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Abstract—As acoustic communication systems become increasingly common in our daily life, eavesdropping brings severe security
and privacy risks. Current methods of acoustic eavesdropping either provide low resolution due to the use of sub-6 GHz frequencies,
work only for limited words based on classification approaches, or cannot work through-wall because of the use of optical sensors. In
this article, we present miLLIEAR, 2 mmWave acoustic eavesdropping system that leverages the high-resolution of mmWave FMCW
ranging and generative machine learning models to not only extract vibrations but to reconstruct the audio. miLLIEAR combines speaker
vibration estimation with conditional generative adversarial networks to eavesdrop and recover high-quality audios (i.e., with no
vocabulary constraints). We implement and evaluate miLLIEAR using off-the-shelf mmWave radars deployed in different scenarios and

settings. Evaluation results clearly show that miLLIEAR can accurately reconstruct the audio even at different distances, angles, and
through the wall with different insulator materials. In addition, our subjective and objective evaluations demonstrate that the

reconstructed audio has a strong similarity with the original audio.

Index Terms—Acoustic eavesdropping, mmWave radar, vibration sensing, generative adversarial network
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1 INTRODUCTION

COUSTIC communication systems such as video confer-
Aencing, personal digital assistants, and home entertain-
ment are becoming increasingly popular. While our digital
communication (data transmission) over the Internet is pro-
tected through encryption techniques, the “last hop” of the
acoustic communication systems, i.e., the voice emitting
from speakers, is unencrypted. This unencrypted informa-
tion coming from the speaker can reveal highly private or
confidential information. Therefore, acoustic eavesdropping
poses major security and privacy risks, considering the
increasing prevalence of acoustic communication systems
in homes and offices.
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Acoustic eavesdropping attacks have been studied exten-
sively where the core idea is to capture the vibrations gener-
ated by a speaker using different types of sensors. As an
example of the “in-room” category of attacks, an IMU sensor
can be used to listen to acoustic signals [1], [2], [3], [4]. While
these methods primarily operate by placing the sensor in the
same room as the speaker or pre-installed on the victim’s
devices, “outside-room” attacks can remotely eavesdrop
while being next door or farther away from the audio source.
For example, high-speed cameras [5], lasers [6], photodio-
des [7], or WiFi signals [8], [9] have been used for remotely
discerning the spoken text through vibrations. Compared to
“in-room” eavesdropping, “outside-room” eavesdropping
is more difficult to prevent, and thus posees a higher risk.

In this paper, we target the “outside-room” scenario,
where the attacker device has no near access to the victim.
We propose to leveraging wireless communications as they
can penetrate walls or soundproof windows. Specifically, we
present MILLIEAR, a system that combines the high sensing
resolution through mmWave signals and the regenerative
capabilities provided by machine learning models to create a
highly effective acoustic eavesdropping attack. It addresses
many limitations of the prior attack systems including the
following aspects:

1) Higher resolution: The sensing resolution is closely
related to the wireless bandwidth. Therefore, com-
pared to existing RF-based eavesdropping systems
that operate at sub-6 GHz frequencies [8], [9], MILLIEAR
uses a mmWave FMCW radar that can leverage the
large available bandwidth at mmWave spectrum to
provide better range resolution. As we show in this
work, speaker vibrations of as low as tens of microns
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can be detected using a mmWave radar for accurate
eavesdropping.
Unconstrained vocabulary: Majority of existing eaves-
dropping systems such as [1], [2], [3], [4], [8], [9], [10]
regard acoustic signal extraction as a classification
problem by profiling a handful of words. That is, their
systems classify each eavesdropped sound to one of
the pre-defined limited words (e.g., good, happy,
thanks). Generally, the number of words in their sys-
tems is within hundreds at most, as the model
becomes untractable to classify more words. In prac-
tice, however, the content of human conversation is
extremely diverse and thus pre-defining a small set of
words does not work well for real eavesdropping
attacks. In comparison, MILLIEAR demonstrates the
attack with unconstrained vocabulary as it does not
require training for classifying words. Instead, it pro-
vides the reconstruction of entire conversational audio
entirely from the mmWave vibrations.
Remote, low-cost and smaller sensor footprint: Unlike [11]
and [12] eavesdropping systems which only work
when spyware is pre-installed in the victim’s systems
or devices, MILLIEAR works even behind glass, wooden
doors, and walls. Compared to [5], [6] and [7] which
require expensive camera sensors, laser transducer or
telescope, mmWave radars are low-cost and will
become an integral component for next-generation
smartphones (5 G/6 G communications). Furthermore,
due to the much smaller wavelength of mmWave sig-
nals, the sensor footprint is significantly smaller
compared to the large multi-antenna system setup
required by sub-6 GHz frequencies.

However, building a high-quality mmWave-based eaves-
dropping system for the unconstrained vocabulary attack
entails several challenges, including:

2)

3)

1) Speaker vibration extraction using mmWave radar signals
in the presence of multi-path noise. The signal received
at mmWave radar sensor consists of both the signal
reflected from the vibrating speaker as well other
nearby objects. The multipath effect greatly affects
the signal quality. To launch an eavesdropping
attack in a real-world scenario, we should design an
accurate vibration extraction scheme in the presence
of multi-path noise. To address this problem, we
measure the phase changes through virtual sub-
chirps. Specifically, we first apply a sliding window
on the raw mmWave data to generate sub-chirps.
Then, we apply a range-FFT to the sub-chirps for
deciding the candidate vibration bins and other bins
(i.e., mmWave noise sources). Last, we apply a
Doppler-FFT on the refined bins to help us extract
the vibrations from the speaker.

Accurate reconstruction of the audio from mmWave vibra-
tions with unconstrained vocabulary. The audio captured
through mmWave signals can contain any unknown
words. This means that we need an machine learning
model that can not only classify the existing words
based on limited training, but can also learn to recon-
struct the acoustic components of any word based on

prior training. We address this problem by developing
Authorized licensed use limited to: George
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a conditional generative adversarial network (cGAN)
that uses mel-spectrograms as images to enhance the
mmWave vibration extraction. The cGAN is trained
using spectrograms of original audio and their corre-
sponding mmWave captured data, by learning to
enhance the mmWave spectrogram to the ones similar
to the original. Our cGAN model can remove noise
and add representative acoustic components for accu-
rate audio reconstruction.

