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Abstract—Approximate nearest neighbor search (ANNS) is a
key retrieval technique for vector database and many data center
applications, such as person re-identification and recommen-
dation systems. It is also fundamental to retrieval augmented
generation (RAG) for large language models (LLM) now. Among
all the ANNS algorithms, graph-traversal-based ANNS achieves
the highest recall rate. However, as the size of dataset increases,
the graph may require hundreds of gigabytes of memory, ex-
ceeding the main memory capacity of a single workstation node.
Although we can do partitioning and use solid-state drive (SSD)
as the backing storage, the limited SSD I/O bandwidth severely
degrades the performance of the system. To address this chal-
lenge, we present NDSEARCH, a hardware-software co-designed
near-data processing (NDP) solution for ANNS processing. ND-
SEARCH consists of a novel in-storage computing architecture,
namely, SEARSSD, that supports the ANNS kernels and leverages
logic unit (LUN)-level parallelism inside the NAND flash chips.
NDSEARCH also includes a processing model that is customized
for NDP and cooperates with SEARSSD. The processing model
enables us to apply a two-level scheduling to improve the data
locality and exploit the internal bandwidth in NDSEARCH, and
a speculative searching mechanism to further accelerate the
ANNS workload. Our results show that NDSEARCH improves
the throughput by up to 31.7×, 14.6×, 7.4× 2.9× over CPU,
GPU, a state-of-the-art SmartSSD-only design, and DeepStore,
respectively. NDSEARCH also achieves two orders-of-magnitude
higher energy efficiency than CPU and GPU.

Index Terms—Near Data Processing, Approximate Nearest
Neighbor Search, Hardware/Software Co-Design

I. INTRODUCTION

Approximate nearest neighbor search (ANNS) is the fun-

damental technique of the similarity search in the vector

database [11], [13] and has been applied to a wide range of

significant application domains [56], including pattern recog-

nition [33], [49], machine learning [26], [28], [32], [75], [78],

information retrieval [25], [36], [85], [86], data mining [8],

[42], [43] and recommendation system [53], [62], [67], [76],

[77]. Currently, ANNS has also been applied to retrieval

augmented generation (RAG) [15], which provide the relevant

information for the enhanced context of the Large Language

Model (LLM) [46]. In these applications, a query is usually

processed by two stages [57], [84]: retrieve/recall stage and

rank/identification stage. During the first stage, a fixed number
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Fig. 1. Execution time breakdown of HNSW and DiskANN running on two
Intel Xeon Gold 6245 CPUs.

of neighbors are retrieved from the database. Then, during

the second stage, the retrieved data of the given query is

further delicately processed by the specialized models. Instead

of getting the exact nearest neighbors, ANNS boosts the search

speed by limiting the range of candidates and sacrificing some

recall rate. Since the modern vector database and applications

deal with large-scale data, boosting the performance of ANNS

is critical.

Among existing methods [21], [22], [37] of ANNS, graph

traversal-based methods such as hierarchical navigable small

world graphs (HNSW) [59] and DiskANN [70] are the most

popular ones for the optimal recall-throughput tradeoff that

they achieved [61]. These methods construct a graph based

on the distance between the feature vector of each vertex in

the dataset. The search is then performed by traversing the

neighboring vertices of the visited ones until the predefined

condition is met. The graph traversal-based ANNS consists of

three steps: graph traversal, distance computation, and bitonic
sorting. Graph traversal searches for the potential nearest

neighbors of the given queries; distance computation calculates

the Euclidean/angular distance between the visited vertices

and the queries; and bitonic sorting [29] generates the top-k

candidates of each query in a batch. In large-scale real-world

applications, a graph can contain up to billions of vertices [1].

Considering the feature vector and the adjacency information

associated with each vertex, the workload may consume a

significant amount of memory. For example, in HNSW, the

memory consumption per vertex ranges from 60 bytes to 450

bytes [59]. Given the large number of vertices, the required

memory of ANNS could reach hundreds of gigabytes (GBs) or

even several terabytes (TBs), which exceeds the total capacity

of the main memory on a single node in the workstation [4].
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Fig. 2. (a) PCIe bandwidth saturates as the batch size increases; (b) Roofline
lifting effect and the ANNS workloads speedup enabled by NDSEARCH (all
the page buffers can be read simultaneously).

Existing solutions generally adopt three approaches to fulfill

the memory capacity demand: (i) sharding the dataset, storing

the shards in the disk, loading a limited number of shards

into memory, and only routing the query to these shards to

perform the search locally [9]; (ii) developing programs with

SSD-based indices to fetch the feature vectors from SSD into

the main memory at runtime [4]; (iii) loading the whole dataset

from the SSD into multiple nodes’ main memory at the cost

of expensive machines and high power consumption, e.g.,

accelerating ANNS with 8 A100 GPUs [7]. Although these

designs can support graph-traversal-based ANNS on very large

datasets, their performance is greatly limited by the SSD I/O

read (the time taken by data transfer via PCIe) in terms of the

end-to-end performance, as shown in Fig.1. The SSD I/O read

accounts for up to 75% of the total latency. From Fig.2(a), we

can see that the utilization of SSD I/O bandwidth saturates to

83%, after the batch size increases to 1024. Combined with

Fig. 1, the saturated SSD I/O bandwidth illustrates that the

SSD I/O read latency comes from the limited I/O bandwidth.

In the current computer systems, CPU and SSD are usually

connected via PCIe links, e.g., PCIe 3.0 × 16 whose peak

bandwidth is about 15.4 GB/s. Fig. 2(b) further shows that

the ANNS workloads are located in the SSD I/O bandwidth-

constrained region. We conclude that the SSD I/O bandwidth

limits the performance of ANNS. To fundamentally address

the issue, we envision that a promising solution is to directly
process the large-scale ANNS workload within the storage.

However, it is not straightforward to implement graph

traversal-based ANNS within the storage devices. From the

hardware side, current in-storage accelerators like Deep-

Store [58] are unable to fully utilize the internal SSD band-

width for graph traversal-based ANNS because ANNS’s irreg-

ular and sparse data access pattern require more fine-grained

level parallelism. From the software side, current processing

models of graph traversal [71], [82] lacks the applicability to

the in-storage architectures, especially the customized dataflow

and scheduling. To tackle the above challenges, we propose

NDSEARCH, a hardware-software co-deisgned NDP solution

for ANNS based on SmartSSD [50]. The operations of the

graph traversal and distance computation kernels are offloaded

to the SSD. We studied the data access pattern of graph

traversal on SSDs and found that the fine-grained and in-place

acceleration at the logic unit (LUN) level is the most promising

solution for processing the irregular and scattered accesses

to feature vectors in graph-traversal-based ANNS. Hence,

we develop LUN-level accelerators on flash chips with the

modified multi-LUN operations. Meanwhile, the high parallel

bitonic sorting is offloaded onto the FPGA like [66] to allow
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Fig. 3. The search phase of graph-traversal-based ANNS.

more power and area budget. To fully exploit the proposed

architecture, NDSEARCH also includes a novel processing

model designed for ANNS in NDP scenarios. The processing

model is based on GraphMat [71] and incorporates a two-

level scheduling scheme, static and dynamic scheduling. Static

scheduling reorders and maps the vertices to the physical

location with the goal of enabling multi-plane operations

and maximizing the spatial locality. Based on a new graph

format, LUNCSR, dynamic scheduling aims at maximizing the

temporal locality of the data by allocating the queries based

on the location of the required data. A speculative search-

ing mechanism is integrated into the dynamic scheduling to

prefetch the vertices.

