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Natural biological branching processes can form tree-like structures at all scales
and, moreover, can perform various functions to achieve specific goals; these
include receiving stimuli, performing two-way communication along their
branches, and dynamically reforming (extending or retracting branches).
They underlie many biological systems with considerable diversity, frequency,
and geometric complexity; these include networks of neurons, organ tissue,
mycorrhizal fungal networks, plant growth, foraging networks, etc. This
paper presents a biomimeticDNA tile assemblymodel (Y-STAM) to implement
dynamic branching processes. The Y-STAM is a relatively compact mathemat-
ical model providing a design space where complex, biomimetic branch-like
growth and behaviour can emerge from the appropriate parametrization of
the model. We also introduce a class of augmented models (Y-STAM+) that
provide time- and space-dependent modulations of tile glue strengths, which
enable further diverse behaviours that are not possible in the Y-STAM; these
additional behaviours include refinement of network assemblies, obstacle
avoidance, and programmable growth patterns. We perform and discuss
extensive simulations of the Y-STAM and the Y-STAM+. We envision that
these models could be applied at the mesoscale and the molecular scale to
dynamically assemble branching DNA nanostructures and offer insights into
complex biological self-assembly processes.
1. Introduction
Nanoscience has, across various materials and for numerous purposes, sought to
construct increasingly complex structures by assembling nanoscale materials and
devices of greater efficiency, functionality, and revolutionary applicability [1].
However, these are almost always accomplished by following direct, deterministic
design methodologies. In stark contrast, nature often contends with novel, ever-
changing environments, and hence natural biological self-assemblies need to use
dynamic, non-deterministic self-assembly processes to adapt, grow, and survive.

Branching processes are one such example that underlies the fundamental
understanding of a diverse range of natural biological phenomena, appearing
in plants [2–5], fungi and slime moulds [6–10], ant trails [11–15], branching
morphogenesis [16–23], and many more. The branching processes observed
in these instances can be surprisingly sophisticated; they exhibit dynamic
growth, sensitivity to the environment and chemical signalling, the degradation
of branches that are not useful, and often feature two-way communication
ability that verifies the discovery of intended targets which may trigger changes
in the assembled branch, such as enforcing or disintegrating the branch.

For instance, the internal regulation of auxin controls branching in plants
[3–5] according to factors such as light intake, nutrient uptake from soil, and
the current size of the branch. Slime mould networks can use chemical trails
to avoid obstacles and navigate toward new territory [8–10] while mycelium
can optimize the geometry of its network for feeding [7]. Ants curate their
pheromone trails according to various environmental conditions and to com-
municate the direction of food [11–15]. Organ tissue and neural tissue grow
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and branch according to both intrinsic rules [19,20] and signals received from an extracellular matrix [24,25] to fulfil a desired
density, shape, or function. Branching morphogenesis has also been considered a computational process that makes limited use
of genetic programming; it is a generalized process that can be repurposed using different signals without major changes to
the genetic programming that implements the branching process itself [26–30].

There have been extensive efforts to analytically understand these patterns of growth. Various computational and mathemat-
ical models include kinetic models [31,32], lattice gas models [33], generative models [34–36], branching random walks [37–39],
Lindenmayer systems [40,41], and reaction–diffusion systems [42]. There has been a sense that coarse-grained models, such as
cellular automata, could simulate natural processes [43–45], and there have been such instances specifically tailored to fungal
growth [46,47] or morphogenesis [48–50].

Here, we use DNA nanotechnology and tile assembly models, which together form the subfield of DNA tile-based self-
assembly [51,52], which is closely related to cellular automata [53–55]. DNA nanotechnology uses DNA molecules for either
computational or structural purposes, instead of genetic. Nanostructures and logic circuits can be constructed with only DNA
as a substrate using the intentional design of hybridizing domains. These factors combine to make DNA nanotechnology uniquely
suitable for implementing tile assembly systems, which are algorithmic problems concerning the coverage of a plane using a small
pool of repeated units (tiles) that have defined rules for their edge-to-edge adjacency with each other.

The field of DNA nanoscience thus blends chemistry, the life sciences, and mathematical modelling; it has a unique capacity
to model or mimic natural processes, such as demonstrated by its significant progress in implementing chemical reaction net-
works [56]. Branching processes provide a thought-provoking paradigm from which to investigate the fundamental
components and operations of a class of natural processes that are obscured behind complex behaviours. DNA nanotechnology
offers an opportunity to physically manifest these insights in vitro, as opposed to only in silico.

In most cases, these branching processes are non-deterministic yet reproducibly exhibit behaviours or produce geometries that
local constraints and conditions can dynamically influence. The mechanisms behind these processes have become increasingly
understood owing to research progress, and the responsible macromolecules and chemical signalling pathways have often been
identified and consolidated. However, it remains a challenge to develop a succinct model of these very complex biological self-
assembly systems that would mimic and reflect their behaviour and generalize to engineering self-assembled structures at both
large and nanometre scales. Current empirical strategies employed to confirm theory and computational models [19,20] mostly
involve imaging tissue, either during early developmental stages [57–59] or when affected by growth factor mutations [60–63].
That is, in effect, a top-down approach where the insights of simulated models cannot be evaluated de novo.

This paper will formalize, simulate, and propose implementations for a biomimetic model based on DNA tile-based self-
assembly to serve as a bottom-up model to understand and dynamically produce goal- and function-oriented structures that
resemble natural examples, such as the growth of mycorrhizal fungal networks, slime mould networks, neural networks, and
organs, which are each crafted by evolutionarily tailored branching self-assembly processes. In this model, DNA tiles can be
used as a fundamental unit to implement, observe, and manipulate various branching behaviours that emerge from specifically
composed elementary functions and signals. Moreover, the stochastic self-assembly strategies gleaned from natural branching
processes may also lend new perspectives toward achieving the goals of much of DNA nanostructure research, which has been
to self-assemble a nanostructure of some predetermined shape; many of the most complex examples of which have been accom-
plished by direct or repeated explicit programming of shapes [64], but others have also been described algorithmically by prior tile
assembly models, such as the abstract Tile Assembly Model (aTAM) and its many derivatives [52,65–69].

The model defined in this paper, the Branching Signal-passing Tile Assembly Model (Y-STAM; ‘Y’ is used here as a symbolic
abbreviation for ‘branching’) is derived from elements of the kinetic Tile Assembly Model (kTAM) [70] and the Signal-passing Tile
Assembly Model (STAM) [71–73]. The STAM has previously been alluded to as a potential model of biological processes, but to
the best of our knowledge, none have yet to be formally and thoroughly described and, for that matter, demonstrated. Mohammed
et al. [74] previously experimentally demonstrated DNA nanotube assemblies that formed a connection between two molecular
landmarks, but this occurred without branching. An implementation of the STAM has also been experimentally demonstrated,
but also for only a one-dimensional growth [75].

The Y-STAM aims to distinguish several key characteristics of branching self-assembly processes, like those that drive morpho-
genesis, such as tip bifurcation (branching), elongation (growth), and termination, which seem to be widespread primitives of
branching processes, as well as additional concepts like degradation and two-way communication. We later introduce time and
space-inhomogeneous signals that can regulate each of the aforementioned factors. These resemble the presence of external influ-
ences such as growth-enabling nutrients or the limitations thereof, environmental stressors, and signalling from an extracellular
matrix. We introduce the Augmented Branching Signal-passing Assembly Model (Y-STAM+) for the family of expanded
models that accommodate such external influences outside the Y-STAM design space.

Using simulations restricted to the rules of our tile assembly models, we speculate upon and delineate the existence of several
input parameters that configure and influence branching processes and evaluate their influence on the final shape and function
of dynamic branching assemblies. Our work differs from prior formal models of branching processes, which have not been
generalized across fields of study, have not been as comprehensive, and have generally not included two-way communication
nor time- and space-dependent behaviours [19,20,23,76]. Our work is unique in its attempt to simultaneously accommodate
multiple parameters of branching processes with greater generality than prior, field-specific models while maintaining attention
to the broad, bottom-up applicability of the model. The results of the paper show that external influences on a statically pro-
grammed branching process can influence the behaviour and success of an assembly in numerous settings and functions, such
as food-finding, resource competition, metabolic and ecological constraints, and obstacle navigation.

