THE CONSTRUCTION OF A E;-LIKE QUANTUM SUBGROUP OF SU(3)

CAIN EDIE-MICHELL AND LANCE MARINELLI

ABSTRACT. In this short note we construct an embedding of the planar algebra for Rep(Uq(sl3)) at ¢ =
62”i217 into the graph planar algebra of di Francesco and Zuber’s candidate graph 6&2. Via the graph planar

algebra embedding theorem we thus construct a rank 11 module category over Rep(Ug(sl3)) whose graph
for action by the vector representation is 5&2. This fills a small gap in the literature on the construction of

Rep(Uq(sl3)) module categories. As a consequence of our construction, we obtain the principal graphs of
subfactors constructed abstractly by Evans and Pugh.

1. INTRODUCTION

To every module category over a modular tensor category (MTC), there is an associated modular invariant.
This is a positive integer valued matrix commuting with the SL(2,Z) representation of the MTC. These
modular invariants are a useful tool for studying module categories, and have played a key role in classification
efforts. However, the modular invariant is not a complete invariant. There are many examples of modular
invariants which do not come from module categories [Dav16], and also of distinct module categories with
the same modular invariant [EP09a, Sections 11 and 12]. A modular invariant is referred to as physical if it
is realised by a module category. Even in the situation where a modular invariant is known to be physical,
it can be difficult to determine the structure of the corresponding module categories.

A large class of MTC’s come from the (semisimplified) representation theory of quantum groups at roots
of unity [BKO1, Chapter 7]. These categories are typically denoted Rep(U,(g)). In the special case of the Lie
algebra sl3, the modular invariants were classified by Gannon [Gan94]. In work of Evans and Pugh [EP09a],
all of the SU(3) modular invariants were shown to be physical. For all bar one modular invariant, their
proof was via explicit construction of the corresponding module categories (using Ocneanu cell systems).
The remaining modular invariant was shown to be physical via a relative tensor product construction. As
the relative tensor product of module categories is a difficult construction to work with in practice, the
explicit structure of the corresponding module category has not been confirmed. It should also be noted
that in [EP09b, Section 5.4] some structure of this module category is deduced based on an assumption on
its corresponding algebra object. Further, in [Ocn02], an explicit construction of this module category is
claimed without detail. .

The modular invariant in question can be found in [Gan94] labelled as (552)) . There has been some
work on deducing the module fusion graph (the graph representing the action of A; on the module) for
the module category category corresponding to this modular invariant. In [DFZ90] Di Francesco and Zuber
suggest the following graph (with some physical supporting evidence):
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As it will be useful throughout this paper, the Frobenius-Perron eigenvector for this graph is

. Bla» 15lg» 310, 1, (Bl [31q,1}.

In this paper, we fix a small gap in the literature by explicitly constructing a module category with module
fusion graph £}2. Our technique for constructing this module category is by using the graph planar algebra
embedding theorem [GMP*18, Theorem 1.3]. The use of this technique is typically been referred to as cell
systems in the context of quantum groups [Ocn02, EP09a, EP21]. More precisely, we find the following
element of oGP A(E}?). We direct the reader to Subsection 2.2 for the definition of 0GP A(E}?).

Definition 1.1. Let ¢ = (a4, and z the root of the polynomial 926 — 142 + 9 with numerical value closest
to —0.996393 + 0.0848571i. We define W € HOmOGPA(gi2)(— — ++) as the functional defined on basis
elements by
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with the remaining values on basis elements defined by the rotational formula We . = 4/ %Wb,c,a- Here we

use the notation that ¢, := e27it.

Our main result shows that this distinguished element satisfies the relations required to give an embedding
for the planar algebra of Rep(U,(sl3)) associated to the object Aj.

Theorem 1.2. The map
Y — W e HomoGPA(£i2)(7 — ++)

defines a tensor functor

12
Prepsanin, — OGPAELT).

The graph planar algebra embedding theorem [GMP*18, Theorem 1.3] (and [CEM23, Theorem 1.1] for
the slight technical alteration needed for our set-up) then gives the construction of the module category.