Our contribution can be summarized as follows.

• We conduct a characterization study on graph-traversal-

based ANNS and identify the opportunities of offloading the

graph traversal and distance computation kernels to SSDs to

address the issues of large memory consumption and limited

SSD I/O bandwidth.

• From the perspective of hardware, we propose an NDP

architecture design and a corresponding processing model

to support graph-traversal-based ANNS.

• From the perspective of software, we develop a two-level

scheduling scheme to both reorder the vertices in the SSD

and dynamically allocate and prefetch queries during the

search based on a new graph format, namely, LUNCSR.

The experimental results show up to 14.6× and 2.9× speedup

over GPU and DeepStore, respectively. NDSEARCH also

achieves up to 30.06 × and 3.48 × higher energy efficiency

than a state-of-art SmartSSD design [47] and DeepStore [58].

II. BACKGROUND

A. Graph-traversal-based ANNS

ANNS is an approximation to the original nearest neigh-

bor search (NNS) algorithm [38], which aims to find top-

K elements to a given query with minimized distances by

scanning the whole dataset. Due to the high search cost of the

brute-force search in NNS, ANNS is selected as an alternative

and faster approach in scenarios where a lower recall rate

is acceptable. Recently, graph-traversal-based ANNS such as

HNSW [59] and DiskANN [70] become popular due to their

superior performance in the real life applications. Although

the details of these two algorithms are different, the common

basics can be generally summarized as follows.

Graph-traversal-based ANNS consists of two phases, con-

struction and search. In the construction phase, a graph is

constructed based on raw feature vectors in the dataset. Firstly,

a distance function is defined to characterize the similarity

between two vectors. Then, given a distance threshold and

Authorized licensed use limited to: Duke University. Downloaded on August 22,2024 at 15:25:36 UTC from IEEE Xplore.  Restrictions apply. 



the maximum number of neighbors that one vector can have,

incoming vectors are consecutively inserted in random entries

and bidirectionally connected to their neighbors. Finally, vec-

tors are built as vertices in the constructed graph. Each vertex

consists of its feature vector and adjacency information (i.e.,

which neighbors the vertex is connected to and the distances

between the vertex and the neighbors). In the search phase,

for a given query, a random entry vertex is firstly selected

and put into the candidate list. Then the nearest vertex C to

the query is selected as the updated entry vertex from all the

candidates and removed from the candidate list. If the distance

between C and the query meets a pre-defined condition or

is far greater than a marked value in the result list, where

the distances between the visited vertices and the query are

stored, then the searching is terminated. Otherwise, add the

neighbors (which are never visited) of C to the candidate

list. After traversing all the vertices in the candidate list and

repeating the process above, the final top-K vertices from the

results list are selected and sorted according to the distances in

ascending order. Fig. 3 shows a naı̈ve example of searching the

approximate nearest neighbor of the query. Our work mainly

focuses on accelerating the search phase of ANNS, which is

directly applied to various applications.

B. SSD Preliminary

1) Internal organization: Modern SSD consists of 2–4

embedded cores as the SSD controller, a few GBs of DRAM,

and 16–32 channels of flash chips as the storage [34]. The

NAND flash storage elements are hierarchically organized at

multiple levels - channels, chips, logic units (LUN), planes,

blocks, and pages. Each channel contains a flash controller

and 4–8 flash chips, each of which includes 2–8 planes. Each

plane is made of a group of blocks and a page buffer. Each

block has multiple pages, whose size could be 2/4/8/16 KB.

One or more planes are organized as a LUN [12], [17], which

is the minimal unit that can independently execute commands.

Multi-LUN [17], [68] operations are supported in the flash

chip to improve the in-chip parallelism. Multi-plane operations

can be supported to maximize the operation parallelism in a

LUN. The address of NAND flash consists of two parts: the

column address and the row address [14]. The column address

is used to access bytes or words within a page, while the row

address is used to address pages, blocks, and LUNs.

2) Data refreshing and address translation : The flash

transaction layer (FTL) runs on the embedded cores to process

data refreshing, address translation, garbage collection and

etc [30]. Although the search phase of ANNS on NDSEARCH

does not induce graph updates and only operates in a read-only

mode, the NAND flash requires data refreshing and data cor-

rection due to retention and read disturbance issues, resulting

in the flash addresses being changed. We employ the block-

level FTL refreshing mechanism and integrate the logical-

to-physical address translation in the design of LUNCSR

(see Section IV-B for the details). We use the specialized

hardware component to infer the final physical address with

the vertex index to eliminate the overhead of executing FTL

address translation on the embedded cores. Compared to

Fig. 4. Page and LUN access pattern of the search phase.

DeepStore [58] which just considers the change of the starting

address of the database, our design is more realistic in terms

of data refreshing and address translation.

III. MOTIVATION

Reordering and remapping vertices to improve spatial data
locality. We studied the behavior for the query-wise and batch-

wise search of ANNS at different levels of SSD organization.

Fig. 4 (a) illustrates the ratio of the number of page accesses

to the length of the searching trace (the number of visited

vertices that are computed with the given query), and the ratio

of the size of accessed feature vectors to the size of accessed

page data of 10 random sampled queries in a batch. The high

#Accessed pages/#Length of the trace ratio and low Accessed
vectors/Accessed page data ratio indicate that the fine-grained

accesses to vertices are scattered among different pages, which

means that the page buffer locality is very poor and the access

pattern is irregular in the search if the vertices were stored

in the order the graph was constructed. This motivates us to

reorder the graph vertices and then remap the data to improve

spatial data locality in the page buffer, and thus reduce the

number of accesses to pages for each query in the search.

Developing LUN-level accelerators and dynamic schedul-
ing to improve temporal data locality. As shown in Fig. 4

(b), during the search of 10 consecutive batches (with batch

size set to 2048) of queries in sift-1b dataset, over 82% of all

the LUNs that store the vertices are accessed in each batch

(The vertices are stored in the order of graph construction).

This indicates that the pattern of access to LUNs is highly

scattered, and it is possible to explore the LUN-level paral-

lelism and internal bandwidth to speed up the execution. In

addition, according to inclusion-exclusion principle [69], there

must be multiple accesses to one LUN when the batch size

is larger than the number of total LUNs. In the original SSD

architecture, since the data bus is shared by multiple LUNs,

only one LUN of one flash chip in a specific channel can be

selected to occupy the bus, thus adopting SSD/channel/chip-

level accelerators like [58] hinders the operational parallelism.

Moreover, reading data from the page buffer to the accelerators

outside the NAND Flash chip induces extra ∼ 30μs latency.

Hence, based on these observations, we (i) develop LUN-level

accelerators based on the existing multi-LUN operations to

explore the internal operation parallelism of NAND Flash; and

(ii) propose a dynamic scheduling mechanism to allocate the

queries, whose targeted vertices are in the same LUN, in one

batch to the same LUN based on our LUNCSR graph format,

to improve the temporal data locality.
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Fig. 5. (a) Overview of NDSEARCH and overall architecture of SEARSSD; (b) The new graph format - LUNCSR with LUN and BLK array.