Our paper is organized as follows. Section 2 informally introduces both the Y-STAM and the Y-STAM+ and the simulations
performed for each model. Section 3 formally defines the Y-STAM and the features present on each DNA tile to implement
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Figure 1. Overview of the branching tile assembly model. (a) Intrinsic properties of the model describe fundamental processes present across all instances of branching.
Bolder lines indicate preferred or strengthened paths, whereas paths shown as thinner lines are more likely to degrade or are already degraded. (b) Extrinsic modulators
broadly refer to chemical signalling and external processes that can affect intrinsic properties. (c) Observable behaviours result from the tuned interaction of the intrinsic
properties and extrinsic effectors and fulfil the desired shape or function of the branching assembly process. For example, we can evaluate space-filling behaviours such as
competitive growth for absorbing nutrients or the relationship between branching parameters and space-filling rates.
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growth, branching, termination, degradation, and response to positive feedback (figure 1a). Section 4 discusses simulations for a
restricted unidirectional version of the Y-STAM, where growth proceeds strictly from left to right, as a starting point to make intui-
tive observations about branching processes from more easily interpretable results. Section 5 adds formal definitions and
simulations for the Y-STAM+, which enables the model to be sensitive to environmental factors (figure 1b), and we use this to
study emerging behaviours that are the result of interactions between functions programmed directly into the tiles and functions
that are programmed externally. Then, in §6, we remove the restrictions of unidirectional growth and perform simulations for the
Y-STAM+ in two dimensions (figure 1c). Finally, in §7, we discuss potential strategies and challenges for implementing the model,
discrepancies when compared to real-world examples, and speculate upon extensions and applicability of the model.
2. Informal review of prior tile assembly models and introduction to the Y-STAM and the Y-STAM+

2.1. Informal review of the aTAM and the kTAM
We begin with an informal review of key definitions from prior models [52,70,77] and later omit to repeat their formal definitions.
Wang tiling [51] uses square tiles, intending to fill or pattern the integer plane (or grid) Z2, where Z is the set of integers. DNA
tile-based self-assembly models, like the aTAM [52] and the kTAM [70], are based on Wang tiling and are interesting models of
biological computation owing to being intrinsically universal [78].

The aTAM is the precursor model of DNA tile-based self-assembly. It defines a set of square, non-rotating tiles with glues on
each side. Each glue has a colour (later more commonly known as its label), and the glues, by matching colours, dictate the attach-
ment of tiles to each other. Tile assemblies begin from a seed, which is a set of tiles that initiates the assembly and is also used as a
fixed reference point. As the tile assembly fills the plane, the glues can be chosen such that the tiles, observed by a label for the tile
itself, form specific, algorithmic patterns, such as the Sierpinski triangle [66]. Furthermore, glues are each defined with some
strength. The strength of a glue–glue bond is compared to the temperature, a global variable of the assembly, which determines
whether a glue–glue bond is valid within the assembly.

The kTAM is closely related to the aTAM, except that the kTAM further resembles realistic processes by interpreting the
strength of glues as a binding coefficient between two glues. The kTAM adds greater thermodynamic context into tile assembly
models, defining an entropic cost of association (addition of a tile into a vacant spot of the assembly), Gmc, and a free energy cost of
disassociation (breaking a bond to remove a tile from the assembly), Gse. The temperature is then the ratio τ =Gmc/Gse, and this is
translated into forward (rf ) and backward (rb) rates for the assembly. The kTAM thus provides a probabilistic model that more
closely models realistic biochemical reactions.

2.2. Informal review of the STAM
The STAM adds power to tile assembly models by the definition of glue states and a transition function that can alter the state of a
glue depending on binding events occurring to other glues on the tile. Glue states (on, latent and off ) control whether a glue
can bind or not. In DNA strand displacement terms, when two glues bind, a localized strand is released that activates a subsequent
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Figure 2. Schematic overview of basic branching assembly processes. (a) Growth, branching, disassembly, feedback, and source and goal tiles are labelled as they
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glue on the tile. Thus, a glue ‘passes a signal’ to other glues on the same tile. This was shown to be a powerful modification to
previous tile assembly models, as more complex assemblies could be formed with comparatively simpler tile definitions.
In our paper, we will uphold the same assumptions as are present in previous work and impose minimal limitations on the
speed of signals.
2.3. Informal definitions of the Y-STAM and the Y-STAM+

We next informally introduce the Y-STAM (see §3 for a formal definition). We note that, in contrast to most tile assembly models,
the Y-STAM is less a model of computation and more an analytical tool, based on the construction of tile assembly systems, that
has been applied to understand vividly biological processes with greater visual intuition. As such, we may forgo some of the
mathematical compactness of typical tile assembly models in the interest of interpretability in the context of their biological resem-
blance and do not consider the computational expressivity of the model. Some behaviours of the model, such as evaluating
the influence of environmental parameters, may be bulky to discuss without the transformations provided in the Y-STAM. (See
electronic supplementary material, figures S1 and S2, for an extended discussion on these transformations.)

The stochastic branching process of the Y-STAM forms a tree-like assembly within a two-dimensional space using DNA tiles.
As in previous work, tiles in this model bind to each other by glues. In our stochastic model, the forward and backward rates (or
sometimes also referred to as the growth and disassembly rates) are the likelihood that the bond formed between two glues
remains bound, and these are trivially derived from the glue strength in the Y-STAM, but have several additional nonlinear con-
tributing factors to consider in the Y-STAM+. Tile association causes the assembly to grow, while disassociation of tiles is referred to
as disassembly or degradation. Elongation occurs when a tile binds a single new tile. Branching (or bifurcation) occurs when a tile
binds two new tiles, which can each continue to grow in separate directions (figure 2a).

An assembly begins from a source tile as a nucleation site. The source tile is a unique tile, as it can potentially bind as many tiles
as it may have space for (up to four), thus branching the assembly in similarly many directions. Each continuous series of tiles that
can be traced from the source tile is called a pathway. A non-negative number of goal tiles can also be placed during the initialization
of the assembly. Termination can occur when a pathway binds to a goal tile, and no new tiles will bind to that pathway.
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Instead of tiles associating horizontally or vertically adjacent to each other, tiles bind diagonally. When the assembly branches,
the two new tiles are placed such that a line between them is parallel to a Cartesian axis. The branching axis, which bisects the
bifurcation site, is then also parallel to a Cartesian axis, and the growth of the assembly can be more intuitively assessed in cardinal
directions as opposed to ordinal directions (electronic supplementary material, figure S1).

Each tile can hold a finite state and passes a forward and backward signal. Emitting from a source, a forward signal weakly
sent along all branches enforces the connectivity (likelihood of the tiles remaining in the assembly instead of disassociating) of the
assembled tiles, and tiles that were once bound but then lose this connectivity cannot associate to the assembly again and are con-
sidered to be waste. If the goal tile in the environment is found by a tile that has grown at the tip of a branching pathway
originating from the source tile, the goal tile produces a backward signal sent along the branch of the tile that discovered it,
and this signal strengthens the connectivity of all the tiles on that branch. These forward and backward signals reinforce the
connectivity by multiplying the effect of the baseline glue strength of the tiles and we refer to this as feedback.

The Y-STAM+ (see §5 for formal definitions of the augmented features) then introduces the potential to modulate the forward
and backward rates further using programmable adjustments by effectors separate from the tile assembly. Here, we differentiate
the intrinsic properties of the branching process (intrinsics), which are the static properties directly programmed into the tiles
(figure 1a), and extrinsic influences (extrinsics) that are programmed externally, which can alter assemblies without altering the
programming of tiles (figure 1b). They are considered external because other than the tiles having fixed receptors to receive
the outputs of these modulators, the characteristics of the assembly that change in response to these modulators do not
depend on changes to the tile design. These are unattached to the tiles but proximal to affixed, discrete positions that each tile
can bind at, and they can increase or decrease the local forward and backward rates, proportionally to the glue strength, and
have a localized effect on the growth or disassembly of the assembly at that precise location. We consolidate and describe the
activity of intrinsics and extrinsics as being in separate layers of the model.

We seek to show that the wide dynamism of branching processes can be largely achieved with time- and space-based changes
to the growth and disassembly rates of glues, which cannot be fully captured by the Y-STAM and in the tiles themselves, thus
necessitating the augmented model. We note that while only a single additional layer is demonstrated in the current work, we
will not formally limit the number of additional layers that can be used as extrinsic modifiers to the assembly that occurs in
the tiling layer (electronic supplementary material, figure S3). The augmented model more generally encompasses the family of
models that define tile-independent functions that may interact with the tile assembly. The simulations of this model help to specu-
late upon an algorithmic perspective of branching processes, such as morphogenesis. We show that an organizational hierarchy
of extrinsics applied to universal mechanisms, the intrinsics, can produce controlled and complex geometries. From the bottom up,
we postulate potential foundations for why such processes can be ubiquitous across nature.

