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Abstract—Signals from satellites are a source of interference
to radio telescopes. One possible scheme for mitigation of this
interference is coherent time-domain canceling. Using a simple
but broadly-applicable model for the antenna pattern, we show
how the antenna pattern combined with the motion of the satellite
limits the time available to compute an accurate estimate of the
interference waveform, which subsequently limits the extent to
which interference can be canceled in the output. We suggest a
simple remedy to the problem.

I. INTRODUCTION

Interference to radio telescopes from satellites is a long-

standing problem with limited options for unilateral mitigation

[1]. The dramatic increase in the number of satellites posing

a risk to radio astronomy motivates the search for effective

means by which observations can continue even when satel-

lites are present in the main lobe.

Coherent time-domain canceling (CTC) in particular is a

potential solution [2]. Most CTC systems can be described

as shown in Figure 1. Here, the interference signal z(t) is

estimated using a filter whose primary input is the telescope

output x(t), and whose output is ẑ(t), an estimate of z(t).
The filter response is determined adaptively by comparing the

input x(t) to a reference signal d(t) (typically a signal model

or the signal from a low-gain “auxiliary” antenna) over an

interval τ . In principle, performance improves with increasing

τ . However, this is not necessarily true since the z(t) includes

a time-varying multiplicative factor associated with the motion

of the satellite through the antenna pattern, which will be

missing or absent in d(t).
In this paper we derive a limit on interference canceling

performance due to this effect (Equation 7), and, in Section IV,

suggest a remedy.

II. THEORY

For the purposes of this study, it is reasonable to model z(t)
as a sinusoid having magnitude A which is approximately

Fig. 1. Coherent time-domain canceling. s(t) is the desired astrophysical
signal and n(t) is noise. The “estimate interference waveform” block is a filter
whose response is computed by comparing x(t) to d(t) over a time interval
τ , and whose response is held constant over the next interval of length τ .

constant over any interval τ that we care to consider. The

waveform estimation filter develops an estimate which is also

a sinusoid but with a biased magnitude Â because the satellite

is moving through the antenna pattern. (The phase of the

waveform estimate is also potentially biased; however, the

impact of this effect is negligible in comparison [3].) The ratio

of interference power in the output to interference power in

the input will therefore be

(

A− Â
)2

/2

A2/2
=

[

1−
Â

A

]2

(1)

An upper bound IUB on this quantity imposed by the unmod-

eled antenna pattern variation is simply

IUB =

[

1−
f(t+ τ)

f(t)

]2

(2)

where f(t) is the pattern value in the direction of the satellite

at time t. For τ sufficiently short, the numerator of the second

term can be approximated as f(t) + f ′(t)τ where f ′(t) is the

time derivative of f(t); thus

IUB ≈

[

f ′(t)τ

f(t)

]2

(3)

The antenna pattern is modeled as f(θ) = 2J1(ξ)/ξ where

ξ = (πD/λ) sin θ, D is diameter, λ is wavelength, and θ
is the time-varying angle measured from the center of the

main lobe. This is exact for a circular uniformly-illuminated

aperture, but is a reasonable approximation for other large

antennas, including reflector antennas with complex optics and

phased arrays. It is also worst case in the sense that any other

antenna which can be described as an aperture with maximum

dimension D will have a wider main lobe, and will therefore

exhibit smaller f ′(t). We ignore the orthogonal coordinate

φ since the variation with θ is typically much greater, and

we assume the worst case polarization alignment. In the main

lobe, f(θ) can accurately be approximated as follows:

f(θ) ≈ 1− 0.112

(

πD

λ

)2

sin2 θ (4)

This is accurate for θ ≤ 1.15θHP , where θHP is half-power

angle. Substitution into Equation 3 yields:

IUB ≈

[

2.211(D/λ)2(sin θ cos θ)ωaτ

1− 1.105(D/λ)2 sin2 θ

]2

(5)

where ωa = dθ/dt, which is addressed in Section III. Solving

for τ and invoking the small angle approximations sin θ ≈
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Fig. 2. Maximum estimation interval τa (Equation 7) as a function of antenna size and IUB , assuming a typical LEO satellite (ωa = 0.55◦/s).

tan θ ≈ θ, we find:

τ ≈ I
1/2
UB

[

0.904

(D/λ)22θ
−

θ

2

]

1

ωa
(6)

Note that this expression is not valid at θ = 0; this is because

f ′(t) changes sign at θ = 0, and so the linearization of f(t)
is not appropriate if θ = 0 at any time within the estimation

interval. However, for sufficiently large D, θHP ≈ λ/2D,

so the small-angle approximations apply. If we consider an

estimation interval which is centered on the time at which

θ = θHP , and which is not so long that θ encroaches on zero,

then Equation 6 is valid. With this in mind, we define the

metric τa to be Equation 6 evaluated at θ = θHP . Substituting

θ = λ/2D into Equation 6 and simplifying without further

approximation, we find:

τa ≈
0.654

ωa(D/λ)
I
1/2
UB (7)

This metric is particularly appropriate since both f(θHP )
and f ′(θHP ) are relatively large at this point on the main

lobe, making this approximately worst case for impact of

interference.

III. APPARENT ANGULAR SPEED OF A SATELLITE

The quantity ωa in Equation 7 is the angular speed of the

satellite from the perspective of the radio telescope, which is

assumed to be on the ground. The worst case (highest ωa,

so smallest τa) occurs when the satellite is directly overhead.

Using a simple geometrical argument, it can be shown that the

apparent angular speed at this moment is

ωa ≈
h+RE

h

2π

T
(8)

where h is the altitude of satellite, RE
∼= 6378 km is the

mean radius of the Earth, and T is the orbital period [3]. As

an example, typical parameters for a satellite in low Earth

orbit (LEO) are h = 781 km and T = 100 min, yielding

ωa = 9.6× 10−3 rad/s (0.55◦/s).

IV. RESULTS

We now consider a scenario in which the satellite described

in the previous section is present in the main lobe of a zenith-

pointing antenna. Figure 2 shows values of τa obtained over a

range of antenna diameters D/λ for three values of IUB . For

example: Consider a scenario in which the ratio of interference

power in the output divided by interference power in the

input is I0 < −30 dB for a specified estimation interval

τ = τ0 = 25 ms when there is no variation due to the motion

of the satellite through the antenna pattern. For a reflector

antenna with D = 18 m operating at 1.5 GHz, τa is found

to be about 24 ms for IUB = −30 dB. Since τa < τ0,

the variation in the antenna pattern is sufficient (in the worst

case) to limit the achieved suppression to −30 dB as opposed

to I0. Furthermore, any attempt to improve performance by

increasing τ0 would be unsuccessful.

To do better requires that the CTC system account for the

change in f(t) over the estimation interval. A simple way to

do this is to divide the input to the waveform estimation filter

by f(t) (thereby eliminating the variability due to antenna

pattern), and then to multiply the output of the waveform

estimation filter by f(t). In [3] we demonstrate that this

dramatically increases the effective value of τa even when a

simple generic antenna pattern model for f(t) is used.
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