IV. NDSEARCH ARCHITECTURE

A. Architecture overview

This section presents NDSEARCH, a system that accelerates

graph-traversal-based ANNS by leveraging the computational

storage device based on SmartSSD [50] architecture. Fig. 5(a)

illustrates the overview of NDSEARCH, which consists of an

FPGA device and a modified SSD device connected by a

private PCIe 3.0×4 link. As aforementioned, we extract three

kernels from the workload of graph-traversal-based ANNS,

graph traversal, distance computation, and bitonic sorting.

We modify the original SSD as SEARSSD and offload the

graph traversal and distance computation kernels to it. The

graph traversal kernel is executed in the embedded cores with

additional customized logic (Vgenerator and Allocator) in the

SSD. The distance kernel runs on the Search-in-Nand (SiN)

engines where LUN-level accelerators are developed. Each

SSD channel consists of four SiN engines. SEARSSD outputs

the result lists of each query to the FPGA. The result list

of one query only needs to contain the index of the query,

the indices of the query’s candidate neighbors, and the scalar

distances between the query and the candidates. The feature

vectors of query and targeted vertices are “filtered” by the

SEARSSD to reduce the PCIe bandwidth consumption, which

could be as low as 1/32 of the data transferred via PCIe link

in [47]. The FPGA executes the bitonic sorting kernel and

returns the top-k neighbors of each query to the host.

B. Data layout – LUNCSR

DiskANN [70] and HNSW [59] adopt the same data layout

such that for each vertex i, the feature vector vi before the

IDs of its ≤ R (i.e., R = 32) neighbors and zeros are padded

if the degree of a node is smaller than R, as shown in Fig. 6.

We argue that this data layout is inefficient for NDP solutions

for two reasons. First, it wastes space by padding zeros to

align the feature vectors and neighbor IDs. Second, it fetches

unnecessary neighbor IDs that are not used in the search

process. For example, suppose each vertex has a 128-byte
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Fig. 6. The inefficient data layout in NDP scenarios.

feature vector and 32 4-byte neighbor IDs, resulting in a 256-

byte slice of data layout. Then, 16 such slices can fit in one

page (assume 4KB page size), which is the minimal access

granularity in the NAND array. However, during the search,

only the neighbor IDs of the closest vertex to the query in

each iteration are needed for the next iteration. The rest of

the neighbor IDs in the page are irrelevant and cause at least

46.9% storage overhead as shown in Fig. 6. Notice that this

data layout is efficient if the graph is stored in CPU main

memory or GPU memory, where the access granularity is

the cacheline size - 64 bytes, because the smaller granularity

decouples the accesses to the feature vectors and neighbor IDs,

i.e., accessing the 128-byte feature vector just requires two

memory reads without loading neighbor IDs. In addition, the

smaller granularity also induces less access to the irrelevant

neighbor IDs. Hence, we found that the compressed sparse

row (CSR) is more suitable for the NDP solution since the

vertex and neighbor IDs are separately stored. We can avoid

accessing data that will not be used by the subsequent process

under the same page access.

CSR is widely used as an efficient format to store graphs.

The original CSR format consists of three one-dimensional

arrays: offset, neighbor, and vertex arrays [40]. The original

CSR format does not encode the vertex placement information,

which could be critical for NDP. Thus, we propose LUNCSR,

which extends the CSR format by adding two additional ar-

rays, LUN array and block (BLK) array. The LUN array stores

the physical LUN allocation of the vertices, and the BLK

array stores each vertex’s relative physical block allocation

within a LUN. Both arrays can be indexed by the vertex

IDs or the neighbor IDs and updated by FTL when data

refreshing occurs. As discussed in Section II-B2, NDSearch

uses block-level refreshing. Fig.5(b) shows how FTL updates

the LUN and BLK arrays when the block-level refreshing

changes the LUN and block addresses. The LUN and BLK

arrays are managed in a similar way that FTL manages

the mapping table in the traditional SSDs to guarantee the

coherency and consistency of the data. After confirming that

no data refreshing happens or the infrequent data refreshing

has been done, the specialized Allocator finally generates the

physical address of a vertex according to its logical index

and the LUNCSR without adopting FTL to do the logical-

to-physical address translation. The page/column address can

be directly inferred from the logical index of a vertex since it is

not affected by the block-level refreshing. Note that there is no

additional memory resources for LUNCSR arrays compared to

the standard SSD, where there exists a mapping table for the

Authorized licensed use limited to: Duke University. Downloaded on August 22,2024 at 15:25:36 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 7. The detailed architecture of (a) Vgenerator and (b) Allocator.

logical-to-physical address translation. We just transform the

mapping table to LUNCSR arrays which can be integrated to

NDSEARCH. Fig. 5(b) also demonstrates how the Allocator

indexes the neighbors of v2 in the LUNCSR. The arrows

illustrate the indexing traces. Specifically, the ID (i.e., 2) of v2

points to its first neighbor v13 with offset 17. The Allocator

uses the offset value as the pointer to access the neighbor

list of v2 (the length of the neighbor list is the difference

between v3’s offset and v2’s offset). Then, using the neighbor

IDs, the Allocator can find the neighbors’ corresponding LUN

and block IDs. The neighbor IDs (also the vertex logic IDs in

Fig. 5(b)) further indicate the page and column addresses so

the physical addresses of each neighbor are finally generated.

C. SearSSD design

Fig. 5(a) depicts the overall architecture of SEARSSD. The

Allocator and Vgenerator are physically implemented on the

same die and connected to the internal memory bus of the

SSD controller (embedded cores). Only the vertex array in

LUNCSR is stored in SiNs. The other arrays are buffered in

the internal DRAM or stored in normal NAND flash chips in

standard SSD channels which are not illustrated in Fig. 5 (a).

To support billion-scale ANNS benchmarks, we set the total

capacity of SiNs to 512 GB, organized as 32 channels, 4 flash

chips per channel, 4 planes per chip, 512 blocks per plane,

and 128 pages per block. The page size is 16KB, and we

organize two planes as a LUN. Other detailed configurations

of NDSEARCH are shown in Table I.

1) Dataflow in SEARSSD: The dataflow in SEARSSD is

also shown in Fig. 5(a). 1 A batch of queries is sent from

the host to the SSD controller via the PCIe link. The SSD

controller then assigns the initial entry vertex for each query.

A query property table is created in the internal DRAM to

store the property of each query (i.e., current searching status,

including the ID of the query, the ID of entry vertex in

this iteration, the feature vectors of the query, result list and

etc.) and maintained by the SSD controller. 2 Vgenerator

manages to read out the graph information of the entry

vertex in LUNCSR format, including offset, LUN IDs, and

neighbor IDs. The exact neighbor and LUN IDs are generated

in Vgenerator and sent to Allocator. 3 According to the

neighbor and LUN IDs from Vgenerator, Allocator allocates

the queries and neighbor IDs to different LUNs. 4 Allocator

sends the queries and physical addresses of the neighbors

(candidates) to the corresponding LUN-level accelerators. 5
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Fig. 8. The architecture of SiN including two LUN accelerators.

The SiN engines compute the distance between the queries and

the vertices stored in the NAND flash chips. The computed

distances are sent back to the SSD controller to update

the query property table. A new vertex is selected as the

updated entry vertex of the next search iteration. The loop

of 2 3 4 5 repeats until the search of the batch of

queries terminates.

2) Vgenerator: The architecture of the Vgenerator is de-

picted in Fig. 7(a). The Vgen Buffer is partitioned into three

portions: Query, neighbor (NBR), and prefetch (Pref) buffers.

