

𝛼

𝜌 𝜌

𝜌

𝑖 = 𝜒𝛼,𝑖 𝑖
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Proof. From the above relations, we have that 𝐾1 and 𝑅1 ◦ 𝐿1 commute. Fur-
thermore, we have (𝐾1)4 = 1 and (𝑅1 ◦ 𝐿1)3 = 1. Hence we can simultaneously
diagonalise these operators to obtain the basis of C𝑚(𝜌 ⊗ 𝜌 → 𝜌) claimed in the
statement of the lemma. As (𝐾1)2 = 𝜆𝛼, we have that 𝜒2

1,𝑖 = 𝜆𝛼, and as (𝑅1 ◦
𝐿1)3 = 1, we have that 𝜔3

1,𝑖 = 1. The same argument gives the claimed basis for
C𝑚(𝜌 ⊗ 𝜌 → 𝛼𝜌).

The local relations in the statement of the lemma follow by applying a local 𝛼
relation to the operators 𝐾1 and 𝐾𝛼.

In the case that𝑚 = 1, we have that the spacesC𝑚(𝜌 ⊗ 𝜌→ 𝜌) andC𝑚(𝜌 ⊗ 𝜌→
𝛼𝜌) are 1-dimensional. Hence the earlier operators are all scalars. In this special
case we determine the scalars 𝜆𝛼, 𝜆𝜌, and 𝜇.

Corollary 3.5. If 𝑚 = 1, then 𝜆𝛼 = 𝜆𝜌 = 𝜇 = 1.

Proof. As 𝑚 = 1 we have that 𝐿1 acts by a scalar 𝑙1 ∈ C. As 𝐿1 is anti-linear, the
relation 𝐿1 ◦ 𝐿1 = 𝜆𝜌 gives 𝑙1𝑙1 = 𝜆𝜌. Hence 𝜆𝜌 = 1. The same analysis on the
relation 𝐿𝛼 ◦ 𝐿𝛼 = 𝜆𝜌𝜇 gives that 𝜆𝜌𝜇 = 1, and so 𝜇 = 1. Finally, from Lemma 3.4
the linear operator 𝐾𝛼 is a real scalar. The relation 𝐾𝛼 ◦ 𝐿𝛼 = 𝜇𝜆𝛼 (𝐿𝛼 ◦ 𝐾𝛼) then
gives us that 𝜆𝛼 = 1.

Note that when 𝑚 = 1 and 𝜆𝛼 = 1, we have the classification of categories
C1 from [26, Example 9.1]. Hence we have the following Corollary of the above
lemma.

Corollary 3.6. The statement of Theorem 3.1 is true when 𝑚 = 1.

Hence, for the remainder of this section, we may assume that 𝑚 = 2.
Note that at this point, we can not fully determine the action of the operators

𝐿 and 𝑅 on our basis. However, we can make the following observation.

Lemma 3.7. We have two cases depending on the value of 𝜆𝛼𝜇 ∈ {1,−1}:
(1) If 𝜆𝛼𝜇 = 1 then the operators 𝐿1 and 𝑅1 preserve the eigenspaces of 𝐾1,

and the operators 𝐿𝛼 and 𝑅𝛼 preserve the eigenspaces of 𝐾𝛼.

(2) If 𝜆𝛼𝜇 = −1 then the operators 𝐿1 and 𝑅1 exchange the eigenspaces of
𝐾1, and the operators 𝐿𝛼 and 𝑅𝛼 exchange the eigenspaces of 𝐾𝛼. In
particular, 𝜒1,0 = −𝜒1,1 and 𝜒𝛼,0 = −𝜒𝛼,1.

Proof. This follows from the commutation relations above, along with the fact that
our 𝐿 and 𝑅 operators are anti-linear. Let us illustrate a few examples.
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Suppose 𝜆𝛼𝜇 = 1, and let 𝑣 be an eigenvector for 𝐾1 (with eigenvalue 𝜒). Then
the relation 𝐾1 ◦ 𝐿1 = 𝜇(𝐿1 ◦ 𝐾1) gives that

𝐾1 ◦ 𝐿1(𝑣) = 𝜆𝛼𝜒𝐿1(𝑣).

If 𝜆𝛼 = 1, then 𝜒 is real by Lemma 3.4, and we get that 𝐾1 ◦ 𝐿1(𝑣) = 𝜒𝐿1(𝑣).
If 𝜆𝛼 = −1, then 𝜒 is imaginary by Lemma 3.4 and we get that 𝐾1 ◦ 𝐿1(𝑣) =
−𝜒𝐿1(𝑣) = 𝜒𝐿1(𝑣). The argument for the eigenspaces of𝐾𝛼 is similar (and easier).

Suppose 𝜆𝛼𝜇 = −1, and let 𝑣 be an eigenvector for 𝐾1 (again with eigenvalue
𝜒). Now the relation 𝐾1 ◦ 𝐿1 = 𝜇(𝐿1 ◦ 𝐾1) gives that

𝐾1 ◦ 𝐿1(𝑣) = −𝜆𝛼𝜒𝐿1(𝑣).

The same argument as above shows that𝐾1 ◦ 𝐿1(𝑣) =−𝜒𝐿1(𝑣). Thus 𝐿1 exchanges
the eigenspaces of 𝐾1, which then must be 1-dimensional. In particular we must
have that 𝜒1,0 = −𝜒1,1. The same argument holds for the eigenspaces of 𝐾𝛼.

The above arguments also work verbatim for the operators 𝑅1 and 𝑅𝛼.

3.2. Centre analysis

In this subsection we will analyse the Drinfeld centre of the categories C2 in order
to pin down the values of our data 𝜒, 𝜇, and the operators 𝐿 and 𝑅.

Our main tool in this subsection is Theorem 2.2. We remind the reader that this
result states that for an object 𝑋 ∈ C, the irreducible representations 𝑉 of 𝐴𝑋→𝑋

are in bĳective correspondence with simple summands Γ𝑉 ⊂ I(𝑋) ∈ 𝑍 (C), the
dimension of Γ𝑉 is given by dim(C)

dim(𝑋) 𝑓𝑉 where 𝑓𝑉 is the formal codegree of the
representation𝑉 , and the multiplicity of 𝑌 ∈ F (Γ𝑉 ) is equal to the multiplicity of
𝑉 in the left-action of 𝐴𝑋→𝑋 on 𝐴𝑋→𝑌 .

With this tool in mind, we aim to study the tube algebra for C2:

𝐴 =

𝐴1←1 𝐴1←𝛼 𝐴1←𝜌 𝐴1←𝛼𝜌

𝐴𝛼←1 𝐴𝛼←𝛼 𝐴𝛼←𝜌 𝐴𝛼←𝛼𝜌

𝐴𝜌←1 𝐴𝜌←𝛼 𝐴𝜌←𝜌 𝐴𝜌←𝛼𝜌

𝐴𝛼𝜌←1 𝐴𝛼𝜌←𝛼 𝐴𝛼𝜌←𝜌 𝐴𝛼𝜌←𝛼𝜌

By determining the irreducible representations of the sub-algebras 𝐴𝑋←𝑋, and
their multiplicities in the left action of 𝐴𝑋←𝑋 on 𝐴𝑋←𝑌 , we can determine the
simple objects of 𝑍 (C2), and their images under the forgetful functor.

Performing this computation over all of the tube algebra is far too computa-
tionally taxing. Instead we restrict our attention to the sub-algebra

𝐴1←1 ⊕ 𝐴𝛼←𝛼 ⊕ 𝐴1←𝜌 ⊕ 𝐴𝛼←𝜌 ⊕ 𝐴1←𝛼𝜌.18



We pick the following bases for these spaces:

𝐴1←1 = span
 , , ,


𝐴1←𝜌 = span


0

,
1

,
0

,
1


𝐴1←𝛼𝜌 = span


0

,
1

,
0

,
1


𝐴𝛼←𝛼 = span


, , ,


𝐴𝛼←𝜌 = span


0 , 1 , 0 , 1


.

By direct computation we obtain that:

• The algebra 𝐴1←1 has four 1-dimensional representations, which are:

𝜒0 1 1 2 +
√

5 2 +
√

5
𝜒1 1 1 2 −

√
5 2 −

√
5

𝜒2 1 −1 1 −1
𝜒3 1 −1 −1 1

The formal codegrees of these representations are then 20 + 8
√

5, 20 − 8
√

5,
4, and 4 respectively. Hence by Theorem C the object I(1) is a direct sum of
4 simple objects 𝑋𝑖 with dimensions

dim(𝑋0) = 1, dim(𝑋1) = 9 + 4
√

5, and dim(𝑋2) = dim(𝑋3) = 5 + 2
√

5.
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• Direct computation on the basis elements of 𝐴𝛼←𝛼 gives the following multi-
plications:


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




0 1 0 0
𝜆𝛼 0 0 0
0 0 0 𝜆𝛼

0 0 1 0



0 0 1 0
0 0 0 𝜆𝛼

𝜇 0 𝜒1√
𝜆𝛼

𝜒𝛼

0 𝜆𝛼𝜇 𝜆𝛼𝜒𝛼
𝜒1√
𝜆𝛼




0 0 0 1
0 0 1 0
0 𝜆𝛼𝜇 𝜆𝛼𝜒𝛼

𝜒1√
𝜆𝛼

𝜆𝛼𝜇 0 𝜆𝛼
𝜒1√
𝜆𝛼

𝜆𝛼𝜒𝛼


where 𝜒1 :=

√
𝜆𝛼 (𝜒1,0 + 𝜒1,1) ∈ {−2,0,2} and 𝜒𝛼 := 𝜒𝛼,0 + 𝜒𝛼,1 ∈ {−2,0,2}.

Here we fix our choice of square roots so that
√
𝜆𝛼 = 1 if 𝜆𝛼 = 1, and

√
𝜆𝛼 = 𝑖

if 𝜆𝛼 = −1. From this, we determine that 𝐴𝛼←𝛼 has the four 1-dimensional
representations:

𝜏0 1
√
𝜆𝛼

𝜒1+𝜒𝛼+
√

4𝜇𝜆𝛼+(𝜒1+𝜒𝛼 )2
2
√
𝜆𝛼

𝜒1+𝜒𝛼+
√

4𝜇𝜆𝛼+(𝜒1+𝜒𝛼 )2
2

𝜏1 1
√
𝜆𝛼

𝜒1+𝜒𝛼−
√

4𝜇𝜆𝛼+(𝜒1+𝜒𝛼 )2
2
√
𝜆𝛼

𝜒1+𝜒𝛼−
√

4𝜇𝜆𝛼+(𝜒1+𝜒𝛼 )2
2

𝜏2 1 −
√
𝜆𝛼

𝜒1−𝜒𝛼+
√

4𝜇𝜆𝛼+(𝜒1−𝜒𝛼 )2
2
√
𝜆𝛼

𝜒1−𝜒𝛼+
√

4𝜇𝜆𝛼+(𝜒1−𝜒𝛼 )2
−2

𝜏3 1 −
√
𝜆𝛼

𝜒1−𝜒𝛼−
√

4𝜇𝜆𝛼+(𝜒1−𝜒𝛼 )2
2
√
𝜆𝛼

𝜒1−𝜒𝛼−
√

4𝜇𝜆𝛼+(𝜒1−𝜒𝛼 )2
−2

Hence by Theorem C the object I(𝛼) is a direct sum of 4 simple objects 𝑌𝑖
with dimensions

dim(𝑌0) =
dim(C)

2 + 1
2

���𝜒1 + 𝜒𝛼 +
√︁

4𝜇𝜆𝛼 + (𝜒1 + 𝜒𝛼)2
���2

dim(𝑌1) =
dim(C)

2 + 1
2

���𝜒1 + 𝜒𝛼 −
√︁

4𝜇𝜆𝛼 + (𝜒1 + 𝜒𝛼)2
���2

dim(𝑌2) =
dim(C)

2 + 1
2

���𝜒1 − 𝜒𝛼 +
√︁

4𝜇𝜆𝛼 + (𝜒1 − 𝜒𝛼)2
���2

dim(𝑌3) =
dim(C)

2 + 1
2

���𝜒1 − 𝜒𝛼 −
√︁

4𝜇𝜆𝛼 + (𝜒1 − 𝜒𝛼)2
���2

From [23, Lemma 5.4] we have that 𝑡 · 𝑝𝜏𝑖 = 𝜃𝑌𝑖 𝑝𝜏𝑖 where 𝑝𝜏𝑖 =
∑

𝑏 𝜏(𝑏)𝑏∗ ∈
𝐴𝛼←𝛼 is the minimal central idempotent corresponding to 𝜏𝑖 , and in our case,
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the operator 𝑡 is simply right multiplication by the 2nd basis element. Hence
we have that

𝜃𝑌0 = 𝜃𝑌1 = 𝜆𝛼
√︁
𝜆𝛼 and 𝜃𝑌2 = 𝜃𝑌3 = −𝜆𝛼

√︁
𝜆𝛼.

• Let 𝑍𝑖 be the remaining simple objects ofZ(C2). Then

F (𝑍𝑖) = 𝑝𝑖𝜌 ⊕ 𝑞𝑖𝛼𝜌

for some 𝑝𝑖 , 𝑞𝑖 ∈ N. Further

dim Hom(I(𝜌),I(𝜌)) = 20 = dim Hom(I(𝛼𝜌),I(𝛼𝜌))
dim Hom(I(𝛼𝜌),I(𝜌)) = 16.

• Let 1𝜋𝜌 be the action of 𝐴1←1 on 𝐴1←𝜌. Then

1𝜋𝜌

( )
=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


, 1𝜋𝜌

( )
=

[
𝜙 𝜙′

𝜙′ 𝜙

]
, and 1𝜋𝜌

©­« ª®¬ =

[
𝜙′ 𝜙

𝜙 𝜙′

]

where 𝜙 and 𝜙′ are the operators on Hom(𝜌 ⊗ 𝜌 ← 𝜌) defined by

𝜙

(
𝑖

)
=

∑︁
𝑗

𝑗

𝑗

𝑖

𝜙′

(
𝑖

)
=

∑︁
𝑗

𝑗

𝑗

𝑖

which we can identify as operators on the two spaces:

{
0

,
1

}
and


0

,
1


by local insertion, i.e., the elements of 𝐴1←1 which involve 𝜙, 𝜙′ above act on
𝐴1←𝜌 by applying 𝜙, 𝜙′ locally on the trivalent vertices in our standard basis
of 𝐴1←𝜌.
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• Let 1𝜋𝛼𝜌 be the action of 𝐴1←1 on 𝐴1←𝛼𝜌. Then

1𝜋𝛼𝜌

( )
=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


1𝜋𝛼𝜌

( )
=

[
𝜓′ 𝜓

𝜓 𝜓′

]
and 1𝜋𝛼𝜌

©­« ª®¬ =

[
𝜓 𝜓′

𝜓′ 𝜓

]

where 𝜓 and 𝜓′ are the operators on Hom(𝜌 ⊗ 𝜌 → 𝛼𝜌) defined by

𝜓

(
𝑖

)
=

∑︁
𝑗

𝑗

𝑗

𝑖

𝜓′

(
𝑖

)
=

∑︁
𝑗

𝑗

𝑗

𝑖
.

As before, we can naturally identify 𝜓, 𝜓′ as operators on the following two
spaces by local insertion:


0

,
1

 and


0

,
1


.

• Denoting by 𝛼𝜋𝜌 the action of 𝐴𝛼→𝛼 on 𝐴𝛼←𝜌, we have

𝛼𝜋𝜌
©­« ª®¬ =


0 0 1 0
0 0 0 1
𝜆𝛼 0 0 0
0 𝜆𝛼 0 0


.

We begin by analyising the corner of the tube algebra 𝐴1←1, and its actions on
𝐴1←𝜌 and 𝐴1←𝛼𝜌. This gives us the following result.

Lemma 3.8. There exists 𝑏 ∈ {0, 1, 2} such that

F (𝑋0) = 1
F (𝑋1) = 1 ⊕ 2𝜌 ⊕ 2𝛼𝜌
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F (𝑋2) = 1 ⊕ 𝑏𝜌 ⊕ (2 − 𝑏)𝛼𝜌
F (𝑋3) = 1 ⊕ (2 − 𝑏)𝜌 ⊕ 𝑏𝛼𝜌.

Furthermore, if 𝑏 ∈ {0, 2}, then the operators 𝜙 and 𝜓 are both the same scalar

𝜙 = 𝜓 =
1 + 𝑏 −

√
5

2
,

and if 𝑏 = 1, the the operators 𝜙 and 𝜓 have the two eigenvalues 1−
√

5
2 and 3−

√
5

2 .

Proof. First note that as 𝑋0 is the tensor unit of 𝑍 (C), we have that 1𝜋𝜌 and 1𝜋𝛼𝜌
contain no copies of 𝜒0. From the above computations, we have that

Tr
(
1𝜋𝜌

( ))
= 0.

As 1𝜋𝜌 is 4-dimensional, and 𝜒0 is not a sub-representation, we must have that

1𝜋𝜌 � 2𝜒1 ⊕ 𝑏𝜒2 ⊕ (2 − 𝑏)𝜒3 where 𝑏 ∈ {0, 1, 2}.

Thus F (𝑋1) contains two copies of 𝜌, and a dimension count shows that

F (𝑋1) = 1 ⊕ 2𝜌 ⊕ 2𝛼𝜌.

From this we can deduce three possibilities for the restrictions of 𝑋2 and 𝑋3.

Case 1: F (𝑋2) = F (𝑋3) = 1 ⊕ 𝜌 ⊕ 𝛼𝜌, in which case 1𝜋𝜌 � 1𝜋𝛼𝜌 � 2𝜒1 ⊕
𝜒2 ⊕ 𝜒3, and in particular

Tr
(
1𝜋𝜌

( ))
= 4 − 2

√
5,

Case 2: F (𝑋2) = 1 ⊕ 2𝜌 and F (𝑋3) = 1 ⊕ 2𝛼𝜌, in which case 1𝜋𝜌 � 2𝜒1 ⊕
2𝜒2 and 1𝜋𝛼𝜌 = 2𝜒1 ⊕ 2𝜒3, and in particular

Tr
(
1𝜋𝜌

( ))
= 6 − 2

√
5,

Case 3: F (𝑋2) = 1 ⊕ 2𝛼𝜌 andF (𝑋3) = 1 ⊕ 2𝜌, in which case 1𝜋𝜌 = 2𝜒1 + 2𝜒3
and 1𝜋𝛼𝜌 = 2𝜒1 + 2𝜒2, and in particular

Tr
(
1𝜋𝜌

( ))
= 2 − 2

√
5.
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We now aim to deduce more information about the operator 𝜓. Note that

𝑧1 :=
1

dim(C)
©­« + + (2 +

√
5) + (2 +

√
5) ª®¬

is the minimal central idempotent corresponding to the representation 𝜒0. i.e. 𝑧1 ·
𝑥 = 𝜒0(𝑥) · 𝑧1. As 1𝜋𝜌 contains no copies of 𝜒0, we get 1𝜋𝜌 (𝑧1) = 0, and so[

1 0
0 1

]
+

(
2 +
√

5
)
(𝜙 + 𝜙′) = 0 =⇒ 𝜙′ = −

(
𝜙 +

[ 1
2+
√

5
0

0 1
2+
√

5

])
.

To solve for 𝜙, we use the fusion rule 𝜌2 = 1 ⊕ 2𝜌 ⊕ 2𝛼𝜌 to get

𝜙2 +
(√

5 − 2
)
𝜙 =

[ 1
2+
√

5
0

0 1
2+
√

5

]
.

Together with knowing the trace of 1𝜋𝜌 (𝜌) in each of the above cases, we can solve
to get the statement of the lemma.

To obtain the statement about 𝜓 we repeat the above analysis with 1𝜋𝛼𝜌.

This completes our analysis of I(1). We now analyse the object I(𝛼). Our
first goal is to show that the object 𝛼 never lifts to the centre. To begin we prove
the following lemma.

Lemma 3.9. Suppose that 𝛼 has a lift to the centreZ(C2). Then 𝑏 = 1.

Proof. For a contradiction, suppose that 𝑏 = 2.
By a relabeling we can assume that 𝑌0 is a lift of 𝛼 to Z(C2), and that 𝑌𝑖 =

𝑌0 ⊗ 𝑋𝑖 . AsF is a ⊗-functor, this gives usF (𝑌𝑖) in terms of the 𝑏 from Lemma 3.8.
We then have

I(𝜌) = 2𝑋1 ⊕ 2𝑋2 ⊕ 2𝑌1 ⊕ 2𝑌3
⊕

𝑝𝑖𝑍𝑖

I(𝛼𝜌) = 2𝑋1 ⊕ 2𝑋3 ⊕ 2𝑌1 ⊕ 2𝑌2
⊕

𝑞𝑖𝑍𝑖 .