Corollary 1.3. There exists a module category M over Rep(Uy(sls)) such that the action graph for Ay is
£
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As shown in [EP09b], we obtain several subfactors of the hyperfinite IT; factor R as a consequence of
Corollary 1.3. The subfactor with smallest index (= 24 (2 + \/3)) has principal graph
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The above principal graph is obtained from the graph £}? via the equations of [CEM23, Section 7].

Our strategy for obtaining the embedding in Definition 1.1 is low-brow, but effective. We begin by numer-
ically approximating a solution for the embedding of the element [2], - pa, € Rep(U,(sl3)) into oGPA(£}?).
As the element [2], - pa, satisfies the Hecke algebra relations, the equations governing its embedding into
0GPA(E}?) are polynomial (of max degree 3), and are amenable to numerical approximation. From this
numerical approximation we can then guess exact values for most of the coefficients of the embedding. With
many of the coefficients exactly determined, many of the polynomial equations governing the embedding are
now linear, and can be solved exactly. This gives us a candidate for the embedding of the element [2], - pa,.

Using the techniques developed in [CEM23], we can then determine the embedding of Y € Rep(Uq(sls))

into oGP A(E}?) presented in Definition 1.1.

While our method of numerical approximation is ad-hoc, we have several arguments to justify our ap-
proach. The first is that the results of [EM23] show that there is at most one embedding of Rep(U,(sl3)) into
oGPA(E}?). Thus we don’t have to worry about missing potential solutions in our numerical approximation.
The second argument is that the modular invariant we are studying lives in the finite family of “FEr-like mod-
ular invariants” again by the results of [EM23]. In fact, there are only six physical modular invariants in this
family up to level-rank duality. As such, we consider ad-hoc techniques fair game for explicitly constructing
the module categories corresponding to these modular invariants.

Acknowledgements. The first author was partially supported by NSF grant DMS 2245935. The second
author was fully supported by NSF grant DMS 2245935 as an undergraduate researcher.

2. PRELIMINARIES

We refer the reader to [EGNO15] for the basics on tensor categories and module categories. We refer the
reader to [Saw06, Sch20] for the basics on the tensor categories Rep(U,(g)).

2.1. Planar Algebras. In this subsection we define planar algebras, and explain how they are can be
obtained from a pivotal tensor category. We refer the reader to [Jon22] for additional details and examples.
For this paper we will use the non-standard categorical definition of a planar algebra.

Definition 2.1. A planar algebra P is a strictly pivotal monoidal category whose objects are strings in the
alphabet {4+, —}.

Remark 2.2. Note that our definition of a planar algebra does not require direct sums of objects, nor that
idempotents split.



The standard definition of a planar algebra by action of the planar operad [Jon22, Section 1] is equivalent
to our non-standard definition. The action of a compatible planar tangle T on a collection of morphisms
fi € Homp(s; — t;) is given by inserting the morphisms f; into the planar tangle T, and evaluating the
diagram as a morphism of P using the pivotal graphical calculus [TV17, Chapter 2]. We direct the reader
to [Mor10, Chapter 3] for detailed notes on this correspondence.

A large class of planar algebras can be constructed as special subcategories of pivotal tensor categories.
These special subcategories are defined as follows.

Definition 2.3. Let C be a pivotal tensor category, and X € C an object. We define the planar algebra
generated by X, which we denote P¢ x as follows. The objects of P¢ x are sequences in {4, —}. Let s,t be
two objects. We define

Homp, (s —t) := Home(X* @ X*? @ = X" @ X2 @)
where we understand X+ = X and X~ = X*.

If the object X Cauchy tensor generates C (in the sense of [GMP*18]), then P¢ x contains a projection
onto every simple object of C. Hence the Cauchy completion of Pc x is monoidally equivalent to C. In
this sense, the subcategory Pc x remembers all the information of the original category C, while being
significantly simpler.