A batch of queries are written into the query buffer. Then the

QP reader reads the IDs of entry vertices in the current search

iteration and sends them to OFS Fetcher. OFS Fetcher, NBR

Fetcher, and LUN Fetcher work in a three-stage pipeline to

fetch the offset values, the neighbor IDs, and the LUN IDs of

the neighbors of the entry vertices, respectively, following the

indexing process which is described in Section IV-B. Then the

NBR Fetcher writes the neighbor IDs into the “Nid” fraction of

the NBR buffer while LUN Fetcher writes the corresponding

LUN IDs into “Lid” fraction of the NBR buffer. The Pref

Unit is used to prefetch the neighbors to do the speculative

searching, which will be introduced in detail in Section VI.

3) Allocator: The architecture of the allocator is illustrated

in Fig. 7(b). According to the Lid in the Vgen Buffer, the

Dispatcher gathers the neighbors with the same LUN IDs

and the corresponding queries together in the same fraction

of Alloc Buffer, which is horizontally partitioned according

to LUN IDs. Then, the Alloc CTR directly generates the

physical addresses of all the neighbors using the Nids and

the corresponding content in LUN/BLK array as described in

Section IV-B, avoiding the FTL address translation overhead.

Next, the Alloc CTR sends the data and the physical addresses

to the corresponding LUN-level accelerator through Flash

CTR for distance computation.
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4) SiN: Fig. 8 shows the architecture of the SiN engine

whose basic unit is a LUN-level accelerator. One SiN is

made up of 2 LUN-level accelerators. The Flash CTR sends

the modified multi-LUN instructions to the SiN to make the

LUN-level accelerators in the same SiN process the queries

in parallel. In each LUN-level accelerator, the query queue

buffers the feature vectors of queries that are allocated to

this LUN, and the Vaddr queue buffers the addresses for the

neighbors of each query in the current search iteration. The

Acc CTR sends multi-plane instructions to read vertices from

different planes and enables the two multiply-and-accumulate

(MAC) groups to work in parallel. The queries are sent to

the corresponding MAC group via a switch. The computed

distances are temporarily stored in the additional output buffer

(O Buffer) for readout. Under the premise of 256 LUN-level

accelerators in total, we build 2 MACs into each MAC group,

whose architecture is based on the adder tree and similar to

the design in [47]. The feasibility of the MAC group and its

influence on the storage density is discussed in Section VII-B.

5) ECC mechanism in SiN: Error correction code

(ECC) [83] mechanism is indispensable in SSD, which is

used to detect and correct data error induced by the noise

and distortion of NAND flash memory cells. We develop the

plane-level ECC mechanism in SiN because we should make

sure that the accessed feature vectors are corrected before

being fed into the MAC group. Hence, as shown in Fig. 8, a

hard-decision decoder [44] is put between the page buffer and

the MAC group in each plane. We adopt low-density parity-

check (LDPC) [72] codes for ECC, which are initially written

into NAND flash memory along with feature vectors. Soft-

decision [48] LDPC decoding still runs on the FTL layer on

the embedded cores and is invoked only if the hard-decision

decoding fails. In most cases, implementing hard-decision

decoders in SiN is sufficient for the search phase of ANNS.

The corresponding evaluation is shown in Section VII-B .

6) Multi-LUN operation modification: Our multi-LUN

search operation is based on the existing multi-LUN read

operation in SSD. The typical workflow of multi-LUN read is

shown at the left of Fig. 9(a). We change the < ReadPage >
instruction to the specialized < SearchPage > instruction,

which is illustrated in Fig. 9(b). The 2-bit “Distance” portion

indicates which type of distance to compute, like Euclidean

distance, angular distance, inner-product distance, and so on.
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Fig. 9. (a) The modified workflow of multi-LUN operation; (b) The instruction
of search page.

We use 1-bit “pageLocBit” to illustrate the locality of the

page buffer. If “pageLocBit = 1”, there will be two or more

queries’ candidates located on the selected page. In addition,

we change the objects of < ReadStatusEnhanced > and

< ChangeReadColumn > from the page buffer to the output

buffer in our design because we only need to transfer the

computed distances from each LUN rather than the original

feature vectors. The modified workflow of multi-LUN search

is shown at the right of Fig. 9(a).

V. PROCESSING MODEL

Current graph traversal-based ANNS follows the widely

adopted processing model in graph analytic [71], which con-

sists of two phases - Scatter and Apply, with three essential

operators - Processing Edge, Reduce and Apply. We found that

it is inefficient for NDSEARCH since it does not consider the

dataflow of graph-traversal-based ANNS or the characteristics

of the NDP platform. Thus, we propose a new processing

model of accelerating graph-traversal-based ANNS on ND-

SEARCH as shown in Algorithm 1. To exploit the parallelism

of NDSEARCH, the model iterate over the LUN list which

can be executed in parallel. To overlap the latency of the

dynamic scheduling of graph traversal kernel and the execution

of distance computation kernel, we decouple the Scatter phase

into Allocating and Searching stages, which will be further

discussed in Section VI-B2. We also decouple the Apply phase

into Gathering and Sorting stages.

Algorithm 1 ANNS Near Data Processing Model

1: for i in range (len(this batch)) do
2: qi.Lid ← Vgenerate (qi.Prop)
3: LUNlist ← Batch-wise dynamic allocating (this batch)
4: while Searching of this batch is not terminated do
5: for j in range (len(#LUNlist)) do
6: for i in range (len(LUNlist[ j].Qid [i])) do
7: for k in range (len(LUNlist[ j].qi.Nid)) do
8: ProResult ← Process Edge (LUNlist[ j].qi,

vLUNlist[ j].qi.Nid[k])
9: qi.tProp ← Reduce (qi.Prop, ProResult)

10: for i in range (len(this batch)) do
11: qi.Prop ← Apply (qi.tProp)
12: return qi.top−k ← BitonicSort(for i in range (len(this batch)))

Allocating stage in Scatter phase (line 1∼3): According to

the property of each query in the batch, a LUN look-up table is

generated and the tasks of the search of queries are allocated

to the LUN-level accelerators through the batch-wise dynamic

allocating method (See Section VI-B).

Searching stage in Scatter phase (line 4∼8): In the Searching
stage, separate LUNs work simultaneously with the support

of multi-LUN operations. Process Edge operator executes the

distance computation. Reduce operator updates the temporary

property of each query, e.g., the result list in the current

search iteration. The condition of termination of this stage

is determined by the setting in the specific ANNS algorithm.

Gathering stage in Apply phase (line 9∼10): After the

Searching stage, the properties of each query in the batch are

updated in the Query Property Table by the Apply operator.

According to the updated results, the queries that do not meet
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the termination condition will start the next search iteration

which consists of the three stages above.

Sorting stage in Apply phase (line 11): When all queries have

met the termination condition, a batch of results lists is sent

to the FPGA for sorting. Meanwhile, the allocating stage for

the next batch can start. The top-K nearest neighbors of each

query will be selected and sent back to the host.

VI. TWO-LEVEL SCHEDULING

The scheduling involves two levels—static scheduling and

dynamic scheduling. The static scheduling reorders the ver-

tices offline for a better spatial locality. Dynamic scheduling

processes the graph traverse of a batch of queries at runtime.