This gives us that

20 = dim Hom(I(𝜌),I(𝜌)) = 16 +
∑︁

𝑝2
𝑖

20 = dim Hom(I(𝛼𝜌),I(𝛼𝜌)) = 16 +
∑︁

𝑞2
𝑖

16 = dim Hom(I(𝜌),I(𝛼𝜌)) = 8 +
∑︁

𝑝𝑖𝑞𝑖 .
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Hence ∑︁
𝑝2
𝑖 = 4 =

∑︁
𝑞2
𝑖 and

∑︁
𝑝𝑖𝑞𝑖 = 8

which is impossible.
The contradiction when 𝑏 = 0 is nearly identical.

With this lemma in hand, we can now show that 𝛼 never lifts to the centre.

Lemma 3.10. The object 𝛼 does not have a lift to the centre.

Proof. For a contradiction, suppose that 𝛼 lifts to the centre. We have two cases
depending on the value of 𝜆𝛼.

First suppose 𝜆𝛼 = 1. From Lemma 3.9 we have that 𝑏 = 1, the same style of
argument from the proof of this Lemma shows that

I(𝜌) = 2𝑋1 ⊕ 𝑋2 ⊕ 𝑋3 ⊕ 2𝑌1 ⊕ 𝑌2 ⊕ 𝑌3 ⊕
⊕

𝑝𝑖𝑍𝑖

I(𝛼𝜌) = 2𝑋1 ⊕ 𝑋2 ⊕ 𝑋3 ⊕ 2𝑌1 ⊕ 𝑌2 ⊕ 𝑌3 ⊕
⊕

𝑞𝑖𝑍𝑖

with ∑︁
𝑝2
𝑖 = 8 =

∑︁
𝑞2
𝑖 and

∑︁
𝑝𝑖𝑞𝑖 = 4.

In particular ∑︁
𝑝𝑖 (𝑝𝑖 + 𝑞𝑖) = 12.

We now use the Ng-Schauenburg formula for the 2nd Frobenius-Schur indicator
of 𝜌 to obtain

𝜆𝜌 dim(C2) = 2(1 + 4𝑑) (𝜃2
𝑋1
+ 𝜃2

𝑌1
) + (1 + 2𝑑) (𝜃2

𝑋2
+ 𝜃2

𝑌2
+ 𝜃2

𝑋2
+ 𝜃2

𝑌3
)

+
∑︁

𝑝𝑖 (𝑝𝑖 + 𝑞𝑖)𝑑𝜃2
𝑍𝑖

= 8 + 24𝑑 +
∑︁

𝑝𝑖 (𝑝𝑖 + 𝑞𝑖)𝑑𝜃2
𝑍𝑖
.

For either case of 𝜆𝜌, we have that |∑ 𝑝𝑖 (𝑝𝑖 + 𝑞𝑖)𝜃2
𝑍𝑖
| ≥ 4
√

5 + 8 > 12. Hence 𝛼
can not have a lift in this case.

Now suppose that 𝜆𝛼 = −1. By analyising the dimensions formulas for𝑌𝑖 over
all the different cases of 𝜇, 𝜒1, and 𝜒𝛼, we see that 𝛼 can only lift if 𝜇 = −1, and
|𝜒1 | = |𝜒𝛼 | = 2. In this case, we have that the other𝑌𝑖 have dimensions 9 + 4

√
5 and

5 + 2
√

5 occuring twice. Furthermore, we see that the dimension 1 object and the
dimension 9 + 4

√
5 object have same twist. Hence by relabeling, we may assume

dim(𝑌0) = 1 dim(𝑌1) = 9 + 4
√

5 dim(𝑌2) = dim(𝑌3) = 5 + 2
√

5
𝜃𝑌0 = 𝜃𝑌1 = ±i 𝜃𝑌2 = 𝜃𝑌3 = ∓i 𝑌𝑖 = 𝑌0 ⊗ 𝑋𝑖 .
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As 𝜃𝑌0 = ±i we have that ⟨𝑋0, 𝑌0⟩ is a modular subcategory of Z(C2). Hence
Z(C2) factors asZ(C2)0 ⊠ ⟨𝑋0, 𝑌0⟩. Note that we have a simple𝑊 ∈ Z(C2)0 iff
𝜃𝑊⊗𝑌0 = 𝜃𝑊𝜃𝑌0 . This implies that {𝑋0, 𝑋1,𝑌2,𝑌3} ∈ Z(C2)0, and {𝑋2, 𝑋3,𝑌0,𝑌1} ∈
Z(C2)0 ⊗ 𝑌0. Let us write {𝑍𝑖}𝑖∈Λ0 for the remaining simple objects of Z(C2)
which live inZ(C2)0. We then have

I(𝜌) = 2𝑋1 ⊕ 𝑋2 ⊕ 𝑋3 ⊕ 2𝑌1 ⊕ 𝑌2 ⊕ 𝑌3 ⊕
⊕
𝑖∈Λ0

𝑝𝑖𝑍𝑖 ⊕
⊕
𝑖∈Λ0

𝑞𝑖𝑌0 ⊗ 𝑍𝑖

I(𝛼𝜌) = 2𝑋1 ⊕ 𝑋2 ⊕ 𝑋3 ⊕ 2𝑌1 ⊕ 𝑌2 ⊕ 𝑌3 ⊕
⊕
𝑖∈Λ0

𝑞𝑖𝑍𝑖 ⊕
⊕
𝑖∈Λ0

𝑝𝑖𝑌0 ⊗ 𝑍𝑖 .

From 20 = dim Hom(I(𝜌),I(𝜌)) and 16 = dim Hom(I(𝛼𝜌),I(𝜌)) we obtain∑︁
𝑖∈Λ0

𝑝2
𝑖 + 𝑞2

𝑖 = 8 and
∑︁
𝑖∈Λ0

2𝑝𝑖𝑞𝑖 = 4.

Hence ∑︁
𝑖∈Λ0

(𝑝𝑖 + 𝑞𝑖)2 = 12 and
∑︁
𝑖∈Λ0

(𝑝𝑖 − 𝑞𝑖)2 = 4.

By Cauchy-Schwarz applied to the vectors (𝑝𝑖 + 𝑞𝑖)𝑖 and ( |𝑝𝑖 − 𝑞𝑖 |)𝑖 ,∑︁
𝑖∈Λ0

|𝑝𝑖 − 𝑞𝑖 |2 =
∑︁
𝑖∈Λ0

(𝑝𝑖 + 𝑞𝑖) |𝑝𝑖 − 𝑞𝑖 | ≤
√

12 · 4 = 4
√

3.

Again we use the Ng-Schauenburg formula for the 2nd Frobenius-Schur indicator
of 𝜌 to obtain

𝜆𝜌 dim(C2) = 2(1 + 4𝑑) (𝜃2
𝑋1
+ 𝜃2

𝑌1
) + (1 + 2𝑑) (𝜃2

𝑋2
+ 𝜃2

𝑌2
+ 𝜃2

𝑋2
+ 𝜃2

𝑌3
)

+
∑︁
𝑖∈Λ0

𝑝𝑖 (𝑝𝑖 + 𝑞𝑖)𝑑𝜃2
𝑍𝑖
+

∑︁
𝑖∈Λ0

𝑞𝑖 (𝑝𝑖 + 𝑞𝑖)𝑑𝜃2
𝑌0⊗𝑍𝑖

=
∑︁
𝑖∈Λ0

(𝑝2
𝑖 − 𝑞2

𝑖 )𝑑𝜃2
𝑍𝑖
.

From this we obtain ∑︁
𝑖∈Λ0

|𝑝2
𝑖 − 𝑞2

𝑖 | ≥
dim(C2)

𝑑
= 4
√

5.

Hence 𝛼 can not have a lift in this case.

We can now deduce that both 𝜒1 and 𝜒𝛼 are 0. That is 𝜒1,1 = −𝜒1,2 and 𝜒𝛼,1 =
−𝜒𝛼,2.
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Lemma 3.11. We have that 𝜒1,0 = −𝜒1,1 and 𝜒𝛼,0 = −𝜒𝛼,1. In particular, we may
assume that 𝜒1,0 =

√
𝜆𝛼, 𝜒1,1 = −

√
𝜆𝛼, 𝜒𝛼,0 = 1, and 𝜒𝛼,1 = −1.

Proof. If𝜆𝛼𝜇 =−1, then we have the first statement of the lemma from Lemma 3.7.
Hence we can assume that 𝜆𝛼𝜇 = 1.

First consider the case that |𝜒1 | = |𝜒𝛼 | = 2. Then the earlier dimension formulas
for dim(𝑌𝑖) show that one of these dimensions is 1, which implies that 𝛼 lifts to
the centre. But this contradicts Lemma 3.10.

In the case that 𝜒1 = 0 and |𝜒𝛼 | = 2, or |𝜒1 | = 2 and 𝜒𝛼 = 0, then one of the
𝑌𝑖’s has dimension 5+2

√
5

2+
√

2
, which is impossible.

The only remaining case is that 𝜒1 = 0 and 𝜒𝛼 = 0 which implies the first
statement of the lemma.

As 𝜒2
1,𝑖 = 𝜆𝛼 and 𝜒2

𝛼,𝑖
= 1, we may reorder our basis to give the statement of

the lemma.

As a result of the above Lemma, we know that the eigenspaces of 𝐾1 and 𝐾𝛼

are 1-dimensional. We can pair this information with Lemma 3.7 to obtain the
action of the 𝐿 and 𝑅 operators on our eigenbasis.

Lemma 3.12. The basis of the spaces C2(𝜌 ⊗ 𝜌→ 𝜌) and C2(𝜌 ⊗ 𝜌→ 𝛼𝜌) from
Lemma 3.4 can be chosen so that

𝑅1

(
𝑖

)
= 𝜆𝑖𝜌 𝑖̃ 𝑅𝛼

(
𝑖

)
= (𝜆𝜌𝜇)𝑖 𝑖̃

𝐿1

(
𝑖

)
= 𝜆𝑖+1𝜌 𝜔−1

1,𝑖 𝑖̃ 𝐿𝛼

(
𝑖

)
= (𝜆𝜌𝜇)𝑖+1𝜔−1

𝛼,𝑖 𝑖̃

where 𝑖 ↦→ 𝑖 is an order two involution on the indexing set {0, 1}. If 𝜆𝛼𝜇 = 1 then
0̃ = 0 and 1̃ = 1. If 𝜆𝛼𝜇 = −1 then 0̃ = 1 and 1̃ = 0, and in this case we have that
𝜔1,0 = 𝜔1,1 and 𝜔𝛼,0 = 𝜔𝛼,1. Furthermore, if 𝜆𝜌 = −1, then 𝜆𝛼𝜇 = −1, and if
𝜇𝜆𝜌 = −1, then 𝜆𝛼𝜇 = −1.

We are free to exchange our distinguished basis elements, and to rescale them
by

𝑖 ↦→ 𝑧1,𝑖 𝑖 𝑖 ↦→ 𝑧1,𝑖 𝑖 𝑧1,𝑖 ∈ 𝑈 (1)

𝑖 ↦→ 𝑧𝛼,𝑖 𝑖 𝑖̃ ↦→ 𝑧𝛼,𝑖 𝑖̃ 𝑧𝛼,𝑖 ∈ 𝑈 (1).
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Proof. Let us begin with the operator 𝑅1. In the case of 𝜆𝛼𝜇 = 1 we have from
Lemma 3.7 that 𝑅1 preserves the eigenspaces of 𝐾1. As these eigenspaces are 1-
dimensional by Lemma 3.11 we have that 𝑅1 is of the form (using linear operator
notation, even though 𝑅1 is anti-linear)

𝑅1 =

[
𝑅1

0,0 0
0 𝑅1

1,1

]
.

As (𝑅1)4 = 1, we have that these coefficients are elements of𝑈 (1), and as 𝑅1 is anti
linear, we can rescale out two basis vectors by

√︃
𝑅1

0,0 ∈ 𝑈 (1) and
√︃
𝑅1

1,1 ∈ 𝑈 (1) to
arrange that both these coefficients are 1. Note that this rescaling does not affect
the relations of Lemma 3.4 as the operators 𝐾1 and 𝑅1 ◦ 𝐿1 are linear.

In the case of 𝜆𝛼𝜇 = −1 we have from Lemma 3.7 that 𝑅1 exchanges the eigen-
spaces of 𝐾1. We thus have that 𝑅1 is of the form

𝑅1 =

[
0 𝑅1

0,1
𝑅1

1,0 0

]
.

By choosing our second basis vector as the image under 𝑅1 of the first, we arrange
that 𝑅1

0,1 = 1. Again, this doesn’t affect the relations of Lemma 3.4 as 𝑅1 is unitary.
We now use the relation (𝑅1)2 = 𝜆𝜌 to see that 𝑅1

1,0 = 𝜆𝜌.
Together these give the action of 𝑅1 as in the statement of the lemma. The

action of 𝐿1 follows from the action of 𝑅1 ◦ 𝐿1 from Lemma 3.4, along with the
relation 𝑅1)2 = 𝜆𝜌. In the case of 𝜆𝛼𝜇 = −1, we can perform that same argument
on 𝐿1 ◦ 𝑅1 = (𝑅1 ◦ 𝐿1)−1 to see that 𝜔1,0 = 𝜔1,1.

Finally, from the relation (𝑅1)2 = 𝜆𝜌, we can see that if 𝜆𝜌 = −1, then only the
case 𝜆𝛼𝜇 = −1 is possible.

The same analysis on the operators 𝑅𝛼 and 𝐿𝛼 gives the remaining statement
of the lemma.

Now that we have pinned down 𝜒1 and 𝜒𝛼, we can describe the objects 𝑌𝑖 ⊂
I(𝛼) in more detail.

Lemma 3.13. We have that

F (𝑌0) = 𝛼 ⊕ 𝑐0𝜌 ⊕ (2 − 𝑐0)𝛼𝜌
F (𝑌1) = 𝛼 ⊕ (2 − 𝑐0)𝜌 ⊕ 𝑐0𝛼𝜌

F (𝑌2) = 𝛼 ⊕ 𝑐2𝜌 ⊕ (2 − 𝑐2)𝛼𝜌
F (𝑌3) = 𝛼 ⊕ (2 − 𝑐2)𝜌 ⊕ 𝑐2𝛼𝜌.

where 𝑐0, 𝑐2 ∈ {0, 1, 2}.
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Proof. As 𝜒1,1 = −𝜒1,2 and 𝜒𝛼,1 = −𝜒𝛼,2, we have that 𝜒1 = 𝜒𝛼 = 0, and so each
of the objects 𝑌𝑖 has dimension 5 + 2

√
5. We thus have

F (𝑌0) = 𝛼 ⊕ 𝑐0𝜌 ⊕ (2 − 𝑐0)𝛼𝜌
F (𝑌1) = 𝛼 ⊕ 𝑐1𝜌 ⊕ (2 − 𝑐1)𝛼𝜌
F (𝑌2) = 𝛼 ⊕ 𝑐2𝜌 ⊕ (2 − 𝑐2)𝛼𝜌
F (𝑌3) = 𝛼 ⊕ 𝑐3𝜌 ⊕ (2 − 𝑐3)𝛼𝜌.

For some integers 𝑐𝑖 ∈ {0, 1, 2}.
From the computations in Subsection 3.2 determining the matrix for the oper-

ator 𝛼𝜋𝜌, we see that

Tr ©­«𝛼𝜋𝜌 ©­« ª®¬ª®¬ = 0.

On the other hand from Theorem C we have that

𝛼𝜋𝜌 � 𝑐0𝜏0 ⊕ 𝑐1𝜏1 ⊕ 𝑐2𝜏2 ⊕ 𝑐3𝜏3.

From the earlier tube algebra computations, we know the value of the represent-

ations 𝜏𝑖 on the element . In particular, we know the trace of this value.

As traces are preserved under direct sums, we obtain that 𝑐0 + 𝑐1 − 𝑐2 − 𝑐3 = 0.
From the formula dim Hom(𝛼,RI(𝜌)) = dim Hom(I(𝛼),I(𝜌)) = 4, we obtain
𝑐0 + 𝑐1 + 𝑐2 + 𝑐3 = 4. Together we get the statement of the lemma.

With the restrictions of the objects 𝑋𝑖 and 𝑌𝑖 now understood, we can give a
fairly explicit formula for the even Frobenius-Schur indicators of 𝜌. This formula
will come in handy at several points later in this article.

Lemma 3.14. We have that

𝜈2𝑛 (𝜌) dim(C) = 28 + 12
√

5 + 𝜆𝑛𝛼 (20 + 8
√

5) + (2 +
√

5)
∑︁

𝑝𝑖 (𝑝𝑖 + 𝑞𝑖)𝜃2𝑛
𝑍𝑖
,

where 𝑝𝑖 and 𝑞𝑖 are integers satisfying
∑
𝑝𝑖 (𝑝𝑖 + 𝑞𝑖) = 16, and the 𝜃𝑍𝑖

are roots
of unity.

Proof. From Lemmas 3.8 and 3.13, we know the image under the forgetful functor
of each of the simple objects appearing inI(1) andI(𝛼), up to some small integers
𝑏, 𝑐0, 𝑐2. Then we can write

I(𝜌) = 2𝑋1 ⊕ 𝑏𝑋2 ⊕ (2 − 𝑏)𝑋3 ⊕ 𝑐0𝑌0 ⊕ (2 − 𝑐0)𝑌1 ⊕ 𝑐2𝑌2 ⊕ (2 − 𝑐2)𝑌329



⊕
⊕

𝑝𝑖𝑍𝑖

I(𝛼𝜌) = 2𝑋1 ⊕ (2 − 𝑏)𝑋2 ⊕ 𝑏𝑋3 ⊕ (2 − 𝑐0)𝑌0 ⊕ 𝑐0𝑌1 ⊕ (2 − 𝑐2)𝑌2 ⊕ 𝑐2𝑌3

⊕
⊕

𝑞𝑖𝑍𝑖 .

Using the fact that F (I(𝜌)) �
⊕

𝑋∈Irr(C) 𝑋𝜌𝑋
∗ we obtain

20 = dim Hom(I(𝜌),I(𝜌)) = 4 + 𝑏2 + (2 − 𝑏)2 + 𝑐2
0 + (2 − 𝑐0)2 + 𝑐2

2 + (2 − 𝑐2)2

+
∑︁

𝑝2
𝑖

16 = dim Hom(I(𝛼𝜌),I(𝜌)) = 4 + 2𝑏(2 − 𝑏) + 2𝑐0(2 − 𝑐0) + 2𝑐2(2 − 𝑐2)

+
∑︁

𝑝𝑖𝑞𝑖 ,

so 36 = dim Hom(I(𝜌 ⊕ 𝛼𝜌),I(𝜌)) = 20 +∑
𝑝2
𝑖
+∑

𝑝𝑖𝑞𝑖 , and thus
∑
𝑝𝑖 (𝑝𝑖 +

𝑞𝑖) = 16.
We have from the earlier computations that 𝜃2

𝑋𝑖
= 1 and 𝜃2

𝑌𝑖
= 𝜆𝛼. We can use

the Ng-Shauenburg formula for the 2n-th Frobenius-Schur indicator [42, Theorem
4.1] to obtain

𝜈2𝑛 (𝜌) dim(C) =
∑︁

𝑊∈𝑍 (C)
dim Hom(F (𝑊) → 𝜌) dim(𝑊)𝜃2𝑛

𝑊

= 28 + 12
√

5 + 𝜆𝑛𝛼 (20 + 8
√

5) + (2 +
√

5)
∑︁

𝑝𝑖 (𝑝𝑖 + 𝑞𝑖)𝜃2𝑛
𝑍𝑖
.

We finish this subsection by showing that 𝜇 = 1 in all cases.

Lemma 3.15. We have that 𝜇 = 1.

Proof. First suppose that 𝜆𝛼 = 𝜇, and for a contradiction suppose that 𝜇 = −1,
so that 𝜆𝛼 = −1. We thus have that one of 𝜆𝜌 or 𝜇𝜆𝜌 is −1. We thus get from
Lemma 3.12 that 𝜆𝛼𝜇 = −1 which is our contradiction.

Now suppose 𝜆𝛼 = −𝜇, and for a contradiction suppose that 𝜇 = −1, so that
𝜆𝛼 = 1. As 𝜇 = −1, we can exchange 𝜌 and 𝛼𝜌 if necessary to arrange 𝜆𝜌 = −1 (as
a direct computation shows 𝜈2(𝜌) = 𝜇 · 𝜈2(𝛼𝜌)).