We present several simulations to demonstrate the influences of introduced parameters on the dynamism of the model. We first
simplify the model to a unidirectional model that grows strictly from left to right to understand several basic properties. First of all,
the amount of space reached and covered by branches depends on how frequently branches can form. Rates of disassembly are
then evaluated for their effects on the previous distributions. Next, backward signalling occurs when the assembly reaches a goal
location and this counters disassembly for a selected portion of the assembly.

The next section of simulations adds the extrinsics to fulfil the role of the external environment, which could be chemical sig-
nalling, an extracellular matrix, or the presence of growth-enabling nutrients or other gradients, to the branching self-assembly
process. Simulations evaluate whether the growing tile assembly can grow along an externally programmed path, responsively
assemble or disassemble at time- and space-inhomogeneous rates across the entire assembly, and grow dependently on available
resources. The electronic supplementary material also investigates the ability to react to obstacles and observes trends in growth
rates and functional success of the assembly depending on branching frequency and the concentration of tiles (electronic
supplementary material, figures S4–S6).

Finally, simulations are performed on the two-dimensional expansion of the model where the assembly can grow in any direc-
tion from a central seed. These show macroscale behaviours, such as a pair of assemblies contending for nutrients that stabilize
larger assemblies or the space-filling rate of densely nucleated assemblies.
3. Formal definitions and constructions
Wenowpresent a formal description of the Y-STAM,which has a set of tile types that (i) can hold state, (ii) have capabilities for branching
of assemblies, and (iii) have capabilities for sending signals forward andbackward along branches. In a later section,wewill also define a
family of models described by the Y-STAM+ that describe (iv) capabilities for dynamic strengthening and weakening of branches of
assemblies, which are introduced as additional layers which interact with the tiling layer of the basic Y-STAM.

The base model (Y-STAM) covers the definitions of the tiles, glues, signal-passing, assembly, and the growth and degradation
of the assembly. We generally discuss definitions in two dimensions to make the model more intuitive and not overburden the
definitions with too many restrictions, as the semantics are quite versatile to fall back down to unidirectional modes later or
even be expanded upwards into three dimensions.

We define the environment on the discrete, two-dimensional integer space Z2.
Let U ¼ fð1, 1Þ, ð1, �1Þ, ð�1, 1Þ, ð�1, �1Þg be a set of growth vectors. That is, tiles grow diagonally.
Let t be a unit square tile that cannot be rotated. We denote each side of a tile using the cardinal compass directions

D+ = {N, S, E, W}. It follows that the growth vectors match the ordinal directions and denote the corners of the tile
D� ¼ fNE, NW , SE, SWg. While it may seem natural to use four glues on the tile corresponding to the corners, for the sake of
later interpreting the simulations using only the cardinal directions, we instead simulate the corners using eight positions.
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To do so, we next define orientation O ¼ OV <OH to specifically address the proximity to either corner of an edge, where
OV = {L, R} indicates left (L) or right (R) corners for the N and S edges and OH = {U, D} indicates top (U) or bottom (B) corners
for the E and W edges. It follows that OV � fE, Wg ¼ � and OH � fN, Sg ¼ �.

There are thus eight total glue positions, D+ ×O = {NR, NL, EU, ED, SR, SL, WU, WD}, where each position still corresponds to
the growth vector of its nearest corner.

Let T be a finite set of tile types, σ is the set of seed tiles that initializes the assembly, and K is a tile distribution vector.
A Y-STAM assembly is T ¼ ðT, s, KÞ and forms a symmetric, directed tree graph G = (V, E), where each vertex v∈V is a tile
and each edge e∈ E is a glue–glue bond. Each tile has exactly one parent node and, at most, two child nodes, except for seed
tiles σ = {σS, σG}. The root node is the source tile, σS; it has no parents and is not limited to two child nodes. σG is a goal tile; it
has no child nodes.

Any assembly must be initialized with at least one source tile, whereas goal tiles can be optional. All seed tile placements are
also permanent. That is, they cannot be added after initialization, and disassembly processes that would remove other tile types
from the assembly do not remove seed tiles from the assembly.

A valid configuration of the tile assembly model is any graph G with a non-empty set of σS and every tile is reachable from
exactly one source tile.

We also define Position :V ! Z2, which maps a tile to its location in the two-dimensional integer plane, which is not particularly
necessary for the Y-STAM, but becomes relevant later in the Y-STAM+ to coordinate the signals in other layers to the tiling layer.

Define the traversal direction λ = {I, O}, which refers to a tile’s input (I), which is the edge pointing to its parent node, and the
tile’s output (O), which are the edges pointing to its child nodes.

We then define the signal propagation channels C = {F, B}, which will serve to implement feedback.
Now, we can define a glue on tile twith a string label g [ G, strength s∈ [0, 1], and state q∈Q. These values determine if a tile t

can form a glue–glue bond with another glue on another tile t0.
We use the channel (C), traversal direction (λ), compass direction (D), and orientation (O) to build the glue label string, e.g.

FOWD, for a forward-channel, output glue placed on the west edge at the bottom corner (figure 2b). All possible glue label strings
form the alphabet G.

The glue strength s is a fixed, intrinsic property of the tile. We separately introduce the disassembly rate rb = 1− s as a
parameter that can be modified (dynamically, after the introduction of the Y-STAM+).

Finally, we describe the states Q ¼ flatent, on, offg, where a glue in the on state can bind or is currently bound and can be
switched to the off state. In the latent state, it cannot bind but can be switched to the on or off states. In the off state, a glue
cannot bind or be switched to any other state. In general, each glue has initial states such that inputs are on and outputs are
latent.

Let M be a mapping function of glue label strings to their complement. Only glues with complementary strings can bind. Let γ
be a glue on tile t and γ0 be a glue on tile t0. γ binds γ0 if and only if the labels are of the same channel, along the same compass axis
(e.g. N and S, E andW, or as shown on the square tile, glues on the same compass axis exist on opposing edges of the square), have
opposing orientations (e.g. U and D, L and R), and opposing traversal directions. Building the label strings in such a way allows us
to, later, in simulations, easily filter glue types by single characters.

For example, the pairs of glues FOWD and FIEU, or BONL and BISR may bind, whereas FINL and FISL, or FOWD
and BIEU, may not bind. Both glues must also be on and will not bind if either glue is in other states. These rules also exclude
certain tiles from being included among the tile types, such as those with inputs and outputs toward the same tile position,
e.g. a tile with a FIWD glue cannot also have a FOSL glue as the growth direction of the tile will conflict with prior tiles in the
assembly. Any tile will also not simultaneously have both FOWD and FOSL glues, as the new tiles they would bind would
also overlap.

Next, we describe the signal-passing process as follows. When the input of a tile is bound, that signal is passed, and that
same tile’s outputs of the corresponding channel are converted to the on state. We also introduce the notion of signal-enforcing:
where if a tile that is initially bound later becomes unbound (loses the signal), all of its glues are converted to the off state,
and the corresponding tiles are also removed, as later described by disassembly.

We can now generalize several categories across all tile types to facilitate discussion. All tiles used in the model will have only
one input. A tile with two outputs that will each bind a tile in a distinct direction is a branching tile, TB. Branching only occurs along
the forward channel. A tile with only one output, regardless of position, is a standard tile, TS. A turning tile, TT, is one where the
input and output glues do not exist on the same compass axis, and a unidirectional tile, TU, is a tile where the glues do exist on
the same compass axis. Turning and unidirectional tiles are separate categorizations independent from standard and branching
tiles (figure 2c). In total, the tile types are a set T ¼ fTB < TS < TT < TU}.

To define the non-deterministic growth of the system, K is a tuple K = (kB, kS, kT, kU) where each element is an integer weight
factor corresponding to each subset of tile types T. The association of a new tile is thus a probability distribution function that
samples T, where K weights the probability of selecting a tile from each classification.

Finally, we describe feedback, which occurs when a pathway meets a goal tile. σG is a unique tile that can transduce a
forward-channel input signal to convert a backward-channel glue from latent to on. By our assumption that signals propagate
asynchronously, the backward-channel signal will convert all backward-channel glues of tiles along the pathway, tracing back to
σS, to on. We assume that each newly converted glue immediately forms a glue–glue bond between their adjacent tiles owing
to proximity. This feedback process increases the overall glue binding strength between tiles along that particular pathway
from 1s to 2s, where s is the glue strength, and can be thought of as opening another pathway of connectivity between the
source and the goal. That is, at any disassembly phase, two glue–glue bonds would have to be broken simultaneously to
remove a tile from an assembly. Otherwise, if only one is broken, it is assumed the broken bond rebinds immediately on the
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next step. This pathway resists degradation more than the rest of the assembly and is more likely to persist while the rest of the
assembly continues to undergo growth and disassembly.