An important example of a planar algebra is the Kazhdan-Wenzl presentation for Rep(U,(sly)). Let
X = A1 be the vector representation. The planar algebra Prep(u, (siy)),a, 18 then described in [KW93] via
generators and relations. The generators of this planar algebra are

|| L
v = 2| | € Prep,(stn).a(+: = +7) and w € PRep(Uy(sin))ar (T = +V)

I P

The planar algebra is then constructed as the free planar algebra built from the generating morphisms
(allowing duality morphisms, along with tensor products, compositions, and sums of these morphisms),
modulo the generating relations. We have the following relations between the generators (which are sufficient

when ¢ = e>™ %% for some k € N by [CEM23))

| | L L
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Note that for this paper, we will be specialised to the case where N =3 and g = ¢
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2.2. The graph planar algebra. A key planar algebra used in this paper is the graph planar algebra
constructed from a graph I' and a Frobenius-Perron eigenvector A for I'. The construction of the graph
planar algebra is due to Jones [Jon00].

Definition 2.4. Let I' be a graph, and A a positive Frobenius-Perron eigenvector for I'.  We define the
planar algebra oGPA(T') as follows. For two strings s and ¢ in {+, —} we define

Hom,cpacr)(s — t) = spanc{(p, q) : p is a s path, ¢ is a ¢ path, s(p) = s(q),t(p) = t(q)}-
The composition and tensor product operators are defined on basis elements by
(p/7 q/) o (p7 q) = 6q',P(p/a Q)
(2,9) @ (P, q") = Oep),s(0)Ot(q),5(q) (PP, 44")
which are extended linearly. We define distinguished rigidity maps by

V(s ) = 3 At(e) ((e,),5()) : (+,—) = 1

>~

(e,;€) a (+, —)-path s(e)
)\S €
coev(_ 1) = 3 T2 (t(e), (@.0) : L= (=, +)
(e,e) a (—,+)-path t(e)
AS € —
V= D o (@0 te)) s (-, 4) > 1

(&€) a (=, +)-path

Atle _
coevis = Y T (s(e), (e,2) : T = (+,-).
(e,€) a (4, —)-path s(e)

It is well-known (and straightforward to verify) that oGPA(T") satisfies the conditions to be a pivotal
monoidal category, and hence is a planar algebra.
The planar algebra oGPA(T') can be equipped with a } structure given by the anti-linear extension of

».a)" = (a.p).
With this dagger structure, oGPA(T) is unitary. We refer the reader to [Pet10, Section 2.2] and [CEM23,
Section 2.2] for more details on the category oGPA(T).
The graph planar algebra is useful for this paper due to the graph planar algebra embedding theorem
[GMP*18, Theorem 1.3] (see [CEM23, Theorem 1.1] for the slight alteration needed for the non-self-dual
setting). This result shows that module categories over a pivotal tensor category are classified by embeddings

of an associated planar algebra into graph planar algebras. This allows us to obtain Corollary 1.3 from
Theorem 1.2.

3. FINDING THE SOLUTION

Our first goal is to find an embedding of the element |, € Rep(U,(sl3)) into oGPA(E4?). That is, we

need find an element of Hom,gpa(e12)(++ — ++) satisfying relations (R1), (R2), (R3), and (Hecke). From
the definition of the graph planar algebra, this is exactly the assignment of a complex variable to each pair
(n 2 vg 25 vg, 01 225 vy 2 v3) of paths in £}, satisfying various polynomial equations which ensure the
four above relations hold.

We will use the “Boltzmann Weight” notation (as in [EP09a]) to represent the coefficient attached to a

pair (v; 25 vy 25 vg,v1 =25 vy~ v3). This coefficient will be represented as Uf;ﬂ”g: In the case that
there is a single edge between two vertices, the label denoting the edge will be unamf)iéuously suppressed.
This notation gives a compact matrix notation for presenting our element of Hom, g p A(5i2)(++ — +4+).
For fixed vertices v, v3 we have the matrix
U v1,7® U:b
|: e U;d U2 j| Ya rU;_Yb Jve U;Yd

5
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with row and columns indexed by all paths of length 2 beginning at v; and ending at vs.