We can now use Lemma 3.14, along with the fact that the 2nd Frobenius-Schur
indicator of 𝜌 is 𝜆𝜌 to get the equation

−20 − 8
√

5 = 48 + 20
√

5 + (2 +
√

5)
∑︁

𝑝𝑖 (𝑝𝑖 + 𝑞𝑖)𝜃2
𝑍𝑖
,

where
∑
𝑝𝑖 (𝑝𝑖 + 𝑞𝑖) = 16. Thus∑︁

𝑝𝑖 (𝑝𝑖 + 𝑞𝑖)𝜃2
𝑍𝑖

= −4 − 12
√

5.

However Theorem A.26 implies that it takes at least 12𝜙(10) = 48 roots of unity
to write −4 − 12

√
5, contradicting

∑
𝑝𝑖 (𝑝𝑖 + 𝑞𝑖) = 16. Hence 𝜇 = 1.
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3.3. Sufficient relations to evaluate closed diagrams

In this subsection, we will introduce several more 6-j style local relations in our
category C2, and furthermore show that the full collection of relations described
completely determine the category C2. We will do this via the standard technique
of showing that our relations suffice to evaluate every endomorphism of the tensor
unit to a scalar. These additional local relations will be determined by 8𝑚4 complex
scalars 𝐴𝑖, 𝑗

𝑘,ℓ
, 𝐵

𝑖, 𝑗

𝑘,ℓ
,𝐶

𝑖, 𝑗

𝑘,ℓ
, 𝐷

𝑖, 𝑗

𝑘,ℓ
, 𝐴

𝑖, 𝑗

𝑘,ℓ
, 𝐵

𝑖, 𝑗

𝑘,ℓ
,𝐶

𝑖, 𝑗

𝑘,ℓ
, 𝐷

𝑖, 𝑗

𝑘,ℓ
∈ C for 0 ≤ 𝑖, 𝑗 , 𝑘, ℓ < 2. These

complex scalars are entries of the 𝐹-tensors 𝐹𝜌,𝜌,𝜌
𝜌 , 𝐹

𝜌,𝜌,𝜌
𝛼𝜌 , 𝐹

𝛼𝜌,𝜌,𝜌
𝜌 , and 𝐹𝛼𝜌,𝜌,𝜌

𝛼𝜌 .

3.3.1. Jellyfish relations.

Lemma 3.16 (𝜌 Jellyfish). There exist scalars

𝐴
𝑖, 𝑗

𝑘,ℓ
, 𝐵

𝑖, 𝑗

𝑘,ℓ
, 𝐶

𝑖, 𝑗

𝑘,ℓ
, 𝐷

𝑖, 𝑗

𝑘,ℓ
, 𝐴

𝑖, 𝑗

𝑘,ℓ
, 𝐵

𝑖, 𝑗

𝑘,ℓ
, 𝐶

𝑖, 𝑗

𝑘,ℓ
, 𝐷

𝑖, 𝑗

𝑘,ℓ
∈ C 0 ≤ 𝑖, 𝑗 , 𝑘, ℓ < 2

such that the following local relations hold in C2:

𝜌 𝜌

𝜌

=
𝜆𝜌

𝑑
+

∑︁
𝑖

𝜆𝑖𝜌
𝑖

𝑖̃ + (𝜆𝜌)𝑖
𝑖

𝑖̃

𝜌 𝜌 𝜌

𝜌

ℓ =
𝜆ℓ+1𝜌 𝜔1,ℓ

𝑑
ℓ̃ +

𝜆𝜌

𝜔1,ℓ
ℓ

+
∑︁
𝑖, 𝑗 ,𝑘

𝐴
𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖

+ 𝐵𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖

+ 𝐶𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖

+ 𝐷𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖

𝛼 𝜌 𝜌 𝜌

𝛼 𝜌

ℓ =
𝜆ℓ+1𝜌 𝜔𝛼,ℓ

𝑑
ℓ̃ +

𝜆𝜌

𝑑𝜔𝛼,ℓ
ℓ

+
∑︁
𝑖, 𝑗 ,𝑘

𝐴
𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖

+ 𝐵𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖

+ 𝐶𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖

+ 𝐷𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖
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Proof. We provide the proof for the third relation, and the other two are left to the
reader. We compute

𝛼 𝜌 𝜌 𝜌

𝛼 𝜌

ℓ =
1
𝑑

ℓ +
∑︁
𝑖

ℓ

𝑖

𝑖

+ ℓ

𝑖

𝑖

=
𝜇

𝑑

ℓ +
∑︁
𝑖

ℓ

𝑖

𝑖

+ ℓ

𝑖

𝑖

=
𝜇2

𝑑

ℓ 𝐿𝛼 (ℓ )∗ +
∑︁
𝑖

1
𝑑 ℓ

𝑖

𝑖︸     ︷︷     ︸
=0 by (3.2)

+ 1
𝑑 ℓ

𝑖

𝑖

+
∑︁
𝑖,𝑘

ℓ

𝑖

𝑖

𝑘

𝑘

+ ℓ

𝑖

𝑖

𝑘

𝑘

+ ℓ

𝑖

𝑖

𝑘

𝑘

+ ℓ

𝑖

𝑖

𝑘

𝑘

=
𝜆ℓ+1𝜌 𝜔𝛼,ℓ

𝑑
ℓ̃ +

𝜆𝜌

𝑑

∑︁
𝑖

ℓ

𝑖

𝑖

(3.17)

+
∑︁
𝑖, 𝑗 ,𝑘

𝐴
𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖

+ 𝐵𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖

+ 𝐶𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖

+ 𝐷𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖

For the final four sums of diagrams after the
∑

𝑖,𝑘 before the final equality above,
we express each of the sub-diagrams in the dotted blue boxes in terms of our chosen
basis forC2(𝜌2→ 𝜌) andC2(𝜌2→ 𝛼𝜌). For instance, for the diagram directly after
the

∑
𝑖,𝑘 , the sub-diagram in the blue box lives in C2(𝛼𝜌2→ 𝜌) � C2(𝜌2→ 𝛼𝜌),

so the sub-diagram can be expressed as a linear combination of 4-valent vertices.
The coefficients 𝐴𝑖, 𝑗

𝑘,ℓ
, 𝐵

𝑖, 𝑗

𝑘,ℓ
, 𝐶

𝑖, 𝑗

𝑘,ℓ
, 𝐷

𝑖, 𝑗

𝑘,ℓ
then arise as arbitrary basis coefficients.
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For the second diagram in the last line above, we used the relation that for
𝑓 ∈ C2(𝜌2 → 𝛼𝜌),

𝑓 = (𝐿𝛼◦𝑅𝛼 ) ( 𝑓 ) (3.17)

which can be verified by a straightforward diagrammatic calculation. We then use
the relation in Lemma 3.4 to obtain (𝐿𝛼 ◦ 𝑅𝛼) ( 𝑓 ). We leave the final simplification
of this second diagram using the 𝛼 Jellyfish Relation of Lemma 3.4 to the reader.

Remark 3.18. Recall that the associator 𝐹-tensors of a unitary fusion category
are determined by the formula

𝑍𝑌𝑋

𝑈

𝑊

ℓ

𝑘

=
∑︁

𝑉∈Irr(C)
0≤𝑖<dim Hom(𝑋⊗𝑌→𝑉 )
0≤ 𝑗<dim Hom(𝑉⊗𝑍→𝑊 )

(
𝐹
𝑋,𝑌 ,𝑍

𝑊

) (𝑉 ;𝑖, 𝑗 )

(𝑈;𝑘,𝑙)

𝑍𝑌𝑋

𝑉

𝑊

𝑖

𝑗

.

We have the following identification between the above 128 complex scalars and
certain 𝐹-tensors of the category C2:

𝐴
𝑖, 𝑗

𝑘,ℓ
=

(
𝐹
𝜌,𝜌,𝜌
𝜌

) (𝜌;𝑖, 𝑗 )
(𝜌;𝑘,ℓ ) 𝐴

𝑖, 𝑗

𝑘,ℓ
=

(
𝐹

𝛼𝜌,𝜌,𝜌
𝛼𝜌

) (𝜌;𝑖, 𝑗 )
(𝛼𝜌;𝑘,ℓ )

𝐵
𝑖, 𝑗

𝑘,ℓ
=

(
𝐹
𝜌,𝜌,𝜌
𝜌

) (𝛼𝜌;𝑖, 𝑗 )
(𝜌;𝑘,ℓ ) 𝐵

𝑖, 𝑗

𝑘,ℓ
=

(
𝐹

𝛼𝜌,𝜌,𝜌
𝛼𝜌

) (𝛼𝜌;𝑖, 𝑗 )
(𝛼𝜌;𝑘,ℓ )

𝐶
𝑖, 𝑗

𝑘,ℓ
=

(
𝐹
𝜌,𝜌,𝜌
𝛼𝜌

) (𝜌;𝑖, 𝑗 )
(𝜌;𝑘,ℓ ) 𝐶

𝑖, 𝑗

𝑘,ℓ
=

(
𝐹

𝛼𝜌,𝜌,𝜌
𝜌

) (𝜌;𝑖, 𝑗 )
(𝛼𝜌;𝑘,ℓ )

𝐷
𝑖, 𝑗

𝑘,ℓ
=

(
𝐹
𝜌,𝜌,𝜌
𝛼𝜌

) (𝛼𝜌;𝑖, 𝑗 )
(𝜌;𝑘,ℓ ) 𝐷

𝑖, 𝑗

𝑘,ℓ
=

(
𝐹

𝛼𝜌,𝜌,𝜌
𝜌

) (𝛼𝜌;𝑖, 𝑗 )
(𝛼𝜌;𝑘,ℓ ) .

In the name of readability, we will not use this 𝐹-tensor notation in this article.

Remark 3.19. With the above jellyfish relations, we can describe the operators 𝜙
and 𝜓 from Subsection 3.2 in terms of our free scalars. We have

𝜙

(
𝑖

)
=

∑︁
𝑗

𝑗

𝑗

𝑖
=

∑︁
𝑗 ,𝑘

𝐴
𝑗 ,𝑘

𝑗,𝑖
𝑘
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𝜙′

(
𝑖

)
=

∑︁
𝑗

𝑗

𝑗

𝑖
= 𝜒1,𝑖

∑︁
𝑗 ,𝑘

𝐷
𝑗 ,𝑘

𝑗,𝑖
𝑘

and

𝜓

(
𝑖

)
=

∑︁
𝑗

𝑗

𝑗

𝑖
=

∑︁
𝑗 ,𝑘

𝐴
𝑗 ,𝑘

𝑗,𝑖
𝑘

𝜓′

(
𝑖

)
=

∑︁
𝑗

𝑗

𝑗

𝑖
= 𝜆𝛼𝜒𝛼,𝑖

∑︁
𝑗 ,𝑘

𝐷
𝑗 ,𝑘

𝑗,𝑖
𝑘 .

3.3.2. Absorption relations. Using the nomenclature from [6], a closed diagram
in our generators is said to be in jellyfish form if all trivalent and tetravalent vertices
and their labels appear on the external region of the closed diagram. By a slight
abuse of nomenclature, we will say that a morphism in a hom space is in jellyfish
form (or a train in the nomenclature of [7]) if all labels of trivalent and tetravalent
vertices in the morphism meet the leftmost region of the morphism. In the examples
below, the left diagram is not in jellyfish form, and the right diagram is in jellyfish
form.

𝑖

𝑗

𝑖

𝑗

Lemma 3.20 (Absorption). Using the relations from §3.1 and §3.3.1, any two
trivalent/tetravalent vertices in jellyfish form connected by two of their 𝜌 strands
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so that the composite is still in jellyfish form may be simplified into a diagram with
no trivalent/tetravalent vertices.

Proof. There are 16 words of length 2 on the symbols{
, ,

𝛼

,
𝛼

}
,

and up to adjoints, 10 are distinct. Given any word of length 2, there is a unique
composite in jellyfish form with two 𝜌 strands connected, up to labels and moving
tags through crossings. There are thus 10 cases to consider:

𝑖

𝑗

𝑖

𝑗

𝑖

𝑗

𝑖

𝑗

𝑗

𝑖

𝑖

𝑗

𝑖

𝑗

𝑖

𝑗

𝑖

𝑗

𝑖

𝑗

.

We give a full proof for the last case, and the others are similar and omitted:

𝑖

𝑗

=

𝑖

𝑗

= (𝜆𝜌)𝑖+ 𝑗
𝑖

𝑗

= 𝛿𝑖= 𝑗 (𝜆𝜌)𝑖+ 𝑗 .

3.3.3. Evaluation algorithm. With these local relations in hand, we can show
that the numerical data we have described uniquely determines the category C2.

Proposition 3.21. There is at most one unitary fusion category C2 realising each
tuple of data

(𝜆𝛼, 𝜆𝜌, 𝜔, 𝐴, 𝐵, 𝐶, 𝐷, 𝐴, 𝐵, 𝐶, 𝐷).

Proof. The proof is an adaptation of Bigelow’s jellyfish algorithm [5, 6]. Given
any closed diagram in our generators, we show it can be evaluated to a scalar using
our relations. This immediately implies the stated result by [9, Lem. 2.4] which is
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the unshaded pivotal category version of [6, Prop. 3.5] for shaded planar algebras.
Indeed, let C′ be the quotient of the free category in our generators, modulo the
relations corresponding to the data (𝜆𝛼, 𝜆𝜌, 𝜔, 𝐴, 𝐵, 𝐶, 𝐷, 𝐴, 𝐵, 𝐶, 𝐷). If we can
show that any closed diagram in our generators can be evaluated to a scaler using
the given relations, then we have every ideal of C′ is contained in the negligible
ideal. We then have an equivalence C′/Neg(C′) → C2 which shows that C2 is
uniquely determined by the above tuple of data.

By the jellyfish relations from Lemmas 3.4 and 3.16, it suffices to show we can
evaluate any closed diagram in jellyfish form, in which all trivalent and tetravalent
vertices and their labels appear on the external boundary of the closed diagram.
There are 3 cases for such a diagram:

Case 1: there are no vertices at all in the closed diagram. Then we may use
(3.2) to evaluate the closed diagram to a scalar.

Case 2: there is a trivalent/tetravalent vertex connected to itself. Then we may
use (3.2) to show that this closed diagram is equal to zero.

Case 3: there are two neighboring trivalent/tetravalent vertices that are con-
nected by at least 2 of their 𝜌 strands. Then using the absoprtion
relations from Lemma 3.20, we can express our closed diagram in
jellyfish form as a linear combination of diagrams with strictly fewer
vertices, which are still in jellyfish form.

We are finished by a simple induction argument on the number of vertices in our
closed diagram in jellyfish form.

Remark 3.22. We wish to point out that we can also give an existence result for
the categories C𝑚 by realising them as actions by endomorphisms on the Cuntz
algebras𝑂2𝑚+1 ⋊ Z2. To obtain existence one needs to verify a finite list of polyno-
mial equations that the above tuple needs to satisfy. As we can conclude existence
of the examples in this article from the existing literature, we will not include the
details of this existence result.

3.4. Symmetries

With the results of the last subsection in hand, the major task in front of us is to
determine the 128 complex scalars:

𝐴
𝑖, 𝑗

𝑘,ℓ
, 𝐵

𝑖, 𝑗

𝑘,ℓ
, 𝐶

𝑖, 𝑗

𝑘,ℓ
, 𝐷

𝑖, 𝑗

𝑘,ℓ
, 𝐴

𝑖, 𝑗

𝑘,ℓ
, 𝐵

𝑖, 𝑗

𝑘,ℓ
, 𝐶

𝑖, 𝑗

𝑘,ℓ
, and 𝐷

𝑖, 𝑗

𝑘,ℓ
.

In theory, we could begin evaluating diagrams in our category in multiple ways
in order to obtain equations of these variables. However, in practice this task is
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too complicated, given that we have 128 unknowns. To make our task of pinning
down these scalars easier, we aim to find symmetries between them, and to show
that many of them must in fact vanish. The symmetries of these scalars come from
the tetrahedral symmetries of the 6 𝑗 symbols, which were rigorously studied in
[16], and have been used in previous works of the second author [25,26]. (See also
Footnote 2.)

The main result of this subsection is as follows.

Lemma 3.23. The scalars 𝐵𝑖, 𝑗

𝑘,ℓ
, 𝐶

𝑖, 𝑗

𝑘,ℓ
, 𝐵

𝑖, 𝑗

𝑘,ℓ
, 𝐶

𝑖, 𝑗

𝑘,ℓ
, 𝐷

𝑖, 𝑗

𝑘,ℓ
can be expressed in terms

of the 𝐷𝑖, 𝑗

𝑘,ℓ
as:

𝐵
𝑖, 𝑗

𝑘,ℓ
= 𝜆1+𝑖+𝑘

𝜌 𝜆𝛼
√︁
𝜆𝛼 (−1)ℓ𝜔1,ℓ𝐷

𝑗 , 𝑘̃

𝑖,ℓ

𝐵
𝑖, 𝑗

𝑘,ℓ
= 𝜆

1+ 𝑗+ℓ
𝜌 𝜆𝛼

√︁
𝜆𝛼 (−1)𝑖𝜔1, 𝑗𝜔

2
1,𝑖𝜔𝛼,ℓ𝐷

ℓ̃ ,𝑖

𝑘, 𝑗
,

𝐶
𝑖, 𝑗

𝑘,ℓ
= 𝜆

1+ 𝑗+𝑘
𝜌 𝜆𝛼

√︁
𝜆𝛼 (−1)ℓ𝜔2

1,ℓ𝐷
𝑘̃,𝑖

𝑗 ,ℓ

𝐶
𝑖, 𝑗

𝑘,ℓ
= 𝜆

1+ 𝑗+𝑘
𝜌

√︁
𝜆𝛼 (−1)𝑘𝜔1,𝑘𝜔

2
1, 𝑗𝜔𝛼,𝑖𝐷

𝑖, 𝑘̃

ℓ, 𝑗
,

𝐷
𝑖, 𝑗

𝑘,ℓ
=

√︁
𝜆𝛼 (−1)𝑘+ 𝑗𝜔1,𝑖𝜔

2
1,𝑘𝜔𝛼,ℓ𝜔

2
𝛼, 𝑗𝐷

𝑗 ,𝑖

ℓ,𝑘
.

The scalars 𝐴𝑖, 𝑗

𝑘,ℓ
and 𝐴𝑖, 𝑗

𝑘,ℓ
satisfy 𝑆4 symmetries generated by the order three rota-

tion:

𝐴
𝑖, 𝑗

𝑘,ℓ
= 𝜆1+𝑖+𝑘

𝜌 𝜔1,ℓ𝐴
𝑗 , 𝑘̃

𝑖,ℓ
= 𝜆

1+ 𝑗+𝑘
𝜌 𝜔2

1,ℓ𝐴
𝑘̃,𝑖

𝑗 ,ℓ
𝐴
𝑖, 𝑗

𝑘,ℓ
= 𝜆1+𝑖+𝑘

𝜌 𝜔𝛼,ℓ𝐴
𝑗 , 𝑘̃

𝑖,ℓ
= 𝜆

1+ 𝑗+𝑘
𝜌 𝜔2

𝛼,ℓ
𝐴
𝑘̃,𝑖

𝑗 ,ℓ

and the order two flips:

𝐴
𝑖, 𝑗

𝑘,ℓ
= 𝜔1,𝑘𝜔

2
1,𝑖𝐴

𝑘̃,ℓ̃

𝑖, 𝑗
= 𝜆

𝑗+ℓ
𝜌 𝐴

𝑘, 𝑗

𝑖,ℓ̃
𝐴
𝑖, 𝑗

𝑘,ℓ
= 𝜔𝛼,𝑘𝜔

2
𝛼,𝑖𝐴

𝑘̃,ℓ̃

𝑖, 𝑗
= 𝜆

𝑗+ℓ
𝜌 𝐴

𝑘, 𝑗

𝑖,ℓ̃
.

The 𝐷𝑖, 𝑗

𝑘,ℓ
scalars satisfy the Z/2Z × Z/2Z symmetries generated by:

𝐷
𝑖, 𝑗

𝑘,ℓ
= 𝜆

𝑗+𝑙
𝜌 𝐷

𝑘, 𝑗

𝑖,ℓ̃
= 𝜆𝛼 (−1) 𝑗+ℓ𝜔𝛼,𝑘𝜔

2
𝛼,𝑖𝐷

𝑘̃,ℓ̃

𝑖, 𝑗
= 𝜆𝑖+𝑘𝜌 𝜆𝛼 (−1) 𝑗+ℓ𝜔𝛼,𝑘𝜔

2
𝛼,𝑖𝐷

𝑖,ℓ

𝑘̃, 𝑗
.