An assembly is a valid configuration of tiles that can be created from an initial set of seed tiles, by following the dynamic
growth/disassembly rules. Let AðT , tÞ be the set of all possible assemblies that can be created from the tile assembly system
T within the finite maximum allotted time t [ N for the assembly to grow. Let i be any time-step where i≤ τ. Let αi be an instance
of the assembly at time-step i, and it follows that 8i, ai [ AðT , tÞ. Only the seed tiles are present at α0, which is the initialization of
the assembly. Any assembly αi then proceeds forward to αi+1 by first evaluating all tiles for disassembly, whereby any glue–glue
bond previously attaching a tile to the assembly may be broken, according to some probability. Signal-enforcing also occurs at
this stage. Then, new tiles can associate into the assembly, whereby each valid, vacant location in the assembly can bind a randomly
chosen tile with validly binding glues.

More specifically, for disassembly, any glue–glue bond has an independent probability of unbinding according to the disassem-
bly rate rb = 1− s. The value rb is used here instead of s such that it can later accommodate other factors determining the
disassembly rate that are not intrinsic to the tile design, and these will be further discussed later. If a glue–glue bond breaks,
then the tile containing the input glue of the bond is removed from the assembly. Owing to the signal-enforcing property, as
the signal has been interrupted, if there are subsequently connected tiles in the pathway, those tiles will also be removed from
the assembly. In doing so, every tile in the assembly must be connected to the source; the goal tile cannot nucleate assemblies,
and no supertiles form (supertiles are sub-assemblies that can nucleate apart from the main assembly yet still attach as a single
piece to the main assembly).

For association, a tile with output glues in the on state may attempt to bind a tile from the distribution of tile classes, given
by kB. We may also more commonly refer to kB as the branching factor, β. Here, we also define the forward rate rf = [0, 1], which
determines the probability that a tile will bind to an available binding site during the growth phase. However, until stated
otherwise, rf = 1. Any assembly is thus a non-deterministic self-assembly that forms branching pathways nucleated from
σS, continuously growing and disassembling while attempting to connect from σS to σG.

Later (particularly in our simulations), we will use a limited variation of this model, which we term the unidirectional Y-STAM,
that only permits the assembly to grow unidirectionally. A source tile is placed to the west, relative to a goal tile, and the overall
assembly proceeds eastwards. This model does not require its own formal definition and is straightforwardly obtained from the
model defined thus far. Simply, glues with D = {N, S} are removed, while input (R = {I}) traversal directions are permitted only on
D = {W} glues and output (R = {O}) traversal directions are permitted only on D = {E} glues. This equates to removing turning tiles
from the pool and aligning the traversal direction of all remaining unidirectional tiles, yielding the simple tile set as shown in
figure 2d.

This formally describes a randomized growth and degradation process that can potentially yield multiple branching pathways
nucleated from a source. The self-assembled tilings continuously grow and disassemble until a pathway discovers a goal location,
upon which that single pathway receives a signal that propagates along itself towards the source, which decreases the likelihood of that
pathway disassembling. Before discussing the augmentation of this model, we first use simulations of the unidirectional implementation
of the model to quantify the properties of only the Y-STAM, which include its assembly, disassembly, and feedback activity.
4. Simulations of the unidirectional Y-STAM
We restrict our simulations of the Y-STAM and, later, the Y-STAM+ to an n-by-n subset of the two-dimensional lattice. In the con-
text of biological morphogenesis, it is more likely that multiple, seeded assemblies proceed adjacently and concurrently. As such,
each instance may have limited space available to it. These space bounds are vital to evaluate whether certain properties provide
sufficient morphogenic behaviours within their confined area. To facilitate the programming of the simulator, we add discrete time
i [ N and evaluate association and disassociation once per time step for each tile in the assembly.

We evaluated the dynamic characteristics of the Y-STAM assemblies using stochastic simulations programmed in MATLAB. To
test and interpret some behaviours of the model more easily, we began with the unidirectional variant of the model. This corre-
sponds to left-to-right growth in our illustrations. That is, the source tile is placed at the leftmost (corresponding to west) side of the
simulation space, while a goal tile is placed at the rightmost (corresponding to east) side of the simulation space. These simulations
offer some initial intuition on observed trends of assembly and disassembly rates and the feedback mechanism to basic parameters
such as the branching factor β, glue strength s, and the size of the space n.

In all the following simulations, the possible positions of σG are constrained. Owing to the discretization of the grid and the
diagonal growth direction of glues, new tiles alternate between even and odd y-positions. Depending on n and the location of σS,
whether σG is placed at an even or odd y-coordinate position determines whether it is reachable. Thus, for any n and σS, there are
only n/2 acceptable placements for σG where the assembly can behave as intended.

We use the following metrics to assess the mesoscale activities of any Y-STAM assembly.

(i) Hit. A Boolean which is 1 if the path has found a goal tile, and otherwise 0.
(ii) Connected time. The number of discrete time-steps during which a path is connected between the source tile to the goal tile.
(iii) Assembly size. The number of tiles in the assembly at a time-step.
(iv) Duration. The number of discrete time-steps the simulation runs for.

Simulations were terminated owing to either (i) duration beyond a prescribed time limit, (ii) upon reaching the goal or (iii) reaching
the rightmost column of the allowed assembly space. We will discuss the simulation results of the model in an incremental fashion,
beginning with a most basic understanding of the model that is only the growth of a single pathway akin to a random walk, then
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Figure 3. (a) Simulation of the Y-STAM for b ¼ 0%, 10%, 25%, 50%. Histograms show the tail-end distribution of the pathway (N = 5000). Each mean is
centred on the position of the source, but higher branching can expand coverage to a more uniform bandwidth. (b) Effect of binding strength s on the mean
duration to reach a target distance (N = 100). Colour gradient from red to blue shows increments of n = {5, 6, 7, 8, 9, 10, 15, 20} from smallest to largest.
In the same listed order, circle, square, diamond, and triangle markers indicate β = {0, 0.01, 0.1, 0.5}. To limit runtimes, simulations time out after 2000
time-steps. Note that time to target is reported in log scale. (c) For n = 25, after the pathway has activated feedback, the number of time-steps before the feed-
back-activated pathway degrades is recorded (N = 100). In situations where the pathway has discovered the goal tile, a feedback signal significantly improves the
persistence of that path by approximately one magnitude for glue strengths s > 0.95. Differences are less distinct at lower values.
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comprehensively add and discuss branching, degradation, and feedback, in that order. In general, we see that adding more diverse
parametrization to the model increases the upper bounds of likelihood for successfully locating the goal from the source location.
However, higher parametrization also increases resource expenditure, in this case, tiles, as well as the time spent in the growth
phase prior to finding the goal.
4.1. A random walk model for growth of the Y-STAM tile-based self-assembly
For the following simulations, let the position of σS be at a fixed location across all simulation instances, and let AðT Þ denote poss-
ible resulting assemblies. Without branching, all possible assemblies AðT Þ are a random walk that begin at
Position ðsSÞ ¼ ð1, dn=2eÞ, with σG randomly placed at any valid location in the rightmost column of the grid. This simplistic
model is biased towards finding a goal tile directly horizontally across from the source tile position. The success of this process
is highly dependent on the size of the space n and the relative location of σG to σS. In this case, σS requires a priori knowledge
(that the goal tile will be located near the mean) to maximize its likelihood of finding σG, but this is not the behaviour we
desire to achieve.

These chances improve if the branching factor β > 0. The branching factor sets the probability by which a branching tile is
placed at a growth front, whereupon at the next time-step, the branching tile will bind one additional tile to each of its two
output glues, thus branching the pathway. We enforce some rules to avoid potentially uninterpretable results. Growth is limited
to remain within the n × n grid within Z2. If a tile would grow out of the boundaries of the simulation, it cannot bind. In some rare
cases, this terminates the growth of the assembly. This is also done for collisions when new tiles are added to two different sub-
paths and attempt to occupy the same position. While all growth fronts are evaluated per time-step, it is still done sequentially.
Thus, no priority is defined other than giving precedence to the tile already added to the assembly.