We implement and evaluate MILLIEAR using off-the-shelf
mmWave radars and deploy them in different scenarios
and settings. The evaluation results show that MILLIEAR
achieves a high similarity between the the reconstruction
audio and the original audio. Our contributions can be sum-
marized as follows:

e We present a mmWave acoustic eavesdropping sys-
tem, named MILLIEAR, that uses off-the-shelf mmWave
FMCW radar to accurately capture speaker vibrations.
The captured speaker vibrations are then enhanced
through a generative machine learning model that
requires no prior knowledge of the words in the audio
signals. Our model can recreate high-quality audio
signal directly from the mmWave radar signals by
leveraging cGANS.

e We perform an extensive evaluation of MILLIEAR. We
use audio samples from 7 public personalities played
through speakers and then captured by a mmWave
radar. We use audio samples of more than 25,000
words in training and testing, and our thorough
evaluations show that MILLIEAR can accurately recon-
struct the original audio with the average MCD
(Mel-Cepstral Distortion) of 3.68 and the average lik-
ert user score of 6.83. In addition, we evaluate MILLI-
EARr in different scenarios with varying distances and
angles between speaker and radar, different types of
soundproofing material/wall between the speaker
and radar, and different types of speakers. The valu-
ation results clearly show the premium performance
of MILLIEAR.

The paper is organized as follows. Section 2 provides the
related work. Section 3 discusses mmWave radar and GAN
preliminaries with a feasibility study, and Section 4 describes
the system overview. Our vibration extraction methods and
cGAN architectures are presented in Section 5 and Sec-
tion 6.1, respectively. We implement MILLIEAR in Section 7
and evaluate MILLIEAR in Section 8. Last, we discuss MILLIEAR
in Section 9 and conclude this paper in Section 10.

2 RELATED WORK

In this section, we review and categorize related works
focusing on audio eavesdropping. Table 1 summarizes
these works and compares them with MILLIEAR.

Several studies have shown that an attacker can deploy
an IMU sensor near the audio source to perform eavesdrop-
ping. They show that IMU-based audio sensing can classify
words, small phrases, and the speaker gender [1], [2], [3],
[4]. [10] touches on the audio recovery with unconstrained
vocabulary. Other similar forms of audio eavesdropping
have also been proposed. For example, [12] implements a

ason University. Downloaded on August 22,2024 at 17:45:58 UTC from IEEE Xplore. Restrictions apply.
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TABLE 1
Eavesdropping Approaches in Literature and Their Comparison
With MILLIEAR
Sensor Capability
Unconstrained Non- Through-wall
vocabulary invasive (opaque)
Gyroscope [1] X X X
Accelerometer X X X
[2], [3], [4]
IMU AccEar [14] v X X
IMU fusion X X X
[10]
Vibration v X X
motor [11]
Misc.  Speakers [12] v X X
Magnetic hard v X N/A
drive [13]
High speed 4 4 X
. camera [5]
Opt{cal Laser v v X
Teceiver transceiver [6]
Photodiode [7] v v X
WiFi-CSI [8] X v v
WiFi-MIMO X v v
[9]
Radio RFID tag[15] v X v
receiver UWB [16] N/A v N/A
WaveEar [17] v v N/A
mmSpy [18] X 4 N/A
MILLIEAR v v v

malware prototype which can turn the speaker into a micro-
phone for the eavesdropping purpose; [11] recovers the
audio using a vibration motor; and [13] uses a magnetic
hard disk to recover songs and voices by measuring the off-
set between the read/write head and the track center of the
disk. The main disadvantage of these eavesdropping meth-
ods is that they require to have physical access to the equip-
ment/sensor in a close proximity of the victim, which
reduces their applicability in practice. Also, given that some
of the attacks require installing spyware on victim’s device
(referred as invasive approaches in Table 1), these attacks
can be prohibited even if the victim only adopts simple
defense strategies.

Wireless signals have also been used to eavesdrop audios.
Two studies [8], [9] used WiFi signals to profile movements or
vibrations and identify audio. Authors in [8] proposed a
method to analyze the WiFi channel state information (CSI)
for classifying words. Similarly, in [9], authors analyzed the
received signal strength (RSS) of the WiFi signals where the
audio vibrations are considered as low-rate modulations of
RF signals. Akin to WiFi works, RFID [15] and Doppler
radar [19] have been leveraged for eavesdropping. In particu-
lar, [15] requires a pre-installed tag in the victim’s room. Com-
pared to our approach, these works relying on low resolution
traffic data due to lower frequencies and packet rates. Also,
they require a multi-antenna setup to localize victims and
thus result in larger physical footprint compared to mmWave,
making the attack more difficult to be carried out in practice.
[16] presents an Impulse Radio Ultra-Wideband based system
that is able to simultaneously recover and separate sounds

from multiple sources. Using the same RF technology, [20]
can recover audio below 400 Hz. However, their capability
for recovering unconstrained vocabulary has not been stud-
ied. Besides, these works do not explicitly target complete
audio reconstruction with unconstrained vocabulary.

Cameras and lasers have also been used for acoustic
eavesdropping. Authors in [6] used a laser beam pointing to
the sound source or an object near the sound source, to
receive the reflected signal and convert it to audio signal.
Similarly, [5] used a high-speed video camera to obtain the
video of an object in the victim’s room (such as a plastic
bag, water, etc.) and analyze the response as sound waves
impinge on the object to recognize audio. [7] proposed to
use a remote electro-optical sensor to analyze the fluctua-
tions to sound of the victim’s light bulb. The main disadvan-
tage of these methods is that, apart from the limited
vocabulary, these attacks are difficult to carry out as they
require expensive, special purpose hardware such as the
high-speed cameras.

In other similar research, [21] and [22] use mmWave radar
to recover audio below 1 kHz but the performance of
the human audio reconstruction has not been evaluated.
mmSpy [18] can eavesdrop on phone calls by using mmWave
and machine learning. However, mmSpy studies eavesdrop-
ping on constrained vocabulary (hot words and numbers).
Authors in [17] used mmWave to acquire high-quality voice
from user’s vocal vibrations from near-throat region. [23] pro-
posed a speech eavesdropping approach by leveraging the
piezoelectric films and mmWave signals. [24] proposed a
remote and through-wall screen attack that used mmWave to
remotely collect information from LCD screens. [25] showed
how mmWave radar can be used for micrometer-level vibra-
tion measurement in industrial environments. [26] presents a
noise-resistant multi-modal speech recognition system by fus-
ing mmWave radar and microphone. While similar, these
works do not focus on acoustic eavesdropping and audio
reconstruction.