A. Static scheduling

Before reordering the graph, the vertices in the graph are

stored according to the constructing order, which is usually

random. The random order of storing the vertices induces

poor data locality because the topology information is not

captured. Prior methods [31] are either inefficient for breadth-

first traversal or incur unacceptable overhead to find a rela-

tive good vertices order. Moreover, no prior works consider

how to delicately map the reordered data onto the storage

devices according to their unique characteristics. Considering

the breadth-first traversal trace in the graph traversal-based

ANNS algorithms, we propose our degree ascending breadth-

first reordering method based on [23], which only requires
running once but can achieve near-optimal performance. We

would like to store the neighboring vertices in the graph to

the same page in the SSD, to ensure the data locality of

page access. However, naı̈vely mapping the reordered vertices

to the consecutive physical addresses in NAND flash will

sacrifice the multi-plane parallelism. Hence, after reordering,

the mapping of the vertices should be coordinated with the

restrictions of multi-plane operations of SSD.

1) Degree ascending breadth-first traversal reordering: Let

V = {v1, ...,vn} be the n vertices of a graph G = (V ,E ) with

|E | edges, and f : V → {1,2, ...,n} be a reordering function

that generate an index for each vertex of the graph. The goal of

the reordering is to find an optimal f to minimize a bandwidth

function β (G, f ) defined as:

β (G, f ) =
1

n ∑
v∈V

max
(i, j)∈E (v)

| f (i)− f ( j)|. (1)

Here, v is each vertex in the graph, and E (v) generates the

indices of all the neighbors of the vertex v. Our objective

is to minimize the average vertex bandwidth, β . A small

β guarantees that the neighbors of each vertex are stored

physically close to each other. Reordering graph vertices to get

the minimum β has been proved to be an NP-Completeness

problem [51]. Although some prior reordering methods are

proposed [27], the existing randomness in these methods

requires running the methods multiple times to approach the

optimal reordering result. For the example shown in Fig. 10,

if using the prior method in [23], there are 8 choices to select

v0 in the original graph. Furthermore, if vd is selected as

v0, there are 5! = 120 choices to renumber va,vc,ve,v f ,vg to
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Fig. 10. An example of the comparison between random BFS reordering
method and our method.

v1 − v5 . As the reordering proceeds, the reordering results

increase significantly and we should finally select one whose

β is the smallest. The overhead of traversing all the possible

BFS orders is unacceptable for the huge scale ANNS graphs.

Our reordering method addresses the aforementioned issue

of randomness. Specifically, we reorder the vertices based

on their degrees in ascending order, which is a deterministic

approach rather than a random one. This ordering strategy is

motivated by the observation that first randomly labeling the

vertices with higher degree (more neighbors) creates difficulty

for closely labeling their neighbors (making the indices of the

neighbors as close as possible) later, which finally results in a

large bandwidth β . In contrast, if vertices with lower degrees

are reordered first, their neighbors with higher degrees may

still remain unnumbered and be easy to be closely labeled,

resulting in a smaller β . In addition, by reordering the vertices

with higher degrees later in the process, we can reduce β
further by placing them closer to their already renumbered

neighbors. As a result, our method only needs to be run once

to obtain a near-optimal vertex reordering, as illustrated in the

final reordered graph in Figure 10. Firstly, we select vh which

has the minimal degree - 1, as the root vertex v0. Then, the

BFS traversal would find vg, and we renumber it to v1. After

renumbering vd to v2, we reorder its neighbors according to

their degree ascending order. In this example, the degrees of

va, vc, ve,v f and vg, are 3, 4, 3, 3 and 1, respectively. Because

vg has been renumbered, we further renumber va as v3, ve as v4,

v f as v5 and vc as v6. The reordering process will continue until

all vertices are renumbered. Obviously, there is no randomness

existing in our method only if the degrees of some neighbors

of a vertex are same. Moreover, this example shows that our

method can ensure smaller average bandwidth of each vertex

by reducing the opportunities that the neighbors are split far

away from each other.

2) Multi-plane operation: To exploit the parallelism of

multi-plane operations, we should map the reordered vertices

under the restrictions of multi-plane addressing. There are two

restrictions applied to the multi-plane address when executing

a multi-plane command sequence on a particular LUN: (i)

The plane address bits shall be distinct from any other multi-

plane operation in the multi-plane command sequence; (ii) The

page/LUN address shall be the same as any other multi-plane

operations in the multi-plane command sequence. Hence, our

mapping strategy is that we first map the reordered vertices

in one page of a plane to one LUN, e.g., pagei in plane j,
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Fig. 11. Mapping of vertices restricted by multi-plane addressing.

to maximize the data locality in one page. Then, we choose

the same pagei in another plane j+1 in the same LUN. Next,

we iteratively perform the mapping with the aforementioned

process on different LUNs. If we have selected all LUNs, we

go back to the first LUN and select a different page number

for the subsequent vertices. As illustrated in Fig. 11, the arrow

shows the path of mapping.

The offline static scheduling could take several hours,

depending on the specific constructed graph. Our reordering

process operates independently of the SSD’s organization, thus

eliminating the need for it to be repeated when switching

to a different SSD. However, the mapping process must be

re-conducted as it relies on the internal architecture of the

SSD. In addition, we also consider the the influence of data

refreshing on our static scheduling. As aforementioned, we

adopt block-level data refreshing in SEARSSD. Obviously,

our degree ascending breadth-first traversal reordering is not

affected because we reorder the vertices to improve the page-

level data locality. To avoid degrading the parallelism of multi-

plane operation, which is achieved by our mapping strategy,

we make the block-level data refreshing happen within planes

instead of arbitrary locations in the SSD.

B. Dynamic scheduling

Our dynamic scheduling, which is executed by Vgenerator

and Allocator, aims to efficiently allocate queries to the

corresponding LUN-level accelerators to improve temporal

data locality in each LUN and overlap the latency between

search iterations within one batch of queries. It consists of

batch-wise dynamic allocating and speculative searching.

1) Batch-wise dynamic allocating: This technique allocates

queries with the same targeted LUNs to the corresponding

LUN-level accelerators at once. The implementation of the

batch-wise dynamic allocating is suggested in the architecture

design of Vgenerator and Allocator in Section IV-C2 and

Section IV-C3 An example is illustrated in Fig. 7, where q1 is

sent to LUN1 and LUN3, q2 is sent to LUN1 and LUN2, and q3

is sent to LUN2 and LUN3 to be computed distances with the

corresponding neighbors. Note that one query can be allocated

to different LUN-level accelerators. The allocated queries in

each LUN are further assigned to the corresponding planes

in a similar way to allocating queries to LUNs. In this way,

the pages consisting of the candidate neighbors of different

queries only need to be loaded once from the plane and the

temporal data locality in each LUN is fully exploited.

2) Speculative searching: As aforementioned in Section V,

a common search iteration consists of three sequential stages:

Allocating stage, Searching stage, and Gathering stage as
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Fig. 12. The mechanism of speculative searching.

illustrated in Fig. 12. The Allocating stage of the next search it-

eration usually requires the updated results of Gathering stage

of iterationi to determine the entry vertices in iterationi+1.

The decoupling of the three stages provides the opportunity

to overlap the latency of the Allocating stage and Searching
stage. As shown in Fig. 12, we develop a speculative searching

mechanism underlying the processing model based on the
observation that the second-order neighbors of the entry
vertex in the current iteration are the potential candidates
to access in the next search iteration. Thus, the second-order

neighbors are highly likely to be accessed in the next iteration.