Finally, we have

𝐴
𝑖, 𝑗

𝑘,ℓ
= 𝐴

𝑖, 𝑗

𝑘,ℓ
= 𝐷

𝑖, 𝑗

𝑘,ℓ
= 0 if 𝑖 + 𝑗 + 𝑘 + ℓ . 0 (mod 2).

This result reduces the number of complex scalars to solve for down to 11 in
the 𝜆𝛼 = 1 case, and 7 in the 𝜆𝛼 = −1 case. This simplification makes it feasible
to solve for these scalars in the next subsection.
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Lemma 3.24. We have

𝐴
𝑖, 𝑗

𝑘,ℓ
= 𝐴

𝑖, 𝑗

𝑘,ℓ
= 𝐷

𝑖, 𝑗

𝑘,ℓ
= 0 if 𝑖 + 𝑗 + 𝑘 + ℓ . 0 (mod 2).

Proof. We will prove the statement of the lemma in the case of the 𝐴𝑖, 𝑗

𝑘,ℓ
coeffi-

cients, as the remaining two cases are nearly identical. We have

𝐴
𝑖, 𝑗

𝑘,ℓ
=

𝑗

𝑖

ℓ

𝑘

=
𝜒1,𝑘𝜒1,ℓ
𝜒1,𝑖𝜒1, 𝑗

𝑗

𝑖

ℓ

𝑘

=
𝜒1,𝑘𝜒1,ℓ
𝜒1,𝑖𝜒1, 𝑗

𝐴
𝑖, 𝑗

𝑘,ℓ
=⇒ 𝐴

𝑖, 𝑗

𝑘,ℓ
=

𝜒1,𝑘𝜒1,ℓ
𝜒1,𝑖𝜒1, 𝑗

𝐴
𝑖, 𝑗

𝑘,ℓ
.

Recall from Lemma 3.11 that 𝜒1,𝑖 = (−1)𝑖
√
𝜆𝛼. Thus if 𝑖 + 𝑗 + 𝑘 + ℓ . 0 (mod 2),

then 𝜒1,𝑘𝜒1,ℓ
𝜒1,𝑖𝜒1, 𝑗

≠ 1, which implies 𝐴𝑖, 𝑗

𝑘,ℓ
= 0.

Now that we know that half of our coefficients vanish, we move on to describing
the symmetries between them. As mentioned before, these symmetries are the
standard tetrahedral symmetries of the 6j-symbols. This completes the proof of
the main result of this section.

Proof of Lemma 3.23. We include enough examples to illuminate the necessary
techniques, all of which involve using the Frobenius maps defined in §3.1. The
symmetries of the 𝐴𝑖, 𝑗

𝑘,ℓ
coefficients are the easiest, as the diagrams only involve 𝜌

strands. We compute the following symmetries:

𝐴
𝑖, 𝑗

𝑘,ℓ
=

1
𝑑

𝑗

𝑖

ℓ

𝑘

=
𝜆ℓ+1𝜌

𝑑

𝑗

𝑖

ℓ̃

𝑘

=
𝜆ℓ𝜌

𝑑

𝑖

ℓ̃

𝑘

𝑗
=
𝜆
ℓ+ 𝑗
𝜌

𝑑

𝑖

ℓ̃

𝑘

𝑗̃

= 𝜆
ℓ+ 𝑗
𝜌 𝐴

𝑘, 𝑗

𝑖,ℓ̃
,

𝐴
𝑖, 𝑗

𝑘,ℓ
=

1
𝑑

𝑗

𝑖

ℓ

𝑘

=
𝜆1+ℓ
𝜌

𝑑
𝜔1,ℓ

𝑗

𝑖

ℓ̃

𝑘

=
𝜆1+ℓ
𝜌

𝑑
𝜔1,ℓ

𝑗

𝑖

ℓ̃

𝑘
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=
𝜆1+𝑖+ℓ
𝜌

𝑑
𝜔1,ℓ

𝑗

ℓ̃

𝑖̃

𝑘

= 𝜆1+𝑖+ℓ
𝜌 𝜔1,ℓ𝐴

𝑖,𝑘

𝑗,ℓ̃
,

𝐴
𝑖, 𝑗

𝑘,ℓ
=

1
𝑑

𝑗

𝑖

ℓ

𝑘

=
1
𝑑

𝑗

𝑖

ℓ

𝑘

=
𝜆𝑘𝜌

𝑑
𝜔1,𝑘

𝑗

𝑖

ℓ

𝑘̃

=
𝜆𝑖+𝑘𝜌

𝑑

𝜔1,𝑘

𝜔1,𝑖
𝑗

𝑖̃

ℓ

𝑘̃

=
𝜆𝑖+𝑘𝜌

𝑑

𝜔1,𝑘

𝜔1,𝑖
𝑘̃

𝑗

𝑖̃

ℓ

= 𝜆𝑖+𝑘𝜌

𝜔1,𝑘

𝜔1,𝑖
𝐴
𝑖,ℓ

𝑘̃, 𝑗

Together this shows that

𝐴
𝑖, 𝑗

𝑘,ℓ
= 𝜆𝑖+𝑘𝜌 𝜔1,ℓ𝐴

𝑗 , 𝑘̃

𝑖,ℓ
= 𝜆

1+ 𝑗+𝑘
𝜌 𝜔2

1,ℓ𝐴
𝑘̃,𝑖

𝑗 ,ℓ

and
𝐴
𝑖, 𝑗

𝑘,ℓ
= 𝜆

𝑖+ 𝑗+𝑘+ℓ
𝜌

𝜔1,𝑖

𝜔1,𝑘
𝐴
𝑘̃,ℓ̃

𝑖, 𝑗
=
𝜔1,𝑖

𝜔1,𝑘
𝐴
𝑘̃,ℓ̃

𝑖, 𝑗

as claimed. These three tricks work to determine all of the symmetries in the state-
ment of the lemma. In order to show how to deal with 𝛼 strands, we include one
final example.

𝐴
𝑖, 𝑗

𝑘,ℓ
=

1
𝑑

𝑗

𝑖

ℓ

𝑘

=
𝜆ℓ+1𝜌

𝑑

𝑗

𝑖

ℓ̃

𝑘

=
𝜆ℓ𝜌

𝑑

𝑖

ℓ̃

𝑘

𝑗 =
𝜆
ℓ+ 𝑗
𝜌

𝑑
𝑖

ℓ̃

𝑘

𝑗̃
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=
𝜆
ℓ+ 𝑗
𝜌

𝑑

𝑖

ℓ̃

𝑘

𝑗̃

= 𝜆
ℓ+ 𝑗
𝜌 𝐴

𝑘, 𝑗

𝑖,ℓ̃
.

We leave the verification of the remaining identities to the reader.

To finish off this section, we explicitly compute the 4th Frobenius-Schur indic-
ator of 𝜌 in terms of our free variables. This formula will be useful in the next
section.

Lemma 3.25. We have that

𝜈4(𝜌) =
1
𝑑
+ 𝜆𝜌

∑︁
𝑖, 𝑗

𝜔1,𝑖𝜔1, 𝑗𝐴
𝑖, 𝑗

𝑖, 𝑗
+ 𝜆𝜌𝜆𝛼

∑︁
𝑖, 𝑗

(−1)𝑖+ 𝑗𝜔𝛼,𝑖𝜔𝛼, 𝑗𝐴
𝑖, 𝑗

𝑖, 𝑗
.

Proof. We pick the following orthonormal basis of C2(𝜌⊗4 → 1):{
1
𝑑

}
∪

{
1
√
𝑑

𝑖 𝑗

}
𝑖, 𝑗

∪
{

1
√
𝑑 𝑖 𝑗

}
𝑖, 𝑗

.

With this basis we compute

𝜈4(𝜌) =
1
𝑑2 + 1

𝑑

∑︁
𝑖, 𝑗

𝑖 𝑗

𝑖 𝑗 + 1
𝑑

∑︁
𝑖, 𝑗

𝑖 𝑗

𝑖 𝑗

=
1
𝑑
+
𝜆𝜌

𝑑

∑︁
𝑖, 𝑗

𝑖 𝑗

𝑖 𝑗 +
𝜆𝜌

𝑑

∑︁
𝑖, 𝑗

𝑖 𝑗

𝑖 𝑗
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=
1
𝑑
+
𝜆𝜌

𝑑

∑︁
𝑖, 𝑗

𝜔1,𝑖𝜔1, 𝑗

𝑗

𝑖

𝑗

𝑖

+
𝜆𝜌

𝑑

∑︁
𝑖, 𝑗

𝜔𝛼,𝑖𝜔𝛼, 𝑗

𝑗

𝑖

𝑗

𝑖

=
1
𝑑
+
𝜆𝜌

𝑑

∑︁
𝑖, 𝑗

𝜔1,𝑖𝜔1, 𝑗𝐴
𝑖, 𝑗

𝑖, 𝑗
+
𝜆𝜌𝜆𝛼

𝑑

∑︁
𝑖, 𝑗

𝜒𝛼,𝑖𝜒𝛼, 𝑗𝜔𝛼,𝑖𝜔𝛼, 𝑗

𝑗

𝑖

𝑗

𝑖

=
1
𝑑
+ 𝜆𝜌

∑︁
𝑖, 𝑗

𝜔1,𝑖𝜔1, 𝑗𝐴
𝑖, 𝑗

𝑖, 𝑗
+ 𝜆𝜌𝜆𝛼

∑︁
𝑖, 𝑗

(−1)𝑖+ 𝑗𝜔𝛼,𝑖𝜔𝛼, 𝑗𝐴
𝑖, 𝑗

𝑖, 𝑗
.

3.5. Classification

In this final subsection, we complete the classification result in the self-dual case
(Q3), i.e., we complete the proof of Theorem 3.1, and classify all categorifications
of the rings 𝑅(𝑚). We have two cases to consider depending on 𝜆𝛼 = ±1.

3.5.1. The case 𝝀𝜶 = 1. In the case of 𝜆𝛼 = 1 we have determined that

𝜆𝜌 = 1, 𝜇 = 1, 𝑖 = 𝑖, and 𝜒1,𝑖 = 𝜒𝛼,𝑖 = (−1)𝑖 .

Thus all that remains is to deduce the 3rd roots of unity 𝜔1,0, 𝜔1,1, 𝜔𝛼,0, 𝜔𝛼,1,
along with the free variables 𝐴𝑖, 𝑗

𝑘,ℓ
, 𝐴

𝑖, 𝑗

𝑘,ℓ
, 𝐷

𝑖, 𝑗

𝑘,ℓ
. We express these free variables in

the matrix form:
𝑋

0,0
0,0 𝑋

0,0
0,1 𝑋

0,0
1,0 𝑋

0,0
1,1

𝑋
0,1
0,0 𝑋

0,1
0,1 𝑋

0,1
1,0 𝑋

0,1
1,1

𝑋
1,0
0,0 𝑋

1,0
0,1 𝑋

1,0
1,0 𝑋

1,0
1,1

𝑋
1,1
0,0 𝑋

1,1
0,1 𝑋

1,1
1,0 𝑋

1,1
1,1


𝑋 = 𝐴, 𝐴, 𝐷. (3.26)

By applying the symmetries of Lemma 3.23, we have that our free variables are
of the form

𝐴 =


𝑎0 0 0 𝜔1,0𝑎2
0 𝑎2 𝜔2

1,0𝑎2 0
0 𝜔2

1,0𝑎2 𝑎2 0
𝜔1,0𝑎2 0 0 𝑎1


𝐴 =


𝑎̂0 0 0 𝜔𝛼,0𝑎̂2
0 𝑎̂2 𝜔2

𝛼,0𝑎̂2 0
0 𝜔2

𝛼,0𝑎̂2 𝑎̂2 0
𝜔𝛼,0𝑎̂2 0 0 𝑎̂1


𝐷 =


𝑑0 0 0 − 𝜔𝛼,1

𝜔𝛼,0
𝑑4

0 𝑑2 𝑑4 0
0 − 𝜔𝛼,0

𝜔𝛼,1
𝑑4 𝑑3 0

𝑑4 0 0 𝑑1


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all of which are real apart from 𝑑4. If these free coefficients are non-zero, then the
tetrahedral symmetries imply conditions on our twists 𝜔. We have

𝑎0 ≠ 0 =⇒ 𝜔1,0 = 1 𝑎1 ≠ 0 =⇒ 𝜔1,1 = 1
𝑎̂0 ≠ 0 =⇒ 𝜔𝛼,0 = 1 𝑎̂1 ≠ 0 =⇒ 𝜔𝛼,1 = 1
𝑎2 ≠ 0 =⇒ 𝜔1,0 = 𝜔1,1 𝑎̂2 ≠ 0 =⇒ 𝜔𝛼,0 = 𝜔𝛼,1.

In order to solve for these complex variables, we evaluate certain morphisms in
our categories in two ways to obtain equations of these variables. We compute

𝛿𝑘,𝑘′𝛿ℓ,ℓ′ = 𝛿ℓ,ℓ′

𝑘′

𝑘

=

ℓ′

ℓ

𝑘′

𝑘

=
𝜔1,ℓ

2 +
√

5 ℓ′

𝑘′

ℓ

𝑘

+
∑︁
𝑖, 𝑗

𝐴
𝑖, 𝑗

𝑘,ℓ

ℓ′

𝑖

𝑘′

𝑗

𝑘

𝑘

+ 𝐵𝑖, 𝑗

𝑘,ℓ

ℓ′

𝑖

𝑘′

𝑗

𝑘

𝑘

= 𝛿𝑘,ℓ𝛿𝑘′ ,ℓ′
𝜔1,ℓ𝜔

2
1,ℓ′

2 +
√

5
+

∑︁
𝑖, 𝑗

𝐴
𝑖, 𝑗

𝑘,ℓ
𝐴
𝑖, 𝑗

𝑘′ ,ℓ′
𝑖

𝑖

𝑗

𝑗

𝑘′

𝑘′

+ 𝐵𝑖, 𝑗

𝑘,ℓ
𝐵
𝑖, 𝑗

𝑘′ ,ℓ′
𝑖

𝑖

𝑗

𝑗

𝑘′

𝑘′

=

(
𝛿𝑘,ℓ𝛿𝑘′ ,ℓ′

𝜔1,ℓ𝜔
2
1,ℓ′

2 +
√

5
+

∑︁
𝑖′ , 𝑗′

𝐴
𝑖, 𝑗

𝑘,ℓ
𝐴
𝑖, 𝑗

𝑘′ ,ℓ′ + 𝐵
𝑖, 𝑗

𝑘,ℓ
𝐵
𝑖, 𝑗

𝑘′ ,ℓ′

)
=

(
𝛿𝑘,ℓ𝛿𝑘′ ,ℓ′

𝜔1,ℓ𝜔
2
1,ℓ′

2 +
√

5
+

∑︁
𝑖′ , 𝑗′

𝐴
𝑖, 𝑗

𝑘,ℓ
𝐴
𝑖, 𝑗

𝑘′ ,ℓ′ + (−1)ℓ+ℓ′𝜔1,ℓ𝜔
2
1,ℓ′𝐷

𝑗 ,𝑘

𝑖,ℓ
𝐷

𝑗 ,𝑘′

𝑖,ℓ′

)
=

(
𝛿𝑘,ℓ𝛿𝑘′ ,ℓ′

𝜔1,ℓ𝜔
2
1,ℓ′

2 +
√

5
+ 𝜔1,ℓ𝜔

2
1,ℓ′

∑︁
𝑖, 𝑗

𝐴
𝑗 ,𝑘

𝑖,ℓ
𝐴

𝑗 ,𝑘′

𝑖,ℓ′ + (−1)ℓ+ℓ′𝜔1,ℓ𝜔
2
1,ℓ′𝐷

𝑗 ,𝑘

𝑖,ℓ
𝐷

𝑗 ,𝑘′

𝑖,ℓ′

)
.
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Note that if ℓ ≠ ℓ′ then the left hand side vanishes, and we can cancel the𝜔1,ℓ𝜔
2
1,ℓ′

terms. If ℓ = ℓ′ then𝜔1,ℓ𝜔
2
1,ℓ′ = 1. In either case, we can remove the𝜔1,ℓ𝜔

2
1,ℓ′ terms

from the above equation. This leaves us with the equation∑︁
𝑖, 𝑗

𝐴
𝑗 ,𝑘

𝑖,ℓ
𝐴

𝑗 ,𝑘′

𝑖,ℓ′ + (−1)ℓ+ℓ′
∑︁
𝑖, 𝑗

𝐷
ℓ,𝑖

𝑘, 𝑗
𝐷

ℓ′ ,𝑖
𝑘′ , 𝑗 − +(2 −

√
5)𝛿𝑘,ℓ𝛿𝑘′ ,ℓ′ = 𝛿𝑘,𝑘′𝛿ℓ,ℓ′ .

In a similar fashion, we can evaluate the diagrams

ℓ′

ℓ

𝑘′

𝑘

ℓ′

ℓ

𝑘′

𝑘

ℓ

𝑘

and
ℓ

𝑘

in two ways4 to obtain∑︁
𝑖, 𝑗

𝐴
𝑖,𝑘

𝑗,ℓ
𝐴
𝑖,𝑘′

𝑗 ,ℓ′ +
∑︁
𝑖, 𝑗

𝐷
𝑗 ,𝑘

𝑖,ℓ
𝐷

𝑗 ,𝑘′

𝑖,ℓ′ − (2 −
√

5)𝛿𝑘,ℓ𝛿𝑘′ ,ℓ′ = 𝛿𝑘,𝑘′𝛿ℓ,ℓ′∑︁
𝑖, 𝑗

𝐷
𝑖, 𝑗

𝑘,ℓ
𝐷

𝑖, 𝑗

𝑘′ ,ℓ′ + (−1)ℓ+ℓ′𝜔1,ℓ′𝜔
2
1,ℓ

∑︁
𝑖, 𝑗

𝐷
𝑖, 𝑗

𝑘′ ,ℓ′𝐷
𝑖, 𝑗

𝑘,ℓ
= 𝛿𝑘,𝑘′𝛿ℓ,ℓ′∑︁

𝑖

𝐴
𝑖,𝑘

𝑖,ℓ
+ (−1)ℓ

∑︁
𝑖

𝐷
𝑖,𝑘

𝑖,ℓ
− (2 −

√
5)𝛿𝑘,ℓ = 0∑︁

𝑖

𝐴
𝑖,𝑘

𝑖,ℓ
+

∑︁
𝑖

(−1)𝑖𝐷ℓ,𝑖

𝑘,𝑖
− (2 −

√
5)𝛿𝑘,ℓ = 0.

In terms of our free variables, this gives us the equations:

3 −
√

5 = 𝑎2
0+𝑎

2
2+𝑑

2
0+𝑑

2
3 = 𝑎2

1+𝑎
2
2+𝑑

2
1+𝑑

2
2 = 𝑎̂2

0+𝑎̂
2
2+𝑑

2
0+𝑑

2
2 = 𝑎̂2

1+𝑎̂
2
2+𝑑

2
1+𝑑

2
3

(3.27)
1
2
= 𝑎2

2+|𝑑4 |2 = 𝑎̂2
2+|𝑑4 |2 = 𝑑2

0+|𝑑4 |2 = 𝑑2
1+|𝑑4 |2 = 𝑑2

2+|𝑑4 |2 = 𝑑2
3+|𝑑4 |2

(3.28)

4When we say we evaluate a diagram in two ways to obtain a relation, one way is trivial,
and the other uses the jellyfish relations from Lemmas 3.4 and 3.16. For the non-self dual
case in §4 below, we use the jellyfish relations from (4.3), (4.5), and Lemma 4.7 instead.
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2 −
√

5 = (𝑎0+𝑎1)𝑎2 − 𝑑0𝑑2 − 𝑑1𝑑3 = (𝑎̂0+𝑎̂1)𝑎̂2+𝑑0𝑑3+𝑑1𝑑2 (3.29)

2 −
√

5 = 𝑎0+𝑎2+𝑑0+𝑑3 = 𝑎1+𝑎2 − 𝑑1 − 𝑑2 = 𝑎̂0+𝑎̂2+𝑑0 − 𝑑2 = 𝑎̂1+𝑎̂2 − 𝑑1+𝑑3
(3.30)

0 = (𝜔𝛼,0+𝜔2
𝛼,0)𝑎

2
2+𝜔𝛼,0𝜔

2
𝛼,1𝑑

2
4+𝜔

2
𝛼,0𝜔𝛼,1𝑑4

2

= (𝜔𝛼,0+𝜔2
𝛼,0)𝑎̂

2
2+𝜔

2
𝛼,0𝜔𝛼,1𝑑

2
4+𝑑4

2
(3.31)

0 = (1 − 𝜔𝛼,0𝜔
2
𝛼,1) (𝑑2𝑑4 − 𝑑2

3)
= 𝑑4(𝑑1+𝑑0) − 𝑑4(𝜔2

𝛼,0𝜔𝛼,1𝑑0+𝜔𝛼,0𝜔
2
𝛼,1𝑑1). (3.32)

While we could begin solving these equations directly, instead we opt for a more
measured approach, and use our previous centre analysis to simplify our solution.