3 PRELIMINARIES

In this section, we introduce the Frequency Modulated Con-
tinuous Wave (FMCW) radar based vibration measurement
and the Generative Adversarial Networks (GAN) based sig-
nal enhancement.

3.1 Vibration Estimation
An FMCW radar transmits a signal called “chirp”. A chirp
is a sinusoid whose frequency increases linearly with time.
FMCW radars can be used to accurately estimate the object
distance and its relative velocity by comparing the transmit-
ted and received signals. Fig. 1 illustrates the structure of an
FMCW radar, which includes a transmitter antenna and a
receiver antenna. The distance d to the object (speaker) can
be estimated by calculating the difference between the
transmitted and the received signals. With the accurate esti-
mation of distance changes from a mmWave radar, MILLIEAR
can infer the vibrations of the speaker and reconstruct the
audio.

Fig. 2 illustrates the waveform of the FMCW radar signal,
where A is the amplitude of signal, f; is the start frequency,
B is bandwidth of radar, k is the slope of the frequency
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Fig. 1. Structure of an FMCW radar.
Amplitude Frequency Tc
). N —
Y ey ———
fo+B X,
k =B/Tc
B
N Rx
fo &
T Time

Fig. 2. The waveform definition of FMCW radar signal.

increase, T, is the signal duration, 7, and R, is the transmit-
ted and received signal, respectively. Let Sy, (t) and Sg,(t)
be the FMCW transmitted and received (reflected by target)
signal represented as

1)
)

STx(t) = A, - cos [277 : sz(t) “t+ ¢TT]
Spe(t) = Apy - €08 270 - fre(t) - T + ¢,

where fr,(t), ¢7,, and Ay, are the frequency, the phase, and
the amplitude of the transmitted signal, respectively. Corre-
spondingly, fr.(t), ¢p., and Ap, are receiver’s signal fea-
tures. We denote the round-trip delay between the
transmitted and received signals as 7, so fr,(t) = fr(t — )
is the 7-delayed version of fr,(t). After applying a mixer on
the transmitted and received signal, we can obtain the beat
frequency signal as follows

Sp(t) = Sru(t)Sru(t)

%ATL-ARI ~{cos[2m - fu(t) -t + ¢y
+ cos [47‘[ . fTr(t) =2 fy ot +¢b]}7

where fy(t) = fr.(t) — fro(t) is the frequency change func-
tion of beat signal and ¢, = ¢7, — ¢p,. Since the beat fre-
quency (at MHz level) is much lower than the carrier
frequency (at GHz level) [27], we can apply a low-pass filter
to exclude the carrier. Then the beat frequency signal can be
expressed as follows

Sy(t) = Ay - cos [2mktt + 27 for — 27kt F ), 3)

where A, = %ATZ,A R 15 the synthesized amplitude of the
transmitter and the receiver. In fact, due to the presence of
reflected signals from objects at different distances in the orig-
inal data, the frequency components in S(t) are different. As
shown in Fig. 3, we perform Range-FFT on fast-time samples
in a chirp. It maps the time domain signal to the frequency
domain. Objects at different distances have a peak in the fre-
quency domain. Then, we perform Doppler-FFT on the
results of Range-FFT for our vibration source positioning task.

From Eq. (3), we can derive the phase of the intermediate
frequency signal as follows,

¢ = 27 for — 2wkt + ¢y (4)
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Fig. 3. Chirp generation and processing.
Since t involves the speed of light ¢, the accuracy of its

calculation will be rough. Therefore, we combine v =2 d/c
and Eq. (4) to eliminate 7,

2
¢:2nf0-2—d—2nk~%+¢b. (5)
c c
Simplifying Eq. (5), we can obtain
8kd® — 47 focd + (¢ — ¢p) = 0, (6)

from Eq. (6), we can derive an accurate distance measure-

ment as
Jo
d=|=—

We perform the linear parabolic interpolation in the
phase spectrum from Range-FFT to obtain a wrapping
phase. Combined with the phase calculated in Eq. (4), we
can achieve an accurate phase estimation, which can be used
in Eq. (7). Therefore, we can calculate the distance from the
FMCW radar to the speaker by chirps. The vibration estima-
tion can be obtained from the difference between successive
distance measurements.

(7

ﬁ_g.m C
k2 k 4’

3.2 A Feasibility Study

In order to launch an eavesdropping attack, we verify the
correlation between the received mmWave signal and the
audio played through a speaker using a proof-of-concept
experiment. In the experiment, we let the speaker play an
test audio (as shown in Fig. 4a) while the mmWave radar is
placed in front of the speaker at a 1 m distance without any
blockage. The frequency of the test audio is from 200Hz to
5kHz to measure the frequency response. Fig. 4 shows the
played audio spectrogram and the corresponding mmWave
spectrogram captured by the FMCW radar. We observe that
the mmWave signal shows a high similarity with the audio
signal. Due to the low sampling rate of the FMCW radar,
the radar signals show poor similarity with the audio at
high frequencies. Also, The FMCW radar suffer from white

Authorized licensed use limited to: George Mason University. Downloaded on August 22,2024 at 17:45:58 UTC from IEEE Xplore. Restrictions apply.
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Fig. 4. The spectrograms for (a) original audio and (b) reflected mmWave
signal from the speaker.

noise over the whole spectrum. To address these two issues,
we enhance the mmWave radar signals reflected from the
speaker using a generative machine learning model.

3.3 Generative Adversarial Networks

Generative adversarial networks (GANSs) belong to the class
of generative models [28]. The goal for GANs is to learn a
function that can map between two distributions: the source
and the target. The source is a random noise distribution
(p:(2)) and the target is the underlying distribution of the
data (pgqte). Once this mapping is learned, GANSs can take a
sample z € p, and map it to sample x € pgare. GANs implic-
itly learn this mapping function and have enabled a plenti-
ful of novel applications [29], [30], [31], [32], [33]. GAN
models are trained by emulating a min-max game between
the two networks, one is the generator (G) and the other is
the discriminator (D). The generator’s objective is to fool the
discriminator by generating samples from the noise distri-
bution p.(.) which are similar to those sampled from pgasq-
The discriminator’s job is to correctly label the data from the
generator as fake and the data from pg,, as real. The objec-
tive function V(G, D) for this min-max game between the
two networks can be written as

V(G7 D) = ET"’Pdam(I) [lOgD(:L‘)]

+ Ezwpz(z) [log(l - D(G(Z)))],

where the objective of the generator is to minimize log (1 —
D(G(z))) and the objective of the discriminator is to
minimize log D(z). An equilibrium is reached when the
generator has successfully approximated pgq, and the dis-
criminator can no longer differentiate between real and fake
data.