We quantify the differences in the distribution of the tail-end (rightmost) tile of each branched pathway in the assembly and
repeat these trials for N = 5000 distinct independent executions. Each trial is terminated upon first reaching the last column. Since
rf = 1, all assemblies grow at the same speed, and all branching pathways reach the rightmost column of the space simultaneously.
Comparing different values of β for n = 50, branching causes the coverage of target locations to become an almost uniform distri-
bution (figure 3a). Intuitively, when branching tiles are added into the assembly at a higher frequency, it also increases the chances
of the assembly saturating all possible tile positions, and the total assembly more closely resembles a uniform, conical growth than
a stochastic process. However, excessive branching can be a wasteful use of material if the reward space is small, so we look
towards different methods for the system to circumvent failure.
4.2. Degradation of branches of a Y-STAM tile-based self-assembly
In the previous simulation, the pathway was programmed to locate the target within a fixed time corresponding to the size of
the space n. Biological processes often use degradation as a penalty or an opportunity to retrain and reattempt a process. In
our model, degradation is implemented as a weaker glue strength (s < 1) corresponding to a reverse rate rb = 1− s > 0, and a
glue breakage (separation of adjacent tiles) can occur if Pr(X < rb), for X∼U[0, 1]. When glue breakage occurs, it may also
cause an entire sub-assembly to break off with it (figure 2a (disassembly)). Since breakage is evaluated independently for
every glue, this effect becomes exponential with respect to the length of a pathway, and there will be a length where the rate
of growth that is linear to the number of branches is unlikely to overcome the exponentially scaling degradation likelihood.
Thus, there is a soft limit to the farthest distance that can be travelled by any branch that could also be considered the maximum
size of the assembly.
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Our simulations tested fixed glue strengths s = {0.8, 0.85, 0.9, 0.95, 0.99} across varying n and β (figure 3b). The simulation
was set to terminate once any path fully traversed the x-axis space, regardless of whether it finds the target. Our simulations
showed that as the space becomes larger, more successive failures owing to having more particles along which any branch
could completely fail impedes the ability of the total pathway to grow to the maximum size of the space. In each case of s, this
is slightly offset by the branching factor, as having more paths is akin to having redundancy against failure. However, this
does not overcome the cost of distance.

4.3. Feedback-responsive strengthening along a branch of a Y-STAM tile-based self-assembly
Next, we simulated feedback (figure 2a (feedback)). Intuitively, the assembly reacting to a moiety at the goal location triggers a
signal along the direct pathway back to the source tile, indicating that preserving that pathway should be prioritized over
other branches. Many organisms respond to stimuli, such as chemical (chemotropism) or physical (thigmotropism). If any path
of the tile assembly does reach the target tile, we evaluate the efficacy of a squared improvement (instead of one glue, tiles are
then connected by two glues of equal strength) to the binding strength against the amount of time a pathway can stay connected.
A signal is propagated through the backward-channel glues, switching their states similarly to the forward-channel propagation of
the signal. In our stochastic model, a tile is considered disassembled if both glues are disconnected within a single time-step. If
only one glue is disconnected and both glues are on, then the disconnected glue can be evaluated for reconnection on the next
time-step based on the existing rf of the system. For rf = 1, the reconnection is immediate. Thus, for any tile to break is the product
of the independent probabilities of each glue to break, or Pr(X < rb)

2.
We may liken this to the biological process of finding ‘nutrients’, which in this case, is the goal tile. If a pathway successfully

finds nutrients, it becomes favourable and ideally preserved. We evaluate this using the connected time, which is the amount of time
any path in the network connects σS to σG. Since the likelihood of path breakage is exponential with respect to the path length,
while the feedback benefits are quadratic, we expect that the path preservation of feedback is most effective when rb is low. We
measure this by connecting σS and σG and counting the time-steps until the connection breaks. At n = 25 and low rb (figure 3c),
connected times between having feedback on and off differ by about one magnitude. These differences become less noticeable
at higher environment sizes and higher degradation rates.

The above properties have defined the fundamental processes of branching, known as the intrinsic properties. We next describe
the influence provided by extrinsic effectors. These factors can optimize the operation of the branching program for its specific
purpose and environment while the program itself (the design of the tiles) has not changed.
5. Definitions of the Y-STAM+ and simulations of resulting behaviours
We now define a family of various augmentations of the basic Y-STAM to address its interactions with external factors. We term
this family of model augmentations Y-STAM+. These are presented as further formalizations and simulations to introduce time-
and space-inhomogeneous external modulators (extrinsics) into the model, which can change the behaviour of the tile assembly
system without changing any properties that are intrinsic to the tile set or assembly itself, such as the branching factor β or glue
strengths s. This additional complexity can enable systems to fulfil more complex activities, such as using memory, following
paths, time-dependent growth, or complex network construction.

The Y-STAM exhibits sufficient functionality to be responsive to bidirectional signalling and has methods to prune itself, but
otherwise still has few strategies to prioritize and reinforce positive behaviours. In coming up with external signalling factors, we
focused on basic and intuitive properties of time-based and space-based changes, such as decay, occurring with respect to time and
state, and gradients of temperature or chemicals, affecting growth with respect to space. We note that these are speculative and
broad factors that have not been correlated to empirical observations. In particular, we define memory, which alters the reverse
rate according to time elapsed and can be localized to position. Pre-programmed memory can also define spatial gradients,
such as those caused by physical, chemical, or temperature factors. We also introduce the influence of tile concentration in this
part of the model, which correlates the reverse rate to the state of the assembly with additional complexity to the feedback
mechanism. We now present formal definitions that supplement the existing definitions in §2.

We first distinguish the previous construction of the assembly AðT Þ as the tiling layer. We also now formally define tile
presence at time i and position ðx̂, ŷÞ, which is the position of a tile in Z2, as dðiÞðx̂, ŷÞ, such that dðiÞðx̂, ŷÞ ¼ 1 when a tile is attached
and 0 otherwise.

We next define an example augmented layer as a similar two-dimensional grid of the same size that we term the memory layer,
M. Each position of this grid is a memory signal mðx̂,ŷÞ ¼ ðm̂ðiÞ, Fðm̂ðiÞÞ, CðdðiÞðx̂, ŷÞÞ, kðs, m̂ðiÞÞÞ, where m̂ðiÞ [ Rþ is the magnitude of
the memory signal, or memory strength, at time-step i, m̂ðiþ1Þ ¼ Fðm̂ðiÞÞ is a time-responsive update rule that defines how the
memory strength changes with respect to time, m̂ðiþ1Þ ¼ CðdðiÞðx̂, ŷÞÞ is an event-based update rule that defines the change in
the memory strength with respect to tile attachment, and rb ¼ kðs, m̂ðiÞÞ maps the memory strength and glue strength to the dis-
assembly rate of the tile and its glue at the corresponding position. The ðx̂, ŷÞ subscript indicates the position of the memory signal
on the grid, which corresponds to the position of a tile within the tiling layer given previously by Positionð̂tÞ ¼ ðx̂, ŷÞ, where t̂ is a
single, specific tile. For succinctness, we henceforth refer to C, F, and κ without their arguments.

We first elaborate on the time-responsive update rule of F. Let v, v� [ R be memory rates, and ω is fixed while the value of ω* is
the tile-based modifier of the memory rates which will be either 1 or a fixed positive or negative real number value depending on
whether there is a tile present at the corresponding coordinates ðx̂, ŷÞ of the memory signal. In cases where ω* > 0, it modulates the
rate of memory strength deterioration, and in cases where ω* < 0, it modulates the rate of memory strength accrual. We define these
two separate variables to distinguish different interactions between the assembly and the environment for when, for example, an
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organism is present compared to when it is not. In our simulations, we chose a simple first-order, half-life rate of degradation to
attenuate the memory signal and we define Fðm̂ðiÞÞ ¼ m̂ðiÞ=2vv

�
. This represents a half-life reaction of growing or degrading the

memory strength, proportional to the magnitude and sign of the product ωω*.
Next, the event-based update rule is Cðm̂ðiÞÞ ¼ maxðmref , m̂ðiÞ þ cmref Þ, where ψ∈ [0, 1] is the deposit rate and mref [ R=0 is a

reference value. Both values are fixed across the memory layer. C is only applied if, at time i, a tile is added in the assembly at
position ðx̂, ŷÞ that was not previously there at time-step i− 1. This serves to describe an interaction with the environment
when the assembly first arrives, which may displace or consume existing resources or deposit its own. When a new tile is
placed, the memory strength at that position is immediately offset, approaching a maximum set by the reference value mref at
the rate ψ. C takes precedence over F, that is, the memory strength for time-step i + 1 following the attachment of a tile at time
i will first be increased by C, then immediately attenuated for the value of one time-step by F.