According to this observation, in the search iterationi, when

the Allocating stage is done, we can get the neighbor IDs -

Nids - of each entry vertex in the current iteration. When the

Searching stage of this iteration begins, we start the speculative

searching for the next iteration - iterationi+1 by launching the

speculative Allocating stage in iterationi. The Pref Unit fetches

the neighbors of each entry vertex in iterationi and generates

the corresponding IDs of some second-order neighbors of each

vertex- NPre f
id s for each entry vertex in iterationi. Considering

the number of second-order neighbors is usually larger than

that of the first-order neighbors of each entry vertex, the Pref

Unit selects the second-order neighbors that have more con-

nections with the first-order neighbors. The NPre f
id s are stored

in the Pref buffer of Vgen Buffer. When the Searching stage of

iterationi ends and the Gathering stage of iterationi starts, the

speculative Searching stage launches to compute the distances

between the queries with their prefetched neighbors. Then, for

a query, if there is an overlap between its Nids in iterationi+1

and NPre f
id s in iterationi (NPre f

id ∩Nid �= ∅), the corresponding

speculative searching results can be used. In this way, the

Searching stage of iterationi+1 can be accelerated. Note that

if the speculative Allocating stage does not complete when

the non-speculative Searching stage ends in iterationi, the

speculative Allocating will be forcibly terminated. Hence, the

latency of the speculative searching can be entirely overlapped.

VII. EVALUATION

A. Experiment methodology

Benchmarks and datasets. We evaluate NDSEARCH on two

typical graph-traversal-based ANNS algorithms: HNSW [59]

and DiskANN [70]. For HNSW, we select hnswlib [9] and

cuhnsw [3] to compare NDSEARCH with CPU and GPU

platforms, respectively. DiskANN has only one implementa-

tion [4] that is designed for the CPU platform, regarding the

main memory as the “cache” of the SSD in its algorithm.

Each algorithm is customized and evaluated with 5 datasets:

glove-100 [65], fashion-mnist [80], sift-1b [19], deep-1b [24]
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Fig. 13. Speedup normalized to CPU (shown in the histogram) and throughput (shown in the line chart) comparison on various platforms. We measure the
throughput by processing a batch (2048) of queries with the same memory trace on each benchmark.

and spacev-1b [16]. We tune the parameters of HNSW and

DiskANN with the recall@10 reaching 95%, 95%, 94%,

93%, 90% on glove-100, fashion-mnist, sift-1b, deep-1b, and

spacev-1b, respectively, to construct the reasonable graphs.

Experimental setup. For the SSD part - SEARSSD, we build

an in-house simulator of SEARSSD based on SSD-Sim [10],

[18], which is a memory trace-based and cycle-level simulator.

We model the behavior and set parameters of SSD based

on Samsung 983 DCT 1.92T [5]. The SSD internal DRAM

is set to 4GB. We model the additional buffers and queues

in SEARSSD using CACTI 6.5 [2] with 32nm technology.

We implement and synthesize the digital logic circuits at the

32nm technology node with 800MHz using Synopsys Design

Compiler. For the FPGA part, which is not the focus of this

paper, we directly adopt the similar implementation of bitonic

sort kernel in [66]. The SEARSSD and FPGA are connected

through a PCIe 3.0 × 4 bus. We use 2 Intel Xeon Gold 6254

CPUs running at 3.1 GHz with 24GB DRAM (same as GPU

memory) as the CPU baseline and a NVIDIA Titan RTX with

24GB VRAM as the GPU baseline. As aforementioned, for

HNSW, when the size of the dataset exceeds the memory

capacity, we split the dataset into several smaller shards

through k-means and load a few shards to the memory from

storage to run the algorithm on CPU or GPU. To compare

NDSEARCH with previous NDP architectures, We build a

DeepStore accelerator as a baseline with different levels of

accelerators [58] using the same budget with NDSEARCH and

a SmartSSD-only design like [47] as another baseline.

Simulation method. We firstly run the construction of ANNS

graph on CPU and GPU to get the adjacency information of the

graph. Then, we reorder the graph using our reordering method

and get the LUNCSR. To generate the memory trace during

the search phase, we hack the code of HNSW and DiskANN,

initialize the entry vertex for each query and run the search

phase of the algorithm on CPU or GPU to get the memory

traces, which illustrate the index sequences of the accessed

vertices for each query. After that, we feed the traces as input

to our trace-driven simulator.

B. Results

Performance. Fig. 13 shows the results of throughput (Query

Per Second) and the normalized speedup that NDSEARCH

achieves over CPU, GPU, and DeepStore. For DeepStore, we

build a channel-level accelerator (DS-c) and chip-level accel-

erator (DS-cp) as the baselines. The default batch size is set
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Fig. 14. Evaluation of static scheduling of NDSEARCH. Speedup is normal-
ized to NDSEARCH without any reordering.

to 2048. Thanks to the high internal parallelism, GPU, Deep-

Store, and NDSEARCH can achieve much better performance

compared to CPU when processing a large batch of queries.

In terms of large datasets, the constructed graph of sift-1b,

deep-1b, and spacev-1b could consume more than 500 GBs

of memory which exceeds the capacity of VRAM in GPU.

Hence, GPU should load a few shards of the data from the SSD

several times through the PCIe link. We can observe that DS-

c, DS-cp, and NDSEARCH all outperform the SmartSSD-only

design because the SmartSSD-only design does not explore

the internal bandwidth and parallelism of the SSD device.

Especially, NDSEARCH achieves up to 7.44× speedup over

the SmartSSD-only design when running DiskANN on sift-

1b. It is interesting that DS-cp achieves higher speedup than

DS-c on these benchmarks, which differs from the conclusion

in [58]. This is because the workload of graph traversal-

based ANNS does not include compute-intensive operations

as shown in Fig. 2 like the neural network evaluated in the

DeepStore paper. Hence, the limited computing resources will

not be the bottleneck of chip-level accelerators. The chip-

level accelerators enable DS-cp to process the graph traverse

and distance computation locally near the chip and thus DS-

cp performs better than DS-c. Compared with DS-cp, ND-

SEARCH develops LUN-level accelerators with even higher

parallelism. Besides, we utilize and modify the flash chip’s

internal multi-LUN and multi-plane operations to support

access to vertex vectors and distance computation. The result

shows that NDSEARCH can achieve up to 2.81× and 2.94×
speedup over DS-cp when running HNSW and DiskANN,

respectively. Hence, we can conclude that more fine-grained

accelerators at the LUN level are more efficient for ANNS.

It is not difficult to find that NDSEARCH demon-

strates a higher speedup over CPU/GPU when running

HNSW/DiskANN on sift-1b/deep-1b are better than those

Authorized licensed use limited to: Duke University. Downloaded on August 22,2024 at 15:25:36 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 15. Evaluation of dynamic scheduling. Page access and speedup are
normalized to NDSEARCH without dynamic scheduling.

on glove-100/fashion-mnist. This is because the glove-100

and fashion-mnist are much smaller than other datasets. The

constructed graphs of these two datasets are able to fit into

the main memory of CPU and the memory of the GPU so

that CPU/GPU only needs to load the data from the SSD

once. Common NDP designs like SmartSSD, DS-c, and DS-

cp can hardly outperform CPU/GPU when running ANNS on

small datasets because their advantages over CPU/GPU mainly

come from reducing SSD I/O read. However, NDSEARCH

further exploits the SSD internal bandwidth with LUN-level

accelerators and develops efficient scheduling schemes to

increase the searching parallelism. Hence, NDSEARCH can

still achieve up to 5.06× and 2.12× speedup over CPU and

GPU, respectively.