3.4 Attack Model

Previous approaches to preventing acoustic eavesdropping
rely on the use of isolators, such as soundprooof glass, poly-
ethylene foam, and plywood. In this work, we consider the

eavesdroppingﬁ threat which leverages the mmWave radar
Authorized i

»

Victim speaker
emitting audio with
sensitive information
Wall or partition

@««(]-»)

Audio
reconstruction

mmWave

Sensitive FMCW radar

information

Fig. 5. Our attack scenario of mmWave-based audio eavesdropping.

to reconstruct the sound of the speaker even with the exis-
tence of sound-proof isolators. As illustrated in Fig 5, a prac-
tical eavesdropping attack is expected to work in the
following conditions: (i) there is an acoustic isolation
between the attacker and the victim, i.e., the victim’s sound
cannot penetrate the sound-proof isolator; the attacker can-
not deploy any equipment/sensor in the same room as the
victim; (ii) the attacker has no prior information about the
type of audio information emitting from the victim speaker.
The attacker is required to not only able to classify a handful
of audio signals (i.e., words or numbers), but to recreate any
audio from the entire vocabulary including full sentences.
(iii) the device to launch an attack is portable and afford-
able. The attack model considered in this work is more prac-
tical and challenging than existing works. In our work, the
attacker can perform sound eavesdropping in this scenario
with a low-cost commercial mmWave radar outside the
soundproof space.

4 SyYSTEM OVERVIEW

Fig. 6 illustrates our mmWave voice eavesdropping system.
MILLIEAR has a mmWave radar which can capture the min-
ute vibration cause by the sound. First, the mmWave radar
emits an FMCW chirp signal to the vibrating speaker. Then,
the signal arrived at the speaker is reflected back to the
radar. Last, through careful processing and enhancement of
the received signal, MILLIEAR extracts the speaker vibrations.
However, due to the background reflection and the multi-
path effect [34], [35], there are errors in the received signal,
resulting in inaccurate estimation of vibrations. To solve
this problem, MILLIEAR feeds the vibration data into our Gen-
erative Adversarial Network for enhancement and denois-
ing, which achieves high-quality audio reconstruction.
MILLIEAR is mainly composed of two modules:

(1) Spectrogram Generation (SG). SG consists of two
phases, namely, target (speaker) localization and spectro-
gram extraction. In order to locate the position of the
speaker, MILLIEAR takes several steps. First, it receives the
raw data from the mmWave radar as an input. Second, it
performs Range-FFT on the raw data to measure the dis-
tance to the target. Third, it conducts Doppler-FFT on the
result of Range-FFT to find candidate range bins and iden-
tify the one that contains the desired vibration. In order to
improve the resolution of the FFT, each chirp of a frame
was split into multiple sub-chirps to provide multiple obser-
vation while extracting the displacement of vocal vibrations.
Last, MILLIEAR performs Short-time Fourier Transform
(STFT) to each chirp to obtain the time-frequency domain
spectrogram. STFT is essentially a windowed Fourier Trans-
form. The formula for STFT and the other details of SG will
describe in Section 5.
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Fig. 6. The miLLIEAR system mainly consists of a mmWave radar, a Data-preprocessing module to extract the vocal spectrogram, and an Audio Recon-

struction module to recover high-quality voice.

(2) Audio Reconstruction (AR). The AR module uses a con-
ditional GAN that is trained using two sources of spectro-
gram images - one from the mmWave radar and the other
from original audio. Using the training data, the GAN learns
how to enhance the mmWave spectrogram by enhancing
representative frequency and amplitude components and
reducing noise. The trained GAN model is then used to
reconstruct audio directly from the captured mmWave spec-
trograms. Please note that the GAN training is agnostic to
the spoken text and thus does not require any manual anno-
tation during the training. We elaborate on AR in Section 6.1.

5 SPECTROGRAM GENERATION

This section explains the spectrogram generation module
that consists of the vibration detection component and the
vibration extraction component.

5.1 Vibration Detection

To facilitate signal processing, we collect raw binary ADC
data via a mmWave radar and convert it into a multidimen-
sional IQ array. To avoid spectral leakage, we segment the
acquired IF signal through a windowing process. In this
process, we choose the Hanning window. Then, we perform
a fast Fourier transform (FFT) to output the Range-FFT spec-
trum and the phase spectrum, which contain a single
chirped frequency bin. The results of the Range-FFT can be
used to distinguish multiple objects based on their interme-
diate frequencies. We identify peaks on the Range-FFT spec-
trum by applying a continuous wavelet transform (CWT)
based peak detection algorithm [36].

Each frequency peak corresponds to an object within the
radar range. However, Range-FFT can only give us the dis-
tance of the target. To locate reverberating objects, we per-
formed a Doppler-FFT test based on the results of the
Range-FFT. Similar to the Range-FFT spectrum, we can
identify objects within the radar vision.

In the Doppler-FFT spectrum, a vibrating object has a sig-
nificant velocity magnitude on the velocity axis. For an
object in a certain range bin, the higher magnitude on the
velocity axis, the higher the probability of the vibrating
object. Therefore, we select objects with high velocity and
set the processing priority in descending order of velocity
values. In this way, we can achieve vibrating object localiza-
tion. Regarding the selection of vibrating objects, a high-
pass threshold is set as a buffer in order to avoid the effects
of weak object vibrations and other errors.

5.2 Vibration Extraction

In order to restore the audio, the vibration displacement
must be accurately extracted. We adopt the similar method
in [25] for the vibration extraction.

The mmWave radar emits chirps at a fixed time interval
and groups a bunch of chirps as one frame for Range-Dopp-
ler processing. Range-FFT typically takes all fast-time sam-
ples of one chirp as input and generates one slow-time
sample. However, low-cost commercial mmWave radars
cannot guarantee accurate phase extraction under low SNR
based on a single chirp. To improve the phase extraction,
we apply a sliding window on fast-time samples within one
single chirp to generate more virtual sub-chirps as shown in
Fig. 7. These sub-chirps are used for cross-referencing with
each other. We then conduct Range-FFT on each sub-chirp
to obtain multiple slow-time samples. Since the duration of
slow-time samples (one frame) are much longer than fast-
time samples (one chirp), the time variance of a group of
sub-chirps within one chirp can be ignored, i.e., we can con-
sider these sub-chirps being transmitted simultaneously. As
shown in Fig. 7, the position of the voice bin detected by
sub-chirp 2 (red bin) is different from that of other sub-
chirps (green bins). Since we have multiple observations for
cross-validation, the abnormal bin (red) can be identified
and eliminated. By this approach, we can accurately recog-
nize the correct voice bin.