Lemma 3.33. There exists a 𝜏 ∈ {−1, 1} such that

𝑎0 = 𝑎1 = 𝑎̂0 = 𝑎̂1 =
2 + 3𝜏 −

√
5

4

and

𝑎2 = 𝑎̂2 = 𝑑0 = −𝑑1 = −𝑑2 = 𝑑3 =
2 − 𝜏 −

√
5

4
.

In particular, as 𝑎0, 𝑎1, 𝑎̂0, and 𝑎̂1 are all non-zero, we have 𝜔1,0 = 𝜔1,1 = 𝜔𝛼,0 =

𝜔𝛼,1 = 1.

Proof. We first observe from Equation (3.28) that

𝑎2
2 = 𝑎̂2

2 = 𝑑2
0 = 𝑑2

1 = 𝑑2
2 = 𝑑2

3 =
1
2
− |𝑑4 |2,

and in particular we have that 𝑎2, 𝑎̂2, 𝑑0, 𝑑1, 𝑑2, and 𝑑3 are real numbers which
are equal up to sign. With this information in hand, we can now see from Equa-
tion (3.27) that

𝑎2
0 = 𝑎2

1 = 𝑎0
2
= 𝑎1

2
= 3 −

√
5 − 3𝑑2

0 .

To make additional progress on solving these equations, we recall the operators
𝜙 and 𝜓. In our case, via Equation (3.30), we have that

𝜙 =

[
𝑎0 + 𝑎2 0

0 𝑎1 + 𝑎2

]
=

[
2 −
√

5 − 𝑑0 − 𝑑3 0
0 2 −

√
5 + 𝑑1 + 𝑑2

]
𝜓 =

[
𝑎̂0 + 𝑎̂2 0

0 𝑎̂1 + 𝑎̂2

]
=

[
2 −
√

5 − 𝑑0 + 𝑑2 0
0 2 −

√
5 + 𝑑1 − 𝑑3

]
.
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From Lemma 3.8, we know that 𝜙 and 𝜓 have entries in { 3−
√

5
2 , 1−

√
5

2 }, so

𝑑0 + 𝑑3,−𝑑1 − 𝑑2, 𝑑0 − 𝑑2, 𝑑3 − 𝑑1 ∈
{

3 −
√

5
2

,
1 −
√

5
2

}
.

In particular, as the values 𝑑0, 𝑑1, 𝑑2, and 𝑑3 are real numbers which are the same
up to sign, we have that

𝑑0 = −𝑑1 = −𝑑2 = 𝑑3 =
2 −
√

5 − 𝜏
4

,

for some 𝜏 ∈ {−1, 1}.
From Equations (3.30) we can deduce that 𝑎0 = 𝑎1 and 𝑎̂0 = 𝑎̂1. We know that

𝑎2 and 𝑐0 are the same up to sign. If we have 𝑎2 = −𝑐0, then Equation (3.30) would
imply that

𝑎0 = 2 −
√

5 − 𝑑0.

Plugging this value of 𝑎0 into Equation (3.27) gives a contradiction. Thus 𝑎2 = 𝑐0,
and so Equation (3.30) gives

𝑎0 = 2 −
√

5 − 3𝑑0 =
2 + 3𝜏 −

√
5

4
.

A similar argument shows that 𝑎2 = 𝑐0, and thus 𝑎0 = 𝑎0.

To pin down the value of 𝜏, we return to our analysis of the centre of C2. By
computing the 4th Frobenius-Schur indicator of 𝜌 in two ways, we can show that
𝜏 = 1.

Lemma 3.34. We have that 𝜏 = 1.

Proof. From Lemma 3.25, we have that 𝜈4(𝜌) = 3𝜏. On the other hand, we can
use Lemma 3.14 to obtain

𝜈4(𝜌) (20 + 8
√

5) = 48 + 20
√

5 + (2 +
√

5)
∑︁

𝑝𝑖 (𝑝𝑖 + 𝑞𝑖)𝜃4
𝑖

where
∑
𝑝𝑖 (𝑝𝑖 + 𝑞𝑖) = 16 and the 𝜃𝑖’s are roots of unity. Thus∑︁

𝑝𝑖 (𝑝𝑖 + 𝑞𝑖)𝜃4
𝑖 = 4(−1 − 2

√
5 + 3𝜏

√
5).

If 𝜏 = −1, then Theorem A.26 implies that it would take at least 24 roots of unity to
write 4(−1 − 2

√
5 + 3𝜏

√
5), and hence

∑
𝑝𝑖 (𝑝𝑖 + 𝑞𝑖) ≥ 24, giving a contradiction.

Thus we must have 𝜏 = 1.
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Now that we know all of our real free variables, we can solve for 𝑑4, the one
complex variable.

Lemma 3.35. We have that

𝑑4 = 𝜂1
𝑖

2
+ 𝜂2

1
2

√︄
−1 +

√
5

2
where 𝜂1, 𝜂2 ∈ {−1, 1}.

Proof. From Lemmas 3.33 and 3.34, we have 𝑎2 =
1−
√

5
4 . By Equations (3.28) and

(3.31), we have

|𝑑4 |2 =
1 +
√

5
8

and 𝑑2
4 + 𝑑4

2
=

√
5 − 3
4

.

The 4 intersection points of this hyperbola and circle yield the statement of the
lemma.

Now that we have pinned down all of our variables, we can prove part of our
main theorem which states that there is no fusion category when 𝜆𝛼 = 1.

Theorem 3.36. There is no unitary fusion category that categorifies 𝑅(2) with
𝜆𝛼 = 1.

Proof. By evaluating the diagram

ℓ′

ℓ

𝑘′

𝑘

in two ways (see Footnote 4), we obtain the equation

(−1)𝑘+ℓ
∑︁
𝑖, 𝑗

𝐷
𝑘,ℓ

𝑖, 𝑗 𝐷
𝑖, 𝑗

ℓ′ ,𝑘′ +
∑︁
𝑖, 𝑗

𝐷
ℓ′ ,𝑘′

𝑖, 𝑗
𝐷

𝑖, 𝑗

𝑘,ℓ
= 0.

Taking 𝑘 = ℓ′ = 0 and ℓ = 𝑘 ′ = 1 we see that
∑

𝑖, 𝑗 𝐷
0,1
𝑖, 𝑗
𝐷

𝑖, 𝑗

0,1 = 𝑑2
2 − 𝑑

2
4 ∈ R. Since

𝑑2 ∈ R by Lemma 3.33, this means 𝑑2
4 ∈ R, which contradicts Lemma 3.35.
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3.5.2. The case 𝝀𝜶 = −1. In the case of 𝜆𝛼 = −1 we have determined that

𝜇 = 1 𝑖 = 1 − 𝑖 𝜔1,0 = 𝜔1,1

𝜔𝛼,0 = 𝜔𝛼,1 𝜒1,𝑖 = (−1)𝑖i 𝜒𝛼,𝑖 = (−1)𝑖 .

Thus all that remains is to deduce𝜆𝜌, the 3rd roots of unity𝜔1,0 and𝜔𝛼,0, along
with the free variables 𝐴𝑖, 𝑗

𝑘,ℓ
, 𝐴𝑖, 𝑗

𝑘,ℓ
,, and 𝐷𝑖, 𝑗

𝑘,ℓ
. By studying the 4th Frobenius-Schur

indicator of 𝜌, we are able to show that 𝜆𝜌 = 1 and 𝜔𝛼,0 = 𝜔2
1,0, along with the

values of several of our free variables.

Lemma 3.37. We have that 𝜆𝜌 = 1, and 𝜔𝛼,0 = 𝜔2
1,0. Further, we have that

𝐴
0,0
0,0 =

3 −
√

5
2(1 + 𝜔1,0)

and 𝐴
0,0
0,0 =

3 −
√

5
2(1 + 𝜔2

1,0)
.

Proof. Recall the operators 𝜙 and 𝜓. By applying the symmetries of Lemma 3.23
we have that

𝜙 =

[
𝐴

0,0
0,0 + 𝐴

1,0
1,0 0

0 𝐴
0,1
0,1 + 𝐴

1,1
1,1

]
=

[
𝐴

0,0
0,0 (1 + 𝜆𝜌𝜔1,0) 0

0 𝐴
0,0
0,0 (1 + 𝜆𝜌𝜔1,0)

]
𝜓 =

[
𝐴

0,0
0,0 + 𝐴

1,0
1,0 0

0 𝐴
0,1
0,1 + 𝐴

1,1
1,1

]
=

[
𝐴

0,0
0,0 (1 + 𝜆𝜌𝜔𝛼,0) 0

0 𝐴
0,0
0,0 (1 + 𝜆𝜌𝜔𝛼,0)

]
.

Thus the operators 𝜙 and 𝜓 are scalars, and Lemma 3.8 tells us that

𝐴
0,0
0,0 =

2 −
√

5 + 𝜏
2(1 + 𝜆𝜌𝜔1,0)

and 𝐴
0,0
0,0 =

2 −
√

5 + 𝜏
2(1 + 𝜆𝜌𝜔𝛼,0)

for some 𝜏 ∈ {−1, 1}.
From Lemma 3.25, we can write the 4th Frobenius-Schur indicator of 𝜌 as

𝜈4(𝜌) =
√

5 − 2 + 𝜆𝜌𝜔2
1,0(𝐴

0,0
0,0 + 𝐴

0,1
0,1 + 𝐴

1,0
1,0 + 𝐴

1,1
1,1)

− 𝜆𝜌𝜔2
𝛼,0(𝐴

0,0
0,0 − 𝐴

0,1
0,1 − 𝐴

1,0
1,0 + 𝐴

1,1
1,1)

=
√

5 − 2 + 𝜆𝜌𝜔2
1,0𝐴

0,0
0,0 (2 + 2𝜆𝜌𝜔1,0) − 𝜆𝜌𝜔2

𝛼,0𝐴
0,0
0,0 (2 − 2𝜆𝜌𝜔𝛼,0)

=
√

5 − 2 + 𝜆𝜌𝜔2
1,0(2 −

√
5 + 𝜏) − 𝜆𝜌𝜔2

𝛼,0(2 −
√

5 + 𝜏)
1 − 𝜆𝜌𝜔𝛼,0

1 + 𝜆𝜌𝜔𝛼,0

=

(
−2 + 𝜆𝜌𝜔2

1,0(2 + 𝜏) − 𝜆𝜌𝜔
2
𝛼,0(2 + 𝜏)

1 − 𝜆𝜌𝜔𝛼,0

1 + 𝜆𝜌𝜔𝛼,0

)
+
√

5
(
1 − 𝜆𝜌𝜔2

1,0 + 𝜆𝜌𝜔
2
𝛼,0

1 − 𝜆𝜌𝜔𝛼,0

1 + 𝜆𝜌𝜔𝛼,0

)
.
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As 𝜈4(𝜌) ∈ Z[𝑖], 𝜆𝜌 is a second root of unity, and 𝜔1,0 and 𝜔𝛼,0 are third roots of
unity, we have

1 − 𝜆𝜌𝜔2
1,0 + 𝜆𝜌𝜔

2
𝛼,0

1 − 𝜆𝜌𝜔𝛼,0

1 + 𝜆𝜌𝜔𝛼,0
= 0.

This implies that 𝜆𝜌 = 1, and that 𝜔𝛼,0 = 𝜔−1
1,0. By simplifying the formula for

𝜈4(𝜌) further, we find that 𝜈4(𝜌) = 𝜏.
To determine 𝜏 we use Lemma 3.14 to write

𝜏(20 + 8
√

5) = 𝜈4(𝜌) = 48 + 20
√

5 + (2 +
√

5)
∑︁

𝑝𝑖 (𝑝𝑖 + 𝑞𝑖)𝜃4
𝑖

where
∑
𝑝𝑖 (𝑝𝑖 + 𝑞𝑖) = 16, and the 𝜃𝑖’s are roots of unity. If 𝜏 = −1, then we have∑︁

𝑝𝑖 (𝑝𝑖 + 𝑞𝑖)𝜃4
𝑖 = −4 − 12

√
5.

However, Theorem A.26 implies that it takes at least 48 roots of unity to write
−4 − 12

√
5, giving a contradiction. Thus 𝜏 = 1, which gives

𝐴
0,0
0,0 =

3 −
√

5
2(1 + 𝜔1,0)

and 𝐴
0,0
0,0 =

3 −
√

5
2(1 + 𝜔2

1,0)
.

Now that we know 𝜆𝜌 = 1, the symmetries of Lemma 3.23 become much sim-
pler. Using the same matrix notation as in the 𝜆𝛼 = 1 case from (3.26), we can use
these symmetries to express our free variables as

𝐴 =


𝜔1,0𝑟 0 0 𝑎1

0 𝜔2
1,0𝑟 𝑟 0

0 𝑟 𝜔2
1,0𝑟 0

𝑎1 0 0 𝜔1,0𝑟


𝐴 =


𝜔2

1,0𝑟 0 0 𝑎̂1

0 𝜔1,0𝑟 𝑟 0
0 𝑟 𝜔1,0𝑟 0
𝑎̂1 0 0 𝜔2

1,0𝑟


𝐷 =


𝑑0 0 0 𝑑2
0 𝑑0 𝑑1 0
0 𝑑1 −𝑑0 0
𝑑2 0 0 −𝑑0


where 𝑟 = 1

𝜔1,0+𝜔2
1,0

3−
√

5
2 ∈ R, and if either of 𝑎1 or 𝑎̂1 are non-zero, then we have

that 𝜔1,0 = 1.
Now that we have reduced our free variables down to 5 complex variables, all

that remains is to solve for these variables, and to determine the 3rd root of unity
𝜔1,0. As in the 𝜆𝛼 = 1 case, we get equations of these variables by evaluating the
diagrams:

ℓ′

ℓ

𝑘′

𝑘

,
ℓ′

ℓ

𝑘′

𝑘

,
ℓ′

ℓ

𝑘′

𝑘

,
ℓ′

ℓ

𝑘′

𝑘

, ℓ

𝑘

,
ℓ

𝑘
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in two ways (see Footnote 4). This gives us the equations:

𝛿𝑘,𝑘′𝛿ℓ,ℓ′ =
∑︁
𝑖, 𝑗

𝐴
𝑖,𝑘

𝑗,ℓ
𝐴
𝑖,𝑘′

𝑗 ,ℓ′ + (−1)ℓ+ℓ′
∑︁
𝑖, 𝑗

𝐷
𝑖,𝑘

𝑗,ℓ
𝐷

𝑖,𝑘′

𝑗 ,ℓ′ − (2 −
√

5)𝛿𝑘,ℓ𝛿𝑘′ ,ℓ′

𝛿𝑘,𝑘′𝛿ℓ,ℓ′ =
∑︁
𝑖, 𝑗

𝐴
𝑖,𝑘

𝑗,ℓ
𝐴
𝑖,𝑘′

𝑗 ,ℓ′ + (−1)ℓ+ℓ′
∑︁
𝑖, 𝑗

𝐷
1−ℓ′ ,𝑖
1−𝑘′ , 𝑗𝐷

1−ℓ,𝑖
1−𝑘, 𝑗 − (2 −

√
5)𝛿𝑘,ℓ𝛿𝑘′ ,ℓ′

𝛿𝑘,𝑘′𝛿ℓ,ℓ′ =
∑︁
𝑖, 𝑗

𝐷
𝑖, 𝑗

𝑘,ℓ
𝐷

𝑖, 𝑗

𝑘′ ,ℓ′ + (−1)ℓ+ℓ′
∑︁
𝑖, 𝑗

𝐷
𝑖, 𝑗

1−𝑘′ ,1−ℓ′𝐷
𝑖, 𝑗

1−𝑘,1−ℓ

0 =
∑︁
𝑖, 𝑗

(−1)𝑖𝐴𝑖, 𝑗

𝑘,ℓ
𝐷

1−ℓ′ ,𝑖
𝑘′ ,1− 𝑗 + (−1)ℓ+1

∑︁
𝑖, 𝑗

𝐷
𝑗 ,1−𝑘
1−𝑖,ℓ 𝐴

𝑖, 𝑗

𝑘,ℓ
− 𝜔2

1,0(
√

5 − 2)i𝛿𝑘,1−ℓ𝛿𝑘′ ,1−ℓ′

0 =
∑︁
𝑖

𝐴
𝑖,𝑘

𝑖,ℓ
+ (−1)ℓ+1i

∑︁
𝑖

𝐷
𝑖,𝑘

𝑖,ℓ
− (2 −

√
5)𝛿𝑘,ℓ

0 =
∑︁
𝑖

𝐴
𝑖,𝑘

𝑖,ℓ
+ i

∑︁
𝑖

(−1)𝑖+1𝐷1−ℓ,𝑖
1−𝑘,𝑖 − (2 −

√
5)𝛿𝑘,ℓ

In terms of our free variables, this gives us the equations:

Im(𝑑0) =
1 −
√

5
4

= −
𝜔2

1,0

1 + 𝜔2
1,0

−1 +
√

5
2

,

(3.38)

𝑟2 + |𝑑0 |2 =
3 −
√

5
2

, (3.39)

𝑟2 + |𝑎1 |2 + |𝑑1 |2 + |𝑑2 |2 = 𝑟2 + |𝑎̂1 |2 + |𝑑1 |2 + |𝑑2 |2 = 1, (3.40)

|𝑑1 |2 = |𝑑2 |2 =
1
2
− |𝑑0 |2, (3.41)

(𝜔1,0 + 𝜔2
1,0)𝑟

2 − (𝑑2
0 + 𝑑0

2) = 2 −
√

5, (3.42)

𝑟𝑎1 = 𝑑1𝑑2 (3.43)

𝑟𝑎̂1 = −𝑑1𝑑2 (3.44)

𝑑2𝑎1 + 𝑎̂1𝑑2 = 𝑑1𝑎1 + 𝑎̂1𝑑1 = 0 (3.45)

Remark 3.46. From Equation (3.38) we see that
𝜔2

1,0
1+𝜔2

1,0
= 1/2, which implies that

𝜔1,0 = 1.

It is now straightforward to solve the above system of equations.

Lemma 3.47. A general solution to Equations (3.38) – (3.45) is given by:

𝑎0 = 𝑎̂0 =
3 −
√

5
4

𝑎1 = (3 +
√

5)𝑑1𝑑2 𝑎̂1 = −(3 +
√

5)𝑑1𝑑2
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|𝑑1 |2 = |𝑑2 |2 =
−1 +

√
5

8
𝑑0 = −1

2
+ i

1 −
√

5
4

.

With this lemma in hand, we can show the existence and uniqueness of the
unitary fusion category with fusion ring 𝑅(2).

Theorem 3.48. There exists a unique fusion category categorifying the ring 𝑅(2)
with 𝜆𝛼 = −1. This unitary fusion category can be realised as the even part of the
2𝐷2 subfactor.

Proof. Note that from Lemma 3.12, we are free to re-scale our basis elements of
C2(𝜌 ⊗ 𝜌 → 𝜌) and C2(𝜌 ⊗ 𝜌 → 𝛼𝜌) by

0 ↦→ 𝑧1 0 , 1 ↦→ 𝑧1 1 ,

0 ↦→ 𝑧𝛼 0 , 1 ↦→ 𝑧𝛼 1

where 𝑧1, 𝑧𝛼 ∈ 𝑈 (1). This re-scaling changes the phase of our free variables 𝑑1
and 𝑑2 by 𝑧−2

1 𝑧2𝛼 and 𝑧−2
1 𝑧−2

𝛼 respectively. Thus we can arrange so that

𝑑1 = 𝑑2 = i
1
2

√︂
1
2

(
−1 +

√
5
)
.

Hence, up to choice of our basis elements, we have a unique solution of all free
parameters determining our category. Thus Proposition 3.21 gives that we have at
most one unitary fusion category with fusion ring 𝑅(2), and 𝜆𝛼 = −1.

We know that the even part of the 2𝐷2 subfactor is a unitary fusion category
with fusion ring 𝑅(2); hence this must be the unique example.

Let us write C2 for the categorification of 𝑅(2) we have classified in this sec-
tion.