Scheduling. To evaluate the performance of our reordering

method applied to SEARSSD, we define a new metric, page

access ratio, which equals the ratio of the number of page

accesses to the length of the searching trace of a query.

A higher page access ratio reflects that each page access

returns fewer requested/prefetched vertices, thus indicating

poor spatial data locality. We set the page size to 16 KB

in this experiment and compute the average page access

ratio of a batch (2048) of queries on each benchmark. After

applying our reordering method, the bandwidth β (defined in

Section VI) decreases, which means that the neighbors of each

vertex are stored closer to each other. Thus, the neighbors

of each vertex are more likely to be stored in the same

page, which implicitly reduces the number of page accesses.

Fig. 14 shows the comparison of different settings: without

reordering (w/o re), with random BFS reordering (ran bfs),

and ours. The three settings are configured on NDSEARCH

with dynamic scheduling, respectively. The results indicate

that after reordering the vertices and mapping them under

the restrictions of multi-plane operation, our method reduces

the page access ratio by up to 38% and induces up to 1.17×
speedup over the baseline without reordering.

We also evaluate the contribution of our dynamic schedul-

ing by configuring NDSEARCH with three different settings:

without dynamic scheduling (w/o ds), with dynamic allocat-

ing(da) and with dynamic allocating and speculative searching

(da+sp). The three settings are configured on NDSEARCH with

static scheduling, respectively. In the setting of NDSEARCH

without dynamic scheduling, each query is just allocated to

LUNs sequentially according to the addresses of its targeted

vertices that may be flushed and need to be read from the

NAND arrays again by another query later. By contrast, with

dynamic allocating, different queries that are allocated to the
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Fig. 16. The ablation study of our proposed techniques on NDSEARCH. The
experiments are run on spacev-1b dataset.

Fig. 17. Breakdown of execution time of NDSEARCH.

same LUN are potentially able to share the same page access

as much as possible. Hence, redundant re-allocating and extra

page accesses are avoided. As illustrated in Fig. 15, dynamic

allocating can help reduce the page accesses by up to 73% and

induce up to 2.67× speedup. With speculative searching, the

page accesses increase because over half of speculated results

are not selected, which leads to extra accesses to the second-

order neighbors of the queries. However, speculative searching

can still further induce up to 1.27× speedup.

Ablation study. We conduct the ablation study of the pro-

posed techniques, including degree ascending BFS reordering

(re), multi-plane operation mapping (mp), dynamic allocating

(da) and speculative searching (sp) on spacev-1b as shown in

Fig. 16. Even without any optimizations, the bare machine

of NDSEARCH (Bare) can still achieve over 4× speedup over

CPU because 1) data transfer via the PCIe is eliminated; and 2)

NDSEARCH does not need frequent access DRAM to fetch the

vertices as CPU does to its main memory. Without the dynamic

allocating, NDSEARCH can hardly beat DS-cp though ND-

SEARCH achieves larger parallelism and internal bandwidth

due to multi-LUN/plane operations. This is because there are

redundant operations on the LUN-level accelerators and we

actually implement dynamic allocating on DS-cp to maximize

its hardware utilization. With all the proposed scheduling

techniques, NDSEARCH can fully exploit the potential of

our hardware design and further achieve 4.1× performance

improvement compared to bare NDSEARCH, showing the

benefits of our software-hardware co-design solution.

Overhead analysis. As illustrated in Fig. 17, NAND read

occupies the largest proportion (24% − 38%) of the entire

execution time of NDSEARCH due to the frequent access

to feature vectors stored in NAND flash chips. However,

compared to the CPU+SSD system, the proportion of SSD

I/O read is reduced from ∼70% (as shown in Fig. 1) to

∼6% thanks to the “filtering” of SEARSSD. The latency

of the bitonic kernel on FPGA only accounts for at most

12% of the overall latency. The “Allocating” part captures

the overhead of dynamic scheduling, specifically the batch-

wise dynamic allocating. The speculative searching overhead

Authorized licensed use limited to: Duke University. Downloaded on August 22,2024 at 15:25:36 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 18. (a) Plane-level distribution of raw bit error rate; (b) Normalized
latency of running HNSW workloads with different hard-decision decoding
failure probabilities.
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Fig. 19. Speedup normalized to DS-cp with different batch sizes.

is overlapped by the distance computation and SSD read in the

non-speculative searching stage as discussed in Section VI-B2.

We can also observe that running DiskANN requires more

DRAM access and execution of embedded cores but fewer

SSD reads than HNSW thanks to using the internal DRAM

of SSD to cache some hot feature vectors. Generally, DRAM

access and execution of embedded cores take 20%− 35% of

the total execution time to maintain the FTL, access LUNCSR,

and buffer the temporary results.

ECC and endurance. We generate the raw bit error rate

(BER) statistics of 512 planes in SEARSSD following the

measured memory BER distribution in [83] as shown in

Fig. 18(a). We set the average BER to 10−6, which is the

typical BER value of current advanced NAND flash. We also

consider the fact that the probability of hard-decision LDPC

decoding increases since flash memory cell storage reliability

gradually degrades. As reported in [83], even at the mid-

late lifetime of flash memory, a hard-decision LDPC decoder

can still have a low failure probability (1%, which is also

our default case). We evaluate our ECC mechanism in worse

scenarios with the hard-decision decoding failure probability

set to 30%, 10%, 5% and 1%, respectively. When the hard-

decision decoding fails, the soft-decision starts to work on

FTL. Following the logistics of fault injection [35], we “in-

ject” the raw BER and the hard-decision decoding failure

probability into our simulation environment. As illustrated

in Fig. 18(b), In the worst cases where the hard-decision

decoding failure probability is 30%, NDSEARCH is slowed

down by between 1.23× and 1.66×. The slowdown mainly

comes from the extra latency of executing soft-decision LDPC

(∼ 10 μs) on FTL and pausing the search iteration. We

generally conclude that the plane-level hard-decision LDPC

decoder is sufficient in most cases.

Batch size. We explore the impact of batch size on per-

formance. As illustrated in Fig. 19, we set the batch size

ranging from 256 to 8192 to evaluate NDSEARCH against

DS-cp. We observe that when the batch size is set to 256,

NDSEARCH only has a marginal advantage over DS-cp. The

parallelism of relatively fine-grained LUN accelerators cannot

be fully exploited when the batch size is small. The irregular

access pattern of queries could allocate queries to a few LUN

���

�

��

���

%��  �� 	
���		
����� 
	��� �
	�����
���

�

��

���

�����	
�� �
�����	����� ����	
� ����	
� ��
���	
�

�
��
��

!���


��� ��

���

�

��

���

�
��
��

!���

Fig. 20. Comparison of energy efficiency over various designs.