With the accurate extraction of the voice bin, we perform
Doppler-FFT on the slow-time samples to derive the phase.
The vibration displacement is calculated according to
Eq. (7) once the phase is available. Since the displacement at
a specific time is the direct result of the amplitude of audio,

N chirp 1 chirp 2
g
= Tx
Q
=
g
= Rx
=3
: H S
H H . ' . [4
sub-chirp 1 ¢ : sub-chirp 2! sub-chirp N

Fast-time Samples

Slow-time Samples

Fig. 7. Vibration extraction from FMCW chirps.
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we consolidate all the vibration displacements with a time-
stamp into a waveform as shown in Fig. 4. The maximum
chirp rate of the mmWave sensor used in our work is
10 kHz which is much smaller than the sampling rate of
common audio 44.1 kHz. In order to recover audio from the
under-sampled vibration waveform, we resort to GAN to
enhance the vibration information with more details.

5.3 Mel-Spectrogram Generation
Our vibration waveform is a one-dimensional signal. How-
ever, the conditional generative adversary network (cGAN)
in audio reconstruction requires image-like input with corre-
lations among surrounding pixels. Hence, we first transform
the waveform to mel-spectrograms. A mel-spectrogram [37]
is a popular representation for audio signal which has been
widely used in the speech synthesis, audio denoising, etc.
We feed this image-like spectrogram into cGAN for enhance-
ment. The enhanced spectogram is then converted back to
audio, which leads to a little information loss.

In this work, we choose Short-time Fourier Transform
(STFT) to get the time-frequency spectrogram. STFT can be
calculated as follows,

+00

STFI(t, f) = / 2(Dh(r — t)e I dr, ®)

—00

where h(t — t) is the window function, 7 is the half window
size of time ¢, and « is the waveform. Since the magnitude
of the generated spectrogram is relatively large, in order to
obtain a sound feature of a suitable size, it is usually passed
through a mel-scale filter bank to produce a mel spectrum.
Studies have shown that humans do not perceive frequen-
cies linearly [38]. Instead, humans are better at detecting dif-
ferences in low frequencies than in high frequencies. For
example, we can easily distinguish the difference between
500 Hz and 1,000 Hz, but it is difficult for us to distinguish
the difference between 10,000 Hz and 10,500 Hz. In order to
capture this feature, we convert the spectrogram produced
by STFT to mel-spectrogram [37]. The conversion process to
calculate the mel-frequency mel(f) follows the equation
mel(f) = 2595 x log1,(1 + %), where f is the frequency. The
transformation is performed on both the vibration signal as
well as the corresponding audio waveform for the cGAN
training and only on the vibration signal during the testing.

6 AuUDIO RECONSTRUCTION

This section describes our audio reconstruction module. It
covers the GAN architecture and the reconstruction applied
in MILLIEAR.

6.1 GAN Architecture

We adopt an image to image translation approach [39] for
enhancing the mmWave vibration mel-spectrograms. We use
the conditional version of GAN referred as cGAN. Unlike
GANs which generate data from a random noise vector (as
described in Section 3.3), cGANSs additionally take a condi-
tional variable, enabling control on the generated data [40].
The objectives of the generator and the discriminator are mod-
ified to include the conditional input y. The modified objective
functions for the generator and the discriminator are log(1 —
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Fig. 8. miLLIEAR cGAN architecture.

D(y,G(zy))) and log(D(y,z)) respectively. Fig. 8 shows
our ¢cGAN architecture. While training, the generator takes
a mmWave vibration mel-spectrogram as a conditional
input and enhances it. The enhanced mel-spectrogram is
concatenated with mmWave mel-spectrogram and input to
the discriminator. The discriminator is expected to classify
this as fake. Additionally, when input with the mel-spectro-
gram from real audios concatenated with mmWave mel-spec-
trogram, the discriminator classifies it as real. Inputting the
mmWave mel-spectrogram conditions the discriminator and
forces the generator to generate the output corresponding to
the input mmWave mel-spectrogram instead of any real look-
ing mel-spectrogram. As the training progresses, the genera-
tor learns to enhance the input such that it becomes difficult
for the discriminator to discriminate between the generator
enhanced mel-spectrogram and the real mel-spectrograms
obtained from real audio. During the testing, the generator is
used to enhance the mmWave vibration mel-spectrogram,
without the presence of a discriminator. It can be observed
that the discriminator essentially helps the generator learn by
indicating the errors in the generated data. After training with
cGAN, the difference between the enhanced spectrum and
the original spectrum is further minimized. In other words,
the high-frequency part of the audio is complemented and
the low-frequency part of the audio is enhanced.

For the generator network, we utilize the UNET [41]
architecture with skip connections. UNET is an encoder-
decoder based architecture proposed for biomedical image
segmentation. Each convolutional block in the generator
and discriminator is comprised of convolutional layers with
square kernels of size 4 x 4 and stride value 2, followed by
batch normalization and rectified linear units (ReLU) for
non-linearity [42]. Batch normalization normalizes the acti-
vation of different units and accelerates the network con-
verge [43]. A dropout value of 0.5 is used in the
intermediate layers and the number of filters is set as multi-
ples of 64 with the filter size decreasing linearly in the sub-
sequent layers following the suggestions in [41]. For the
discriminator, we use three convolutional blocks, followed
by patch wise predictions of real or fake, with a patch size
of 30 x 30. In contrast to having pixel wise or per image pre-
diction, patch wise predictions take advantage of the inde-
pendence in patches that are further apart. Additionally, as
the captured mmWave data does not include the high-fre-
quency components of the audio, the network’s prediction
on those patches can be independently improved. The gen-
erator and discriminator networks are trained alternatively
following the approach delineated in [44]. We use the
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binary cross-entropy loss [45] between the predicted and
ground truth patch labels along with L1 norm [46] over the
generator network as the loss function. L1 norm provides
regularization without blurry artifacts of the L2 norm. We
empirically observe that a learning rate of 0.0002 generates
faster convergence. We use the Adam [47] optimizer for
optimizing the network. The network is trained for 200
epochs and the performance on a validation set is used to
select the optimal training epoch.