To find the embedding of [, into oGPA(E}?), we have to solve a large system of polynomial equations.

This proved too hard for us to do directly. Instead, we begin by finding a numerical solution, with the end
goal being to guess the exact solution. An issue immediately arises in that the gauge group of the embedding
is U(2) @ U(1)?3. A numerical solution is going to find a random point in this solution space. This means
that any numerical solution we find will be unrecognisable as an exact solution. To fix this we note that the
matrix U! 4 is a 2 x 2 projection satisfying (U' ¢)? = [2],-U! ¢ by (Hecke), and with trace [2], by [CEM23,
Lemma 5.6]. This means we can unitarily conjugate U' 4 by an element of U(2) to arrange that

6 68
Ut 0= (2lg 0
0 0

This uses up the U(2) degree of freedom, up to the U(1) @ U(1) diagonal subgroup of this U(2). Thus with
this fixed choice of U! 4 as above, we have a gauge group of U(1)?>. In particular, this means that the
absolute values of the coefficients in our solution are now fixed.

We now numerically approximate a solution for the remaining coefficients. As expected, the phases on
these coefficients are unrecognisable (as the numerical approximation picks out a random point in the solution
space U(1)?%). However, many of the absolute values (which are invariant under the action of U(1)?%) of our
numerical coefficients can be immediately identified. The distinct numerical values in our numerical solution
for which we can make guesses for their exact values are as follows:

Numerical Value 0 0.175067 0.207107 0.230146 0.341081
1 B 1 [ 2e) _1 Bl 1) _ 1 M) _
Exact Guess 0 (et mt) -1 F () -1 f () -1 e (Rt i) -2
Numerical Value | 0.366025 0.393347 0.439158 0431717 05
] B Bl an
Exact Guess ﬁ ﬁ (2] 4+ 3]q) — 1 Bt 1 \/[2]q[3]Z i
Numerical Value | 0.517638 0.538005 0.605 0.68125 0.707107
3 4
Exact Guess ﬁ [41](1 ([5]q + %) -1 \ /ﬁ H‘% %
Numerical Value | 0.745315 0.790471 0.300803 0.8556 0.365966
1 1 1 [2]4 [3lq 1 [8lq [2]q 1
Exact Guess \/m (1+a) \/m (1+5) \/[2]4[4]q (1+a) gk \/mq (1+d)
Numerical Value | 0.806575 0.975056 1.020367 1.035276 1.07313
] 4], L 8, Bl 1 4, (1 A
Exact Guess 5l Bt Bl gt (1 B) ol (2t ) \/ a (1+ )
Numerical Value | 1.207107 1.239146 1.303847 141421 1.692705
2 q 2 q 3 q 2 q
Exact Guess % (1 + H1> % (1 + ﬁ) ﬁ (214 + [3]q) V2 % (1+1[2],)
Numerical Value 1.93185
Exact Guess [2]4

Note that we could not (at this point) make guesses for the exact values of the following numerical values
appearing in the solution

{0.239691, 0.301034, 0.327424, 0.420187, 0.45152, 0.465762, 0.578665, 0.633931, 0.636242, 0.72676 } .

Many of these exact values are for diagonal coefficients of our solution. i.e. coefficients of the form
Ufllvzzvgj These coefficients are real by (R2), and are gauge invariant. Hence the phase of these coefficients
is j:i, and can easily be seen from the numerical solution. For the off-diagonal coefficients, we have a large
amount of freedom in the phases due to the U(1)?° gauge group. Using up this freedom allows us to set the
phases of many of these coefficients to 1.

We now have (a guess for) the exact value of many of the coefficients for our solution. At this point many
of the equations of (Hecke) and (R3) are now linear. Solving these linear equations gives exact values for the
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remaining coefficients for which we could not guess an exact value for. Furthermore, these linear equations
allow us to pin down all the remaining free phases in our solution.
As we now have an exact value for all of the coefficients in our solution, we thus have an element of

HOmOGPA(512)(++ — ++), which we suspect to be the embedding of in oGPA(E}?). We then obtain a

potential embedding of Y in oGPA(E}?) by solving the linear equations (RI) and (BA), and normalising
with (U).
The potential solution to the embedding of — Hom,gpaceiz)(— — ++) is given in Definition 1.1.