Finally, κ defines the disassembly rate of the tile at the corresponding position ðx̂, ŷÞ with respect to the memory strength and
the glue strength. κ completes the loop to allow the memory layer to feed back its values and affect the tiling layer. It is based on
the sigmoid function and transformed for the range S(x) = [− 1, 1] such that the resulting reverse rate rb = [0, 1]. This provides a
simple function to handle negative and positive memory strength symmetrically while tapering excess memory to have diminish-
ing returns. Its piecewise definitions are shown in equations (5.1)–(5.6):

m̂ðiÞ , 0 : rb ¼ kðs, m̂ðiÞÞ ð5:1Þ
¼ 1� sþ s

2
1þ e�m̂ðiÞ � 1

� �� �
, ð5:2Þ

m̂ðiÞ . 0 : rb ¼ kðs, m̂ðiÞÞ ð5:3Þ
¼ 1� sþ ð1� sÞ 2

1þ e�m̂ðiÞ � 1
� �� �

ð5:4Þ

and m̂ðiÞ ¼ 0 : rb ¼ kðs, m̂ðiÞÞ ð5:5Þ
¼ 1� s: ð5:6Þ

In our simulations, we make observations of various behaviours of the tile growth/disassembly activity that occur within 2000
time steps. To achieve this, simulation settings were chosen to: (i) avoid committing to spurious growths. If memory signals
are set to increase too rapidly, the assembly generally behaves no differently than if glue strength s = 1, and the assembly rapidly
completes, without any exploration. (ii) If a pathway is repeatedly preferred, then a corresponding memory signal reaches the
threshold for exponential growth after multiple, repeated, previously incomplete attempts to grow in that direction, thereby rein-
forcing preferred behaviours. In this context, incompleteness means that the pathway may have grown along that direction but later
decayed before discovering the goal tile. However, since it encountered no obstacles, it is inclined to try again in that direction. This
behaviour can also be modulated to cause the inverse to happen. That is, long, unsuccessful paths are less likely to be retread, such
as when encountering an obstacle (electronic supplementary material, figure S3). These interactions and relationships are also
summarized in figure 4a.

Next,we define the effects of adding a tile concentration influence on the Y-STAM. Let [t](i) denote the concentration of tile type t at
time-step i. Previously, the forward rate was rf = 1 by default. Here, we follow Michaelis–Menten kinetics to define a new forward
binding rate rf = [t](i)/(Kd + [t](i)). First, a tile type is selected from the tile set by building a probability distribution function from
the concentrations of all tile types at time-step i. The random variable X∼U[0, 1] first selects a tile type from the distribution, then
random variable Y∼U[0, 1] determines whether the tile will associate, Pr(associate) = Pr(Y < rf ). Let c

ðiÞ
t be any number of instances

of a single tile type added to the assembly at a time-step i, then ½t�ðiþ1Þ ¼ ½t�ðiÞ � cðiÞt . For simulations in this paper, Kd = 1.
5.1. Externalized memory in an overlaid memory layer
In simulations, we implemented the memory layer as a secondary grid that is updated after each growth step according to the
update rules C and F. For glue strengths s = [0, 1], the effect of memory signals becomes asymptotically equivalent close to
m̂ðiÞ ¼ 5 (figure 4b), so we generally used a maximum reference memory strength of mref = 5. In all instances, combining the
memory signal and feedback further lowers the reverse rate.

First, we evaluated only the effects of κ on the disassembly rate using a pre-set and fixed memory layer. Figure 4c shows a
V-shaped track set to the reference memory strength mref = 5. Without influencing tile placement and only the disassociation of
tiles, the overall direction and geometry of the assembly could be influenced. The memory layer allows us to lower glue strengths
(e.g. s = 0.5), which will promote a more noticeable expression of the effects of the memory layer. Akin to signalling from an extra-
cellular matrix, the memory layer can now dictate how the assembly grows. In this example, the growth of the pathway followed
the border defined by the track, whereupon a high degradation rate severely impeded any growth outside of the track.

We then simulated the addition of the event-based rule (C) and degradation of the memory layer as specified by the time-
responsive update rule (F) into the memory layer updates. We initialized a memory layer where all memory strengths were
zero. Then, for example, we could set the following parameters: ψ = 0.25 causes the placement of a new tile into the assembly
to deposit a quarter of mref = 5 into the corresponding memory layer position. ω = 0.2 defines a disassembly rate such that the mag-
nitude of each memory signal is reduced per time-step with a half-life of five time-steps. ω* =−0.1 would cause all memory signal
locations with a tile present in the corresponding location in the tiling layer to increase the magnitude of the memory signal with a
doubling rate of every 50 time-steps. Pathways that degrade will leave a slowly attenuating signal that dampens the disassembly
rate for any later growth (figure 4d ).
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m(x̂, ŷ)
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Figure 4. Evaluating behaviours enabled in the augmented Y-STAM. (a) The memory layer is an overlaid layer that remembers magnitudes per time-step m̂ðiÞ that can
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position can also be made time-changing and responsive to tile presence. (b) Our simulations implement a sigmoidal relationship between m̂ðiÞ and s defined piecewise
for position and negative m̂ðiÞ to ensure that s, rb∈ [0, 1]. Feedback and memory strength can cooperatively strengthen pathways. (c) Pre-set memory can restrict the
growing pathway to follow a specific shape. The shape and memory weights are shown in the memory layer (right), while the resulting tile assembly is shown in the tiling
layer (left). (d ) Values in the memory layer can also be updated with respect to tile position and time. Even after an assembly may have degraded, values in the memory
layer decay slower and dampen the immediate effect of reverse binding rates when new tiles grow in those positions again. (e) Non-uniform tile concentrations can change
the overall shape of the assembly to grow in biased directions. Grid lines are removed here for visibility. ( f ) Tile concentrations programmed with respect to the grid size
(e.g. for n = 40, 1x = 40). Greater concentration can control the time-dependent behaviour of the assembly. As tile concentrations are sufficiently high, the assembly grows
across the space to find the goal tile and then gradually prunes excess branches. However, when tile concentrations are initially low, the assembly cannot grow far enough
before being overcome by degradation effects. Snapshots are at i = 100.
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Moreover, we can also duplicate another layer of memory signals where mref < 0. In certain cases, like collisions with an
obstacle, a separate layer accommodates a different set of stimuli for activating C. While one memory layer continues to reinforce
pathways, the second memory layer can be programmed to promote disassociation around the obstacle, which can help the
pathway circumnavigate the obstacle (electronic supplementary material, figure S6).

The presence of degradation and enhancement in the memory layer is crucial such that memory signals are not simply a base-
line increase of the glue strengths of tiles that exist on the path. If a feedback pathway exists for a sufficiently long enough time, the
effect of the memory layer should increase with respect to time. Conversely, repeated but failed pathways should not compound
memory for easier growth if no goal is actually achieved. Ideally, the variables introduced by the memory layer for their own mod-
eration and their effect on the tiling layer are each set to retain promising tile growth while degrading old paths, although we have
not evaluated what the optimal values may be.

5.2. Using localized tile concentration to modulate growth rates to model variation of ‘nutrition’ over two dimensions
For high β, the assembly nearly saturates all possible growth locations. Furthermore, even after a pathway has located the goal
tile, other branches may continue propagating from branching tiles along the feedback-activated pathway, which is a wasteful
expenditure when the assembly is already in an accepting state. Intuitively, we can relate this to the concept of having finite ‘nutri-
tion’ that can be metabolized to support growth. A tile concentration parameter can simulate the consumption of finite growth
material, thus limiting the maximum size of the assembly and enforcing an active duration, after which no further observable
activity occurs.

To evaluate the effect of tile concentration, we set the tile concentration as a function of the size of the environment n, where
1x = n, and evaluated the assembly at the following uniform initial tile concentrations: 4x, 3.5x, 3x, 2.5x, 2x, 1.75x, 1.5x, 1.25x, 1x,
0.875x, 0.75x, 0.675x. It should be noted that other than discerning trends, this has no bearing on actual concentrations.

We observed a time-based dynamism in the behaviour of the branching assembly. While tile concentrations were high, growth
proceeded as usual for any β, including highly saturating growth. However, as the assembly continued to grow and consume tiles,
a reduction in rf caused some growth fronts to fail to bind a tile at each time-step, and the overall growth rate of the assembly began
to slow down. If any pathway had already found the goal tile and triggered a feedback signal, then that single pathway was most
likely preserved while other branching pathways began to grow slower and eventually disappear. Eventually, the tile concen-
tration fell far enough such that the forward rate of binding new tiles was low enough that the assembly appeared relatively
static. Alternatively, without feedback or finding the goal tile, the assembly would eventually fully degrade, leaving only the
source and goal tiles and no other activity.
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Figure 5. Demonstrations of behaviours of the Y-STAM in a full two-dimensional space. (a) Feedback operates similarly to its one-dimensional growth counterpart
but takes longer owing to the quadratically larger space. (b) Competitive growth illustrates the analogy of goal tiles to nutrition, which strengthens the number of
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(g) A cross-section of the previous chart shows the convergence of an assembly from initialization to its steady state.
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Figure 4f compares snapshots of assemblies at i = 100 and n = 40 for [t] = 4x, 2x and 1x. At [t] = 4x, while the assembly had
found the goal tile, it also exhibited a large amount of excess growth. At [t] = 2x, there was already sufficient time to find
the goal tile, but by then, there was also a low concentration of remaining tiles that could grow excess pathways. However, at
[t] = 1x, the snapshot at i = 100 captures when the assembly does not have a high enough tile concentration to reliably grow far
enough to reach or find the goal tile. Electronic supplementary material, figure S4, looks at overall trends across N = 100 repeated
trials of each tile concentration value, and we note that there could be fairly precise ranges whereupon growth of a branching
system is optimized between its function and its available resources.
6. Simulation of the two-dimensional Y-STAM+
In the above sections, simulations and discussions proceeded based on the unidirectional implementation of the Y-STAM. We now
discuss simulations that support two-dimensional growth across the grid by including turning tiles within the tile set. We do not
consider assemblies without branching, as the results are somewhat trivial. We use feedback, varying support matrix settings, and
randomized placement of numerous source and goal tiles to demonstrate emergent behaviours that include a majority system
between two competing growths and the self-organization of a high number of nucleated assemblies. Owing to the high compu-
tational costs of simulating numerous trials of the two-dimensional implementation compared to the unidirectional
implementation, we discuss these results by observing single cases. As the growth of pathways can halt on collisions with
themselves, the concentration of turning tiles is also lower than other tile types to avoid frequently forming looped pathways.