6.2 Reconstruction From Enhanced Spectrograms
Once the cGAN enhances the mmWave mel-spectrogram
with richer acoustic features, we use a vocoder to convert
the mel-spectrogram to the audio. Specifically, we use the
Griffin-Lim algorithm [48] to synthesize waveform from the
generated spectrogram due to its efficiency and simplicity.
Griffin-Lim uses the phase constraint between frames to
achieve iterative convergence and can reconstruct the
speech signal using the frequency spectrogram on the basis
of the lack of original phase information. It is proposed to
finding an approximate phase without destroying the adja-
cent amplitude spectrum and its own amplitude spectrum.
Given that there is a large difference between the worst case
and the best case phase, a more accurate phase is obtained
through iteration. By this way, even without the original
phase information, we can restore the audio waveform to a
large extent using the Griffin-Lim algorithm. The recon-
structed audio is expected to be as similar to the original
human audio as possible.

7 IMPLEMENTATION

This section provides the implementation setup of MILLIEAR
and the dataset used for the training and testing.

7.1 Experiment Setup

We implement MILLIEAR on TT IWR1642 BoosterPack which
includes an evaluation board IWR1642BOOST) and a real-
time data-capture adapter (DCA1000EVM) [49]. IWR1642
has 2 transmitter (Tx) and 4 receivers (Rx) antennas with
the working frequency range of 76-81 GHz. We use one Tx
antenna to transmit the FMCW signal and all four Rx anten-
nas to receive the reflected signal. The DCA1000EVM board
is used to collect raw ADC data (fast-time samples). The
pre-processing of the raw data was conducted on a laptop
with an AMD Ryzen 7 4800H CPU and 16 GB memory.

The sampling rate of all the audio samples used in our
experiments is 44.1 KHz. We use a typical conference room
setting with speaker volume set to 70 dB and background
noise of approximately 45 dB (typical indoor office back-
ground noise [50]). Fig. 9 shows two typical conference
room scenarios used in our experiments. MILLIEAR was eval-
uated under various settings to capture the influence of
sensing distance and angle, materials of isolators, etc. For
each setting, we collect at least 4,500 audio samples and
their corresponding raw mmWave data. The training was
performed offline on a server with 10 GPUs (Nvidia RTX
3090). Training for a single user for 200 epochs takes about

2.5 hours and avera(%e testing time is 20 s.
Authorized license
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speaker

Fig. 9. Two examples of experiment setup of miLLIEAR. Left: Conference
Room with a dense wood door; Right: Conference room with a double-
panel glass wall.

7.2 Dataset

Our dataset contains audios from 7 English-speaking public
personalities as shown in Table 2. We refer to them as User;
through User;. For each user, we randomly select speech
samples available online from websites such as YouTube.
Table 2 also shows the length of speech audios used in num-
ber of words for training and testing for each user . Since
our objective is to demonstrate the capability of our model
to reconstruct unconstrained vocabulary, we organize the
dataset such that there is only a small overlap (shown in
Table 2) between words in speech used for training versus
testing. The audio samples are played on a speaker in the
conference room settings discussed before. The audio and
mmWave data are split into 2 seconds segments for input to
c¢GAN model. The total amount of mmWave data is 1.2 TB.
For User; through User,, the cGAN model is trained using
their own data (training and testing for the same user). For
Users through User;, the model is trained using the audio
samples of User; through User; and tested on User;
through User;. This setting enables us to validate the perfor-
mance of model in terms of how it generalizes across differ-
ent users with cross-subject training.

8 EVALUATION

In this section, we analyze the results of our experiments in
two parts: (i) the overall audio reconstruction performance
of MILLIEAR and (ii) robustness of MILLIEAR in various scenar-
ios and settings. We perform both subjective and objective
evaluation of MILLIEAR, in terms of the following metrics:

e  Mel-Cepstral Distortion. Mel-Cepstral Distortion (MCD)
[51] is an objective measure used for speech quality
assessment. It has been widely used in comparing the
quality of synthesized speech to the original speech.
A smaller MCD score indicates a closer similarity
between the reconstructed audio and the original
audio. It is believed that a reconstructed audio with
MCD below 8 can be recognized by a typical speech
recognition system [52].

o Likert Score. For subjective evaluation of the recon-
structed audio, we recruit 20 volunteers to listen to
the recovered audio. These participants include both
native and non-native English speakers with ages
from 20 to 30 years old. We ask them to listen to the
reconstructed audio and the original audio one after
the other and then rate the quality of restored audio
on a likert scale of 0 to 10. A higher likert score
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TABLE 2
Audio Dataset Used for Evaluating MiLLIEAR
Label Person  #of words # of words for  # of words
for testing training overlapping

User; Barack 1,703 6,812 51
Obama

User, Taylor Swift 1,605 6,421 48

Users Bill Gates 1,594 6,377 47

Usery; Anne 1,509 6,037 45
Hathaway

User; Amitabh 1,143 25,647* 34
Bachchan

Userg Meryl Streep 1,084 32

User; Hugh 1,072 30
Jackman
indicates better quality of reconstructed audio. Score
of 0 indicates the reconstructed audio is unintelligi-
ble while 10 means there is no difference between
the reconstructed and original audios.

8.1 Overall Audio Reconstruction Performance

We first evaluate MILLIEAR’s ability to reconstruct audio sig-
nals in the conference room setting as shown in Fig. 9
(right). The mmWave sensor and the speaker are isolated by
a double-panel glass wall with a distance of 1.5 m. Fig. 10
illustrates the three types of spectrograms for User;: original
audio, directly generated from the mmWave radar without
any enhancement, and audio reconstructed from the
mmWave radar enhanced by our cGAN model. We observe
that the original audio and reconstructed audio spectro-
grams show high similarity. This is because our cGAN
model is able to learn how to enhance the mmWave spectro-
grams by reducing noise in the mmWave data and adding
specific acoustic components at different frequencies and
their amplitude. Given that the overlap (in terms of words)
in our training and testing data is small (Table 2), the accu-
rate reconstruction clearly demonstrate our cGAN’s ability
to work with unconstrained vocabulary. Even in the exam-
ple shown in Fig. 10 that only 10 words (mostly frequency
used words such as the, to, and of) are part of the training
speech, MILLIEAR still performs very well.
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Fig. 12. Subjective assessment by volunteers for the recovered audio.

Fig. 11 shows the MCD for Users 1 through 4. The cGAN
model is trained and tested separately for each user. We
observe that the average MCD is less than 4 for all users.
This implies that the reconstructed audio is not only human
discernible but also shows high similarities with the original
speech. We further evaluate this similarity using subjective
evaluation. Fig. 12 shows the median Likert score from the
20 volunteers for the audio samples of 4 users (both original
and reconstructed). As shown in Fig 12, the median score of
each user on both two audio sample snippets is higher than
6 which indicates that MILLIEAR has the ability to reconstruct
voice that is clearly human recognizable.