Remark 3.49. We wish to point out the above solutions to our free variables can
be used to construct a system of dualizable endomorphisms of the Cuntz algebra
𝑂5 ⋊ Z/2Z. This gives an independent construction of the category C2.

To finish up, we connect C2 to the even part of the 3Z/4Z category.

Corollary 3.50. There is a monoidal Z/2Z action on C2, such that equivariantisa-
tion by this action gives the 3Z/4Z category of [26, 51].
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Proof. Using the same gauge choice as in the previous Theorem, we can define an
order two monoidal equivalence on C2 by

0 ↔ 1 , 0 ↔ 1 , and ↔ − .

By equivariantising by this order two monoidal auto-equivalence we obtain a unit-
ary fusion category generated by the four morphisms

0 + 1 , 0 + 1 , 0 − 1 , and 0 − 1 ,

and the isomorphism
: 𝛼⊗4 ∼−→ 1.

This is the presentation of the 3Z/4Z category from [26].

4. The non-self-dual case

In this section we focus on the unitary categorification of the fusion rings with four
simple objects 1, 𝛼, 𝜌, 𝛼𝜌 and fusion rules

𝛼 ⊗ 𝛼 � 1 𝜌 ⊗ 𝜌 � 𝛼 ⊕ 𝑚𝜌 ⊕ 𝑚𝛼𝜌. (𝑆(𝑚))

Let us write 𝑆(𝑚) for such a fusion ring. By [30] we know that 𝑆(𝑚) has a cat-
egorification only if 𝑚 = 0, 1, 2.

Our main result of this section is as follows.

Theorem 4.1. Let D𝑚 be a unitary fusion category with 𝐾0(C) � 𝑆(𝑚). Then
either

• 𝑚 = 0, in which case D0 is equivalent to one of the four monoidally distinct
categories Hilb(Z/4Z, 𝜔) where 𝜔 ∈ 𝐻3(Z/4Z,C×), or

• 𝑚 = 1, in which caseD1 is equivalent to the monoidally distinct even parts of
the two complex conjugate subfactors with principal graphs S′ from [26,34].

In particular the case 𝑚 = 2 from [30, Thm. 1.1(6)] is not categorifiable.

Proof. The 𝑚 = 0 case is easily seen to be pointed, and hence the claim of the
above theorem follows from [10, Remark 4.10.4]. Thus it suffices to restrict our
attention to the cases of 𝑚 = 1 and 𝑚 = 2.
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The general outline of this section follows for the most part as in the self-dual
case. In §4.1, We begin by writing down a list of numerical data (essentially the
6j symbols of the category) which fully describe a unitary fusion category with
fusion ring 𝑆(𝑚). In §4.2, by studying the Drinfeld centre via the tube algebra of
the category, we are able to deduce the precise values of some of this numerical
data. To reduce the complexity of our numerical data, in §4.3, we use tetrahedral
symmetries to essentially cut down the number of free variables in our numerical
data by a factor of 24. Finally, in §4.4, we solve for this numerical data by evaluating
various morphisms in our categories in multiple ways to obtain equations.

In the case 𝑚 = 1, we reduce our numerical data to two possible solutions,
which shows there are at most two distinct unitary fusion categories categorifying
𝑆(1). From the subfactor classification literature [26, 34] we know that two such
categories exist. We then show there are no solutions to the numerical data in the
case 𝑚 = 2, and hence there are no such unitary fusion categories.

4.1. Numerical data

We now produce a set of numerical data which completely describes a categori-
fication of the ring 𝑆(𝑚). Let us write D𝑚 for such a unitary fusion category. We
will show that the category D𝑚 can be described by the following data:

• an 8th root of unity 𝜈 = 𝑒±𝑖 𝜋 1
4 ,

• 𝑚 choices of signs 𝜒𝑖 ∈ {−1, 1},
• 𝑚 choices of 3rd roots of unity 𝜔𝑖 ∈ {1, 𝑒2𝑖 𝜋 1

3 , 𝑒2𝑖 𝜋 2
3 }, and

• 8𝑚4 complex scalars 𝐴𝑖, 𝑗

𝑘,ℓ
, 𝐵

𝑖, 𝑗

𝑘,ℓ
, 𝐶

𝑖, 𝑗

𝑘,ℓ
, 𝐷

𝑖, 𝑗

𝑘,ℓ
, 𝐴

𝑖, 𝑗

𝑘,ℓ
, 𝐵

𝑖, 𝑗

𝑘,ℓ
, 𝐶

𝑖, 𝑗

𝑘,ℓ
, 𝐷

𝑖, 𝑗

𝑘,ℓ
∈ C for 0 ≤

𝑖, 𝑗 , 𝑘, ℓ < 𝑚. These complex scalars are the entries of the 𝐹-tensors 𝐹𝜌,𝜌,𝜌
𝜌

and 𝐹𝜌,𝜌,𝜌
𝛼𝜌

While the 128 complex scalars in the𝑚 = 2 case seems infeasible to deal with as is,
we will use tetrahedral symmetries later on to reduce this 128 to a more workable
number.

To simplify notation, we define 𝑑 := dim(𝜌), which is the largest solution to
𝑑2 = 1 + 2𝑚𝑑. If 𝑚 = 1 then 𝑑 = 1 +

√
2, and if 𝑚 = 2 then 𝑑 = 2 +

√
5. We pick

orthonormal bases for the hom spaces

𝜌 𝜌

𝛼

∈D𝑚(𝜌 ⊗ 𝜌→𝛼),

𝜌 𝜌

𝜌

𝑖 ∈D𝑚(𝜌 ⊗ 𝜌→ 𝜌),

𝛼

𝜌 𝜌

𝜌

𝑖 ∈D𝑚(𝜌 ⊗ 𝜌→𝛼𝜌)
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where 0 ≤ 𝑖 ≤ 𝑚 so we have the local relations

𝜌 𝜌

=

𝜌 𝜌

𝜌𝜌

+
∑︁

𝜌 𝜌

𝑖

𝑖

𝜌𝜌

+
∑︁

𝜌 𝜌

𝑖

𝑖

𝜌𝜌

= = 1 = = 𝑑

𝜌

𝑖
=

𝜌

𝑖
= 0 𝑖

𝜌

= 0
𝜌

𝛼

𝑖 =

𝜌

𝛼

𝑖
= 0

𝜌𝛼

𝑖 = 0.


(4.2)

We also choose unitary isomorphisms

𝛼

𝛼

∈ D𝑚(𝛼→ 𝛼) and

𝜌

𝜌

𝛼

𝛼

∈ D𝑚(𝜌 ⊗ 𝛼→ 𝛼 ⊗ 𝜌).

We normalise this last morphism so that

𝜌

𝜌

𝛼

𝛼

=

𝜌

𝜌𝛼

𝛼

.

We are still free to rescale the crossing up to sign.
Note that as pointed out in the proof of [30, Theorem 5.8], we may assume

that 𝛼 has second Frobenius-Schur indicator −1, so

𝛼

𝛼

= −

𝛼

𝛼

.

Let 𝜇 be the scalar defined by

= 𝜇 . (4.3)
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Note that from our normalisation we have that 𝜇2 = −1.

Lemma 4.4. Without loss of generality, we have the relation

=
𝜈

𝑑
where 𝜈 = exp(±𝜋𝑖/4) .

Proof. First, by our normalizations for orthonormal bases of hom spaces, we observe
that

= = =
1
𝑑

=
1
𝑑

=⇒ =
𝜈

𝑑

for some unimodular scalar 𝜈. By computing

𝜈

𝑑
= = 𝜇 =

𝜇𝜈

𝑑

we find that 𝜈2 = 𝜇. By re-scaling the crossing by a sign, we may assume that
𝜈 = 𝑒

±𝜋𝑖
4 .

In order to define natural orthornormal bases for the spaces D𝑚(𝜌 ⊗ 𝜌 → 𝜌)
and D𝑚(𝜌 ⊗ 𝜌 → 𝛼𝜌) we define the operators

𝐾1

(
𝑖

)
= 𝑖 and 𝐾𝛼

(
𝑖

)
= 𝑖 ,

and the Frobenius operators:

𝑅1

(
𝑖

)
=
√
𝑑

𝑖

𝑅𝛼

(
𝑖

)
=
√
𝑑

𝑖
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𝐿1

(
𝑖

)
=
√
𝑑

𝑖

𝐿𝛼

(
𝑖

)
=
√
𝑑

𝑖

on these spaces. Direct computation shows that these operators satisfy the follow-
ing relations:

𝐾1 ◦ 𝐾1 = 1 𝐾𝛼 ◦ 𝐾𝛼 = −1
𝑅𝛼 ◦ 𝑅1 = 𝜈 𝑅1 ◦ 𝑅𝛼 = 𝜈−1

𝐿𝛼 ◦ 𝐿1 = 𝜈−1𝐾1 𝐿1 ◦ 𝐿𝛼 = 𝜈−1𝐾𝛼

𝐾𝛼 ◦ 𝑅1 = 𝜇(𝑅1 ◦ 𝐾1) 𝐾𝛼 ◦ 𝐿1 = 𝜇(𝐿1 ◦ 𝐾1)
(𝑅𝛼 ◦ 𝐿1)3 = −1 (𝑅1 ◦ 𝐿𝛼)3 = 𝜇𝐾𝛼.

As a consequence of these relations, we can diagonalise the action of the operator
𝐾1, and set

𝑖 := 𝑅1

(
𝑖

)
to obtain that there exist scalars 𝜒𝑖 ∈ {−1, 1} and 𝜔𝑖 ∈ {1, 𝑒2𝜋𝑖 1

3 , 𝑒2𝜋𝑖 2
3 } such that

𝐾1

(
𝑖

)
= 𝜒𝑖 𝑖 𝐾𝛼

(
𝑖

)
= 𝜇𝜒𝑖 𝑖

𝑅1

(
𝑖

)
= 𝑖 𝑅𝛼

(
𝑖

)
= 𝜈 𝑖

𝐿1

(
𝑖

)
= −𝜈𝜔2

𝑖 𝑖 𝐿𝛼

(
𝑖

)
= −𝜒𝑖𝜔2

𝑖 𝑖 .

In particular, this gives us the local relations

𝜌 𝜌

𝜌

𝑖 = 𝜒𝑖
𝑖 and

𝛼

𝜌 𝜌

𝜌

𝑖 = 𝜇𝜒𝑖 𝑖 . (4.5)

Remark 4.6. Note we are free to change our basis ofD𝑚(𝜌 ⊗ 𝜌→ 𝜌) by a unitary
which commutes with the operator 𝐾1. In particular, if𝑚 = 2 and 𝜒0 = 𝜒1, then we
are free to pick any other orthonormal basis of D𝑚(𝜌 ⊗ 𝜌 → 𝜌), and if 𝜒0 ≠ 𝜒1
then we can only re-scale each basis vector by an element of𝑈 (1).
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With this special choice of bases, we can determine the following local rela-
tions in D𝑚.

Lemma 4.7. There are scalars

𝐴
𝑖, 𝑗

𝑘,ℓ
, 𝐵

𝑖, 𝑗

𝑘,ℓ
, 𝐶

𝑖, 𝑗

𝑘,ℓ
, 𝐷

𝑖, 𝑗

𝑘,ℓ
, 𝐴

𝑖, 𝑗

𝑘,ℓ
, 𝐵

𝑖, 𝑗

𝑘,ℓ
, 𝐶

𝑖, 𝑗

𝑘,ℓ
, 𝐷

𝑖, 𝑗

𝑘,ℓ
∈ C 0 ≤ 𝑖, 𝑗 , 𝑘, ℓ < 𝑚

such that the following local relations hold in D𝑚:

𝜌 𝜌 𝜌

𝛼

=
𝜈

𝑑
+ 1
√
𝑑

1∑︁
𝑖=0

𝑖

𝑖

+ 𝜈
√
𝑑

1∑︁
𝑖=0

𝑖

𝑖

𝜌 𝜌 𝜌

𝜌

ℓ = −𝜔ℓ

𝜈

ℓ

− 𝜈𝜒ℓ𝜔2
ℓ

ℓ

+
∑︁
𝑖, 𝑗 ,𝑘

𝐴
𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖

+ 𝐵𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖

+ 𝐶𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖

+ 𝐷𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖

𝜌 𝜌 𝜌

𝛼 𝜌

ℓ = −𝜒ℓ𝜔ℓ

ℓ

− 𝜈3𝜔2
ℓ

ℓ

+
∑︁
𝑖, 𝑗 ,𝑘

𝐴
𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖

+ 𝐵𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖

+ 𝐶𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖

+ 𝐷𝑖, 𝑗

𝑘,ℓ

𝑘

𝑗

𝑖

Proof. The proof is omitted as it is nearly identical to the proof of Lemma 3.16.

Remark 4.8. As in the self-dual case described in Remark 3.18, the above com-
plex scalars are precisely entries of certain 𝐹-tensors of D𝑚.

With these local relations, we can show that our described numerical data fully
determines the category D𝑚.
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Proposition 4.9. There is at most one unitary fusion categoryD𝑚 realising each
tuple of data

(𝜈, 𝜒, 𝜔, 𝐴, 𝐵, 𝐶, 𝐷, 𝐴, 𝐵, 𝐶, 𝐷).

Proof. We omit the proof which is nearly identical to the proof of Proposition 3.21
replacing (3.2) with (4.2), the jellyfish relations from Lemmas 3.4 and 3.16 with
those from (4.5), (4.3), and Lemma 4.7, and using absorption relations similar to
Lemma 3.20.

4.2. Centre Analysis

As in the self-dual case, we study the centre ofD𝑚 in order to determine informa-
tion about our free variables. We restrict our attention to the case of𝑚 = 2, as this is
the most difficult case, and we need as much information about our numerical data
as possible in order to make progress on the classification. While we could repeat
the analysis for 𝑚 = 1, this is unnecessary as in this case the lack of multiplicity
makes it easy to solve for our numerical data.

Our main result of this section is as follows.

Lemma 4.10. If 𝑚 = 2 and 𝜒0 = 𝜒1, then∑︁
𝑖

𝐴
𝑖,0
𝑖,0 =
(2 + 𝑖) −

√
5

2
,

∑︁
𝑖

𝐴
𝑖,1
𝑖,1 =
(2 − 𝑖) −

√
5

2
, and

∑︁
𝑖

𝐴
𝑖,1
𝑖,0 =

∑︁
𝑖

𝐴
𝑖,0
𝑖,1 = 0.

In the case of 𝜒1 = 𝜒0, knowing the above information about the free variables
𝐴
𝑖, 𝑗

𝑘,𝑙
will be the key starting point in showing non-existence of the category D2

later on in this paper.
To show this result we study the tube algebra of D2. As in the self-dual case,

we only study a small sub-algebra. We choose the following bases:

𝐴1→1 = span
 , , ,


𝐴1→𝜌 = span


0

,
1

,
0

,
1


𝐴𝛼→𝛼 = span


, , ,


.
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By direct computation we obtain that:

(1) The irreducible representations of 𝐴1→1 are:

𝜒0 1 1 2 +
√

5 2 +
√

5
𝜒1 1 1 2 −

√
5 2 −

√
5

𝜒2 1 −1 i −i
𝜒3 1 −1 −i i

Hence I(1) contains 4 simple objects 𝑋𝑖 with dimensions

dim(𝑋0) = 1, dim(𝑋1) = 9+ 4
√

5, and dim(𝑋2) = dim(𝑋3) = 5+ 2
√

5.

(2) The irreducible representations of 𝐴𝛼→𝛼 are:

𝜏0 1 i 𝑎 (1+i𝜇)+
√

2𝑎2 (1+i𝜇)+4i𝜇
2 i 𝑎 (1+i𝜇)+

√
2𝑎2 (1+i𝜇)+4i𝜇
2

𝜏1 1 −i 𝑎 (1−i𝜇)+
√

2𝑎2 (1−i𝜇)−4i𝜇
2 −i 𝑎 (1−i𝜇)+

√
2𝑎2 (1−i𝜇)−4i𝜇
2

𝜏2 1 i 𝑎 (1+i𝜇)−
√

2𝑎2 (1+i𝜇)+4i𝜇
2 i 𝑎 (1+i𝜇)−

√
2𝑎2 (1+i𝜇)+4i𝜇
2

𝜏3 1 −i 𝑎 (1−i𝜇)−
√

2𝑎2 (1−i𝜇)−4i𝜇
2 −i 𝑎 (1−i𝜇)−

√
2𝑎2 (1−i𝜇)−4i𝜇
2

where 𝑎 := 𝜒0 + 𝜒1 ∈ {0, ±2}. Hence I(𝛼) contains 4 simple objects 𝑌𝑖
with dimensions

20 + 8
√

5

2 + 1
2

���𝑎(1 + i𝜇) ±
√︁

2𝑎2(1 + i𝜇) + 4i𝜇
���2

and
20 + 8

√
5

2 + 1
2

���𝑎(1 − i𝜇) ±
√︁

2𝑎2(1 − i𝜇) − 4i𝜇
���2

(3) Let 1𝜋𝜌 be the action of 𝐴1→1 on 𝐴1→𝜌. Then

1𝜋𝜌

( )
=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


. 1𝜋𝜌

( )
=

[
𝜙 𝜙′

𝜙′ 𝜙

]
and 1𝜋𝜌

©­« ª®¬ =

[
𝜙′ 𝜙

𝜙 𝜙′

]
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where 𝜙 and 𝜙′ are the operators on Hom(𝜌 ⊗ 𝜌 → 𝜌) defined by

𝜙

(
𝑖

)
=

∑︁
𝑗

𝑗

𝑗

𝑖
=

∑︁
𝑗 ,𝑘

𝐴
𝑗 ,𝑘

𝑗,𝑖
𝑘

𝜙′

(
𝑖

)
=

∑︁
𝑗

𝑗

𝑗

𝑖
= 𝜒1,𝑖

∑︁
𝑗 ,𝑘

𝐷
𝑗 ,𝑘

𝑗,𝑖
𝑘

which we can naturally identify as operators on the two spaces:{
0

,
1

}
and


0

,
1


by local insertion. That is, the elements of 𝐴1←1 which involve 𝜙, 𝜙′ above
act on 𝐴1←𝜌 by applying 𝜙, 𝜙′ locally on the trivalent vertices in our stand-
ard basis of 𝐴1←𝜌.

With these computations in hand, we either pin down the scalars 𝜒0 and 𝜒1, or
determine the operator 𝜙.

Proof of Lemma 4.10. Recall we have three possibilities for 𝑎 ∈ {−2,0,2}. If 𝑎 = 0,
then we have 𝜒0 = −𝜒1. Thus we can restrict our attention to the case of 𝑎 = ±2.

We begin by determining the decomposition of 1𝜋𝜌 into irreducible repres-
entations of 𝐴1→1. As 𝑋0 is the tensor unit of Z(D𝑚), its restriction contains no
copies of 𝜌, and thus 1𝜋𝜌 contains no copies of 𝜒0. We also know that Tr(1𝜋𝜌) = 0,
and so from the character table of 𝐴1→1 above, we must have that

1𝜋𝜌 � 2𝜒1 ⊕ 𝑘 𝜒2 ⊕ (2 − 𝑘)𝜒3

with 𝑘 ∈ {0, 1, 2}. In particular, we find that

Tr
(
1𝜋𝜌

( ))
= 4− 2

√
5 + 2i(𝑘 − 1) =⇒ Tr(𝜙) = 2−

√
5 + i(𝑘 − 1).

To determine 𝑘 we study the restriction of the objects 𝑋𝑖 and 𝑌𝑖 . By the above
decomposition of 1𝜋𝜌 and from counting dimensions we have

F (𝑋0) = 1
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F (𝑋1) = 1 ⊕ 2𝜌 ⊕ 2𝛼𝜌
F (𝑋2) = 1 ⊕ 𝑘𝜌 ⊕ (2 − 𝑘)𝛼𝜌
F (𝑋3) = 1 ⊕ (2 − 𝑘)𝜌 ⊕ 𝑘𝛼𝜌.

By our assumption that 𝑎 = ±2, one of the objects 𝑌𝑖 must be invertible. Thus we
can label our 𝑌𝑖 so that

F (𝑌0) = 𝛼
F (𝑌1) = 𝛼 ⊕ 2𝜌 ⊕ 2𝛼𝜌
F (𝑌2) = 𝛼 ⊕ (2 − 𝑘)𝜌 ⊕ 𝑘𝛼𝜌
F (𝑌3) = 𝛼 ⊕ 𝑘𝜌 ⊕ (2 − 𝑘)𝛼𝜌.