6.1. Feedback-supported growth
First, we reproduced the ability to receive feedback from a goal tile within the two-dimensional implementation of the Y-STAM+

(figure 5a). Unlike the unidirectional implementation where the goal tile was placed at the rightmost column of the lattice, thus
greatly constraining the search space, for simulations in two dimensions, the goal tile can be placed anywhere in the space,
albeit, still on the corresponding mod 2 position such that the diagonally growing pathway can discover it. As before, β must
be adjusted so that the area is searched efficiently. Similar values appeared to be effective (b ¼ 25%), as there were still enough
branched pathways to mostly saturate the surrounding space of the seed tile. Furthermore, we allowed the source tile to nucleate
assemblies from each of its four corners. That is, it had all possible output glues. Owing to the limited data to make quantitative
observations, we could not conclusively say whether this two-dimensional implementation took longer to find the goal tile
than the unidirectional implementation, but we expect that it does. Its subsequent behaviour to retain the feedback-strengthened
pathway remained the same.
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We used feedback behaviour to demonstrate the competitive growth of two separately seeded structures. Two source tiles were
placed in central positions at opposite halves of the grid (n = 200), while 200 goal tiles were randomly placed throughout the grid.
For this simulation, we liken each structure created through a branching self-assembly process to an ‘organism’ and the goal tiles to
‘nutrients’. As the organism grew, it discovered nearby nutrients that sent a feedback signal along its pathway back to the source,
thus strengthening its growth in that direction. Along this pathway, branching tiles that propagated alternative subpaths could be
formed. If those should degrade, the pathway did not need to restart from the source tile but could regrow from the existing
branching tile on the feedback-reinforced pathway. Thus, the rate at which each organism grew was correlated to the amount
of nutrients it could more rapidly access.

As this process continued, the two organisms eventually collided, thereby disabling growth along the fronts that they did.
Along non-colliding fronts, they continued to grow. It follows that it can be implicitly measured which assembly is more well-
nourished after some time has passed, and it was visually obvious which assembly was larger (figure 5b). Next, suppose we
denote the larger organism A and the smaller organism B. As the simulation continued to run, A underwent drastic degradation
by chance, thus allowing B to grow into some of the previously occupied space. However, the same could also happen to B.
Over time, A was still the larger organism more frequently. This process represents a random distribution of goal tiles into a
self-assembled physical form, showing which of our organisms had easier access to goal tiles to support its growth, essentially
measuring clustering.

6.2. Space-filling tiling behaviour
In the next simulation, we evaluated the effect of crowding and the free space available for each assembly to grow. The space was
initialized with no goal tiles to avoid randomly biasing any growth. Fifty randomly placed source tiles were added. Each assembly
grew at the same rate until it was large enough to collide with neighboring assemblies. We used a negative ω* to cause assemblies
to strengthen over time (the presence of a tile in that position increases the magnitude of the memory signal after every time-step)
and eventually only rarely degrade. Thus, instead of oscillating trade-offs in occupied space, we eventually reached a steady state.

We simulated twelve increments of randomly placed seeds at roughly exponential benchmarks (the number of seeds,
Nseeds = {5, 10, 15, 20, 25, 50, 100, 200, 400, 800, 1600, 3200}), with grid size n = 500, and a time limit of imax = 2000 steps. We
also prevented source tiles from being initialized next to each other (which could immediately cause a collision).

We tracked the number of tiles in each assembly as its population, and the population of an assembly at time i is henceforth
denoted as ρi. Figure 5c shows the populations of several assemblies for a single run at each seed quantity, and figure 5d,e
shows examples of the assembly at 25 seeds and 3200 seeds at initialization i = 1, then later at i = 50, and i = 2000. Each assembly
is colour-coded with its population chart (see electronic supplementary material, figures S2–S9, for more time-step instances of
each seed quantity). We used a moving average filter with a window size of 100 time-steps to reduce noise when viewing each
population chart. Generally, it seems consistent across all seed quantities that the number of assemblies in the lower half of the
population sizes is typically two to three times more than those in the upper half.

To observe the volatility of growth, we calculated the standard deviation of the population of assemblies at time-step i to see
how quickly each seed quantity reached a steady state (figure 5f ). In a steady state, assemblies have stopped growing owing to
colliding with neighbours but are also not degrading owing to a strong memory signal. At low seed density (Nseeds = 5), there
is growth activity all the way up until and likely past the time limit. As the number of seeds increases, the available space to
grow per assembly is consumed much faster, and the entire environment reaches a steady state much sooner. Moreover, we
take a cross-section of the trends for the standard deviation of each seed quantity over time to observe the scale between their
initial state and steady state. For high seed quantities (Nseeds > 200), individual assemblies in the grid have barely grown before
already colliding with another assembly.

Crowding, as well as the distributions shown in figure 5c, could hinder the total environment from achieving enough assem-
blies of the target size. Furthermore, these results suggest that for randomly growing branching structures with the purpose of
saturating a space, there are diminishing returns to initializing more independent growths. When varying the branching factor
and tracking assembly sizes (electronic supplementary material, figure S5), the growth trends also corroborate with established
growth patterns, such as defined by the Gompertz function, and similarly shown for crystal growth [79–82]. If, in a general
sense, growth costs energy, then in situations where those resources are limited, such as either time or nutrition, there are perhaps
optimal distributions of growth loci and parameters to saturate a space as efficiently as possible. Or, making assumptions about the
functional size of an organism or the cost of nucleating new growths, the simulation results support the evaluation of optimal
points to maximize the efficiency of branching growths, their interfacial area, and so on.
7. Future work
7.1. Implementing tiles from the Y-STAM as active DNA nanostructures
Previously suggested implementations of STAM [71,75] used localized DNA strand-displacement reactions to mediate signal-
passing state changes between glues. Here, we describe in greater detail using a DNA domain-based description of a
signal-passing model that could provide an implementation of branching processes of the Y-STAM.

Figure 6 follows several transitions of a tile that has bound and then later becomes unbound from an assembly, with only for-
ward-signalling channels shown. Backward-signalling channels are implemented by reversing the design orientation whilst
relabelling domains to limit cross-reactivity as needed but are otherwise not shown to simplify the illustration. The illustration
shows the cycle of a free-floating tile in solution that, beginning in its initial state, binds a tile already on the assembly, propagates
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the forward-channel signal, then assuming a glue–glue bond breakage, shuts off its output glue to enforce a loss of signal. Since
glues cannot be converted from off to any other state, the tile must be fully deactivated such that its deactivated output glue does
not act as a terminus for this assembly if it were to bind to the assembly again. Thus, a corresponding degradation strand also
deactivates its input glue, and the tile becomes waste.

The concentration of degradation strands can bias the reverse binding rate separately from the intrinsic binding strength of
glues. Higher concentration increases the degradation rate by more frequently removing tiles from the assembly but should
not be so high as to prevent the growth of the assembly altogether owing to the continually exposed degradation strand toehold
D. However, this design may allow flexible modulation of rb rather than using only fixed sequence- or temperature-dependent
rates. The degradation strand has a toehold D shared across all instances of the degradation strand and all tile types, but it can
be further addressed by ti and the other glue–glue binding domains (e.g. a, b) that can be made to be unique per tile type.
Thus, its concentration should be adjusted relative to its corresponding tile type.