8.2 Impact of Distance and Direction

In real-world scenarios, an attacker may need to adjust the
position of the mmWave sensor in order to carry out
the eavesdropping. However, adjusting the position will
change the distance and direction between the victim device
and the mmWave radar. Therefore, we evaluate the robust-
ness of MILLIEAR for different distances and directions. We
vary the distance between the mmWave sensor and the

With even tougher All those Who found the courage  Keep pushing in the face And injustice. Last month, we lost a giant of American
times than this- quiet heros to keep marching of hardship democracy Text
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Fig. 10. User, speech spectrograms for (a) original audio, (b) directly generated from mmWave data without enhancement and (c) audio recon-

structed from mmWave data using our cGAN.
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Fig. 13. Vibration extraction performance (relative amplitude error
between mmWave vibration waveform and original audio) at different
distances and angles.

speaker from 1 m to 5 m, and vary the angle from 0° to 45°
in our experiments. These settings are evaluated for the 4
users’ audio with individually trained models.

Fig. 13 shows the performance of our proposed vibration
extraction. We use the relative error e, to evaluate the accu-
racy of vibration extracted from the mmWave signals (with-
out enhancement). Since the amplitudes are at different
scales, we normalize them before calculating the relative
error of different distance and angles. The relative error to
the original audio is derived based on e, = M%OA"‘, where A,
and A, are the normalized amplitude of the vibration wave-
form and the original audio signal, respectively. We can see
that MILLIEAR achieves 8.9% distance average relative error
and 9.6% angle average relative error. The comparison
shows the relative error of MILLIEAR between 1 m and 5 m is
10.2%, and the relative error between 0° and 45° is 8.8%.
The results clearly shows that MILLIEAR’s vibration extraction
achieves a good accuracy in our experiments.

Fig. 14a shows the MCD for four users (User; to Usery)
with varying test distances from 1 m to 5 m. We observe
increased MCD scores, indicating gradual reduction in
reconstruction quality. However, the overall degradation is
not significant at least within the range of the radar. Fig. 20b
shows that angle has a greater impact on the quality of the
reconstructed audio compared to the distance. This is prob-
able because the vibration detection of the speaker surface
(i.e., the reciprocating motion) is increasingly difficult to
capture through the radar when they are at a larger angle
from each other. Nonetheless, MILLIEAR can accurately recon-
struct the audio within 45°. The above experiments show
that MILLIEAR can carry out the eavesdropping even at differ-
ent distances and directions.

8.3 Impact of Different Types of Insulation Materials
and Speakers

The soundproof isolators have been widely used to prevent
eavesdropping in practical scenarios. Hence, we conduct
experiments to test the robustness of MILLIEAR against differ-
ent types of insulation materials. We choose 5 types of pop-
ular soundproof panels that are composed of dense wood,
polyester, cotton, glass and soundproof plaster, respec-
tively. As shown in Fig. 15, except for glass, the perfor-
mance of MILLIEAR does not change significantly with the
observed MCD being within 4. Since glass is the strongest
reflector of mmWave signals among the materials studied
(based on permittivity and attenuation values found in [53],
[54]), the sound reconstruction is deteriorated by a small
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Fig. 15. Audio reconstruction performance with different insulation types.

margin. In general, we observe that MILLIEAR achieves a
decent performance through penetrating most insulating
and soundproofing materials, and thus MILLIEAR can carry
out the eavesdropping in common indoor spaces such as
homes and offices.

Given that speakers from different manufacturers have
distinct features (shapes, material, etc.), we evaluate MILLI-
Ear with four different types of speakers. They are Philips
SPA33, Philips SPA311, Edifier R12 U, and Tmall IN. Note
that there is no cover on the diaphragm of Philips SPA311
and Edifier R12 U, while the diaphragm is covered in Phi-
lips SPA33 and Tmall IN speakers. Fig. 16 shows that can
achieve better eavesdropping performance on Philips
SPA311 and Edifier R12 U than Philips SPA33 and Tmall
IN, because the vibrating surfaces of the former two speak-
ers are directly exposed to the mmWave sensor.

8.4 Impact of Different Types of Background Noise

In the real world, the sound source is usually surrounded
by a variety of background noise. Consequently, to make
the experiments more practical, we study the impact of
background noise on MILLIEAR as follows. We select five dif-
ferent background noises, which are pure music, human
voice, white noise, traffic noise,! and water sounds.? Specifi-
cally, we choose “Summer” for pure music and “I Have a
Dream®” by Martin Luther King Jr. for the human voice,
and we create a white noise with an amplitude of 0.1. We
use another speaker (volume set to 50 dB) to play back-
ground noise at 5 m from the radar. Fig. 17 shows the MCD
of User 1 through 4 under five types of background noises.

1. City Traffic Sounds, https://www.youtube.com/watch?v=fh3Ede
GNKus

2. Water Sounds, https://www.youtube.com/watch?v=jkLRith2wcc

3.Joe Hisaishi - Summer, https://www.youtube.com/watch?v=I10
GN40EL1VU

4.1 Have a Dream, https://www.youtube.com/watch?v=vP4iY1
TtS3s
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Fig. 16. Audio reconstruction performance with different types of
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Fig. 17. MCD of User 1 through 4 at different background noise.

It can be easily observed that the MCD of each User does not
change significantly under different noises. The reason for
this is that MiLLIEAR reconstructs audio by extracting vibra-
tions of the audio source. The speaker actively modulates
the vibration, and thus the sound waves from the back-
ground noise have a weak effect on the diaphragm of the
speaker. Therefore, the performance of MILLIEAR does not
change significantly in the presence of background noise.

8.5 Impact of Different Sound Intensities

In a real eavesdropping scenario, the sound intensity of the
target is usually not constant. Therefore, in order to provide a
more comprehensive experimental evaluation, we investigate
the effect of the sound intensity of the speaker on the audio
reconstruction. We place the speaker at 1 m from the radar.
We set the intensity from 60 dB to 80 dB and let the speaker
play audio from User 1 through 4. We evaluate the 4 users’
audio with individually trained models. Fig. 18 shows that, as
the sound intensity increases, the MCD decreases, which
means that the spectral similarity becomes higher. This is
because the sound intensity of the speaker is determined by
the modulation of the amplitude, and the reduction of the
sound intensity indicates the reduction of the vibration ampli-
tude. Nevertheless, within the typical range of sound intensi-
ties, MILLIEAR can accurately recover the audios, indicating the
effectiveness of the eavesdropping.