Hence we now know the restriction of all the objects in both I(1) and I(𝛼), up
to the integer 𝑘 . Denote by 𝑍𝑖 the remaining simple objects in Z(D), i.e. those
simple objects such that

F (𝑍𝑖) = 𝑝𝑖𝜌 ⊕ 𝑞𝑖𝛼𝜌

where 𝑝𝑖 , 𝑞𝑖 are positive integers. This allows us to write

I(𝜌) = 2𝑋1 + 𝑘𝑋2 + (2 − 𝑘)𝑋3 + 2𝑌1 + (2 − 𝑘)𝑌2 + 𝑘𝑌3 +
∑︁

𝑝𝑖𝑍𝑖

I(𝛼𝜌) = 2𝑋1 + (2 − 𝑘)𝑋2 + 𝑘𝑋3 + 2𝑌1 + 𝑘𝑌2 + (2 − 𝑘)𝑌3 +
∑︁

𝑞𝑖𝑍𝑖 .

Therefore

20 = dim Hom(I(𝜌),I(𝜌)) = 4𝑘2 − 8𝑘 + 16 +
∑︁

𝑝2
𝑖

20 = dim Hom(I(𝛼𝜌),I(𝛼𝜌)) = 4𝑘2 − 8𝑘 + 16 +
∑︁

𝑞2
𝑖

16 = dim Hom(I(𝜌),I(𝛼𝜌)) = −4𝑘2 + 8𝑘 + 8 +
∑︁

𝑝𝑖𝑞𝑖 .

If 𝑘 ∈ {0, 2} then we get∑︁
𝑝2
𝑖 =

∑︁
𝑞2
𝑖 = 4 and

∑︁
𝑝𝑖𝑞𝑖 = 8,

which is impossible. Thus we must have 𝑘 = 1, and so Tr(𝜙) = 2 −
√

5. From

1𝜋𝜌
©­« 1

dim(D)
©­« + + (2 +

√
5) + (2 +

√
5) ª®¬ª®¬ = 0

and

1𝜋𝜌

( )2
= 1𝜋𝜌

( )
+ 2 · 1𝜋𝜌

( )
+ 2 · 1𝜋𝜌 ©­« ª®¬ ,60



we find that 𝜙 has the two distinct eigenvalues

(2 + 𝑖) −
√

5
2

and
(2 − 𝑖) −

√
5

2
.

Finally, by Remark 4.6, we are free to unitarily change our basis ofD2(𝜌 ⊗ 𝜌→
𝜌) by any element of 𝑈 (2). In particular we can choose this basis so that 𝜙 acts
diagonally. This gives the statement of the lemma.

4.3. Symmetries

We now use the tetrahedral symmetries to determine relations between the 128
complex scalers:

𝐴
𝑖, 𝑗

𝑘,ℓ
, 𝐵

𝑖, 𝑗

𝑘,ℓ
, 𝐶

𝑖, 𝑗

𝑘,ℓ
, 𝐷

𝑖, 𝑗

𝑘,ℓ
, 𝐴

𝑖, 𝑗

𝑘,ℓ
, 𝐵

𝑖, 𝑗

𝑘,ℓ
, 𝐶

𝑖, 𝑗

𝑘,ℓ
, and 𝐷

𝑖, 𝑗

𝑘,ℓ
.

Using the same techniques as in the self-dual case we are able to show the follow-
ing.

Lemma 4.11. The scalars 𝐵𝑖, 𝑗

𝑘,ℓ
, 𝐷

𝑖, 𝑗

𝑘,ℓ
, 𝐴

𝑖, 𝑗

𝑘,ℓ
, 𝐶

𝑖, 𝑗

𝑘,ℓ
, 𝐷

𝑖, 𝑗

𝑘,ℓ
can be expressed in terms

of the scalars 𝐴𝑖, 𝑗

𝑘,ℓ
as:

𝐵
𝑖, 𝑗

𝑘,ℓ
= −𝜈𝜒ℓ𝜔2

ℓ𝐴
𝑘,𝑖

𝑗,ℓ
𝐷

𝑖, 𝑗

𝑘,ℓ
= −𝜈−1𝜔ℓ𝐴

𝑗 ,𝑘

𝑖,ℓ

𝐴
𝑖, 𝑗

𝑘,ℓ
= −𝜈3𝜔2

ℓ𝐴
𝑗 ,𝑖

𝑘,ℓ
𝐶
𝑖, 𝑗

𝑘,ℓ
= −𝜒ℓ𝜔ℓ𝐴

𝑖,𝑘

𝑗,ℓ
𝐷

𝑖, 𝑗

𝑘,ℓ
= 𝐴

𝑘, 𝑗

𝑖,ℓ
.

The scalars 𝐵𝑖, 𝑗

𝑘,ℓ
can be expressed in terms of the scalars 𝐶𝑖, 𝑗

𝑘,ℓ
as:

𝐵
𝑖, 𝑗

𝑘,ℓ
= 𝜈3𝐶

𝑘, 𝑗

𝑖,ℓ
.

The scalars 𝐴𝑖, 𝑗

𝑘,ℓ
satisfy Z/4Z symmetries generated by the relations

𝐴
𝑖, 𝑗

𝑘,ℓ
= −𝜈𝜒𝑖𝜔 𝑗𝜔

2
𝑘𝜔

2
ℓ𝐴

𝑘,ℓ
𝑗,𝑖

= 𝜒𝑖𝜒𝑘𝜔𝑖𝜔ℓ𝜔
2
𝑗𝜔

2
𝑘𝐴

𝑗 ,𝑖

ℓ,𝑘
.

The scalars 𝐶𝑖, 𝑗

𝑘,ℓ
satisfy 𝑆3 symmetries generated by the order three rotation

𝐶
𝑖, 𝑗

𝑘,ℓ
= 𝜔ℓ𝐶

𝑗 ,𝑘

𝑖,ℓ
= 𝜔2

ℓ𝐶
𝑘,𝑖

𝑗,ℓ

and the order two flip
𝐶
𝑖, 𝑗

𝑘,ℓ
= 𝜒 𝑗 𝜒𝑘𝜔

2
𝑖𝜔𝑘𝐶

𝑘,ℓ
𝑖, 𝑗
.

Finally we have that if 𝜒0 = −𝜒1, then

𝐴
𝑖, 𝑗

𝑘,ℓ
= 𝐶

𝑖, 𝑗

𝑘,ℓ
if 𝑖 + 𝑗 + 𝑘 + ℓ = 0 (mod 2).
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Proof. The proof of this lemma uses the exact same techniques as in the proof of
Lemma 3.23. The only real difference is we have different Frobenius operators in
this case.

4.4. Classification

We now complete the proof of Theorem 4.1 to complete the classification in the
non self-dual case. To prove this theorem, we break into three cases: (1)𝑚 = 1, (2)
𝑚 = 2 and 𝜒0 = −𝜒1, and (3) 𝑚 = 2 and 𝜒0 = 𝜒1.

The case 𝒎 = 1. If𝑚 = 1 then from our previous analysis we only have to determ-
ine the sign 𝜒0, the 3rd root of unity𝜔0, the 8th root of unity 𝜈, and the two complex
scalars 𝑎 := 𝐴0,0

0,0 and 𝑐 := 𝐶0,0
0,0 . Further, we have that if 𝜔0 ≠ 1, then 𝑐 = 0.

By evaluating the diagrams

ℓ′

ℓ

𝑘′

𝑘

,
ℓ′

ℓ

𝑘′

𝑘

, and ℓ

𝑘

in two ways (see Footnote 4) we obtain the equations:

|𝑎 |2 + |𝑐 |2 = 1 2|𝑎 |2 = 1 − 1
1 +
√

2
𝜈

1 +
√

2
= 𝑎(𝜒0𝜔0 − 𝜈).

With the first two of these equations we can solve to find

|𝑎 |2 = 1 − 1
√

2
and |𝑐 |2 =

1
√

2
,

and thus we have 𝜔0 = 1. The general solution to these equations is then given by

𝜒0 = 1, 𝑎 =
𝜈

(1 − 𝜈) (−1 +
√

2) and 𝑐 = 𝑒𝑖 𝜃2
−1
4

where 𝜃 is any phase.

Lemma 4.12. There are exactly two unitary fusion categories, up to monoidal
equivalence, which categorify 𝑆(1).

Proof. By unitarily renormalising the basis element

0 ↦→ 𝑧 · 0 𝑧 ∈ 𝑈 (1),
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we change 𝑐 to 𝑧−2𝑐. We can thus renormalise so that 𝑐 = 2 −1
4 . Hence we have

two solutions for our free variables, depending on the choice of 𝜈 = 𝑒±𝑖 𝜋
1
4 . By

Proposition 4.9, there are at most 2 unitary fusion categories with these fusion
rules. These two unitary fusion categories are realised by the even parts of the two
subfactors S′ constructed in [34], which are monoidally non-equivalent and com-
plex conjugate to each other. Indeed, they each admit a Z/2Z-equivariantization,
which produces monoidally non-equivalent 2Z/4Z1 near-group fusion categories
which are complex conjugate [35, Ex. 2.2], [25, Ex. 9.5].

The case 𝒎 = 2 and 𝝌0 = −𝝌1 = 1. If 𝑚 = 2 and 𝜒0 = −𝜒1 = 1, then we have to
determine the 3rd roots of unity 𝜔𝑖 , the 8th root of unity 𝜈, and the free complex
variables 𝐴𝑖, 𝑗

𝑘,𝑙
and𝐶𝑖, 𝑗

𝑘,𝑙
. We can represent these free complex variables in the same

matrix notation as in (3.26) in the self-dual section. After applying the symmetries
of Lemma 4.11, we obtain:

𝐴 =


𝑎0 0 0 0
0 𝑎1 −𝜈𝜔2

0𝑎1 0
0 𝜈𝜔2

1𝑎1 𝑎1 0
0 0 0 𝑎2


𝐶 =


𝑐0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 𝑐1


.

Due to the large number of variables which are zero, it is fairly easy to derive a
contradiction in this case.

Lemma 4.13. There is no unitary fusion category that categorifies 𝑆(2) with 𝜒0 =

−𝜒1 = 1.

Proof. By evaluating

ℓ′

ℓ

𝑘′

𝑘

in two ways (see Footnote 4), we obtain the equation

𝜒ℓ 𝜒ℓ′𝜔
2
ℓ𝜔ℓ′

∑︁
𝑖, 𝑗

𝐴
𝑘,𝑖

𝑗,ℓ
𝐴
𝑘′ ,𝑖
𝑗 ,ℓ′ +𝜔ℓ𝜔

2
ℓ′

∑︁
𝑖, 𝑗

𝐴
𝑗 ,𝑘

𝑖,ℓ
𝐴

𝑗 ,𝑘′

𝑖,ℓ′ − (2−
√

5)𝛿ℓ,𝑘𝛿ℓ′ ,𝑘′ = 𝛿ℓ,ℓ′𝛿𝑘,𝑘′ .

Taking 𝑘 = 𝑘 ′ = 0 and ℓ = ℓ′ = 1 gives |𝑎1 |2 = 1
2 , and taking 𝑘 = 𝑘 ′ = ℓ = 𝑙′ = 0 gives

2|𝑎0 |2 + 2|𝑎1 |2 = 3−
√

5. These two equations imply 2|𝑎0 |2 < 0, a contradiction.
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The case 𝒎 = 2 and 𝝌0 = 𝝌1. Finally we deal with the last case where𝑚 = 2 and
𝜒0 = 𝜒1. Let us again represent our free variables 𝐴𝑖, 𝑗

𝑘,𝑙
and 𝐶𝑖, 𝑗

𝑘,𝑙
in matrix form as

in (3.26). After applying the symmetries of Lemma 4.11, we obtain:

𝐴 =


𝑎0 𝑎1 𝜔0𝜔

2
1𝑎1 𝑎2

−𝜈𝜒0𝜔
2
1𝑎1 𝑎3 −𝜈𝜒0𝜔

2
0𝑎3 𝑎4

−𝜈𝜒0𝜔
2
0𝑎1 −𝜈𝜒0𝜔

2
1𝑎3 𝑎3 𝜔2

0𝜔1𝑎4
−𝜈𝜒0𝜔0𝜔1𝑎2 −𝜈𝜒0𝜔

2
0𝑎4 −𝜈𝜒0𝜔

2
1𝑎4 𝑎5


𝐶 =


𝑐0 𝑐1 𝜔0𝑐1 𝑐2
𝑐1 𝜔2

1𝑐2 𝜔2
0𝜔

2
1𝑐2 𝜔2

1𝑐3
𝜔2

0𝑐1 𝜔1𝑐2 𝜔2
1𝑐2 𝑐3

𝜔0𝜔
2
1𝑐2 𝜔1𝑐3 𝑐3 𝑐4


.

Recall from Lemma 4.10 that in this case we have∑︁
𝑖

𝐴
𝑖,0
𝑖,0 =
(2 + 𝑖) −

√
5

2
,

∑︁
𝑖

𝐴
𝑖,1
𝑖,1 =
(2 − 𝑖) −

√
5

2
, and

∑︁
𝑖

𝐴
𝑖,1
𝑖,0 =

∑︁
𝑖

𝐴
𝑖,0
𝑖,1 = 0,

which implies

𝑎0 + 𝑎3 =
(2 + 𝑖) −

√
5

2
, 𝑎3 + 𝑎5 =

(2 − 𝑖) −
√

5
2

, and 𝑎1 =−𝑎4 =−𝜔2
0𝜔1𝑎4.

With these linear equations in hand, it is straightforward to show non-existence
in this case.

Theorem 4.14. There is no unitary fusion category that categorifies 𝑆(2) with
𝜒0 = 𝜒1.

Proof. Evaluating the diagram

ℓ

𝑘

in two ways (see Footnote 4) gives∑︁
𝑖

𝐴
𝑖,𝑘

𝑖,ℓ
+ 𝜈3𝜒ℓ𝜔ℓ

∑︁
𝑖

𝐴
𝑘,𝑖

𝑖,ℓ
− 𝛿ℓ,𝑘 (2 −

√
5) = 0.

In terms of our free variables this gives

2 −
√

5 = 𝑎0 + 𝑎3 + 2𝜈3𝜒0𝜔0𝑎0 + 2𝑎364



= i − 2𝜈3𝜒0𝜔0

(
2𝜈𝜒0𝜔

2
0𝑎3 + 2𝑎3 + (−2 − 𝑖) +

√
5
)

2 −
√

5 = 𝑎5 + 𝑎3 + 2𝜈3𝜒0𝜔1𝑎5 + 2𝑎3

= −i − 2𝜈3𝜒0𝜔1

(
2𝜈𝜒0𝜔

2
1𝑎3 + 2𝑎3 + (−2 + 𝑖) +

√
5
)
.

This system of equations of the complex variable 𝑎3 does not hold for any values
of our free variables 𝜒0 ∈ {−1,1}, 𝜈 ∈ {𝑒 i𝜋

4 , 𝑒
−i𝜋

4 }, and𝜔0, 𝜔1 ∈ {1, 𝑒
2i𝜋
3 , 𝑒

4i𝜋
3 }.

A. A multiplicity bound for Z/2Z-quadratic categories

Ryan Johnson, Siu-Hung Ng, David Penneys, Jolie Roat, Matthew Titsworth, and Henry Tucker

In this appendix, we prove Theorem 2.4. That is, given a pseudounitary Z/2Z
quadratic fusion category with simple objects 1, 𝛼, 𝜌, 𝛼𝜌 with 𝜌 self-dual and
fusion rules determined by

𝛼2 � 1 and 𝜌2 � 1 ⊕ 𝑚𝜌 ⊕ 𝑛𝛼𝜌, (Q3)

(𝑚, 𝑛) must be one of (0, 0), (0, 1), (1, 0), (1, 1), (2, 2).

A.1. Basic number theoretic constraints

Given a Z/2Z-quadratic category C with fusion rules (Q3), the fusion matrices
are given in the ordering 1, 𝜌, 𝛼𝜌, 𝛼 by

𝐿𝜌 =

©­­­­«
0 1 0 0
1 𝑚 𝑛 0
0 𝑛 𝑚 1
0 0 1 0

ª®®®®¬
, 𝐿𝛼𝜌 =

©­­­­«
0 0 1 0
0 𝑛 𝑚 1
1 𝑚 𝑛 0
0 1 0 0

ª®®®®¬
, and 𝐿𝛼 =

©­­­­«
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

ª®®®®¬
.

Setting 𝑑 := dim(𝜌), we have dim(𝛼) = 1 and 𝑑2 = 1 + (𝑚 + 𝑛)𝑑, so that

𝑑 =
1
2

(
𝑚 + 𝑛 +

√︁
4 + (𝑚 + 𝑛)2

)
. (A.1)

Then

dim(C) = 2 + 2𝑑2 = 2 +
(𝑚 + 𝑛)2 + 2(𝑚 + 𝑛)

√︁
4 + (𝑚 + 𝑛)2 + 4 + (𝑚 + 𝑛)2

2
= 4 + 2(𝑚 + 𝑛)𝑑.
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Since 𝐾0(C) is abelian of dimension 4, its irreducible representations are all 1-
dimensional. Hence by [48, Rem. 2.11], the element

𝑅 := 𝐼 + 𝐿2
𝜌 + 𝐿2

𝛼𝜌 + 𝐿2
𝛼 =

©­­­­«
4 2𝑚 2 𝑛 0

2𝑚 2 𝑛2 + 2𝑚2 + 4 4𝑚𝑛 2 𝑛
2 𝑛 4𝑚𝑛 2 𝑛2 + 2𝑚2 + 4 2𝑚

0 2 𝑛 2𝑚 4

ª®®®®¬
is central in 𝐾0(C), and the roots of its characteristic polynomial are called the
formal codegrees [47] of C:

𝑓1 = 4 + (𝑚 + 𝑛)2 + (𝑚 + 𝑛)
√︁

4 + (𝑚 + 𝑛)2

𝑓2 = 4 + (𝑚 + 𝑛)2 − (𝑚 + 𝑛)
√︁

4 + (𝑚 + 𝑛)2

𝑓3 = 4 + (𝑚 − 𝑛)2 + (𝑚 − 𝑛)
√︁

4 + (𝑚 − 𝑛)2

𝑓4 = 4 + (𝑚 − 𝑛)2 − (𝑚 − 𝑛)
√︁

4 + (𝑚 − 𝑛)2.

A.2. Computing the induction and forgetful functor

We now assume C is pseudounitary and we analyze the center 𝑍 (C), the forgetful
functor F : 𝑍 (C) → C, and the induction functor I : C → 𝑍 (C). Recall that

F (I(𝑐)) �
⊕

𝑥∈Irr(C)
𝑥 ⊗ 𝑐 ⊗ 𝑥∗ ∀ 𝑐 ∈ C (A.2)

and that F is biadjoint to I. We use the notation (𝑎, 𝑏) := dim(C(𝑎 → 𝑏)) and
(𝐴, 𝐵) := dim(𝑍 (C)(𝐴→ 𝐵)).

Lemma A.3 [48, Theorem 2.13]. There are distinct simple objects 1𝑍 (C) , 𝑋2, 𝑋3, 𝑋4 ∈
Irr(𝑍 (C)) such that

I(1C) = 1𝑍 (C) ⊕ 𝑋2 ⊕ 𝑋3 ⊕ 𝑋4 and dim(𝑋𝑘) =
𝑓1
𝑓𝑘
.

Setting

𝑟 :=

√︄
4 + (𝑚 + 𝑛)2
4 + (𝑚 − 𝑛)2

,

it is straightforward to calculate that

dim(𝑋2) =
𝑓1
𝑓2

=
𝑓 2
1
𝑓1 𝑓2

= 1 + (𝑚 + 𝑛)𝑑 =
dim(C)

2
− 1

dim(𝑋3) =
𝑓1
𝑓3

=
𝑓1 𝑓4
𝑓3 𝑓4

= 1 + 1
2
(𝑚 + 𝑛)𝑑 − 𝑟

2
(𝑚 − 𝑛)𝑑
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dim(𝑋4) =
𝑓1
𝑓4

=
𝑓1 𝑓3
𝑓3 𝑓4

= 1 + 1
2
(𝑚 + 𝑛)𝑑 + 𝑟

2
(𝑚 − 𝑛)𝑑.

Remark A.4. Since dim(𝑋2), dim(𝑋3), dim(𝑋4) ∈ Z(𝑑), it must be the case that
either 𝑚 = 𝑛 or 𝑟 ∈ Q(𝑑). If 𝑚 = 0 or 𝑛 = 0, then 𝑟 = 1. One may check that if
0 ≠ 𝑚 ≠ 𝑛 ≠ 0 and 𝑟 ∈ Q(𝑑), then 𝑚 + 𝑛 ≥ 11. We will show below in Theorem
A.29 that 𝑚 + 𝑛 ≤ 5.