Here we use a slight alteration of Boltzmann weight notation, with the value W,, ., ., representing the
coefficient of the basis element (vy & V3, U1 Dy vy 2 v3) with edge labels surpessed unless needed.

To give the reader some idea of the structure of the solution for the embedding of , we include the

single 5 x 5 block and three 3 x 3 blocks.

1 2 3 5
2 N ;
Bl Son —iegy
{

i Ve
Bl Enemen o (24 G e oy (27T
Vo= |xymt i (2 Cﬂm) %T([z] + ) enen Vi (452 + /)
Tl -+ ) (i) i () (B
',52,(”2*45\/%) ol (‘ e ity /BRI et (1+ )

&,

e 5 i )
6 6P 10
1 RO AEPEDEER Ble (1. 1
o, C3\/ BHEOP B, 1T, (” m)
3 T2l (4. (2l —1)—[3 (1+[2])([212—[4]q) 1+[2],
U o= |G/ g ) L. ot s/ BlaBla = [12)
3], 142, Bl . (3l
\/mqmq (1+ ) 3ty VBla(lg — [4o) e + B,
6 6°
1 3 Bla([2]g+[3]q) (317
o, 8\ 1.l BEA, (T2,
Ut — T, (2l Blg) 3 13 - 20+ 13la
0= |8/ s [4? Bl a2, [31q (1 + [21q) & —[21 CHEACEEEM
R 121, 4], (1202= 1)~ 3] ([214+13],
DHORCE=RP) e MOHEACEEM) .5,
6 6° 10
1 C 2*2 & iz— 2
1, 48 BRSP o

Us = | —1.2 [ T4, [4lg /H
0~ [Gs 2\ B i BBlq 24051,
2 1 37 [4]q 1
127wy, 48/ 121,051, 2l

The remaining blocks can be recovered from the embedding of Y using the formula

v =12l DAy =




4. VERIFYING THE SOLUTION

From the previous section, we have a candidate for an exact solution to an embedding Pm, A
q 3

0GPA(E}?). To show that this candidate solution is indeed an exact solution, we have to verify equations
(R1), (R2), (Hecke), (RI), (BA), (U), and (R3). The first six are quickly verified by Mathematica. However,
to verify (R3) we need to check that 1251 individual cubic equations hold. As the degree (as an algebraic
number) of many of our coefficients is 16, these equations are extremely computationally expensive to verify.
Optimistically we ran a computer for 72 hours attempting to verify the (R3) equations, however no result
was obtained.

To get around this computational roadblock, we observe that the coefficients of the embedding of Y

%

are significantly nicer than the coefficients of the embedding of . As shown in [Kup96], the category

PRep(U, (s13));A, has an alternate presentation given in terms of the single generator Y The relations of

this presentation are as follows:

:<>[qu
<H)E> +U
~

Hence if we can verify the above three relations, we will show that our potential solution indeed defines an
embedding Prommmyya, — oGPA(E}?). While relation (ii) is quartic, the simpler form of the algebraic

numbers for the coeflicients of the embedding of means that these equations are much easier for the

computer to verify. Helping our cause is the fact that there are only 171 individual equations to verify for
relation (ii). This allows us to give a proof of Theorem 1.2.

Proof of Theorem 1.2. We directly verify that the element of 0GPA(E}?) given in Definition 1.1 satisfies
relations (), (i), and (ii) using a computer. A Mathematica file containing the solution and this verification
can be found attached to the arXiv submission of this paper. This gives a j-embedding of Prep(v, (si5));a; —
oGPA(E;?). As oGPA(E}?) is unitary, we have that the image of Prep(u, (st5));a, i 0GPA(E}?) is a unitary
subcategory. In particular all negligible elements of Prep(v, (si5));a, are mapped to zero. Thus we get an

1 S 12 X L3
embedding PRes@ LA oGPA(E}?) as desired. O
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