8.6 Multiple Audio Sources Reconstruction

Conventional eavesdropping methods only attack one audio
source in default. For instance, a microphone can record the
overlapped audio from different sources, but it is difficult to
separate them. In this experiment, we study the ability of MILLI-
EAR for multi-source audio reconstruction. We put two speak-
ers in the mmWave sensor’s field of view. Speaker]l and
Speaker2 (both are Philips SPA33) are placed at 1 m and
1.5 m from the sensor respectively. Speakerl plays audiol
and Speaker2 plays audio2. To prevent overlap of sound

4.5 User 1 User 2 User 3 User 4
840
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3.51
3.07760dB  65dB  70dB _ 75dB _ 80dB
Intensity

Fig. 18. The effect of different sound intensities on MCD of User 1
through 4.
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Fig. 19. Multiple audio source evaluation: (a) Experimental setup (b)
Spectrogram of the audio recorded by microphone (c-d) Spectrograms
of reconstructed audio from Speaker1 and Speaker2.

sources, the distance between each source is larger than the
distance resolution® of the radar. In addition, we put a micro-
phone next to the radar as a comparison.

As shown in Fig. 19b, multiple audio sources are super-
imposed in the microphone spectrogram. This is because they
are entangled in both the time and frequency domains, which
makes it difficult to separate the audio sources. In contrast, by
selecting different range bins, the mmWave signals from each
audio source can be processed independently. As shown in
Figs. 19c and 19d, MILLIEAR can effectively separate multiple
audio sources. Our experiment results show that MILLIEAR can
reconstruct sounds from multiple audio sources.

8.7 Model Generalization With Cross-User Training

To show that MILLIEAR has a good model generalization
capability, we train and test the cGAN model for different
users (cross-user training and testing). We train the model
using User; data and then test it with Users 2, 3 and 4.
Fig. 20a shows the MCD reduction when Users 2, 3 and 4’s
speeches are tested with their own individually trained
model versus the model trained using User;’s data. We find
that while there is clearly a reduction in audio reconstruc-
tion performance, the overall performance is still good to
carry out the attack. The reconstruction quality degrades
because the voice characteristics of different people have

5. According to theoretical calculation, we know that the spatial res-
olution of radar is roughly 5 cm, which means that two objects less
than 5 ¢m apart will be overlapped into one object.
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Fig. 20. Model generalization: (a) test result based on own model versus
other’s model; (b) cross-user test results.

different dominant frequency components that are not
always accurately reconstructed during cross-user training.

To evaluate if adding more user’s data to the training can
further improve the cross-user performance, we train the
model with data from Users 1 through 4, and test it on Users
5 through 7. Fig. 20b shows the resultant MCD. We find that
when more users are used in the training, the model gener-
alizes better by learning to capture more diverse set of
acoustic features. For example, the MCDs of Users; with
model of User; through User, are all above 5.6, while model
trained using multiple users” data generates a much lower
MCD of 3.8. These cross-user training results show that an
attacker can train the model offline with a large number of
users’ audio data and then carry out the eavesdropping
attack on an unknown user’s audio data.

9 DISCUSSION

MILLIEAR is a mmWave-based acoustic eavesdropping with
unconstrained vocabulary, which achieves premium perfor-
mance. This section discusses MILLIEAR in the following
aspects.

Countermeasure to mmWave Eavesdropping. As we clearly
show in this paper, mmWave signals can accurately eaves-
drop sounds from speakers. There are several methods to
prevent or mitigate eavesdropping, all with drawbacks. (1)
A straightforward method it to wrap the room or the
speaker with electromagnetic shields to block all wireless
signals. However, considering the cost and inconvenience,
it is very unlikely that electromagnetic shields will become
widely available in daily lives. (2) Another method is to
disrupt the mmWave frequency bands by broadcasting jam-
ming mmWave signals, since eavesdropping with sub-
6 GHz does not work well. However, mmWave is also used
by high-speed short-distance data transmission (e.g., TV
connection and 5 G/6 G communications), and thus
jamming mmWave frequency bands interferes with legit
applications. (3) Adding jitters to the speakers to create
man-made vibration could mitigate the eavesdropping
quality. However, the original sound quality might deterio-
rate as well. In addition, the attacker can simply apply filter-
ing techniques to remove jitters. (4) Jamming the signal of a
target radar using another radar. Nevertheless, an FMCW
radar receiver expects to receive signals with a predefined
frequency pattern and to filter signals from other frequency
bands. (5) Moving audio sources. The mmWave radar in
this paper has a chirp rate of 10 k, i.e., the interval time
between adjacent chirps is only 0.1 ms. Therefore, manually
moving speakers do not create significant displacement
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within this short chirp interval. Moreover, the application
of cGAN also eliminates the effect of such noise and thus
our experimental results are valid even when people delib-
erately move the speakers as a countermeasure. As we can
see, it is difficult to prevent mmWave eavesdropping, which
calls for more research effort to design effective counter-
measurements.

Performance Improvement. In our prototyping system, we
adopt UNET for the GAN generator and a simple convolu-
tional network for the GAN discriminator. It is expected
that applying other more advanced models can further
improve the accuracy of MILLIEAR. Since the focus of this
paper it to build the eavesdropping system with no con-
strained vocabulary by using mmWave and GAN techni-
ques, we leave it as future work to obtain the best
performance. Nonetheless, the simple models used in this
paper have already achieved exciting overall performance,
strongly supporting that the workflow in MILLIEAR is general
and effective.

Mobile Version of MILLIEAR. Since mmWave modules will
be integrated in next-generation smartphones for emerging
applications, we plan to design a mobile version of MILLIEAR.
The corresponding eavesdropping attack from phone is
more difficult to discover, which raises severe concerns
about the privacy of human conversation over speakers.
Meanwhile, the mobile version will poses new research
challenges such as how to remove the interfering vibration
from the attacker’s phone in pockets.

10 CONCLUSION

In this article, we propose a mmWave eavesdropping system
that combines the mmWave FMCW and generative machine
learning networks to reconstruct the original audio. Our eval-
uation results show that MILLIEAR is highly effective in eaves-
dropping voices, achieving the average MCD of 3.68 and the
average likert user score of 6.83. This paper sheds light on a
mmWave-based eavesdropping system and could motivate
more research along this direction, given the inspiring results.
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