Proposition A.5. The center 𝑍 (C) has 8 distinct simple objects 1𝑍 (C) , 𝑋2, 𝑋3, 𝑋4,𝑌1,𝑌2,𝑌3,𝑌4
such that

I(1C) = 1𝑍 (C) ⊕ 𝑋2 ⊕ 𝑋3 ⊕ 𝑋4 and I(𝛼) = 𝑌1 ⊕ 𝑌2 ⊕ 𝑌3 ⊕ 𝑌4.

Denote the rest of the simple objects of 𝑍 (C) by {𝑍𝑠}𝑠∈𝑆 where 𝑆 is some finite
set. The matrix 𝐹 of the forgetful functor F : 𝑍 (C) → C can then be represented
as follows, where zero entries are omitted:

𝐹 =

1𝑍 (C) 𝑋2 𝑋3 𝑋4 𝑌1 𝑌2 𝑌3 𝑌4 𝑍𝑠

1C 1 1 1 1
𝛼 1 1 1 1
𝜌 𝑥2 𝑥3 𝑥4 𝑦1 𝑦2 𝑦3 𝑦4 𝑧𝑠

𝛼𝜌 𝑥′2 𝑥′3 𝑥′4 𝑦′1 𝑦′2 𝑦′3 𝑦′4 𝑧′𝑠

and the induction matrix is given by 𝐹𝑇 . Moreover,

4∑︁
𝑗=2
𝑥 𝑗 = 2𝑚 and

4∑︁
𝑗=2
𝑥′𝑗 = 2𝑛, (A.6)

𝑥2 + 𝑥′2 = 𝑚 + 𝑛, (A.7)

𝑥3 + 𝑥′3 =
1
2
(𝑚 + 𝑛) − 𝑟

2
(𝑚 − 𝑛), and (A.8)

𝑥4 + 𝑥′4 =
1
2
(𝑚 + 𝑛) + 𝑟

2
(𝑚 − 𝑛). (A.9)

4∑︁
𝑗=1

𝑦 𝑗 = 2𝑛 and
4∑︁
𝑗=1

𝑦′𝑗 = 2𝑚. (A.10)

Proof. First, 1𝑍 (C) decomposes as desired by Lemma A.3. Next, observe that by
(A.2),

(I(𝛼),I(𝛼)) = 4 and (FI(1C), 𝛼) = 0.

Since the first Frobenius-Schur indicator 𝜈1 satisfies Tr𝑍 (C) (𝜃I(𝛼) ) = 0 [43, Rem. 4.6]
(see also [48, Thm. 2.4]), I(𝛼) decomposes as 4 distinct simples which are dis-
tinct from 1𝑍 (C) , 𝑋2, 𝑋3, 𝑋4. Equations (A.6) and (A.10) follow from calculating
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FI(1C) and FI(𝛼). Equations (A.7), (A.8), and (A.9) now follow from the for-
mulas for dim(𝑋𝑘) for 𝑘 = 2, 3, 4.

We now compute the dimensions of all the hom spaces amongst I(𝜌) and
I(𝛼𝜌) in two ways. The first way is by taking adjoints, and using (A.2). The second
way is by using the induction matrix 𝐹𝑇 computed in Proposition A.5. This gives

to see

(I(𝜌),I(𝜌)) = 4 + 2𝑚2 + 2𝑛2 =

4∑︁
𝑗=2
𝑥2
𝑗 +

4∑︁
𝑗=1

𝑦2
𝑗 +

∑︁
𝑠

𝑧2𝑠 (A.11)

(I(𝜌),I(𝛼𝜌)) = 4𝑚𝑛 =
4∑︁
𝑗=2
𝑥 𝑗𝑥
′
𝑗 +

4∑︁
𝑗=1

𝑦 𝑗 𝑦
′
𝑗 +

∑︁
𝑠

𝑧𝑠𝑧
′
𝑠 (A.12)

(I(𝛼𝜌),I(𝛼𝜌)) = 4 + 2𝑚2 + 2𝑛2 =

4∑︁
𝑗=2
(𝑥′𝑗)2 +

4∑︁
𝑗=1
(𝑦′𝑗)2 +

∑︁
𝑠

(𝑧′𝑠)2. (A.13)

Lemma A.14. The non-negative integers 𝑥 𝑗 , 𝑥′𝑗 , 𝑦 𝑗 , 𝑦
′
𝑗
, 𝑧𝑠, 𝑧

′
𝑠 satisfy

8 + 5
2
(𝑚 + 𝑛)2 − 𝑟

2

2
(𝑚 − 𝑛)2 =

4∑︁
𝑗=1
(𝑦 𝑗 + 𝑦′𝑗)2 +

∑︁
𝑠

(𝑧𝑠 + 𝑧′𝑠)2 (A.15)

8 + 4(𝑚 − 𝑛)2 =

4∑︁
𝑗=2
(𝑥 𝑗 − 𝑥′𝑗)2 +

4∑︁
𝑗=1
(𝑦 𝑗 − 𝑦′𝑗)+

∑︁
𝑠

(𝑧𝑠 − 𝑧′𝑠)2.

(A.16)

Proof. To get the first equation, sum Equations (A.11) and (A.13) and twice Equa-
tion (A.12). Then use Equations (A.7), (A.8), and (A.9) and simplify. The second
is similar.

Proposition A.17. We have the following upper bound:∑︁
𝑠

(𝑧𝑠 + 𝑧′𝑠)2 ≤ 8 + 3
2
(𝑚 + 𝑛)2. (A.18)

Proof. By Equation (A.15), the desired inequality is implied by

4∑︁
𝑗=1
(𝑦 𝑗 + 𝑦′𝑗)2 ≥

1
4

©­«
4∑︁
𝑗=1

𝑦 𝑗 + 𝑦′𝑗
ª®¬

2

= (𝑚 + 𝑛)2 ≥ (𝑚 + 𝑛)2 − 𝑟
2

2
(𝑚 − 𝑛)2,

which is true. The second equality above holds by Equation (A.10), and the first
inequality above follows from the fact that for any real numbers 𝑤, 𝑥, 𝑦, 𝑧, we have

4(𝑤2+𝑥2+𝑦2+𝑧2)−(𝑤+𝑥+𝑦+𝑧)2 =
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(𝑤−𝑥)2+(𝑤−𝑦)2+(𝑤−𝑧)2+(𝑥−𝑦)2+(𝑥−𝑧)2+(𝑦−𝑧)2 ≥ 0.

The proof is complete.

Proposition A.19. Denote the twists of 𝑌1, . . . , 𝑌4 by 𝜃1, . . . , 𝜃4. We have 𝜃2
1 =

𝜃2
2 = 𝜃2

3 = 𝜃2
4 = ±1. Setting 𝜃 = 𝜃1, without loss of generality, we have 𝜃 ∈ {1, 𝑖}.

Proof. We calculate the following Frobenius-Schur indicators [43] of 𝛼:

0 = Tr𝑍 (C) (𝜃I(𝛼) ) =
4∑︁
𝑗=1
𝜃 𝑗 dim(𝑌 𝑗) (A.20)

± dim(C) = Tr𝑍 (C) (𝜃2
I(𝑍 ) ) =

4∑︁
𝑗=1
𝜃2
𝑗 dim(𝑌 𝑗). (A.21)

Since dim(I(𝛼)) = dim(C) = ∑4
𝑗=1 dim(𝑌𝑘), Equation (A.21) implies that 𝜃2

1 =

𝜃2
2 = 𝜃

2
3 = 𝜃

2
4 = ±1. By Equation (A.20), the 𝜃 𝑗’s split up into two nonempty groups

of opposite sign, so without loss of generality, 𝜃1 ∈ {1, 𝑖}.

Definition A.22. For 𝑗 = 2, . . . , 4, we let 𝜖 𝑗 ∈ {−1, +1} such that 𝜖 𝑗𝜃 = 𝜃 𝑗 where
𝜃 = 𝜃1 is the twist of 𝑌1. We also set 𝛾 := 1

2 (𝑚 + 𝑛) +
𝑟
2 and 𝛾 := 1

2 (𝑚 + 𝑛) −
𝑟
2 .

Notice that 𝛾 + 𝛾 = 𝑚 + 𝑛 and that 𝛾2 + 𝛾2 = 1
2 (𝑚 + 𝑛)

2 + 𝑟2

2 (𝑚 − 𝑛)
2.

Proposition A.23. We have the following equalities:

−
∑︁
𝑠

𝜃𝑠 (𝑧𝑠+𝑧′𝑠)2𝑑 =
3
2
(𝑚+𝑛)2𝑑+𝑟

2

2
(𝑚 − 𝑛)2𝑑+2(𝑚+𝑛)

+𝜃
4∑︁
𝑗=1
𝜖 𝑗 (𝑦 𝑗+𝑦′𝑗) (1+(𝑦 𝑗+𝑦′𝑗)𝑑) (A.24)

−
∑︁
𝑠

𝜃2
𝑠 (𝑧𝑠+𝑧′𝑠)2𝑑 = Δ+3

2
(𝑚+𝑛)2𝑑+𝑟

2

2
(𝑚 − 𝑛)2𝑑+2(𝑚+𝑛)

+𝜃2
4∑︁
𝑗=1
(𝑦 𝑗+𝑦′𝑗) (1+(𝑦 𝑗+𝑦′𝑗)𝑑) (A.25)

where Δ := ±(Tr𝑍 (C) (𝜃2
I(𝜌) ) + Tr𝑍 (C) (𝜃2

I(𝛼𝜌) )) ∈ {0,±2 dim(C) = ±(8 + 4(𝑚 +
𝑛)𝑑)}.

Proof. To get Equation (A.24), we add the following two equations for the first
Frobenius-Schur indicators [43] of I(𝜌) and I(𝛼𝜌), and we use Equations (A.7),
(A.8), (A.9) in conjunction with Definition A.22.

0 = TrZ(C) (𝜃I(𝜌) ) 69



= 𝑥2(1 + (𝑚 + 𝑛)𝑑) + 𝑥3(1 + 𝛾𝑑) + 𝑥4(1 + 𝛾𝑑) + 𝜃
4∑︁
𝑗=1
𝜖 𝑗 𝑦 𝑗 (1 + (𝑦 𝑗 + 𝑦′𝑗)𝑑)

+
∑︁
𝑠

𝜃𝑠𝑧𝑠 (𝑧𝑠 + 𝑧′𝑠)𝑑

0 = TrZ(C) (𝜃I(𝑔𝜌) )

= 𝑥′2(1 + (𝑚 + 𝑛)𝑑) + 𝑥
′
3(1 + 𝛾𝑑) + 𝑥

′
4(1 + 𝛾𝑑) + 𝜃

4∑︁
𝑗=1
𝜖 𝑗 𝑦 𝑗 (1 + (𝑦 𝑗 + 𝑦′𝑗)𝑑)

+
∑︁
𝑠

𝜃𝑠𝑧
′
𝑠 (𝑧𝑠 + 𝑧′𝑠)𝑑.

Obtaining equation (A.25) is similar using the second Frobenius-Schur indicators
[43] of 𝜌 and 𝛼𝜌:

± dim(C) = Tr𝑍 (C) (𝜃2
I(𝜌) )

= 𝑥2(1+(𝑚+𝑛)𝑑)+𝑥3(1+𝛾𝑑)+𝑥4(1+𝛾𝑑)+𝜃2
4∑︁
𝑗=1

𝑦 𝑗 (1+(𝑦 𝑗+𝑦′𝑗)𝑑)

+
∑︁
𝑠

𝜃2
𝑠𝑧𝑠 (𝑧𝑠+𝑧′𝑠)𝑑

± dim(C) = Tr𝑍 (C) (𝜃2
I(𝛼𝜌) )

= 𝑥′2(1+(𝑚+𝑛)𝑑)+𝑥
′
3(1+𝛾𝑑)+𝑥

′
4(1+𝛾𝑑)+𝜃

2
4∑︁
𝑗=1

𝑦′𝑗 (1+(𝑦 𝑗+𝑦′𝑗)𝑑)

+
∑︁
𝑠

𝜃2
𝑠𝑧
′
𝑠 (𝑧𝑠+𝑧′𝑠)𝑑.

Adding the above equations, applying (A.7), (A.8), (A.9) and Definition A.22, and
rearranging gives the result.

Theorem A.26 [30, Prop. 5.6 and Thm. 5.7]. Suppose 𝑢, 𝑣 ∈ Z and 𝑡 ∈ N is square
free.

(1) It requires at least |𝑢 | + 2|𝑣 | roots of unity to write 𝑢 + 𝑣
√

2 as a sum of
roots of unity.

(2) It requires at least |𝑣 |𝜑(2𝑡) roots of unity to write 𝑢 + 𝑣
√
𝑡 as a sum of roots

of unity.

Corollary A.27. Suppose 𝑢 ∈ Q, 𝑣 ∈ Z, and 𝑡 ∈ N is square free.

(1) It requires at least |𝑢 | + 2|𝑣 | roots of unity to write 𝑢 + 𝑣
√

2 as a sum of
roots of unity.
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(2) It requires at least |𝑣 |𝜑(2𝑡) roots of unity to write 𝑢 + 𝑣
√
𝑡 as a sum of roots

of unity.

Proof. Suppose
∑𝑁

𝑖=1 𝜁𝑖 = 𝑢 + 𝑣
√

2. Write 𝑢 = 𝑝/𝑞 in lowest terms with 𝑞 > 0 so that
𝑞
∑𝑁

𝑠=1 𝜁𝑠 = 𝑝 + 𝑞𝑣
√

2. By Theorem A.26(1), 𝑞𝑁 ≥ |𝑝 | + 2𝑞 |𝑣 |, so 𝑁 ≥ |𝑢 | + 2|𝑣 |.
Now suppose

∑𝑁
𝑖=1 𝜁𝑖 = 𝑢 + 𝑣

√
𝑡. Again write 𝑢 = 𝑝/𝑞 in lowest terms with

𝑞 > 0 so that 𝑞
∑𝑁

𝑠=1 𝜁𝑠 = 𝑝 + 𝑞𝑣
√
𝑡. By Theorem A.26(2), 𝑞𝑁 ≥ 𝑞 |𝑣 |𝜑(2𝑡), so

𝑁 ≥ |𝑣 |𝜑(2𝑡).

Lemma A.28. For all 𝑡 ∈ N with 𝑡 ≠ 1, 2, 3, 6, 𝜑(2𝑡) ≥
√︃

16𝑡
5 .

Proof. By [28], for all 𝑡 ∈ N, 𝜑(2𝑡) ≥ 2
(
𝑡
3
)2/3. It is straightforward to show that

for 𝑡 > 42, 2
(
𝑡
3
)2/3 ≥

√︁
16𝑡/5. One verifies directly that for 𝑡 = 4, 5 and 7 ≤ 𝑡 ≤ 42,

𝜑(2𝑡) ≥
√︁

16𝑡/5. The result follows.

Theorem A.29. If there is a pseudounitary fusion category C with the fusion rules
(Q3), then (𝑚 + 𝑛) ≤ 5.

Proof. We consider the two cases for 𝜃 ∈ {1, 𝑖} afforded by Proposition A.19.

(1) Suppose 𝜃 = 𝑖. We add Equation (A.24) to its complex conjugate, divide
by 𝑑, and simplify to obtain

−
∑︁
𝑠

(𝜃𝑠 + 𝜃𝑠) (𝑧𝑠 + 𝑧′𝑠)2 = (𝑚 + 𝑛)2 + 𝑟2(𝑚 − 𝑛)2 + 2(𝑚 + 𝑛)
√︁

4 + (𝑚 + 𝑛)2.

(A.30)

• Case 1: Suppose (𝑚 + 𝑛)2 + 4 = 2𝑣20 for some integer 𝑣0 > 0. Then by
Corollary A.27(1) with 𝑣 = 2(𝑚 + 𝑛)𝑣0, it requires at least

(𝑚 + 𝑛)2 + 𝑟2(𝑚 − 𝑛)2 + 4(𝑚 + 𝑛)
√︂

4 + (𝑚 + 𝑛)2
2︸             ︷︷             ︸

=𝑣0︸                          ︷︷                          ︸
=2𝑣

≥
(
1 + 4
√

2

)
(𝑚 + 𝑛)2

roots of unity to write the right hand side of Equation (A.30). Together
with Inequality (A.18), we see

16 + 3(𝑚 + 𝑛)2 ≥ 2
∑︁
𝑠

(𝑧𝑠 + 𝑧′𝑠)2 ≥
(
1 + 4
√

2

)
(𝑚 + 𝑛)2,

which implies 𝑚 + 𝑛 ≤ 4.
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• Case 2: If 4 + (𝑚 + 𝑛)2 ≠ 2𝑣2, then we can write 4 + (𝑚 + 𝑛)2 = 𝑣2𝑡

where 𝑣, 𝑡 are integers with 𝑣 > 0 and 𝑡 > 2 is square free. Then by
Corollary A.27(2), it requires at least 2(𝑚 + 𝑛)𝑣𝜑(2𝑡) roots of unity
to write the right hand side of Equation (A.30). Since 4 + (𝑚 + 𝑛)2 ≡
±1 mod 3, we know 4 + (𝑚 + 𝑛)2 ∉ {1, 2, 3, 6}. By Lemma A.28,

𝑣2𝜑(2𝑡)2 ≥ 16𝑣2𝑡
5
⇐⇒ 𝑣𝜑(2𝑡) ≥ 4

√︂
4 + (𝑚 + 𝑛)2

5
.

Now by inequality (A.18), we see

16 + 3(𝑚 + 𝑛)2 ≥ 2
∑︁
𝑠

(𝑧𝑠 + 𝑧′𝑠)2 ≥ 2(𝑚 + 𝑛)𝑣𝜑(2𝑡)

≥ 8(𝑚 + 𝑛)
√︂

4 + (𝑚 + 𝑛)2
5

,

which implies 𝑚 + 𝑛 ≤ 4.

(2) Suppose 𝜃 = 1. Then dividing Equation (A.25) by 𝑑 and simplifying, we
get

−
∑︁
𝑠

𝜃2
𝑠 (𝑧𝑠 + 𝑧′𝑠)2 =

Δ + 4(𝑚 + 𝑛)
𝑑

+ 3
2
(𝑚 + 𝑛)2 + 𝑟

2

2
(𝑚 − 𝑛)2 +

4∑︁
𝑗=1
(𝑦 𝑗 + 𝑦′𝑗)2

(A.31)

There are now 2 cases depending on the value of Δ.

• Case 1: Suppose Δ = 0. Then Equation (A.31) becomes

−
∑︁
𝑠

𝜃2
𝑠 (𝑧𝑠 + 𝑧′𝑠)2 = 2(𝑎 + 𝑏)

√︁
4 + (𝑚 + 𝑛)2 − 1

2
(𝑚 + 𝑛)2

+ 𝑟
2

2
(𝑚 − 𝑛)2 +

4∑︁
𝑗=1
(𝑦 𝑗 + 𝑦′𝑗)2. (A.32)

• Case 2: Suppose Δ = ±2 dim(C) = ±(8 + 4(𝑚 + 𝑛)𝑑). Then equation
(A.31) becomes

−
∑︁
𝑠

𝜃2
𝑠 (𝑧𝑠 + 𝑧′𝑠)2 = 2(𝑚 + 𝑛 ± 2)

√︁
4 + (𝑚 + 𝑛)2 − 2(𝑚 + 𝑛 ± 2) (𝑎 + 𝑏)

± 4(𝑚 + 𝑛) + 3
2
(𝑚 + 𝑛)2 + 𝑟

2

2
(𝑚 − 𝑛)2 +

4∑︁
𝑗=1
(𝑦 𝑗 + 𝑦′𝑗)2.

(A.33)72



In either of the above cases, arguing as in (1) where 𝜃 = 𝑖, we see that it
takes at least

min

{
8(𝑚 + 𝑛 − 2)

√︂
4 + (𝑚 + 𝑛)2

5
, 4(𝑚 + 𝑛 − 2)

√︂
4 + (𝑚 + 𝑛)2

2

}
≥ 4
√

2
(𝑚 + 𝑛) (𝑚 + 𝑛 − 2)

roots of unity to write the right hand sides of Equations (A.32) and (A.33).
Now by inequality (A.18), we see

8 + 3
2
(𝑚 + 𝑛)2 ≥

∑︁
𝑠

(𝑧𝑠 + 𝑧′𝑠)2 ≥
4
√

2
(𝑚 + 𝑛) (𝑚 + 𝑛 − 2),

which implies 𝑚 + 𝑛 ≤ 5.
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