Implementing the extrinsic modulators part of the augmented model likely requires a spatially aligned layer of strand displa-
cement activity at addressable locations, with this layer affixed relative to the locations of the source and goal tiles. Tiling and
memory layers may be implemented by anchoring tiles onto a two-dimensional substrate, such as a lipid bilayer or a sufficiently
large DNA array. Positive memory would downregulate the presence of the degradation strand by competitively binding its toe-
hold domains, while negative memory would upregulate the degradation strand, perhaps by acting as a catalytic amplifier to
duplex species carrying additional copies of the corresponding degradation strand. However, we can currently only conceptually
articulate this concept, as discussing a full design is likely too complex to be within the scope of this paper. Owing to the reliance
on localization, tiles may already need to be quite large to keep reactive strands physically separate. In addition, given the number
of tile types and reactions that must occur locally, each tile type’s unique domains and variations may already need to be very high
to reduce erroneous crosstalk. Accommodating positional addressability for communication between the tiling and memory layers
would only further increase this complexity.
7.2. Future challenges
An implementation of the Y-STAM, even without augmentations, is most likely a very complex ordeal owing to the number of inter-
acting strands that must be localized to a single substrate. This does not necessarily have to be DNA, but nevertheless, DNA
nanostructures are still one of the most accurate physically addressable biomaterials. Moreover, components conducive to construct-
ing branched assemblies have already been demonstrated in DNA nanotechnology, such as branched tiles with multi-arm junctions,
although the assemblies they have produced are most commonly regular lattices that lack the dynamism resemblant of the assemblies
shown in this paper [83]. While we believe careful design and operation could realize the suggested implementation of a Y-STAM tile
set, an implementation accommodating the modulating layers in the Y-STAM+ may not be impossible but most likely require a
complex system of both confined reactions and physical supports, resemblant of very complex natural biological environments.

Furthermore, as we have delineated several functions of branching processes here, it remains to be seen how they can be set to
align more closely with natural signalling pathways. It is not the mere replication of branching behaviours that is important in this
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model, but rather, it is the quantifiable parametrization of biochemical reactions that it enables. The model may provide insights on
which chemical controls may be necessary to invoke which corresponding behaviours, but that does not provide any framework
beyond continuing to empirically search for what the specific biological counterparts may be.

As we have defined, in the augmented Y-STAM+, an extensible framework for adding different definitions to modulate the
growth of branching assemblies, it also means that the examples that we have sufficed to demonstrate may be only a small portion
of possible modulators. Moreover, it is likely in biological counterparts that modulators themselves may interact between them-
selves combinatorially before affecting the tiles themselves. We have not accommodated that possibility here, but we do not
limit ourselves from doing so by recalling that the augmented model is allowed to add layers and is not limited to the single
memory layer we have shown here.

While we have defined the Y-STAM and its augmentations in two dimensions, this does not accurately reflect many of the
natural biological examples of branching assembly that grow in three dimensions. However, assuming the necessary direction pla-
cements of glues are made to accommodate a voxel geometry, we expect the semantics of our branching model to remain
essentially the same. Experimentally, though, few examples of three-dimensional tile-based self-assembly that preserve the algo-
rithmic dynamism of tile-based assembly have been demonstrated [84–86]. Yet, owing to the stochastic construction and sparse,
network-like structure of assemblies produced using a Y-STAM foundation, it may be more adaptable to being supported in other
mediums, such as DNA hydrogels [87,88].

The following is an enumeration of some possible future modifications to our Y-STAM and Y-STAM+:

(i) It is clearly evident how much even a single memory layer enables the tile assembly system to achieve complex behaviours.
As mentioned, we do not restrict the model to a single layer of extrinsic modulators. Furthermore, complex systems
often have many interwoven, interacting assemblies whose influences consolidate into creating a consequent, functional
branching network. Future work will seek to simulate similar effects, such as combinatorial interactions between layers
of the model.

(ii) We also note that the model and implementations do not rule out adding more glues than the two shown in these dem-
onstrations, which, in reference to our simulations, could improve the effectiveness of feedback beyond only a squared
improvement against the reverse binding rate, but at the cost of greater implementation complexity.

(iii) While we have defined a mode of interaction that modulates glue strengths, additional modes of interaction from addition-
ally defined layers would most likely enable further leaps in complexity. In particular, paths are not sensitive to their own
length, and disassembly closer to the root can be overly punishing. Allometric theory [89,90] suggests the presence of
factors that strike an equilibrium with respect to size. Attenuating signals from the source tile or being able to
mark tiles at specific intervals along the path (e.g. tip, middle, root) for disassembly could still be within the DNA
nanotechnology toolbox to implement [91].

(iv) Current signal-passing modes only have single tile resolution. Additional operations that activate specific single glues on
each tile could assist in improving the complexity of geometries relative to the scale of the assembly, elapsed duration, and
propagated signals by allowing, for instance, standard tiles to transition to branching tiles.

(v) Current growth parameters do not specify any direction of growth. An additional layer that records a local history of turn
angles of each tile along the pathway will assist in controlling the overall direction of specific paths in the assembly and
facilitate the creation of more patterned geometries.

(vi) The scalability of the model towards novel functions may include catalytic activity (changes in tile concentration based on
attachment events or consumption of other tiles) and orthogonal moieties (two assemblies that may interact, but whose tiles
and assembly happen in parallel). However, the computational costs of the simulation scale with the simulated size of
the assembly.

We note a few challenges and issues facing experimental demonstration of our Y-STAM and Y-STAM+:

(i) The local reactivity of strands may make it such that each tile may not be able to be synthesized in one-pot assemblies and
instead may need to be synthesized piecemeal, separating reaction strands until they have been appropriately protected.

(ii) The concentration of the degradation strand relative to the tiles must also be carefully set so as not to disable tiles faster than
the assembly can grow owing to the always exposed D domain, although, as previously mentioned, this can be somewhat
ameliorated by uniquely addressing input glue domains.

(iii) The design of each DNA tile requires an optimization of the unique hybridization domains (i.e. their lengths and sequence
content) of each component DNA sequence of the tile, and the optimization of the DNA sequences implementing glue–glue
bonds between tiles. Furthermore, while the STAM has been previously demonstrated [75], branching and backwards
signal propagation adds a significant degree of complexity to the tile design. It is reasonable not to be confined to a
single tile and consider simulating various strand displacements that must occur for a single growth or disassembly step
with a staged assembly, using multiple tiles to simulate one. However, the full details of such an implementation are
out of the scope of this paper.

8. Conclusion
In this paper, we presented two novel formal models for stochastic branching processes that have capabilities (as found in many
natural biological branching processes) for receiving stimuli, performing two-way communication along their branches, and dyna-
mically reforming to extend or retract branches. We have presented a formal definition of the Y-STAM, as well as random walk
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analysis and software simulations. We also introduced the Y-STAM+ and simulated external influences that can affect the Y-STAM
assembly processes. We further presented domain-level DNA-based designs. In upcoming work, we intend to experimentally
demonstrate the Y-STAM to observe similarities to specific natural biological branching systems, such as networks of neurons
and capillaries. We also intend to simulate more complex instances of the model. Looking further outward, we suggest that
these reward-based self-assembly models could potentially assist with understanding and engineering biomimetic,
self-assembling technologies, especially those that increasingly exist in biological mediums or integrate biocompatible materials.

While there has been a growing mathematical, computational, and empirical understanding of branching self-assembly pro-
cesses, we believe the models presented in this paper are a first ever foray into attempting to physically engineer branching
self-assembly processes. DNA-based self-assembly has proven to be a versatile substrate to implement deterministic computation
and structural self-assembly with thus far unmatched precision at the nanoscale. However, that itself has also been encroaching
upon the limits of implementing complex functions in synthesized nanodevices when using only explicit design methodologies.
Engineering branching self-assembly processes offers an opportunity to exploit ‘intelligent’, goal-oriented self-assembly that more
closely resembles natural systems. In a sense, replicating natural models from the perspective of bottom-up self-assembly serves as
a bridge between artificial systems created by nanoscale engineering and the manipulation of natural systems in synthetic biology.

We anticipate that the potential to physically implement the Y-STAM using DNA-based tiles can provide greater insight into
branching self-assembly systems. Synthesizing DNA-based systems is a compromise between computational studies and specu-
lative environments whose resolution is limited by computational power and empirical studies in excised tissue with
potentially many unknown or uncontrollable variables. On a conceptual level, the Y-STAM can be decoupled with the shape
restriction of tiles and, more generally, illustrates an understanding of how structures can form via branching that is controlled
simply by the binding affinities and availability of its individual units. Gradients, deterioration, and catalysts are straightforwardly
captured by concepts already common to DNA nanotechnology. The Y-STAM introduces another perspective upon these
preexisting concepts to envision novel modes of natural, non-deterministic self-assembly.
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