TABLE I
POWER AND AREA BREAKDOWN OF SEARSSD

Config. Num. Power Area
MAC group 2 MACs 512 1.95 W 15.04 mm2

Vgen Buffer 2MB 1 1.71 W 3.18 mm2

Alloc Buffer 6MB 1 4.57 W 8.53 mm2

Query Queue 24KB 256 5.84 W 9.76 mm2

Vaddr Queue 3KB 256 0.87 W 1.47 mm2

Output Buffer 1KB 512 0.56W 1.12 mm2

ECC Decoder LDPC 1024 1.18W 2.84 mm2

Ctr circuits - - 2.14W 1.15 mm2

Overall - - 18.82W 43.09 mm2

accelerators. In this situation, the advantage of NDSEARCH

is negligible compared to directly processing queries in rela-

tively coarse-grained chip-level accelerators. However, as the

batch size increases, NDSEARCH gains a significant advantage

because each LUN has a heavier workload so that the LUN-

level parallelism can be fully exploited, and the queries are

allocated to most LUNs. The overhead of gathering data from

the flash chip to the chip-level accelerators (as aforementioned,

only one LUN can be selected when reading data from a

flash chip) limited the performance of DS-cp. When the batch

size increases to 4196, the speedup of NDSEARCH begins to

decrease because the batch have to be split into two or more

sub-batches to process, due to the limited resources setting of

our design considering the power budget.

Power budget and Energy Efficiency. The power budget of

SEARSSD is limited by the PCIe interface, which provides

∼55W budget [58] for SEARSSD’s design. Table I shows the

power breakdown in SEARSSD’s design. Considering that the

bitonic sorting kernel consumes 7.5W on the FPGA, the total

power of NDSEARCH is 26.32W, which is within the power

budget. Fig. 20 shows the comparison of energy efficiency

with various platforms. Basically, the less the data transfer

of feature vectors is and the higher internal parallelism the

design achieves, the higher energy efficiency is reached. The

SmartSSD-only design avoids the data transfer passing through

the host CPU. Compared to the SmartSSD-only design, a large

amount of data transfer via SSD I/O is avoided in NDSEARCH,

and our NDSEARCH further reduces the data movement from

NAND flash chips by the in-LUN computing. Overall, ND-

SEARCH achieves up to 178.68×, 120.87×, 30.06× and 3.48×
higher energy efficiency than CPU, GPU, the SmartSSD-only

design, and DS-cp, respectively.

Area and storage density. Area breakdown of SEARSSD

is also illustrated in Table I. With the technology node of

32nm, the total area of the customized logic in our design

is 43.09 mm2 while the customized logic in DS-cp and DS-c

Authorized licensed use limited to: Duke University. Downloaded on August 22,2024 at 15:25:36 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 21. The normalized speedup (to CPU) and throughput of HCNNG [63]
and TOGG [81] on sift-1b on various platforms.

takes 236.8 mm2 and 320 mm2 [58], respectively. The area of

NDSEARCH is 82% and 87% less than that of DS-cp and DS-

c, respectively. SmartSSD takes around 800 mm2 to implement

all the logic except for the SSD area [47]. We estimate the

storage density of Samsung 983 DCT [5], which adopts V-

NAND MLC, as 6Gb/mm2. After adding the specialized logic

inside the SSD, the storage density is reduced to (capacity

of SEARSSD, 512GB) × 8b/B / ((capacity of SEARSSD,

512GB) × 8b/B / 6Gb/mm2 + 43.9 mm2)) = 5.64 Gb/mm2,

which is acceptable with only 6% density degradation.

VIII. DISCUSSION

A. Evaluation on other graph-traversal-based ANNS

Besides HNSW and DiskANN, there are some other emerg-

ing graph-traversal-based ANNS algorithms like HCNNG [63]

and TOGG [81]. Based on the breadth-first search kernel, these

algorithms further optimize the search phase by guiding the

direction of the query in the vector space. We construct the

graph with HCNNG and TOGG on sift-1b, tuning the recall

rate@10 to 93% and evaluate the search phases on various

platforms as shown in Fig. 21. We change the control logic of

the embedded cores in NDSEARCH according to the require-

ments of HCNNG and TOGG. We also add another hardware

baseline, CPU-T, which pairs the CPU with TeraByte-level

DRAM, to see whether the optimized algorithms can benefit

from larger main memory. From Fig. 21, we can firstly observe

that NDSEARCH still outperforms other platforms even on

these two more optimized algorithms. This is because the

irregular and frequent data access still dominates the overhead

of the search phases of HCNNG and TOGG though their

searches are more directional. Secondly, we can see that al-

though expanding the main memory can accelerate the search

phase due to the lower data access latency, e.g., achieving 5.3×
speedup over CPU with limited memory, CPU-T cannot beat

in-storage accelerators because (i) DRAM fails to exploit the

data locality and cannot match the high internal bandwidth of

DeepStore and NDSEARCH due to the lack of the in-memory

logic and (ii) CPU lacks the parallelism required to rival that

of DeepStore or NDSEARCH in search operations.

B. Limitations of this work

NDSEARCH is proposed for the acceleration of graph-

traversal-based ANNS algorithms but not generalized to some

other types of ANNS algorithms like quantization-based

ANNS [20] [6] or tree-based ANNS [73]. We choose graph-

traversal-based ANNS because it is currently the mainstream

ANNS method [74]. In addition, NDSEARCH also shows

potential to be generalized to all the ANNS algorithms because

all these ANNS workloads are memory-bound and their per-

formance is limited by the memory bandwidth. NDSEARCH

can address these challenges fundamentally. We leave gener-

alization of NDSEARCH for future discussion.

IX. RELATED WORKS

In-storage computing architectures aim to offload the data-

intensive workloads to the storage devices like SSD to reduce

the expensive data movement from and to storage. Modifying

the internal architecture of SSD is required to develop an

in-storage accelerator. Three categories of in-storage com-

puting architectures have been proposed: � modifying the

firmware of the SSD controller (embedded cores) [60], [79]; �
adding customized hardware modules inside the SSD without

touching the NAND flash chips [45], [52], [54], [55], [58];

� changing the internal architecture of NAND flash chips,

e.g., adjusting the latching circuit or adding the digital logic

in flash memory [39], [41], [64]. Differing from the prior

works like DeepStore [58] which utilize the SSD internal

bandwidth through simultaneous accesses to different flash

channels, our work further improves the bandwidth of each

flash channel by the modified multi-LUN operations and

the two-level scheduling mechanism that exploit both the

temporal and spatial data locality in all the page buffers, as

shown in Fig. 2(b). Meanwhile, the data movement from flash

channels is also reduced within the SSD. GraphSSD [60]

considers the graph structure while deciding graph layout,

access and update mechanisms mainly from the perspectives of

the SSD controller and NVMe interface. GraphBoost [45] only

develops a sort-reduce accelerator between the Flash storage

and DRAM. Both GraphSSD and GraphBoost do not conduct

in-depth exploration of the characteristics of the data access

pattern in ANNS. Thus, they lacks the insight and design of

exploiting the SSD internal bandwidth and page-level data

locality. The SmartSSD-based solution [47] connects an FPGA

with an SSD via a PCIe switch and does not develop any

in-storage logic inside the SSD. Hence, the performance of

[47] is still limited by the low PCIe bandwidth. Implementing

SmartSSD with the static scheduling in NDSEARCH cannot

fundamentally address the issue of PCIe bandwidth though

the accesses to different pages in the SSD can be reduced.

X. CONCLUSION

In this paper, we present NDSearch, a novel NDP architec-

ture based on SmartSSD, to support the graph-traversal-based

ANNS task. We present an in-storage accelerator SEARSSD

which exploits the LUN-level parallelism inside NAND flash

chips to utilize the high internal bandwidth of SSD. We

also propose a customized processing model customized for

NDP scenarios and implement it on our design to accelerate

the graph-traversal-based ANNS. Compared with the previous

state-of-the-art NDP designs, NDSEARCH achieves significant

improvements in both throughput and energy efficiency.
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